WO2012053699A1 - 폴리아미드 수지 - Google Patents

폴리아미드 수지 Download PDF

Info

Publication number
WO2012053699A1
WO2012053699A1 PCT/KR2010/009535 KR2010009535W WO2012053699A1 WO 2012053699 A1 WO2012053699 A1 WO 2012053699A1 KR 2010009535 W KR2010009535 W KR 2010009535W WO 2012053699 A1 WO2012053699 A1 WO 2012053699A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyamide resin
aliphatic diamine
diamine monomer
aliphatic
Prior art date
Application number
PCT/KR2010/009535
Other languages
English (en)
French (fr)
Inventor
장승현
진영섭
권소영
임상균
이명렬
장복남
김용태
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN2010800691739A priority Critical patent/CN103119083A/zh
Priority to EP10858706.4A priority patent/EP2631258B1/en
Publication of WO2012053699A1 publication Critical patent/WO2012053699A1/ko
Priority to US13/862,665 priority patent/US20130225770A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a polyamide resin having excellent melt processability, low water absorption and brightness. More specifically, the present invention relates to a polyamide resin having excellent workability, heat resistance, low water absorption, and improved brightness by applying two aliphatic diamines having a specific carbon number.
  • nylon 66 and nylon 6 are the best known polyamide resins.
  • Aliphatic polyamides of this kind are widely used in automobile parts, electrical, electronic products, and mechanical parts.
  • aliphatic polyamides do not have sufficient thermal stability to be applied in applications requiring high heat resistance properties.
  • Aromatic polyamides have higher melting temperatures and higher heat resistance than aliphatic polyamides, but processability has been limited due to such high melting temperatures.
  • U.S. Patent No. 2009/0054620 has prepared a meta-type polyamide resin by reacting meta-type m-phenylenediamine with isophthalic chloride to improve melt processability than para-type polyamide, but has a high melting point unique to aromatic polyamide resin. This did not sufficiently improve the workability.
  • U.S. Patent No. 5,102,935 attempts to improve melt processability by copolymerizing polyamides with oligomeric esters.
  • the copolymer has a disadvantage in that the main chain of the polymer is well decomposed by hydrolysis of the oligomeric ester group, resulting in poor thermal stability.
  • Japanese Patent Laid-Open No. 2002/293926 discloses a polyamide having improved moldability, low water absorption, chemical resistance, strength and heat resistance by applying 1,10-diaminodecane as a diamine component.
  • the method was only slightly improved in chemical resistance and heat resistance, and the improvement in fluidity and absorbency was insignificant, and no improvement in brightness occurred.
  • An object of the present invention is to provide a polyamide resin having melt processability and low water absorption and excellent brightness.
  • An object of the present invention is to provide a polyamide resin having excellent balance of physical properties such as melt processability, heat resistance, mechanical strength, low water absorption, and brightness.
  • Still another object of the present invention is to provide a polyamide resin having excellent appearance and color implementability.
  • Another object of the present invention is to provide a polyamide resin having an intrinsic viscosity of about 0.3 to 4.0 dL / g.
  • Another object of the present invention is to provide a polyamide resin which is particularly suitable for LED reflectors where high brightness is required.
  • the polyamide resin of the present invention is (A) aliphatic diamine; And (B) a polymer of dicarboxylic acid, wherein the (A) aliphatic diamine comprises (a1) a first aliphatic diamine monomer selected from at least one aliphatic diamine having 4, 6, 8, and 10 carbon atoms and (a2) carbon number.
  • the polymer is characterized by excellent melt processability and low water absorption and brightness.
  • the second aliphatic diamine monomer (a2) may be about 0.1 to 70 mol% of the total aliphatic diamine (A) component.
  • the second aliphatic diamine monomer (a2) may be about 2 to 50 mol% of the total aliphatic diamine (A) component.
  • the ratio of the total moles of the (a1) first aliphatic diamine monomer and the (a2) the second aliphatic diamine monomer and the total moles of the dicarboxylic acid monomer (B) ((a1 + a2) / (B)) May be about 0.90 to 1.30.
  • the (a1) first aliphatic diamine monomer may be 1,10-decanediamine
  • the (a2) second aliphatic diamine monomer may be 1,12-dodecanediamine
  • At least one of the (a1) first aliphatic diamine monomer and (a2) second aliphatic diamine monomer may be a branched alkyl group.
  • both the (a1) first aliphatic diamine monomer and the (a2) second aliphatic diamine monomer may include a linear alkyl group.
  • the (B) dicarboxylic acid may include an aromatic dicarboxylic acid.
  • the dicarboxylic acid (B) is terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxy Phenylene acid, 1,3-phenylenedioxy-diacetic acid, diphenic acid, 4'4'-oxybis (benzoic acid), diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4 ' Dicarboxylic acids and 4-4'-diphenylcarboxylic acids and the like can be used.
  • the (B) dicarboxylic acid may be a mixture of aromatic dicarboxylic acid and aliphatic dicarboxylic acid.
  • the polyamide resin may be one in which the end group is sealed with an end sealing agent selected from aliphatic carboxylic acid or aromatic carboxylic acid.
  • the terminal blocker is acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, loric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyl acid, benzoic acid, tall Lunic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and the like can be used.
  • the polyamide resin may have an intrinsic viscosity of about 0.3 to 4.0 dL / g as measured by a Ubbelodhde viscometer at 25 ° C. and 96% sulfuric acid solution.
  • the polyamide resin has a temperature of 80% at a humidity of 95% and a ratio of the tensile strength before the treatment for 24 hours and the tensile strength after the treatment is about 89% or more, and the water absorption rate after treatment for 48 hours at 80 °C, RH 80% About 0.9% or less.
  • the present invention is excellent in the balance of physical properties such as processability, heat resistance, mechanical strength, low water absorption and brightness, excellent appearance and color implementation, particularly suitable for LED reflectors, plastic joints in automobile parts, etc., which require high brightness, and polyamide resins. It has the effect of providing the invention.
  • the polyamide resin of the present invention is (A) aliphatic diamine; And (B) a polymer of dicarboxylic acid, wherein (A) aliphatic diamine comprises two or more different aliphatic diamine monomers (a1, a2). That is, both of the first aliphatic diamine monomer (a1) and the second aliphatic diamine monomer (a2) have an even number of carbon atoms, and exhibit significantly higher heat resistance compared to the even-odd carbon number combination or the odd-odd carbon number combination. It can be.
  • the (A) aliphatic diamine is (a1) a first aliphatic diamine monomer selected from at least one of aliphatic diamines having 4, 6, 8 and 10 carbon atoms and (a2) aliphatic having 12, 14, 16 and 18 carbon atoms.
  • a second aliphatic diamine monomer selected from at least one of the diamines.
  • the second aliphatic diamine monomer may be used to give more excellent melt processability by using a more flexible property than the first aliphatic diamine monomer.
  • the (a2) second aliphatic diamine monomer is about 0.1 to 70 mol%, preferably about 1 to 65 mol%, of the total aliphatic diamine (A) component. Within this range, it is possible to obtain a physical balance of workability and mechanical strength. In embodiments, the second aliphatic diamine monomer (a2) is about 2-50 mol% of the total aliphatic diamine (A) component. In another embodiment, the (a2) second aliphatic diamine monomer is about 30 to 60 mol% of the total aliphatic diamine (A) component.
  • Examples of the (a1) first aliphatic diamine monomer include 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, and the like. One or more of these may be selected, preferably 1,10-decanediamine.
