WO2012050186A1 - 結晶シリコン系太陽電池の製造方法 - Google Patents

結晶シリコン系太陽電池の製造方法 Download PDF

Info

Publication number
WO2012050186A1
WO2012050186A1 PCT/JP2011/073640 JP2011073640W WO2012050186A1 WO 2012050186 A1 WO2012050186 A1 WO 2012050186A1 JP 2011073640 W JP2011073640 W JP 2011073640W WO 2012050186 A1 WO2012050186 A1 WO 2012050186A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layer
type
based layer
transparent conductive
Prior art date
Application number
PCT/JP2011/073640
Other languages
English (en)
French (fr)
Inventor
俊彦 宇都
崇 口山
足立 大輔
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/879,367 priority Critical patent/US9276163B2/en
Priority to JP2012538724A priority patent/JPWO2012050186A1/ja
Publication of WO2012050186A1 publication Critical patent/WO2012050186A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a crystalline silicon photoelectric conversion device having a heterojunction on the surface of a single crystal silicon substrate.
  • a crystalline silicon photoelectric conversion device provided with a crystalline silicon substrate has high photoelectric conversion efficiency, and is widely put into practical use as a photovoltaic power generation system.
  • a crystalline silicon photoelectric conversion device having a conductive amorphous silicon-based layer having a band gap different from that of single-crystal silicon on the surface of a single-crystal silicon substrate is called a heterojunction solar cell.
  • those having an intrinsic amorphous silicon-based layer between a conductive amorphous silicon-based layer and a crystalline silicon substrate are in the form of a crystalline silicon photoelectric conversion device having the highest conversion efficiency.
  • the Defect levels are generated by depositing the conductive amorphous silicon layer by forming an intrinsic amorphous silicon layer between the crystalline silicon substrate and the conductive amorphous silicon layer.
  • defects mainly silicon dangling bonds
  • existing on the surface of the crystalline silicon substrate are terminated with hydrogen (passivation).
  • the presence of the intrinsic amorphous silicon-based layer can prevent the carrier-introduced impurity from diffusing to the surface of the crystalline silicon substrate when forming the conductive amorphous silicon-based layer.
  • a transparent conductive layer is formed on the surface of the conductive amorphous silicon-based layer.
  • This transparent conductive layer preferably has high light transmittance and low resistance.
  • a transparent conductive metal oxide such as crystalline indium tin composite oxide (ITO) is used.
  • ITO crystalline indium tin composite oxide
  • a collector electrode is formed on the transparent conductive layer.
  • Ag paste or the like is used as the material.
  • Patent Document 1 discloses that, in manufacturing a solar cell using a crystalline silicon substrate, after applying a conductive paste, heat treatment is performed at 300 ° C. to 700 ° C. in a hydrogen atmosphere.
  • Patent Document 1 it is reported that the metal oxide contained in the glass frit in the conductive paste is reduced by hydrogen by heat treatment, so that both high adhesive strength and low electrical contact resistance are compatible.
  • Patent Document 2 discloses that in the production of a flexible solar cell, the resistance of the transparent electrode is reduced by performing a heat treatment after the electrode is formed.
  • Patent Document 3 a thin film solar cell using microcrystalline silicon as a photoelectric conversion layer and a conductive type layer is heat-treated in a low oxygen partial pressure atmosphere for 1 hour or more, so that the doped impurities in the conductive microcrystalline silicon layer are reduced. It is disclosed to activate and improve electrical properties.
  • a silicon-based layer and a transparent conductive layer are formed at a low temperature of less than 200 ° C. Therefore, when a heat treatment is performed at a high temperature as in Patent Document 1, diffusion of doped impurities from the conductive amorphous silicon-based layer to the intrinsic amorphous silicon-based layer, or from the transparent conductive layer to the silicon-based layer is performed. Since diffusion of different elements occurs, there is a problem that impurity levels and defect levels are formed and conversion efficiency is lowered. In addition, in the heterojunction solar cell, even when heat treatment at a low temperature as disclosed in Patent Documents 2 and 3 is performed, the conversion characteristics are not improved, and the conversion characteristics decrease as the heating time increases. There was a trend. In view of these, an object of the present invention is to improve conversion characteristics of a heterojunction solar cell.
  • the present inventors have found that, in the manufacture of heterojunction solar cells, it is possible to improve photoelectric conversion characteristics by performing heat treatment under predetermined conditions after forming the transparent conductive layer. And made the present invention.
  • the present invention has an intrinsic silicon-based layer, a p-type silicon-based layer, and a transparent conductive layer in this order on one surface of a conductive single crystal silicon substrate, and an intrinsic silicon-based layer on the other surface of the conductive single crystal silicon substrate.
  • the present invention relates to a method of manufacturing a crystalline silicon-based photoelectric conversion device having a layer, an n-type silicon-based layer, and a transparent conductive layer in this order.
  • heat treatment is performed after at least one transparent conductive layer is formed. This heat treatment is performed at a temperature lower than 200 ° C. in an atmosphere containing hydrogen.
  • the p-type silicon-based layer is preferably formed with a thickness of 3 nm to 8 nm.
  • the p-type silicon-based layer is preferably a p-type amorphous silicon-based layer.
  • an n-type amorphous silicon-based layer and an n-type microcrystalline silicon-based layer are sequentially formed from the second intrinsic silicon-based layer side.
  • the heat treatment is performed in a hydrogen-containing atmosphere, whereby the conversion characteristics of the heterojunction solar cell are improved.
  • a first intrinsic silicon-based layer 2 is formed on one surface of a one-conductivity-type single-crystal silicon substrate 1, and a second intrinsic silicon-based layer 4 is formed on the other surface.
  • a p-type silicon-based layer 3 and an n-type silicon-based layer 5 are formed on the respective surfaces of the first intrinsic silicon-based layer 2 and the second intrinsic silicon-based layer 4.
  • a first transparent conductive layer 6 and a second transparent conductive layer 8 are formed on the respective surfaces of the p-type silicon-based layer 3 and the n-type silicon-based layer 5.
  • a collector electrode is formed at least on the transparent conductive layer on the light incident side. In FIG. 1, collector electrodes 7 and 9 are formed on both the light incident side and the back side.
  • a single crystal silicon substrate contains impurities that supply charges to silicon and has conductivity.
  • a p-type single crystal silicon substrate having an impurity (for example, boron atom) into which is introduced is introduced. That is, “one conductivity type” in this specification means either n-type or p-type.
  • the heterojunction on the incident side where the light incident on the single crystal silicon substrate is absorbed most is a reverse junction. If the heterojunction on the light incident side is a reverse junction, a strong electric field is provided, and electron / hole pairs can be efficiently separated and recovered. On the other hand, when holes and electrons are compared, electrons having smaller effective mass and scattering cross section generally have higher mobility. From the above viewpoint, it is preferable that the single conductivity type single crystal silicon substrate 1 used in the present invention is an n type single crystal silicon substrate.
  • One having layer 4 / n-type single crystal silicon substrate 1 / intrinsic silicon-based layer 4 / n-type silicon-based layer 5 / transparent conductive layer 8 / collecting electrode 9 in this order is mentioned.
  • the n-type silicon-based layer (also referred to as n layer) side is the back surface side. From the viewpoint of light confinement, a texture (uneven structure) is preferably formed on the surface of the single crystal silicon substrate.
  • a silicon-based layer is formed on the surface of the single crystal silicon substrate 1.
  • plasma CVD is preferable.
  • the conditions for forming the silicon-based layer by plasma CVD for example, a substrate temperature of 100 to 300 ° C., a pressure of 20 to 2600 Pa, and a high frequency power density of 0.004 to 0.8 W / cm 2 are preferably used.