  • Examples of the (a2) second aliphatic diamine monomer include 1,12-dodecanediamine, 1,14-tetradecanediamine, 1,16-hexadecanediamine, 1,18-octadecanediamine, and the like. One or more of these may be selected, preferably 1,12-dodecanediamine.
  • the (a1) first aliphatic diamine monomer is 1,10-decanediamine
  • the (a2) second aliphatic diamine monomer is a combination of 1,12-dodecanediamine.
  • At least one of the (a1) first aliphatic diamine monomer and (a2) second aliphatic diamine monomer may be a branched alkyl group.
  • it when it contains a branched alkyl group, it has the more excellent workability.
  • both the (a1) first aliphatic diamine monomer and the (a2) second aliphatic diamine monomer may include a linear alkyl group.
  • the (B) dicarboxylic acid may include an aromatic dicarboxylic acid.
  • an aromatic dicarboxylic acid with two or more aliphatic diamines having a specific carbon number it is possible to achieve melt processability and heat resistance and low water absorption.
  • the (B) dicarboxylic acid is at least one aromatic dicarboxylic acid, and in another embodiment, the (B) dicarboxylic acid may be a mixture of aromatic dicarboxylic acid and aliphatic dicarboxylic acid.
  • the aromatic dicarboxylic acid is terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxyphenylene acid , 1,3-phenylenedioxy-diacetic acid, diphenic acid, 4'4'-oxybis (benzoic acid), diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'dicar Acids and 4-4'-diphenylcarboxylic acids and the like can be used, but are not necessarily limited thereto. These can be used individually or in mixture of 2 or more types.
  • the aliphatic dicarboxylic acid includes adipic acid, heptanedicarboxylic acid, octane dicarboxylic acid, azelic acid, nonanedicarboxylic acid, sebacic acid, dodecanedicarboxylic acid, and the like, but is not necessarily limited thereto. These can be used individually or in mixture of 2 or more types, Preferably they are adipic acid.
  • the ratio of the total moles of the (a1) first aliphatic diamine monomer and the (a2) the second aliphatic diamine monomer and the total moles of the dicarboxylic acid monomer (B) ((a1 + a2) / (B)) Is about 0.90 to 1.30, preferably about 0.95 to 1.2. It is possible to obtain a balance of excellent fluidity, mechanical strength and low water absorption in the above range.
  • the polyamide resin of the present invention can be prepared by condensation polymerization of aliphatic diamine monomers (a1, a2) and dicarboxylic acids (B) having isomorphous structures with each other.
  • the aliphatic diamine (A) mixed with the aliphatic diamine monomer (a1) and the aliphatic diamine monomer (a2) is charged, and the dicarboxylic acid (B) is charged into the reactor, and about 0.5 to 2 at about 80-120 ° C. Stir for hours. And while maintaining the temperature for about 2-4 hours while increasing the temperature to about 200-280 °C, the pressure was kept constant about 20-40 kgf / cm 2 and then the pressure was lowered to about 10-20 kgf / cm 2 The reaction is carried out for about 1-3 hours.
  • the polyamide obtained at this time may be subjected to solid phase polymerization in a vacuum at a temperature between its glass transition temperature (Tg) and the melting temperature (Tm) for about 10 to 30 hours to obtain a final reactant.
  • an end capping agent may be used when the aliphatic diamine (A) and the dicarboxylic acid (B) are added.
  • the end sealant may be an aliphatic carboxylic acid or an aromatic carboxylic acid.
  • the terminal encapsulant is acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, loric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, isobutyl acid, Benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and the like can be used. These can be used individually or in mixture of 2 or more types.
  • a catalyst may be used in the reaction.
  • a phosphorus catalyst can be used.
  • phosphoric acid, phosphoric acid, hypophosphorous acid or salts or derivatives thereof may be used.
  • phosphoric acid, phosphoric acid, hypophosphorous acid, sodium hypophosphate, sodium hypophosphinate and the like can be used.
  • the catalyst used to prepare the polyamide resin of the present invention may preferably be used from about 0 to 3.0 wt%, preferably from about 0 to 1.0 wt%, more preferably from about 0 to 0.5 wt% of the total monomer weight. .
  • the polyamide resin of the present invention has an L * value of about 92 or greater, preferably about 93 or greater, as measured by ASTM D 1209. As described above, the polyamide resin of the present invention has a high brightness value unlike other polyamide resins of the prior art, and thus, the polyamide resin may be suitably applied to plastic parts of electric and electronic parts or automobile parts such as LED reflectors.
  • the polyamide resin may have an intrinsic viscosity of about 0.3 to 4.0 dL / g as measured by a Ubbelodhde viscometer at 25 ° C. and 96% sulfuric acid solution.
  • the polyamide resin is at a temperature of 80 ° C. and a humidity of 95% at a ratio of tensile strength before treatment for 24 hours and tensile strength after treatment for at least about 89%, preferably about 90 to 99%, and at 80 ° C. and RH 80%. After 48 hours of treatment, the water absorption may be about 0.9% or less, preferably about 0.3 to 0.8%.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 1.14 dL / g.
  • the polyamide prepolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 1.08 dL / g.
  • Terephthalic Acid 0.6019mol (100g), 1,10-decanediamine 0.307mol (52.9g), 1,12-dodecanediamine 0.307mol (61.5g), benzoic acid 0.024mol (2.94g), sodium hypophosphinate 0.1wt% (0.22 g) and 93 mL of distilled water were charged into a 1 liter autoclave and filled with nitrogen. After stirring at 100 ° C. for 60 minutes and raising the temperature to 250 ° C. for 2 hours, the reaction was carried out at this temperature for 3 hours while maintaining 25kgf / cm 2 , and the pressure was reduced to 15kgf / cm 2 and then reacted for 1 hour to give a level of 0.15 dL / g. Polyamide precopolymers were prepared.
  • the polyamide prepolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 1.01 dL / g.
  • Terephthalic acid 0.6019mol (100g), isophthalic acid 0.06mol (10g), 1.10-decane diamine 0.553mol (95.2g), 1,12-dodecane diamine 0.016mol (12.30g), benzoic acid 0.024mol (2.94g), sodium high 0.1 wt% of phosphinate (0.2 g) and 86 ml of distilled water were charged into a 1 liter autoclave and filled with nitrogen. After stirring at 100 ° C. for 60 minutes and raising the temperature at 250 ° C.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 0.98 dL / g.
  • the polyamide prepolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 0.96 dL / g.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an inherent viscosity of 1.43 dL / g.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 1.05 dL / g.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 1.3 dL / g.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 0.6 dL / g.
  • the polyamide prepolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 0.65 dL / g.
  • the polyamide prepolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 0.93 dL / g.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an inherent viscosity of 0.84 dL / g.
  • the polyamide precopolymer obtained by the above method was subjected to solid state polymerization at 230 ° C. for 24 hours to finally obtain a polyamide resin having an intrinsic viscosity of 0.88 dL / g.
  • the polyamide of the present invention has excellent processability, water absorption, and brightness (L *).
  • Comparative Example 1 does not apply the second aliphatic diamine monomer showed overall low fluidity, strength retention and brightness, and also showed a very high absorption rate.
  • Comparative Example 2 in which an excessive amount of 1,12-dodecanediamine was applied, the melting temperature was lowered, and the strength retention rate was also low.
  • Comparative Example 3 in which the total molar ratio of diamine and dicarboxylic acid was out of the range of the present invention, had poor fluidity and poor overall strength, absorption and brightness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

본 발명의 폴리아미드 수지는 (A)지방족 디아민; 및 (B) 디카르복실산의 중합체이며, 상기 (A)지방족 디아민은 (a1) 탄소수가 4, 6, 8 및 10인 지방족 디아민중 하나 이상 선택되는 제1 지방족 디아민 단량체와 (a2)탄소수가 12, 14, 16 및 18인 제2 지방족 디아민 중 하나 이상 선택되는 지방족 디아민 단량체로 이루어지며; 상기 중합체는 용융가공성 및 저흡수성 및 Brightness가 우수한 것을 특징으로 한다.

Description

폴리아미드 수지
본 발명은 융융 가공성, 저흡수성 및 brightness가 우수한 폴리아미드 수지에 관한 것이다. 보다 구체적으로 본 발명은 특정 탄소수를 갖는 2종의 지방족 디아민을 적용하여 가공성, 내열성 및 저흡수성이 우수하며 brightness가 향상된 폴리아미드 수지에 관한 것이다.
일반적으로 폴리아미드 수지로서는 나일론 66, 나일론 6이 가장 잘 알려져 있다. 이런 종류의 지방족 폴리아미드는 자동차 부품, 전기, 전자제품, 기계부품 등에 널리 사용되고 있다. 그러나 지방족 폴리아미드는 고내열 특성을 필요로 하는 분야에 적용되기에 충분한 열적 안정성을 가지고 있지 않다.
방향족 폴리아미드는 지방족 폴리아미드 보다 높은 용융 온도와 고내열성을 가지고 있으나, 이와 같은 높은 용융 온도로 인하여 가공성은 제한적으로 실시 되어져 왔다.
미국특허 2009/0054620호는 메타형인 m-페닐렌디아민과 이소프탈릭 클로라이드를 반응시켜 메타형의 폴리아미드 수지를 제조하여 파라형의 폴리아미드 보다는 용융 가공성을 개선하였지만 방향족 폴리아미드 수지 특유의 높은 용융점로 인해 가공성을 충분히 향상시키지는 못하였다.
미국특허 5,102,935호는 폴리아미드와 올리고머 에스테르를 공중합하여 용융 가공성을 높이려고 하는 시도가 있었다. 그러나 상기의 공중합물은 올리고머 에스테르 그룹의 가수분해에 의해 고분자의 주사슬이 분해가 잘 일어나 열적 안정성이 떨어지는 단점이 있었다.
미국특허공개 2008/0249238호는 가소제를 폴리아미드 수지에 첨가하여 용융 가공성을 높이려고 하였지만 열적 기계적 특성 모두 저하되는 단점이 나타남을 보였다.
일본특허공개 2002/293926호는 1,10-디아미노데칸을 디아민 성분으로 적용하여 성형성, 저흡수성, 내약품성, 강도 및 내열성이 개선된 폴리아미드를 개시하고 있다. 그러나 상기 방법은 내약품성 및 내열성에 어느 정도 개선이 있었을 뿐, 유동성이나 흡수성 향상이 미미하였으며, brightness의 향상은 발생하지 않았다.
이처럼, 성형성이나 흡수성 등의 개선을 위해 다양한 방법이 시도되고 있지만, 지금까지 개발된 폴리아미드 수지는 흡수성 개선 효과가 미미할 뿐만 아니라, 최종 성형품의 brightness의 문제점을 내포하고 있다. 특히 LED 리플렉터나 플라스틱 조인트 부품과 같은 제품에 적용되기 위해서는 높은 brightness가 요구된다.
따라서, 가공성, 내열성, 기계적 강도 및 저흡수성 뿐만 아니라, brightness가 우수한 폴리아미드 수지의 개발이 필요한 실정이다.
본 발명의 목적은 용융가공성 및 저흡수성을 갖으며 brightness가 우수한 폴리아미드 수지를 제공하기 위한 것이다.
본 발명의 목적은 용융가공성, 내열성, 기계적 강도, 저흡수성, brightness 등의 물성 발란스가 우수한 폴리아미드 수지를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 외관 및 색상 구현성이 우수한 폴리아미드 수지를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 고유점도가 약 0.3 내지 4.0 dL/g인 폴리아미드 수지를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 높은 brightness 가 요구되는 LED 리플렉터에 특히 적합한 폴리아미드 수지를 제공하기 위한 것이다.
본 발명의 상기 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 폴리아미드 수지는 (A)지방족 디아민; 및 (B) 디카르복실산의 중합체이며, 상기 (A)지방족 디아민은 (a1) 탄소수가 4, 6, 8 및 10인 지방족 디아민중 하나 이상 선택되는 제1 지방족 디아민 단량체와 (a2)탄소수가 12, 14, 16 및 18인 지방족 디아민 중 하나 이상 선택되는 제2 지방족 디아민 단량체로 이루어지며; 상기 중합체는 용융가공성 및 저흡수성 및 brightness가 우수한 것을 특징으로 한다.
한 구체예에서 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분중 약 0.1 내지 70 mol%일 수 있다.
다른 구체예에서 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분중 약 2 내지 50 mol%일 수 있다.
구체예에서 상기 (a1)제1 지방족 디아민 단량체와 (a2)제2지방족 디아민 단량체의 총 몰수와 상기 디카르복실산 단량체(B)의 총 몰수의 비 ((a1+a2)/(B))는 약 0.90 내지 1.30일 수 있다.
구체예에서는 상기 (a1)제1 지방족 디아민 단량체는 1,10-데칸디아민이고, 상기 (a2)제2지방족 디아민 단량체는 1,12-도데칸디아민일 수 있다.
한 구체예에서, 상기 (a1)제1 지방족 디아민 단량체 및 (a2)제2지방족 디아민 단량체 중 최소한 어느 하나는 가지형 알킬기일 수 있다.
다른 구체예에서 상기 (a1)제1 지방족 디아민 단량체 및 (a2)제2지방족 디아민 단량체는 모두 선형 알킬기를 포함할 수 있다.
한 구체예에서 상기 (B) 디카르복실산은 방향족 디카르복실산을 포함할 수 있다.
상기 (B) 디카르복실산은 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 2,7-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,4-페닐렌디옥시페닐렌산, 1,3-페닐렌디옥시-디아세트산, 디펜산, 4'4'-옥시비스(벤조산), 디페닐메탄-4,4'-디카르복실산, 디페닐설폰-4,4'디카르복실산 및 4-4'-디페닐카르복실산 등이 사용될 수 있다.
다른 구체예에서 상기 (B) 디카르복실산은 방향족 디카르복실산과 지방족 디카르복실산의 혼합물일 수 있다.
상기 폴리아미드 수지는 말단기가 지방족 카르복실산 또는 방향족 카르복실산으로 선택되는 말단봉지제로 봉지된 것일 수 있다.
상기 말단봉지제는 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 로르산, 트리데칸산, 미리스트산, 팔미트산, 스테아르산, 피발산, 이소부틸산, 벤조산, 톨루산, α-나프탈렌카르복실산, β-나프탈렌카르복실산 및 메틸나프탈렌카르복실산 등이 사용될 수 있다.
상기 폴리아미드 수지는 25℃, 96 % 황산용액에서 우베로드(Ubbelodhde) 점도계로 측정한 25 ℃ 고유점도가 약 0.3 내지 4.0 dL/g일 수 있다.
상기 폴리아미드 수지는 온도 80℃, 습도 95%로 24시간 처리 전의 인장강도와 처리 후의 인장 강도에 대한 비율이 약 89 % 이상이며, 80℃, RH 80%에서 48시간 동안 처리한 후 수분흡수율이 약 0.9 % 이하일 수 있다.
본 발명은 가공성, 내열성, 기계적 강도, 저흡수성 및 brightness 등의 물성 발란스가 우수하며, 외관 및 색상 구현성이 우수하고, 높은 brightness 가 요구되는 LED 리플렉터, 자동차 부품중 플라스틱 조인트 등에 특히 적합한 폴리아미드 수지를 제공하는 발명의 효과를 갖는다.
이하, 본 발명의 구체예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 폴리아미드 수지는 (A)지방족 디아민; 및 (B) 디카르복실산의 중합체로서, 상기 (A)지방족 디아민은 2종 이상의 서로 다른 지방족 디아민 단량체 (a1, a2)를 포함한다. 즉, 제1 지방족 디아민 단량체(a1) 및 제2 지방족 디아민 단량체(a2) 모두 짝수의 탄소수를 가진 것을 사용하며, 짝수-홀수의 탄소수 조합이나 홀수-홀수의 탄소수 조합에 비해 현저하게 높은 내열성을 발휘할 수 있는 것이다.