  • a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used as a source gas.
  • a dopant gas for forming the p layer or the n layer B 2 H 6 or PH 3 is preferably used.
  • a mixed gas in which the dopant gas is previously diluted with a raw material gas or H 2 can also be used.
  • a gas containing a different element such as CH 4 , CO 2 , NH 3 , GeH 4
  • a silicon alloy layer such as silicon carbide, silicon nitride, silicon germanium or the like is manufactured as a silicon-based layer. It may be membraned.
  • the intrinsic silicon layers 2 and 4 are substantially intrinsic non-doped silicon thin films.
  • the intrinsic silicon-based layers 2 and 4 are preferably intrinsic hydrogenated amorphous silicon substantially consisting of silicon and hydrogen.
  • the film thickness of the intrinsic silicon-based layers 2 and 4 is preferably 3 to 16 nm, more preferably 4 to 14 nm, and further preferably 5 to 12 nm. If the thickness of the intrinsic silicon-based layer is excessively small, the interface is caused by the diffusion of impurity atoms in the conductive silicon-based layers 3 and 5 to the surface of the single crystal silicon substrate and the deterioration of the coverage of the surface of the single crystal silicon substrate. Defects tend to increase. On the other hand, if the thickness of the intrinsic silicon-based layer is excessively large, the conversion characteristics may be deteriorated due to an increase in resistance or an increase in light absorption loss.
  • a p-type silicon-based layer 3 is formed on the first intrinsic silicon-based layer 2.
  • the p-type silicon-based layer is preferably an amorphous silicon-based layer such as a p-type hydrogenated amorphous silicon layer, a p-type amorphous silicon carbide layer, or a p-type oxidized amorphous silicon layer. Since the amorphous silicon-based layer can be formed at a lower power density than the microcrystalline silicon-based layer, diffusion of impurity atoms to the surface of the single crystal silicon substrate is suppressed.
  • a p-type hydrogenated amorphous silicon layer is preferable from the viewpoint of suppressing impurity diffusion and reducing series resistance.
  • a p-type amorphous silicon carbide layer or a p-type oxidized amorphous silicon layer is preferable as a wide-gap low-refractive index layer in terms of reducing optical loss.
  • the thickness of the p-type silicon-based layer 3 is preferably in the range of 3 nm to 50 nm.
  • the conductive layer (p-type silicon-based layer 3 and n-type silicon-based layer 5) is a layer necessary for taking out carriers to the transparent conductive layer, and if the thickness is too small, the carrier movement tends to be controlled. On the other hand, if the thickness of the conductive layer is too large, it tends to cause light absorption loss.
  • the p layer and the n layer need to have a thickness of about 15 nm in order to form a diffusion potential. .
  • the p-layer and n-layers required for forming a diffusion potential are smaller in thickness than a thin-film solar cell. Therefore, in the heterojunction solar cell, it is particularly preferable to reduce the film thickness of the conductive layer disposed on the light incident side.
  • the p-layer thickness is preferably small.
  • the film thickness of the p-type silicon-based layer 3 is more preferably 15 nm or less, further preferably 10 nm or less, and particularly preferably 8 nm or less.
  • n-type silicon-based layer 5 is formed on the second intrinsic silicon-based layer 4.
  • the n-type silicon-based layer 5 may be constituted by a single layer of an n-type amorphous silicon-based layer or an n-type microcrystalline silicon-based layer, and as shown in FIG. It may be configured.
  • the n-type silicon-based layer 5 is preferably composed of two layers of an n-type amorphous silicon-based layer 51 and an n-type microcrystalline silicon-based layer 52 as shown in FIG.
  • the n-type silicon-based layer is an n-type microcrystalline silicon-based layer
  • the crystallinity of the transparent conductive layer 8 formed thereon can be improved, so that a good ohmic junction is formed at the interface. And has the advantage.
  • an n-type amorphous silicon-based layer 51 is formed on the intrinsic silicon-based layer 4 with a film thickness of about 5 nm to 20 nm, an n-type microcrystal is formed thereon.
  • the power required for forming the n-type microcrystalline silicon-based layer can be reduced. Therefore, in the case where the n-type silicon-based layer 5 is composed of two layers, an n-type amorphous silicon-based layer 51 and an n-type microcrystalline silicon-based layer 52, the diffusion of doped impurities into the intrinsic silicon-based layer 4 And film formation damage is reduced.
  • n-type amorphous silicon-based layer an n-type hydrogenated amorphous silicon layer or an n-type amorphous silicon nitride layer is preferable because good bonding characteristics with an adjacent layer can be easily obtained.
  • the n-type microcrystalline silicon-based layer include an n-type microcrystalline silicon layer, an n-type microcrystalline silicon carbide layer, and an n-type microcrystalline silicon oxide layer. From the viewpoint of suppressing the generation of defects inside the n layer, an n-type microcrystalline silicon layer to which impurities other than doped impurities are not actively added is preferably used.
  • the effective optical gap can be widened and the refractive index is also reduced. , Optical merit is obtained.
  • the thickness of the n-type silicon-based layer 5 is preferably in the range of 5 nm to 50 nm. As shown in FIG. 2, when the n-type silicon-based layer is composed of two layers of an n-type amorphous silicon-based layer 51 and an n-type microcrystalline silicon-based layer 52, the n-type amorphous silicon-based layer The film thickness of 51 is preferably 5 nm or more, and more preferably 10 nm or more. By setting the thickness of the n-type amorphous silicon-based layer 51 in the above range, the power density when forming the n-type microcrystalline silicon-based layer 52 thereon can be kept low.
  • the film thickness of the n-type microcrystalline silicon-based layer 52 is preferably 5 nm or more, and more preferably 10 nm or more. By setting the thickness of the n-type microcrystalline silicon-based layer 52 within the above range, the crystallinity of the transparent conductive layer 8 formed thereon can be improved. On the other hand, if the film thickness of the n-type amorphous silicon-based layer or the n-type microcrystalline silicon-based layer is excessively large, conversion characteristics may be deteriorated due to light absorption by the doped impurities. Therefore, the film thickness of the n-type amorphous silicon-based layer is preferably 20 nm or less, and more preferably 15 nm or less. Further, the film thickness of the n-type microcrystalline silicon-based layer is preferably 30 nm or less, and more preferably 20 nm or less.
  • a first transparent conductive layer 6 and a second transparent conductive layer 8 are formed on the p-type silicon-based layer 3 and the n-type silicon-based layer 5, respectively.
  • the film thickness of the first and second transparent conductive layers is preferably 10 nm or more and 140 nm or less from the viewpoint of transparency and conductivity.
  • the role of the transparent conductive layer is to transport carriers to the collector electrode, and it is only necessary to have conductivity necessary for that purpose.
  • a transparent conductive layer that is too thick may cause a decrease in transmittance due to its own absorption loss, resulting in a decrease in photoelectric conversion efficiency.
  • a thin film made of a transparent conductive metal oxide such as indium oxide, tin oxide, zinc oxide, titanium oxide or a composite oxide thereof is generally used.
  • a transparent conductive metal oxide such as indium oxide, tin oxide, zinc oxide, titanium oxide or a composite oxide thereof.
  • indium composite oxides mainly composed of indium oxide are preferable.
  • ITO indium tin composite oxide
  • Both the first transparent conductive layer and the second transparent conductive layer can be formed by a known method.
  • film forming methods include sputtering, metal organic chemical vapor deposition (MOCVD), thermal CVD, plasma CVD, molecular beam epitaxy (MBE), and pulsed laser deposition (PLD).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • sputtering is preferably used for forming an indium composite oxide layer such as ITO.