구체예에서 상기 (A)지방족 디아민은 (a1) 탄소수가 4, 6, 8 및 10인 지방족 디아민중 하나 이상 선택되는 제1 지방족 디아민 단량체와 (a2)탄소수가 12, 14, 16 및 18인 지방족 디아민중 하나 이상 선택되는 제2 지방족 디아민 단량체로 이루어진다.
상기 제2 지방족 디아민 단량체는 제1 지방족 디아민 단량체에 비해 보다 더 유연한 특성을 가진 것을 사용하여 보다 우수한 용융가공성을 부여할 수 있다.
한 구체예에서 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분중 약 0.1 내지 70 mol%, 바람직하게는 약 1 내지 65 mol%이다. 상기 범위에서 가공성과 기계적 강도의 물성 발란스를 얻을 수 있다. 구체예에서는 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분중 약 2 내지 50 mol%이다. 다른 구체예에서는 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분중 약 30 내지 60 mol%이다.
상기 (a1)제1 지방족 디아민 단량체의 예로는 1,4-부탄디아민, 1,6-헥산디아민, 1,8-옥탄디아민, 1,10-데칸디아민 등이 있다. 이들중 하나 이상이 선택될 수 있으며, 바람직하게는 1,10-데칸디아민이다.
상기 (a2)제2지방족 디아민 단량체의 예로는 1,12-도데칸디아민, 1,14-테트라데칸디아민, 1,16-헥사데칸디아민, 1,18-옥타데칸디아민 등이 있다. 이들중 하나 이상이 선택될 수 있으며, 바람직하게는 1,12-도데칸디아민이다.
이중 바람직하게는 상기 (a1)제1 지방족 디아민 단량체는 1,10-데칸디아민이고, 상기 (a2)제2지방족 디아민 단량체는 1,12-도데칸디아민의 조합이다. 이들 조합은 내열성, 저흡수성, 기계적 강도 및 유동성이 우수할 뿐만 아니라, 높은 brightness를 발현할 수 있다.
한 구체예에서, 상기 (a1)제1 지방족 디아민 단량체 및 (a2)제2지방족 디아민 단량체 중 최소한 어느 하나는 가지형 알킬기일 수 있다. 이와 같이 가지형 알킬기를 함유할 경우 보다 우수한 가공성을 갖는다.
다른 구체예에서 상기 (a1)제1 지방족 디아민 단량체 및 (a2)제2지방족 디아민 단량체는 모두 선형 알킬기를 포함할 수 있다.
상기 (B) 디카르복실산은 방향족 디카르복실산을 포함할 수 있다. 본 발명에서는 상기 특정 탄소수를 갖는 2종 이상의 지방족 디아민과 함께 방향족 디카르복실산을 적용함으로서, 용융가공성과 내열성 및 저흡수성을 달성할 수 있다.
한 구체예에서는 상기 (B) 디카르복실산은 1종 이상의 방향족 디카르복실산이며, 다른 구체예에서는 상기 (B) 디카르복실산은 방향족 디카르복실산과 지방족 디카르복실산의 혼합물일 수 있다.
상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 2,7-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,4-페닐렌디옥시페닐렌산, 1,3-페닐렌디옥시-디아세트산, 디펜산, 4'4'-옥시비스(벤조산), 디페닐메탄-4,4'-디카르복실산, 디페닐설폰-4,4'디카르복실산 및 4-4'-디페닐카르복실산 등이 사용될 수 있으며, 반드시 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 지방족 디카르복실산은 아디픽산, 헵탄디카르복실산, 옥탄 디카르복실산, 아젤릭산, 노난디카르복실산, 세바식산, 도데칸디카르복실산 등이 있으며, 반드시 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있으며, 이중 바람직하게는 아디픽산이다.
구체예에서 상기 (a1)제1 지방족 디아민 단량체와 (a2)제2지방족 디아민 단량체의 총 몰수와 상기 디카르복실산 단량체(B)의 총 몰수의 비 ((a1+a2)/(B))는 약 0.90 내지 1.30, 바람직하게는 약 0.95 내지 1.2 이다. 상기 범위에서 우수한 유동성과 기계적 강도 및 저흡수율의 발란스를 얻을 수 있다.
본 발명의 폴리아미드 수지는 서로 isomorphous 구조를 가진 지방족 디아민 단량체 (a1, a2)과 디카르복실산(B)을 축중합하여 제조할 수 있다.
한 구체예에서는 상기 지방족 디아민 단량체 (a1) 및 지방족 디아민 단량체 (a2)가 혼합된 지방족 디아민(A)를 투입하고 디카르복실산(B)을 반응기에 채우고 약 80-120 ℃에서 약 0.5~2 시간 동안 교반시킨다. 그리고 온도를 약 200-280 ℃로 증가시키면서 약 2~4시간 동안 유지하고 압력을 약 20~40 kgf/cm2로 일정하게 유지하고 난 후 압력을 약 10~20 kgf/cm2로 낮추어 준 후 약 1-3시간 반응시킨다. 이 때 얻어진 폴리아미드를 그것의 유리전이 온도(Tg)와 용융온도(Tm)사이의 온도로 진공상태에서 약 10~30시간 동안 고상 중합하여 최종 반응물을 얻을 수 있다.
구체예에서는 상기 지방족 디아민(A)과 디카르복실산(B)의 투입시 말단봉지제(end capping agent)를 사용할 수 있다. 또한 상기 말단봉지제의 사용량을 조절함으로써 합성된 폴리아미드 공중합 수지의 점도를 조절할 수 있다. 상기 말단봉지제는 지방족 카르복실산 또는 방향족 카르복실산일 수 있다.
구체예에서 상기 말단봉지제는 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 로르산, 트리데칸산, 미리스트산, 팔미트산, 스테아르산, 피발산, 이소부틸산, 벤조산, 톨루산, α-나프탈렌카르복실산, β-나프탈렌카르복실산 및 메틸나프탈렌카르복실산 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.
또한 상기 반응에는 촉매가 사용될 수 있다. 바람직하게는 포스포러스계 촉매가 사용될 수 있다. 구체적으로 포스포릭산, 포스포러스산, 하이포포스포러스산 또는 그 염이나 유도체 등이 사용될 수 있다. 보다 구체적인 예로서, 포스포릭산, 포스포러스산, 하이포포스포러스산, 소듐 하이포포스페이트, 소듐 하이포포스피네이트 등이 사용될 수 있다.
본 발명의 폴리아미드 수지 제조에 사용된 촉매는 바람직하게는 전체 단량체 중량의 약 0 내지 3.0 wt%, 바람직하게는 약 0 내지 1.0 wt%, 더욱 바람직하게는 약 0 내지 0.5 wt%가 사용될 수 있다.
본 발명의 폴리아미드 수지는 ASTM D 1209에 의해 측정한 L* 값이 약 92 이상, 바람직하게는 약 93 이상이다. 이처럼 본 발명의 폴리아미드 수지는 종래의 다른 폴리아미드 수지와는 달리 높은 brightness 값을 가지므로 LED 리플렉터 등과 같은 전기전자 재료나 자동차 부품의 플라스틱 조인트 부분에 바람직하게 적용될 수 있다.
상기 폴리아미드 수지는 25℃, 96 % 황산용액에서 우베로드(Ubbelodhde) 점도계로 측정한 고유점도가 약 0.3 내지 4.0 dL/g일 수 있다.
상기 폴리아미드 수지는 온도 80℃, 습도 95%로 24시간 처리 전의 인장강도와 처리 후의 인장 강도에 대한 비율이 약 89 % 이상, 바람직하게는 약 90~99 %이며, 80℃, RH 80%에서 48시간 동안 처리한 후 수분흡수율이 약 0.9 % 이하, 바람직하게는 약 0.3~0.8 %일 수 있다.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예
실시예 1
테레프탈산 0.6019mol (100g), 1,10-데칸디아민 0.553mol(95.2g), 1,12-도데칸디아민 0.061mol (12.301g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.21g), 증류수 90mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.25 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 1.14 dL/g 인 폴리아미드 수지를 얻었다.
실시예 2
테레프탈산 0.6019mol (100g), 1,10-데칸디아민 0.43mol(74.1g), 1,12-도데칸디아민 0.184mol (36.9g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.21g), 증류수 92mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.21 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 1.08 dL/g 인 폴리아미드 수지를 얻었다.
실시예 3
테레프탈산 0.6019mol (100g), 1,10-데칸디아민 0.307mol(52.9g), 1,12-도데칸디아민 0.307mol (61.5g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.22g), 증류수 93mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.15 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 1.01 dL/g 인 폴리아미드 수지를 얻었다.
실시예 4
테레프탈산 0.6019mol (100g), 이소프탈산 0.06mol (10g), 1.10-데칸 디아민 0.553mol (95.2g), 1,12-도데칸 디아민 0.016mol (12.30g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.2g), 증류수 86ml 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.12 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.98 dL/g 인 폴리아미드 수지를 얻었다.
실시예 5
테레프탈산 0.6019mol (100g), 아디픽산 0.06mol (8.8g), 1.10-데칸 디아민 0.553mol (95.2g), 1,12-도데칸 디아민 0.016mol (12.30g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.2g), 증류수 86mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.11 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.96 dL/g 인 폴리아미드 수지를 얻었다.
실시예 6
테레프탈산 0.6019mol (100g), 1.10-데칸 디아민 0.547mol (94.3g), 1,12-도데칸 디아민 0.061mol (12.18g), 소듐 하이포포스피네이트 0.1wt% (0.21g), 증류수 138ml 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.2 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 1.43 dL/g 인 폴리아미드 수지를 얻었다.
실시예 7
테레프탈산 0.6019mol (100g), 1.10-데칸 디아민 0.501mol (86.3g), 1,12-도데칸 디아민 0.19mol (25.1g), 벤조산 0.05mol (5.88g), 소듐 하이포포스피네이트 0.1wt%(0.22g), 증류수 55mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.10 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 1.05 dL/g 인 폴리아미드 수지를 얻었다.
비교예 1
테레프탈산(terephthalic acid) 0.6019mol (100g), 1,10-데칸디아민 0.614mol (102g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.205g), 증류수 88ml 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨 후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.25 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 1.3 dL/g 인 폴리아미드 수지를 얻었다.
비교예 2
테레프탈산(terephthalic acid) 0.6019mol (100g), 1,10-데칸디아민 0.184mol (21.2g), 1,12-도데칸디아민 0.43mol (98.4g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.22g), 증류수 96mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.09 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.6 dL/g 인 폴리아미드 수지를 얻었다.
비교예 3
테레프탈산(terephthalic acid) 0.6019mol (100g), 1,6-헥사메틸렌디아민 0.614mol (7.14g), 1,12-도데칸디아민 0.553mol(110.7g) 벤조산 0.024mol (2.94g), 소듐하이포포스피네이트 0.1wt%(0.205g), 증류수 95mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.1 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.65 dL/g 인 폴리아미드 수지를 얻었다.
비교예 4
테레프탈산 0.6019mol (100g), 1,10-데칸디아민 0.43mol (74.05g), 1,6-헵탄디아민 0.184mol (21.4g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.198g), 증류수 85mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.2 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.93 dL/g 인 폴리아미드 수지를 얻었다.
비교예 5
테레프탈산 0.6019mol (100g), 1,10-데칸디아민 0.43mol (74.05g), 1,9-노난디아민 0.184mol (29.15g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.21g), 증류수 88mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.12 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.84 dL/g 인 폴리아미드 수지를 얻었다.
비교예 6
테레프탈산 0.6019mol (100g), 1,10-데칸디아민 0.43mol (74.05g), 1,11-운데칸디아민 0.184mol (34.32g), 벤조산 0.024mol (2.94g), 소듐 하이포포스피네이트 0.1wt%(0.21g), 증류수 91mL 를 1리터 오토클레이브(autoclave)에 넣고 질소로 충진하였다. 100 ℃에서 60분간 교반시키고 250℃로 2시간 동안 승온 후 25kgf/cm2를 유지하면서 이 온도에서 3시간 동안 반응시킨후 15kgf/cm2로 감압시킨 후 1시간 동안 반응하여 0.18 dL/g 수준의 폴리아미드 예비 공중합체를 제조하였다.
상기의 방법으로 얻어진 폴리아미드 예비 공중합체를 230℃에서 24시간 동안 고상 중합(Solid State Polymerization)을 실시하여 최종적으로 고유 점도가 0.88 dL/g 인 폴리아미드 수지를 얻었다.
상기 제조된 폴리아미드 수지에 대해, 고상중합 전과 후에 얻은 샘플의 열적 특성과 고유 점도 등을 비롯한 물성을 하기의 방법으로 측정하였다.
(1)용융온도, 결정화온도 및 열분해 온도 : Different Scanning Calorimeter (DSC), Thermogravimetric analyzer (TGA)를 이용하여 측정 하였다(단위: ℃).
(2) 고유점도 : 폴리아미드를 진한황산 용액(96%)에 녹인 후, 25℃에서 우베로드(Ubbelodhde) 점도계를 사용하여 측정하였다(단위:dL/g).
(3) 유동성 : 스미토모 사출기 SG75H-MIV을 이용하였다. 실린더 온도와 금형 온도를 320 ℃로 설정하고, 사출압력을 15MPa로 설정하여 측정 하였다(mm).