  • the substrate temperature at the time of forming the transparent conductive layer may be appropriately set, but is preferably 200 ° C. or lower. When the temperature is higher than that, hydrogen is desorbed from the silicon-based layer, and a dangling bond is generated in the silicon atom, which may become a carrier recombination center.
  • collector electrodes 7 and 9 for taking out current are formed on the transparent conductive layers 6 and 8.
  • the collector electrode can be produced by a known technique such as inkjet, screen printing, wire bonding, spraying, etc., but screen printing is preferable from the viewpoint of productivity.
  • screen printing method a process of printing a conductive paste composed of metal particles and a resin binder by screen printing is preferably used.
  • At least the collecting electrode on the light incident side is patterned into a shape such as a comb pattern in order to increase the light incident area to the solar battery cell.
  • the collector electrode on the side opposite to the light incident side may be patterned or may not be patterned.
  • the metal electrode 10 opposite to the light incident side is formed on substantially the entire surface of the transparent conductive layer, the light that has not been absorbed by the silicon substrate is absorbed by the metal electrode layer. It can act as a reflective layer that suppresses leakage to the outside.
  • a metal layer such as Ag or Al may be formed as a reflective layer between the transparent conductive layer and the collector electrode or the metal electrode layer.
  • a heat treatment step is performed in an atmosphere containing hydrogen.
  • the heat treatment may be performed after at least one of the first transparent conductive layer 6 and the second transparent conductive layer 8 is formed. From the viewpoint of enhancing the conversion characteristic improvement effect, after the first transparent conductive layer 6 is formed, or after both the first transparent conductive layer and the second transparent conductive layer are formed, heat treatment is performed in a hydrogen atmosphere. Are preferred.
  • the heat treatment may be performed after the collector electrode and the reflective electrode are formed on the transparent conductive layer.
  • heat treatment for the purpose of solidifying a conductive paste used for the collector electrode or the reflective electrode may be performed in an atmosphere containing hydrogen.
  • the heat treatment in an atmosphere containing hydrogen according to the present invention can be performed also as the heat treatment for electrode formation. Therefore, it is possible to improve the conversion efficiency without adding a new process.
  • the heat treatment temperature in an atmosphere containing hydrogen is less than 200 ° C. If the heating temperature is too high, diffusion of doped impurities from the conductive silicon-based layers 3 and 5 to the intrinsic silicon-based layers 2 and 4 and diffusion of different elements from the transparent conductive layer to the silicon-based layers may occur. And defect levels are formed, and the open circuit voltage and short circuit current density tend to decrease. On the other hand, if the heating temperature is too low, the effect of improving the conversion characteristics may not be sufficiently obtained, or the heat treatment may take a long time. Therefore, the heating temperature is preferably 130 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 160 ° C. or higher.
  • the hydrogen concentration during the heat treatment is not particularly limited, but if the hydrogen concentration is too low, the effect of improving the conversion characteristics may not be sufficiently obtained. Moreover, when hydrogen concentration is too high, the conductive oxide which comprises a transparent conductive layer may be reduce
  • the heat treatment time can be appropriately set according to the above hydrogen concentration and heating temperature.
  • the heating time is preferably 5 minutes to 120 minutes, more preferably 20 minutes to 90 minutes, and even more preferably 30 minutes to 60 minutes. If the heating time is too short, the effect of improving the conversion characteristics according to the present invention may not be sufficiently obtained. Moreover, when heating time is too long, in addition to being inferior to productivity, the conversion efficiency by the conductive oxide which comprises a transparent conductive layer may be reduced may be caused.
  • the heat treatment in the present invention does not act to improve the conductivity type layer by activating the doped impurities. Furthermore, in the present invention, the heat treatment tends to improve not only the fill factor but also the open circuit voltage. In general, it is considered that the open circuit voltage does not improve even when the resistance of the transparent conductive layer is lowered. Considering these, in the present invention, it is considered that the improvement of the interface characteristics by the heat treatment contributes to the improvement of the conversion characteristics.
  • oxygen damage during film formation of the transparent conductive layer is repaired by heat treatment in an atmosphere containing hydrogen.
  • a transparent conductive layer made of ITO is formed by sputtering
  • oxygen bonding defects Si--
  • Si-- oxygen bonding defects
  • the heat treatment of the present invention is not performed under high energy application conditions such as hydrogen plasma treatment or under high temperature conditions, and the activation energy required for termination of dangling bonds of silicon hydride on the surface of the silicon-based layer It is considered that energy exceeding the barrier is not applied.
  • silicon hydride having oxygen bond defects has a strain in the lattice structure, and therefore, the activity necessary for repairing defects such as dangling bonds compared to silicon hydride having no oxygen bond defects.
  • the chemical energy is small. Therefore, in the present invention, it is considered that even when heating is performed at a low temperature of less than 200 ° C., oxygen bond defects and dangling bonds adjacent to the oxygen bond defects are repaired and conversion characteristics are improved.
  • the transparent conductive layer is also formed at the interface between the p-layer and the intrinsic silicon-based layer.
  • oxygen damage during film formation and a decrease in open circuit voltage and fill factor.
  • defects at the interface between the p-layer and the intrinsic silicon-based layer can be repaired by heat treatment under an atmosphere containing hydrogen, so that the open-circuit voltage and the fill factor are improved and the short-circuit current density is increased. It is possible to achieve both improvement.
  • the conversion characteristic improvement effect according to the present invention tends to become more prominent, and a heterojunction solar cell having high conversion characteristics can be obtained.
  • the above heat treatment may be performed in two or more stages.
  • at least one stage of heat treatment may be performed in an atmosphere containing hydrogen.
  • the film thickness was obtained by observing the cross section with a transmission electron microscope (TEM). Note that it is difficult to identify the interface between the intrinsic silicon-based layer and the conductive silicon-based layer by TEM observation. Therefore, the film thicknesses of these layers were calculated from the ratio between the total thickness of each layer determined from TEM observation and the film formation time. For the layer formed on the surface of the silicon substrate on which the texture was formed, the direction perpendicular to the texture slope was defined as the film thickness direction.
  • the photoelectric conversion characteristics of the photoelectric conversion device were evaluated using a solar simulator.
  • Example 1 a crystalline silicon-based photoelectric conversion device schematically shown in FIG. 1 was manufactured.
  • An n-type single crystal silicon substrate having a plane orientation of the incident surface of (100) and a thickness of 200 ⁇ m was washed in acetone. Thereafter, the substrate was immersed in a 2 wt% HF aqueous solution for 3 minutes to remove the silicon oxide film on the surface, and then rinsed with ultrapure water twice.
  • the silicon substrate was immersed in a 5/15 wt% KOH / isopropyl alcohol aqueous solution maintained at 70 ° C. for 15 minutes, and the substrate surface was etched to form a texture. Thereafter, rinsing with ultrapure water was performed twice.
  • the surface of the single crystal silicon substrate 1 was observed with an atomic force microscope (manufactured by AFM Pacific Nanotechnology), the substrate surface was most etched, and a pyramidal texture with the (111) face exposed was formed. It had been.
  • the single crystal silicon substrate 1 after the etching was introduced into the CVD apparatus, and the first intrinsic amorphous silicon layer 2 was formed with a film thickness of 5 nm on one surface (incident surface side).
  • the film forming conditions were a substrate temperature of 150 ° C., a pressure of 120 Pa, a SiH 4 / H 2 flow rate ratio of 3/10, and a high frequency power density of 0.011 W / cm 2 .