(4) 강도유지율: ISO 527(23℃, 5mm/min)에 따라 인장 강도를 측정하였으며, 강력 유지율은 항온항습기에서 온도 80℃, 습도 95%로 24시간 처리 전의 인장강도와 처리 후의 인장 강도에 대한 비율을 측정하였다.
(5) 흡수율 : 길이 100mm이고 너비가 100mm이며 두께가 3mm 시편을 제작하여 건조하였다. 건조된 중량(W0)를 측정한 후 시편을 항온항습기내에서 80℃, RH 80%에서 48시간 동안 처리한 후 중량(W1)를 측정하였다.
수분 흡수율(%) = [(W1-W0)/W0] *100
(6) Brightness : ASTM D 1209에 정의 된 기준을 근거로하여 colorimeter를 이용하여 L* 값을 측정하였다.
실시예 1~7 및 비교예 1~6의 측정 결과를 각각 표1 및 2에 나타내었다.
표 1
실시예
1 2 3 4 5 6 7
용융 온도(℃) 310 305 300 301 304 311 300
결정화 온도(℃) 280 273 270 271 274 278 275
열분해 온도(℃) 453 452 450 452 455 451 451
고유점도 (dL/g) 1.14 1.08 1.01 0.98 0.96 1.43 1.05
유동성(mm) 130 138 140 132 134 130 141
강도유지율(%) 93 91 90 91 90 94 89
흡수율(%) 0.8 0.7 0.7 0.8 0.8 0.7 0.9
Brightness (L*) 95 95 96 93 93 95 92
상기 표 1에 나타난 바와 같이, 본 발명의 폴리아미드는 가공성, 흡수율 및 brightness (L*)가 우수함을 확인할 수 있다.
표 2
비교예
1 2 3 4 5 6
용융온도(℃) 316 278 290 311 298 293
결정화온도(℃) 288 250 256 272 269 266
열분해온도(℃) 450 444 451 453 443 451
고유점도(dL/g) 1.3 0.6 0.62 0.93 0.84 0.88
유동성(mm) 92 140 93 88 91 87
강도유지율(%) 88 85 84 85 86 88
흡수율(%) 1.8 0.7 1.5 2.8 2.5 2.5
Brightness(L*) 90 95 88 82 85 87
상기 표 2에 나타난 바와 같이, (a2)제2지방족 디아민 단량체를 적용하지 않는 비교예 1은 유동성, 강도유지율 및 brightness 가 전반적으로 낮게 나타났으며, 흡수율도 상당히 높은 것으로 나타났다. 또한 1,12-도데칸디아민이 과량 적용된 비교예 2의 경우 용융온도가 저하되었으며, 강도유지율도 낮은 것을 알 수 있다. 디아민과 디카르복실산의 총 몰비가 본 발명의 범위를 벗어난 비교예 3은 유동성이 좋지 않았으며, 강도유지, 흡수율 및 brightness 가 전반적으로 좋지 않았다. 또한 2종의 지방족 디아민을 적용하더라도 탄소수 6과 탄소수 10인 지방족 디아민의 조합(비교예 4), 탄소수 9과 탄소수 10인 지방족 디아민의 조합(비교예 5), 탄소수 10과 탄소수 11인 지방족 디아민의 조합(비교예 6)의 경우 유동성, 강도유지율, 흡수율 및 brightness 가 모두 저하된 것으로 나타났다. 특히 비교예 5는 흡습율이도 현저히 증가하는 것으로 나타났다. 따라서 2종의 지방족 디아민을 적용하더라도 어떤 탄소수의 조합을 적용하느냐에 따라 유동성, 강도유지율, 흡수율, 내열성 및 brightness의 발란스가 상당한 차이가 있음을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. (A)지방족 디아민; 및 (B) 디카르복실산의 중합체이며,
    상기 (A)지방족 디아민은 (a1) 탄소수가 4, 6, 8 및 10인 지방족 디아민중 하나 이상 선택되는 제1 지방족 디아민 단량체와 (a2)탄소수가 12, 14, 16 및 18인 지방족 디아민중 하나 이상 선택되는 제2 지방족 디아민 단량체로 이루어지는 것을 특징으로 하는 폴리아미드 수지.
  2. 제1항에 있어서, 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분 중 약 0.1 내지 70 mol%인 것을 특징으로 하는 폴리아미드 수지.
  3. 제1항에 있어서, 상기 (a2)제2지방족 디아민 단량체는 전체 지방족 디아민(A)성분중 약 2 내지 50 mol%인 것을 특징으로 하는 폴리아미드 수지.
  4. 제1항에 있어서, 상기 (a1)제1 지방족 디아민 단량체와 (a2)제2 지방족 디아민 단량체의 총 몰수와 상기 디카르복실산 단량체(B)의 총 몰수의 비 ((a1+a2)/(B))는 약 0.90 내지 1.30인 것을 특징으로 하는 폴리아미드 수지.
  5. 제1항에 있어서, 상기 (a1)제1 지방족 디아민 단량체는 1,10-데칸디아민이고, 상기 (a2)제2지방족 디아민 단량체는 1,12-도데칸디아민인 것을 특징으로 하는 폴리아미드 수지.
  6. 제1항에 있어서, 상기 (a1)제1 지방족 디아민 단량체 및 (a2)제2지방족 디아민 단량체 중 최소한 어느 하나는 가지형 알킬기를 갖는 것을 특징으로 하는 폴리아미드 수지.
  7. 제1항에 있어서, 상기 (a1)제1 지방족 디아민 단량체 및 (a2)제2지방족 디아민 단량체는 모두 선형 알킬기를 포함하는 것을 특징으로 하는 폴리아미드 수지.
  8. 제1항에 있어서, 상기 (B) 디카르복실산은 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 2,7-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,4-페닐렌디옥시페닐렌산, 1,3-페닐렌디옥시-디아세트산, 디펜산, 4'4'-옥시비스(벤조산), 디페닐메탄-4,4'-디카르복실산, 디페닐설폰-4,4'디카르복실산 및 4-4'-디페닐카르복실산으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 폴리아미드 수지.
  9. 제1항에 있어서, 상기 (B) 디카르복실산은 방향족 디카르복실산과 지방족 디카르복실산의 혼합물인 것을 특징으로 하는 폴리아미드 수지.
  10. 제1항에 있어서, 상기 폴리아미드 수지는 말단기가 지방족 카르복실산 또는 방향족 카르복실산으로 선택되는 말단봉지제로 봉지된 것을 특징으로 하는 폴리아미드 수지.
  11. 제10항에 있어서, 상기 말단봉지제는 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 로르산, 트리데칸산, 미리스트산, 팔미트산, 스테아르산, 피발산, 이소부틸산, 벤조산, 톨루산, α-나프탈렌카르복실산, β-나프탈렌카르복실산 및 메틸나프탈렌카르복실산으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 폴리아미드 수지.
  12. 제1항에 있어서, 상기 폴리아미드 수지는 25℃, 98 % 황산용액에서 우베로드(Ubbelodhde) 점도계로 측정한 고유점도가 약 0.3 내지 4.0 dL/g인 것을 특징으로 하는 폴리아미드 수지.
  13. 제1항에 있어서, 상기 폴리아미드 수지는 온도 80℃, 습도 95%로 24시간 처리 전의 인장강도와 처리 후의 인장 강도에 대한 비율이 약 89 % 이상이며, 80℃, RH 80%에서 48시간 동안 처리한 후 수분흡수율이 약 0.9 % 이하인 것을 특징으로 하는 폴리아미드 수지.
  14. 제1항 내지 제13항중 어느 한 항의 폴리아미드 수지로부터 형성된 LED 리플렉터.
PCT/KR2010/009535 2010-10-18 2010-12-29 폴리아미드 수지 WO2012053699A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800691739A CN103119083A (zh) 2010-10-18 2010-12-29 聚酰胺树脂
EP10858706.4A EP2631258B1 (en) 2010-10-18 2010-12-29 Polyamide resin
US13/862,665 US20130225770A1 (en) 2010-10-18 2013-04-15 Polyamide Resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0101595 2010-10-18
KR1020100101595A KR101279978B1 (ko) 2010-10-18 2010-10-18 폴리아미드 수지