  • a p-type amorphous silicon layer 3 having a thickness of 10 nm was formed on the first intrinsic amorphous silicon layer 2.
  • the film formation conditions for the p-type amorphous silicon layer 3 were a substrate temperature of 150 ° C., a pressure of 60 Pa, a SiH 4 / dilution B 2 H 6 flow rate ratio of 1/3, and a high-frequency power density of 0.011 W / cm 2. It was.
  • As the diluted B 2 H 6 gas a gas diluted with H 2 to a B 2 H 6 concentration of 5000 ppm was used.
  • a second intrinsic amorphous silicon layer 4 having a film thickness of 5 nm was formed on the other surface (back surface side) of the single crystal silicon substrate 1.
  • the conditions for forming the second intrinsic amorphous silicon layer 4 were the same as those for the first intrinsic amorphous silicon layer 2.
  • An n-type amorphous silicon layer 5 having a thickness of 10 nm was formed on the second intrinsic amorphous silicon layer 4.
  • the film forming conditions for the n-type amorphous silicon layer 5 were a substrate temperature of 150 ° C., a pressure of 60 Pa, a SiH 4 / dilution PH 3 flow rate ratio of 1/2, and a high frequency power density of 0.011 W / cm 2 .
  • As the diluted PH 3 gas a gas diluted with H 2 to a PH 3 concentration of 5000 ppm was used.
  • a film of indium tin composite oxide (ITO) having a thickness of 100 nm is formed on the p-type amorphous silicon layer 3 and the n-type amorphous silicon layer 5 as the first transparent conductive layer 6 and the second transparent conductive layer 8, respectively.
  • a film was formed with a thickness.
  • a sintered body of indium oxide and tin oxide (with a tin oxide content of 5% by weight) was used as a target.
  • Argon was introduced as a carrier gas at 100 sccm, and film formation was performed under conditions of a substrate temperature of room temperature, a pressure of 0.2 Pa, and a high frequency power density of 0.5 W / cm 2 .
  • Silver paste was screen-printed as collector electrodes 7 and 9 on the surfaces of the transparent conductive layers 6 and 8, respectively. Thereafter, in order to solidify the silver paste, heating was performed in an atmosphere at 150 ° C. for 60 minutes to form a comb-shaped collector electrode. The interval between the collector electrodes was 10 mm.
  • Examples 2 to 5 A solar cell was produced in the same manner as in Example 1 except that the hydrogen content and the heat treatment time during the heat treatment were changed as shown in Table 1.
  • Example 1 A solar cell was produced in the same manner as in Example 1 except that the heat treatment was not performed under an atmosphere containing hydrogen.
  • Table 1 shows the results of evaluating the photoelectric conversion characteristics of the solar cells of the above examples and comparative examples using a solar simulator.
  • Table 1 in addition to the actual measurement values of the photoelectric conversion characteristics (open circuit voltage, short circuit current density, fill factor, and conversion efficiency), numerical values that are normalized with reference to Comparative Example 1 are also shown.
  • Example 6 and Comparative Example 2 A solar battery cell was produced in the same manner as in Example 1 except that the temperature during the heat treatment was changed as shown in Table 2.
  • the results of evaluating the photoelectric conversion characteristics of the obtained solar battery cell using a solar simulator are shown in Table 2 together with the results of Comparative Example 1 and Example 2.
  • Table 2 In Table 2, in addition to the actual measurement values of the photoelectric conversion characteristics, numerical values normalized with the comparative example 1 as a reference value are also shown.
  • Comparative Example 3 In Comparative Example 3, a solar battery cell was produced in the same manner as in Comparative Example 1, but the manufacturing method was different from that in Comparative Example 1 in that the heat treatment was performed in the atmosphere at 150 ° C.
  • Example 7 a solar battery cell was produced in the same manner as in Example 1.
  • Example 7 after the first transparent conductive layer 6 and the second transparent conductive layer 8 are formed, before the silver paste is screen-printed, heat treatment is performed at a temperature of 170 ° C. for 60 minutes in an atmosphere containing 25% hydrogen. After the collector electrode was formed, the heat treatment under an atmosphere containing hydrogen was not performed. Other than that was carried out similarly to Example 1, and produced the photovoltaic cell.
  • Comparative Example 4 a solar battery cell was produced in the same manner as in Example 1, but after forming each amorphous silicon-based layer, in an atmosphere containing 25% hydrogen before forming the transparent conductive layer, The manufacturing method was different from Example 1 in that the heat treatment was performed at a temperature of 170 ° C. for 60 minutes. In Comparative Example 4, the heat treatment under an atmosphere containing hydrogen was not performed after the collector electrode was formed.
  • Table 3 shows the results of evaluating the photoelectric conversion characteristics of the solar cells obtained in Example 7 and Comparative Examples 3 and 4 using a solar simulator.
  • the photoelectric conversion characteristics in Table 3 are numerical values normalized using the measurement value of Comparative Example 3 as a reference value.
  • Example 7 in which heat treatment was performed in a hydrogen-containing atmosphere after forming the transparent electrode layer, the conversion efficiency was improved along with the improvement of the fill factor as in Examples 1-6. From this, it can be seen that it is important to perform heat treatment in a hydrogen-containing atmosphere after forming the transparent conductive layer in order to improve the conversion efficiency.
  • Example 8 the crystalline silicon photoelectric conversion device schematically shown in FIG. 3 was manufactured. Similarly to Example 1, the single crystal silicon substrate 1 after the etching was introduced into the CVD apparatus, and the first intrinsic amorphous silicon layer 2 having a thickness of 5 nm was formed on one surface (incident surface side). It was done. A p-type amorphous silicon layer 3 having a thickness of 10 nm was formed on the first intrinsic amorphous silicon layer 2. The conditions for forming the first intrinsic amorphous silicon layer and the p-type amorphous silicon layer were the same as in Example 1.
  • a second intrinsic amorphous silicon layer 4 having a thickness of 5 nm was formed on the other surface (back surface side) of the single crystal silicon substrate 1 in the same manner as in Example 1.
  • An n-type amorphous silicon layer 51 having a thickness of 10 nm was formed on the second intrinsic amorphous silicon layer 4.
  • the conditions for forming the first intrinsic amorphous silicon layer and the n-type amorphous silicon layer were the same as in Example 1.
  • n-type microcrystalline silicon layer 52 was formed on the n-type amorphous silicon layer 51 with a thickness of 20 nm.
  • the film forming conditions for the n-type microcrystalline silicon layer were a substrate temperature of 150 ° C., a pressure of 100 Pa, a SiH 4 / dilution PH 3 flow rate ratio of 1/5, and a high frequency power density of 0.01 W / cm 2 .
  • As the diluted PH 3 gas a gas diluted with H 2 to a PH 3 concentration of 5000 ppm was used.
  • ITO transparent conductive layers 6 and 8 having a thickness of 100 nm were formed in the same manner as in Example 1.
  • a silver paste was screen-printed on the surface of the transparent conductive layer 6 on the light incident side in the same manner as in Example 1, and a heat treatment was performed in the atmosphere at 150 ° C. for 60 minutes to form the collector electrode 7.
  • a silver paste was applied to the entire surface without patterning, and drying was performed in the same manner to form the metal electrode 10.
  • Example 5 A solar battery cell was produced in the same manner as in Example 8 except that heat treatment was not performed in an atmosphere containing hydrogen.
  • Example 9 A solar cell was produced in the same manner as in Example 8 except that the thickness of the p-type amorphous silicon layer was changed to 5 nm.
  • Example 6 A solar battery cell was produced in the same manner as in Example 8 except that heat treatment was not performed in an atmosphere containing hydrogen.
  • Table 4 shows the results of evaluating the photoelectric conversion characteristics of the solar cells of Examples 8 and 9 and Comparative Examples 5 and 6 using a solar simulator.
  • the n-type silicon-based layer is composed of two layers of an amorphous silicon layer and a microcrystalline silicon layer. Also, it can be seen that by performing the heat treatment in a hydrogen-containing atmosphere, the fill factor is improved and the conversion efficiency is improved.
  • Example 9 in which the thickness of the p-type amorphous silicon layer is 5 nm is compared with Comparative Example 6, in Example 9, in addition to the fact that the fill factor is improved by about 5%, the open circuit voltage is increased. Also improved by about 2%. That is, when the thickness of the p layer is small, it can be seen that the effect of improving the conversion characteristics by the heat treatment in a hydrogen-containing atmosphere is more remarkable.
  • Examples 10 to 17, Comparative Example 7 A solar cell was produced in the same manner as in Example 9 except that the hydrogen content, temperature, and time during the heat treatment were changed as shown in Table 5.
  • Example 8 A solar battery cell was produced in the same manner as in Example 9 except that the heat treatment under an atmosphere containing hydrogen was not performed.
  • Table 5 shows the results of evaluating the photoelectric conversion characteristics of the solar cells obtained in Examples 10 to 17 and Comparative Examples 8 and 9 using a solar simulator.
  • conversion characteristic values normalized with the measured values of Comparative Example 8 as reference values are shown.
  • the conversion factor was improved as a result of the improvement of the fill factor and the open-circuit voltage as compared with Comparative Example 8.
  • the open circuit voltage is improved by 1% (about 7 mV) or more compared to Comparative Example 8.
  • Comparative Example 9 the conversion characteristics of Comparative Example 9 in which heating was performed at 190 ° C. for 30 minutes under an atmosphere containing no hydrogen (hydrogen concentration 0%) were the same as those of Comparative Example 8.
  • Example 10 in which the heat treatment at 190 ° C. for 30 minutes was performed in an atmosphere with a hydrogen concentration of 0.5% by volume, conversion characteristics were improved mainly by improving the fill factor.
  • Example 17 in which the heat treatment was performed for 10 minutes at a hydrogen concentration of 80%, the short circuit current density was reduced, but since the improvement effect of the fill factor and open circuit voltage was large, the conversion was compared with Comparative Example 8. The characteristics are improved. From these results, the heat treatment for a short time in an atmosphere with high hydrogen concentration improves the fill factor while suppressing the decrease in short-circuit current density due to the reduction of the transparent conductive layer. It can be seen that the characteristics can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、導電型単結晶シリコン基板の一方の面に真性シリコン系層、p型シリコン系層、および透明導電層をこの順に有し、導電型単結晶シリコン基板の他方の面に真性シリコン系層、n型シリコン系層および透明導電層をこの順に有する結晶シリコン系光電変換装置を製造する方法に関する。本発明においては、少なくとも一方の透明導電層が形成された後に、加熱処理が行われる。この加熱処理は、水素を含む雰囲気下で200℃未満の温度で行われる。

Description

結晶シリコン系太陽電池の製造方法
 本発明は、単結晶シリコン基板表面にヘテロ接合を有する結晶シリコン系光電変換装置の製造方法に関する。
 結晶シリコン基板を備える結晶シリコン系光電変換装置は、光電変換効率が高く、太陽光発電システムとして広く一般に実用化されている。中でも、単結晶シリコン基板の表面に、単結晶シリコンとは異なるバンドギャップを有する導電型非晶質シリコン系層を有する結晶シリコン系光電変換装置は、ヘテロ接合太陽電池と呼ばれている。