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/862,665 Continuation-In-Part US20130225770A1 (en) 2010-10-18 2013-04-15 Polyamide Resin

Publications (1)

Publication Number Publication Date
WO2012053699A1 true WO2012053699A1 (ko) 2012-04-26

Family

ID=45975394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009535 WO2012053699A1 (ko) 2010-10-18 2010-12-29 폴리아미드 수지

Country Status (5)

Country Link
US (1) US20130225770A1 (ko)
EP (1) EP2631258B1 (ko)
KR (1) KR101279978B1 (ko)
CN (1) CN103119083A (ko)
WO (1) WO2012053699A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997089A1 (fr) * 2012-10-23 2014-04-25 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101685244B1 (ko) * 2012-12-28 2016-12-09 롯데첨단소재(주) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 제품
JP6196892B2 (ja) 2013-11-26 2017-09-13 ロッテ アドバンスト マテリアルズ カンパニー リミテッド ポリアミド樹脂およびこれを用いたポリアミド成形体
WO2015080426A1 (ko) * 2013-11-26 2015-06-04 삼성에스디아이 주식회사 폴리아마이드 성형체 및 그 제조 방법
JP2015101675A (ja) * 2013-11-26 2015-06-04 チェイル インダストリーズ インコーポレイテッド ポリアミド成形体およびその製造方法
WO2015080425A1 (ko) * 2013-11-26 2015-06-04 삼성에스디아이 주식회사 폴리아마이드 수지 및 이것을 이용한 폴리아마이드 성형체
FR3019827B1 (fr) * 2014-04-15 2020-10-09 Arkema France Composition et procede pour materiau composite avec impregnation par polyamide semi-cristallin, issu d'un prepolymere et d'un allongeur de chaine
FR3019822B1 (fr) * 2014-04-15 2017-10-20 Arkema France Procede de fabrication d'un materiau thermoplastique a base de polyamide semi-cristallin
FR3019826B1 (fr) 2014-04-15 2017-10-20 Arkema France Composition thermoplastique a base de polyamide polymere issu d'un prepolymere et d'un allongeur de chaine et procede de fabrication
FR3019824B1 (fr) 2014-04-15 2017-10-13 Arkema France Procede pour materiau composite avec impregnation par polymere thermoplastique, issu d'un prepolymere et d'un allongeur de chaine
KR20150135737A (ko) * 2014-05-23 2015-12-03 삼성에스디아이 주식회사 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2015178560A1 (ko) * 2014-05-23 2015-11-26 삼성에스디아이 주식회사 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102935A (en) 1988-09-13 1992-04-07 Bayer Aktiengesellschaft Free-flowing polyamide molding compounds and blends
KR0168468B1 (ko) * 1993-12-24 1999-03-20 이즈미 마사노리 폴리아미드 및 폴리아미드 조성물
JP2002293926A (ja) 2001-04-02 2002-10-09 Mitsui Chemicals Inc ポリアミド樹脂、ポリアミド樹脂組成物、およびその成形品
KR20040037272A (ko) * 2002-10-08 2004-05-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리아미드 및 수지 조성물
US20080249238A1 (en) 2003-08-05 2008-10-09 Arkema France Flexible semiaromatic polyamides with a low moisture uptake
US20090054620A1 (en) 2006-01-31 2009-02-26 Teijin Techno Products Limited Meta-type wholly aromatic polyamide fiber excellent in high-temperature processability, and method for producing the same
KR20090021132A (ko) * 2007-08-24 2009-02-27 이엠에스-패턴트 에이지 편평한 유리섬유로 강화된 고융점 폴리아미드 몰딩 컴파운드
KR20090123885A (ko) * 2007-02-16 2009-12-02 아르끄마 프랑스 코폴리아미드, 코폴리아미드를 포함하는 조성물 및 이의 용도
WO2009153531A1 (fr) * 2008-06-20 2009-12-23 Arkema France Polyamide, composition comprenant un tel polyamide et leurs utilisations