 ヘテロ接合太陽電池の中でも、導電型非晶質シリコン系層と結晶シリコン基板との間に、真性の非晶質シリコン系層を有するものは、変換効率の最も高い結晶シリコン系光電変換装置の形態の一つとして知られている。結晶シリコン基板と導電型非晶質シリコン系層との間に、真性の非晶質シリコン系層が製膜されることで、導電型非晶質シリコン系層の製膜による欠陥準位の生成が低減され、かつ結晶シリコン基板表面に存在する欠陥(主にシリコンの未結合手)が水素で終端化処理(パッシベーション)される。また、真性の非晶質シリコン系層の存在によって、導電型非晶質シリコン系層製膜時の、結晶シリコン基板表面へのキャリア導入不純物の拡散を防止することもできる。
 このようなヘテロ接合太陽電池では、導電型非晶質シリコン系層の表面に透明導電層が形成される。この透明導電層は、光透過性が高く、かつ低抵抗であることが好ましい。その材料としては、結晶性のインジウム錫複合酸化物(ITO)等の透明導電性金属酸化物が用いられる。一般には、透明導電層上には集電極が形成される。集電極としては、Agペースト等が材料に用いられている。
 太陽電池の製法に関する技術として、電極形成後に大気雰囲気で加熱処理を実施することが知られている。例えば、特許文献1では、結晶シリコン基板を用いた太陽電池の製造において、導電性ペーストを塗布した後、水素雰囲気下において300℃以上700℃以下で加熱処理を行うことが開示されている。特許文献1においては、加熱処理によって、導電性ペースト中のガラスフリットに含まれる金属酸化物が水素還元されるために、高い接着強度と低い電気的接触抵抗が両立されることが報告されている。特許文献2では、フレキシブル太陽電池の製造において、電極形成後に加熱処理を行うことで、透明電極を低抵抗化することが開示されている。特許文献3では、光電変換層および導電型層として微結晶シリコンを用いた薄膜太陽電池を低酸素分圧雰囲気下で1時間以上加熱処理することで、導電型微結晶シリコン層中のドープ不純物を活性させて、電気特性を改善することが開示されている。
特開2007-294494号公報 特開2003-318425号公報 特開2004-111551号公報
 一般に、ヘテロ接合太陽電池の製造においては、シリコン系層および透明導電層が200℃未満の低温で製膜される。そのため、特許文献1のような高温で加熱処理が行われると、導電型非晶質シリコン系層から真性非晶質シリコン系層へのドープ不純物の拡散や、透明導電層からシリコン系層への異種元素の拡散が生じるために、不純物準位や欠陥準位が形成され、変換効率が低下するといった問題があった。また、ヘテロ接合太陽電池では、特許文献2,3に開示されているような低温での加熱処理を行っても、変換特性の向上は見られず、加熱時間が長くなると、変換特性が低下する傾向があった。これらに鑑みて、本発明は、ヘテロ接合太陽電池の変換特性の向上を目的とする。
 本発明者らは上記課題に鑑み鋭意検討した結果、ヘテロ接合型太陽電池の製造において、透明導電層形成後に所定の条件下で加熱処理を行うことで、光電変換特性の向上が可能であることを見出し、本発明を為した。
 本発明は、導電型単結晶シリコン基板の一方の面に真性シリコン系層、p型シリコン系層、および透明導電層をこの順に有し、導電型単結晶シリコン基板の他方の面に真性シリコン系層、n型シリコン系層および透明導電層をこの順に有する結晶シリコン系光電変換装置を製造する方法に関する。本発明においては、少なくとも一方の透明導電層が形成された後に、加熱処理が行われる。この加熱処理は、水素を含む雰囲気下で200℃未満の温度で行われる。
 前記p型シリコン系層は、3nm~8nmの膜厚で形成されることが好ましい。また、前記p型シリコン系層はp型非晶質シリコン系層であることが好ましい。一実施形態において、前記n型シリコン系層として、n型非晶質シリコン系層およびn型微結晶シリコン系層が、前記第2真性シリコン系層側から順に形成される。
 本発明によれば、透明導電層形成後に水素含有雰囲気下で加熱処理が行われることによって、ヘテロ接合太陽電池の変換特性が向上される。
本発明の一実施形態による結晶シリコン系光電変換装置の模式的断面図である。 本発明の一実施形態による結晶シリコン系光電変換装置の模式的断面図である。 本発明の一実施形態による結晶シリコン系光電変換装置の模式的断面図である。
 以下、本発明の実施形態を、図1に示した結晶シリコン系光電変換装置の模式的断面図を用いて説明する。図1の結晶シリコン系光電変換装置において、一導電型単結晶シリコン基板1の一方の面に第1真性シリコン系層2、他方の面に第2真性シリコン系層4が形成されている。第1真性シリコン系層2および第2真性シリコン系層4のそれぞれの表面には、p型シリコン系層3およびn型シリコン系層5が形成されている。p型シリコン系層3およびn型シリコン系層5のそれぞれの表面には、第1透明導電層6および第2透明導電層8が形成されている。少なくとも光入射側の透明導電層上には、集電極が形成される。図1においては、光入射側および裏面側の両方に集電極7,9が形成されている。
 まず、一導電型単結晶シリコン基板1について説明する。一般的に単結晶シリコン基板は、シリコンに対して電荷を供給する不純物を含有しており、導電性を有している。このような不純物を含有する導電型単結晶シリコン基板としては、Si原子に対して電子を導入する不純物(例えば、リン原子)を含有するn型単結晶シリコン基板と、Si原子に対して正孔を導入する不純物(例えば、ホウ素原子)を有するp型単結晶シリコン基板とがある。すなわち、本明細書における「一導電型」とは、n型またはp型のいずれか一方であることを意味する。
 このような一導電型単結晶シリコン基板が光電変換装置に用いられる場合、単結晶シリコン基板へ入射した光が最も多く吸収される入射側のへテロ接合が逆接合であることが好ましい。光入射側のヘテロ接合が逆接合であれば、強い電場が設けられ、電子・正孔対を効率的に分離回収することができる。一方で、正孔と電子とを比較した場合、有効質量および散乱断面積の小さい電子の方が、一般的に移動度が大きい。以上の観点から、本発明において用いられる一導電型単結晶シリコン基板1は、n型単結晶シリコン基板であることが好ましい。
 このようにn型単結晶シリコン基板が用いられる場合の結晶シリコン系光電変換装置の構成例としては、光入射側から、集電極7/透明導電層6/p型シリコン系層3/真性シリコン系層4/n型単結晶シリコン基板1/真性シリコン系層4/n型シリコン系層5/透明導電層8/集電極9をこの順に有するものが挙げられる。当該形態においては、n型シリコン系層(n層ともいう)側を裏面側とすることが好ましい。光閉じ込めの観点から、単結晶シリコン基板の表面にはテクスチャ(凹凸構造)が形成されていることが好ましい。
 単結晶シリコン基板1の表面にはシリコン系層が製膜される。シリコン系層の製膜方法としてはプラズマCVDが好ましい。プラズマCVD法によるシリコン系層の形成条件としては、例えば、基板温度100~300℃、圧力20~2600Pa、高周波パワー密度0.004~0.8W/cmが好ましく用いられる。シリコン系層の製膜には、原料ガスとして、SiH、Si等のシリコン含有ガスまたは、それらのガスとHを混合したものが用いられる。p層またはn層を形成するためのドーパントガスとしては、BまたはPH等が好ましく用いられる。この場合、PやBといった不純物の添加量は微量でよいため、ドーパントガスが予め原料ガスやHなどで希釈された混合ガスを用いることもできる。また、CH、CO、NH、GeH等の異種元素を含むガスを上記ガスに添加することにより、シリコン系層として、シリコンカーバイド、シリコンナイトライド、シリコンゲルマニウム等のシリコン合金層が製膜されてもよい。
 上記の真性シリコン系層2,4は、実質的に真性なノンドープシリコン系薄膜である。真性シリコン系層2,4は、実質的にシリコンおよび水素からなる真性水素化非晶質シリコンであることが好ましい。単結晶シリコン基板1表面に真性シリコン系層2,4が形成されることで、導電型シリコン層製膜時の単結晶シリコン基板への不純物拡散が抑制されつつ、単結晶シリコン基板表面のパッシベーションを有効に行うことができる。また、真性シリコン系層の膜中の水素量を変化させることで、エネルギーギャップにキャリア回収を行う上で有効なプロファイルを持たせることができる。
 真性シリコン系層2,4の膜厚は、3~16nmであることが好ましく、4nm~14nmであることがより好ましく、5nm~12nmであることがさらに好ましい。真性シリコン系層の膜厚が過度に小さいと、導電型シリコン系層3,5中の不純物原子の単結晶シリコン基板面への拡散や、単結晶シリコン基板表面のカバレッジ悪化に起因して、界面欠陥が増大する傾向がある。一方、真性シリコン系層の膜厚が過度に大きいと、高抵抗化や光吸収ロスの増大による変換特性の低下を招く場合がある。
 第1真性シリコン系層2上には、p型シリコン系層3が形成される。p型シリコン系層は、p型水素化非晶質シリコン層、p型非晶質シリコンカーバイド層、p型酸化非晶質シリコン層等の非晶質シリコン系層であることが好ましい。非晶質シリコン系層は、微結晶シリコン系層に比して低パワー密度での製膜が可能であるため、不純物原子の単結晶シリコン基板面への拡散が抑制される。非晶質シリコン系層の中でも、不純物拡散の抑制や直列抵抗低下の観点では、p型水素化非晶質シリコン層が好ましい。一方で、p型非晶質シリコンカーバイド層あるいはp型酸化非晶質シリコン層はワイドギャップの低屈折率層として光学的なロスを低減できる点において好ましい。
 p型シリコン系層3の厚みは、3nm~50nmの範囲が好ましい。導電型層(p型シリコン系層3およびn型シリコン系層5)は、キャリアを透明導電層に取り出すために必要な層であり、その厚みが小さすぎるとキャリア移動を律速させる傾向がある。一方、導電型層の厚みが大きすぎると、光吸収ロスの原因となる傾向がある。光電変換層として非晶質シリコン系薄膜や微結晶シリコン系薄膜等を有する薄膜太陽電池では、拡散電位形成のために、p層およびn層は15nm程度の膜厚を有している必要がある。これに対して、結晶シリコン基板が用いられるヘテロ接合型太陽電池では、薄膜太陽電池に比して、拡散電位の形成に必要なp層およびn層の膜厚が小さい。そのため、ヘテロ接合型太陽電池では、特に、光入射側に配置される導電型層の膜厚を小さくすることが好ましい。例えば、n型結晶シリコン基板が用いられ、p層側が光入射側である構成のヘテロ接合太陽電池においては、p層の厚みが小さいことが好ましい。具体的には、p型シリコン系層3の膜厚は、15nm以下であることがより好ましく、10nm以下であることがさらに好ましく、8nm以下であることが特に好ましい
 第2真性シリコン系層4上には、n型シリコン系層5が形成される。n型シリコン系層5は、図1に示すように、n型非晶質シリコン系層あるいはn型微結晶シリコン系層の単層により構成されてもよく、図2に示すように複数層により構成されてもよい。中でもn型シリコン系層5は、図2に示すように、n型非晶質シリコン系層51とn型微結晶シリコン系層52の2層により構成されることが望ましい。n型シリコン系層がn型微結晶シリコン系層である場合には、その上に製膜される透明導電層8の結晶性を向上させることができるため、界面で良好なオーミック接合が形成されるとの利点を有する。その一方で、n型微結晶シリコン層を製膜するには高密度の水素プラズマを発生させるために、高パワーでプラズマを発生させる必要がある。これに対して、図2に示すように、真性シリコン系層4上にn型非晶質シリコン系層51が5nm~20nm程度の膜厚で製膜された後、その上にn型微結晶シリコン系層52が製膜される場合は、n型微結晶シリコン系層の製膜に要するパワーを低減することができる。そのため、n型シリコン系層5が、n型非晶質シリコン系層51とn型微結晶シリコン系層52の2層で構成される場合には、真性シリコン系層4へのドープ不純物の拡散や製膜ダメージが低減される。
 n型非晶質シリコン系層としては、隣接層との良好な接合特性が得られやすいことから、n型水素化非晶質シリコン層やn型非晶質シリコンナイトライド層が好ましい。n型微結晶シリコン系層としては、例えばn型微結晶シリコン層、n型微結晶シリコンカーバイド層、n型微結晶シリコンオキサイド層が挙げられる。n層内部の欠陥の生成を抑制する観点からは、ドープ不純物以外の不純物が積極的に添加されていないn型微結晶シリコン層が好適に用いられる。一方で、n型微結晶シリコン系層としてn型微結晶シリコンカーバイド層や、n型微結晶シリコンオキサイド層を用いることで、実効的な光学ギャップを広げることができ、屈折率も低下することから、光学的なメリットが得られる。
 n型シリコン系層5の厚みは、5nm~50nmの範囲が好ましい。図2に示すように、n型シリコン系層がn型非晶質シリコン系層51とn型微結晶シリコン系層52の2層で構成される場合には、n型非晶質シリコン系層51の膜厚は5nm以上であることが好ましく、10nm以上であることがより好ましい。n型非晶質シリコン系層51の厚みを前記範囲とすることで、その上にn型微結晶シリコン系層52を製膜する際のパワー密度を低く抑えることができる。また、n型微結晶シリコン系層52の膜厚は、5nm以上であることが好ましく、10nm以上であることがより好ましい。n型微結晶シリコン系層52の厚みを前記範囲とすることで、その上に製膜される透明導電層8の結晶性を向上させることができる。一方、n型非晶質シリコン系層やn型微結晶シリコン系層の膜厚が過度に大きいと、ドープ不純物による光吸収に起因して、変換特性が低下する場合がある。そのため、n型非晶質シリコン系層の膜厚は、20nm以下であることが好ましく、15nm以下であることがより好ましい。また、n型微結晶シリコン系層の膜厚は、30nm以下であることが好ましく、20nm以下であることがより好ましい。
 p型シリコン系層3上およびn型シリコン系層5上には、それぞれ第1透明導電層6および第2透明導電層8が形成される。第1および第2透明導電層の膜厚は、透明性と導電性の観点から、10nm以上140nm以下であることが好ましい。透明導電層の役割は、集電極へのキャリアの輸送であり、そのために必要な導電性があればよい。一方で透明性の観点から、厚すぎる透明導電層は、それ自身の吸収ロスのために透過率を減少させて、光電変換効率を低下させる原因となる場合がある。透明導電層としては、一般に、透明導電性金属酸化物、例えば酸化インジウムや酸化錫、酸化亜鉛、酸化チタンやその複合酸化物などからなる薄膜が用いられる。中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム錫複合酸化物(ITO)が特に好ましく用いられる。
 第1透明導電層および第2透明導電層は、いずれも公知の手法により製膜することができる。製膜方法としては、スパッタリング法、有機金属化学気相堆積(MOCVD)法、熱CVD法、プラズマCVD法、分子線ビームエピタキシー(MBE)法やパルスレーザー堆積(PLD)法などが挙げられる。中でもITO等のインジウム系複合酸化物層の製膜には、スパッタリング法が好適に用いられる。透明導電層製膜時の基板温度は適宜設定すればよいが、200℃以下が好ましい。それ以上の高温となると、シリコン系層から水素が脱離して、ケイ素原子にダングリングボンドが発生し、キャリアの再結合中心となる場合がある。
 透明導電層6,8上には、電流取り出しのための集電極7,9が形成される。集電極は、インクジェット、スクリーン印刷、導線接着、スプレー等の公知技術によって作製できるが、生産性の観点からはスクリーン印刷が好ましい。スクリーン印刷法においては、金属粒子と樹脂バインダーからなる導電ペーストをスクリーン印刷によって印刷する工程が好ましく用いられる。
 少なくとも光入射側の集電極は、太陽電池セルへの光入射面積を大きくするために、櫛形パターン等の形状にパターン化されていることが好ましい。光入射側と反対側の集電極は、パターン化されていてもよく、パターン化されていなくともよい。例えば、図3に示すように、光入射側と反対側の金属電極10が透明導電層上の略全面に形成されている場合は、金属電極層が、シリコン基板に吸収されなかった光がセル外に漏れることを抑止する反射層として作用し得る。また、透明導電層と集電極あるいは金属電極層との間に、反射層としてAgやAl等の金属層が形成されていてもよい。
 本発明では、上記の光電変換装置の形成過程において、透明導電層形成後に、水素を含む雰囲気下で加熱処理工程が行われる。透明導電層形成後に加熱処理が行われることで、光電変換装置の変換特性、特に曲線因子の向上がみられる。加熱処理は、第1透明導電層6および第2透明導電層8の少なくとも一方が形成された後に行えばよい。変換特性向上効果を高める観点からは、第1透明導電層6が形成された後、あるいは第1透明導電層および第2透明導電層の両者が形成された後に水素雰囲気下での加熱処理が行われることが好ましい。
 加熱処理は、透明導電層上に集電極や反射電極が形成された後に行ってもよい。また、集電極や反射電極に用いられる導電ペーストの固化等を目的とした加熱処理を、水素を含む雰囲気下で行ってもよい。この場合、電極形成のための加熱処理を兼ねて本発明の水素を含む雰囲気下での加熱処理を行うことができる。そのため、新たな工程を付加することなく、変換効率を向上することが可能である。
 本発明において、水素を含む雰囲気下での加熱処理温度は、200℃未満である。加熱温度が高すぎると、導電型シリコン系層3,5から真性シリコン系層2,4へのドープ不純物の拡散や、透明導電層からシリコン系層への異種元素の拡散が生じ、不純物準位や欠陥準位が形成されて、開放電圧や短絡電流密度が低下する傾向がある。一方で、加熱温度が低すぎると、変換特性の向上効果が十分に得られなかったり、加熱処理に長時間を要する場合がある。そのため、加熱温度は、130℃以上が好ましく、150℃以上がより好ましく、160℃以上がさらに好ましい。
 加熱処理時の水素濃度は特に制限されないが、水素濃度が低すぎると変換特性の向上効果が十分に得られない場合がある。また、水素濃度が高すぎると、透明導電層を構成する導電性酸化物が還元されて、透過率の低減や直列抵抗の増大を生じる場合がある。そのため、加熱処理工程における雰囲気中の水素濃度は、0.1~95体積%であることが好ましく、0.5~80体積%であることがより好ましく、1~45体積%であることがさらに好ましい。なお、水素濃度が上記範囲外であっても、加熱温度等を調整することによって、効果的に変換効率を向上させることも可能である。本発明において、加熱処理雰囲気における水素以外のガスは特に制限されないが、安全上の理由から、窒素やアルゴンなどの不活性ガスと水素の混合ガスが用いられることが好ましい。
 加熱処理時間は、上記の水素濃度や加熱温度に応じて適宜に設定し得る。生産性および変換特性向上の観点から、加熱時間は5分~120分が好ましく、20分~90分がより好ましく、30分~60分がさらに好ましい。加熱時間が短すぎると、本発明による変換特性向上効果が十分に得られない場合がある。また、加熱時間が長過ぎると、生産性に劣ることに加えて、透明導電層を構成する導電性酸化物が還元されることによる変換効率の低下を招く場合がある。
 後述の実施例および比較例の対比からも明らかなように、ヘテロ接合型太陽電池の製造工程において、透明導電層形成前に水素を含む雰囲気下で加熱処理が行われた場合は、変換特性の向上がみられない。このことから、本発明における加熱処理は、ドープ不純物の活性化等によって導電型層を改善させるとの作用を及ぼすものではないと考えられる。さらに、本発明では、加熱処理によって曲線因子のみならず開放電圧も向上する傾向がみられるが、一般には、透明導電層が低抵抗化されても開放電圧は向上しないと考えられる。これらを勘案すると、本発明においては、加熱処理による界面特性の向上が、変換特性の向上に寄与していると考えられる。
 界面特性の向上の1つの要因として、水素を含む雰囲気下での加熱処理によって、透明導電層製膜時の酸素ダメージが修復されることが考えられる。例えば、スパッタリング法によってITOからなる透明導電層が形成される場合は、製膜時の酸素プラズマによって、導電型シリコン系層と透明導電層との界面の水素化シリコンに、酸素結合欠陥(Si-O-Si結合)が生じる傾向がある
 本発明の加熱処理は、水素プラズマ処理のような高エネルギー印加条件下や、高温条件下で行われるものではなく、シリコン系層表面における水素化シリコンの未結合手の終端に必要な活性化エネルギー障壁を超えるエネルギーは印加されないと考えられる。一方、酸素結合欠陥を有する水素化シリコンは、格子構造に歪を生じているため、酸素結合欠陥を有していない水素化シリコンに比して、未結合手等の欠陥の修復に必要な活性化エネルギーが小さい。そのため、本発明においては、200℃未満の低温での加熱でも、酸素結合欠陥や酸素結合欠陥に隣接する未結合手等が修復されて、変換特性が向上すると考えられる。
 特に、p型シリコン系層の厚みが小さい場合には、水素を含む雰囲気下での加熱処理によって、曲線因子に加えて開放電圧も向上する傾向がみられる。これは、p層の厚みが小さい場合には、水素を含む雰囲気下での加熱処理によって、導電型シリコン系層と透明導電層との界面のみならず、導電型シリコン系層と真性シリコン系層との界面に生じた欠陥も修復されるためであると推定される。すなわち、p層の厚みが小さい場合は、透明導電層形成時の酸素によるダメージが、導電型シリコン系層と真性シリコン系層との界面にも及びやすくなると考えられるが、水素を含む雰囲気下での加熱処理によって当該界面に生じた欠陥も修復されて、開放電圧が向上するとのメカニズムが推定される。
 一般には、ヘテロ接合型太陽電池のp層の厚みを小さくした場合は、光吸収ロス低減による短絡電流密度の向上が期待される反面、p層と真性シリコン系層との界面にも透明導電層製膜時の酸素ダメージが及び、開放電圧および曲線因子が低下することが懸念される。これに対して、本発明では、水素を含む雰囲気下での加熱処理によって、p層と真性シリコン系層との界面の欠陥も修復され得るため、開放電圧および曲線因子の向上と短絡電流密度の向上とを両立可能である。このように、p層の厚みが小さい場合には、本発明による変換特性向上効果がより顕著となる傾向があり、高い変換特性を有するヘテロ接合型太陽電池を得ることができる。
 なお、本発明において、上記の加熱処理は2段階以上で行ってもよい。2段階以上の加熱処理が行われる場合、少なくとも1段階の加熱処理が水素を含む雰囲気下で行われればよい。
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[測定方法]
 膜厚は、断面の透過型電子顕微鏡(TEM)観察により求めた。なお、TEM観察によって、真性シリコン系層と導電型シリコン系層との界面を識別することは困難である。そのため、これらの層の膜厚は、TEM観察から求められた各層の合計厚みと製膜時間の比から算出した。また、テクスチャが形成されたシリコン基板表面に形成された層については、テクスチャの斜面と垂直な方向を膜厚方向とした。光電変換装置の光電変換特性は、ソーラーシミュレータを用いて評価した。
[実施例1]
 実施例1では、図1に模式的に示す結晶シリコン系光電変換装置が製造された。
 入射面の面方位が(100)で、厚みが200μmのn型単結晶シリコン基板がアセトン中で洗浄された。その後、基板が2重量%のHF水溶液に3分間浸漬され、表面の酸化シリコン膜が除去された後、超純水によるリンスが2回行われた。次に70℃に保持された5/15重量%のKOH/イソプロピルアルコール水溶液に、シリコン基板が15分間浸漬され、基板表面がエッチングされて、テクスチャが形成された。その後、超純水によるリンスが2回行われた。原子間力顕微鏡(AFM パシフィックナノテクノロジー社製)により単結晶シリコン基板1の表面観察を行ったところ、基板表面はエッチングが最も進行しており、(111)面が露出したピラミッド型のテクスチャが形成されていた。
 エッチングが終了した単結晶シリコン基板1がCVD装置へ導入され、一方の面(入射面側)に、第1真性非晶質シリコン層2が5nmの膜厚で製膜された。製膜条件は、基板温度が150℃、圧力120Pa、SiH/H流量比が3/10、高周波パワー密度が0.011W/cmであった。第1真性非晶質シリコン層2上にp型非晶質シリコン層3が10nmの膜厚で製膜された。p型非晶質シリコン層3の製膜条件は、基板温度が150℃、圧力60Pa、SiH/希釈B流量比が1/3、高周波パワー密度が0.011W/cmであった。なお、上記希釈Bガスとしては、HによりB濃度が5000ppmまで希釈されたガスが用いられた。
 単結晶シリコン基板1の他方の面(裏面側)に、第2真性非晶質シリコン層4が5nmの膜厚で製膜された。第2真性非晶質シリコン層4の製膜条件は、第1真性非晶質シリコン層2の製膜条件と同一であった。第2真性非晶質シリコン層4上にn型非晶質シリコン層5が10nmの膜厚で製膜された。n型非晶質シリコン層5の製膜条件は、基板温度が150℃、圧力60Pa、SiH/希釈PH流量比が1/2、高周波パワー密度が0.011W/cmであった。なお、上記希釈PHガスとしては、HによりPH濃度が5000ppmまで希釈されたガスが用いられた。
 p型非晶質シリコン層3上およびn型非晶質シリコン層5上のそれぞれに、第1透明導電層6および第2透明導電層8として、インジウム錫複合酸化物(ITO)が100nmの膜厚で製膜された。ITOの製膜には、ターゲットとして酸化インジウムと酸化スズの焼結体(酸化錫含有量が5重量%)が用いられた。キャリアガスとしてアルゴンが100sccmで導入され、基板温度は室温、圧力0.2Pa、高周波パワー密度0.5W/cmの条件で製膜が行われた。
 上記の透明導電層6,8のそれぞれの表面に、集電極7,9として、銀ペーストがスクリーン印刷された。その後、銀ペーストを固化するために、150℃の大気下にて60分間加熱が行われて、櫛形の集電極が形成された。集電極の間隔は10mmとした。
 集電極形成後に、水素を2%含む雰囲気下で、温度170℃にて60