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1188534A (en) * 1966-08-03 1970-04-15 Ici Ltd Improvements in or relating to Polyamides
GB1253194A (ko) * 1969-03-25 1971-11-10
JPS5067394A (ko) * 1973-10-19 1975-06-06
DE69213730T2 (de) * 1991-01-10 1997-04-03 Du Pont Polyamid Zusammensetzungen enthaltend die 2-methyl-pentamethylendiamin Monomereinheit
GB9304403D0 (en) * 1993-03-04 1993-04-21 Du Pont Canada Manufacture of partially aromatic polyamides
WO2006112300A1 (ja) * 2005-04-15 2006-10-26 Mitsui Chemicals, Inc. 反射板用樹脂組成物および反射板
US20060293435A1 (en) * 2005-06-10 2006-12-28 Marens Marvin M Light-emitting diode assembly housing comprising high temperature polyamide compositions
DE502008000140D1 (de) * 2007-05-03 2009-11-26 Ems Patent Ag Teilaromatische Polyamidformmassen und deren Verwendungen
FR2932808B1 (fr) * 2008-06-20 2010-08-13 Arkema France Copolyamide, composition comprenant un tel copolyamide et leurs utilisations.
US20110105683A1 (en) * 2008-06-30 2011-05-05 Koya Kato Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition
EP2354176B1 (de) * 2010-01-28 2017-11-15 Ems-Patent Ag Teilaromatische Formmassen und deren Verwendungen
EP2410020B1 (de) * 2010-07-23 2013-01-30 Ems-Patent Ag Teilaromatische Polyamid-Formmassen und deren Verwendungen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102935A (en) 1988-09-13 1992-04-07 Bayer Aktiengesellschaft Free-flowing polyamide molding compounds and blends
KR0168468B1 (ko) * 1993-12-24 1999-03-20 이즈미 마사노리 폴리아미드 및 폴리아미드 조성물
JP2002293926A (ja) 2001-04-02 2002-10-09 Mitsui Chemicals Inc ポリアミド樹脂、ポリアミド樹脂組成物、およびその成形品
KR20040037272A (ko) * 2002-10-08 2004-05-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리아미드 및 수지 조성물
US20080249238A1 (en) 2003-08-05 2008-10-09 Arkema France Flexible semiaromatic polyamides with a low moisture uptake
US20090054620A1 (en) 2006-01-31 2009-02-26 Teijin Techno Products Limited Meta-type wholly aromatic polyamide fiber excellent in high-temperature processability, and method for producing the same
KR20090123885A (ko) * 2007-02-16 2009-12-02 아르끄마 프랑스 코폴리아미드, 코폴리아미드를 포함하는 조성물 및 이의 용도
KR20090021132A (ko) * 2007-08-24 2009-02-27 이엠에스-패턴트 에이지 편평한 유리섬유로 강화된 고융점 폴리아미드 몰딩 컴파운드
WO2009153531A1 (fr) * 2008-06-20 2009-12-23 Arkema France Polyamide, composition comprenant un tel polyamide et leurs utilisations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631258A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997089A1 (fr) * 2012-10-23 2014-04-25 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication
WO2014064375A1 (fr) * 2012-10-23 2014-05-01 Arkema France Matériau composite thermoplastique a base de polyamide semi-cristallin et procédé de fabrication
CN104884503A (zh) * 2012-10-23 2015-09-02 阿克马法国公司 由半结晶聚酰胺制成的热塑性复合材料及其制造方法
EP3002306A1 (fr) * 2012-10-23 2016-04-06 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication
US9752029B2 (en) 2012-10-23 2017-09-05 Arkema France Thermoplastic composite material made of a semi-crystalline polyamide and method for manufacturing same
CN104884503B (zh) * 2012-10-23 2018-11-23 阿克马法国公司 由半结晶聚酰胺制成的热塑性复合材料及其制造方法
CN109593354A (zh) * 2012-10-23 2019-04-09 阿克马法国公司 由半结晶聚酰胺制成的热塑性复合材料及其制造方法
US10377898B2 (en) 2012-10-23 2019-08-13 Arkema France Thermoplastic composite material made of a semi-crystalline polyamide and method for manufacturing same

Also Published As

Publication number Publication date
EP2631258A1 (en) 2013-08-28
KR20120040069A (ko) 2012-04-26
KR101279978B1 (ko) 2013-07-05
EP2631258B1 (en) 2019-06-05
CN103119083A (zh) 2013-05-22
US20130225770A1 (en) 2013-08-29
EP2631258A4 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2012053699A1 (ko) 폴리아미드 수지
KR100951519B1 (ko) 지방족 폴리아미드와 부분 방향족 폴리아미드의 중합체혼합물, 그의 성형제품 및 그의 용도
WO2017039224A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
EP3081598B1 (en) Polyamide composition, molded article, reflective board for leds, and method for preventing heat-induced reflectivity reduction
JP2011219697A (ja) ポリアミド組成物及びポリアミド組成物からなる成形体
EP2944674A1 (en) Polyamide composition and molded article
JP5485839B2 (ja) ポリアミド組成物及び成形品
WO2018124565A1 (ko) 폴리아미드 수지 조성물 및 이로부터 제조된 성형품
WO2013089408A1 (ko) 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 물품
KR101369149B1 (ko) 내열성 및 내화학성이 우수한 폴리아미드 수지
WO2014104482A1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2016175475A1 (ko) 폴리아미드 수지, 이를 포함하는 폴리아미드 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
JP5964923B2 (ja) ポリアミド組成物の製造方法及びポリアミド組成物からなる成形体の製造方法
WO2022139340A1 (ko) 다원 공중합에 의한 폴리아마이드 제조 방법, 이에 의해 제조된 폴리아마이드 및 이를 포함하는 조성물
WO2020197261A1 (ko) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
WO2019098570A1 (ko) 배위-음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드
KR101557535B1 (ko) 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
JP5524538B2 (ja) ポリアミドシート
KR101443173B1 (ko) 가공성이 우수한 폴리아미드 수지
JP3523316B2 (ja) 半芳香族ポリアミドの製造法
KR101290564B1 (ko) 용융 가공성과 내열성이 우수한 폴리아미드 수지
WO2015178560A1 (ko) 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2014104699A1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
JP2019011478A (ja) ハロゲンフリーの難燃性ポリアミド組成物およびその調製方法、並びにその応用
KR101899624B1 (ko) 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069173.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010858706

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE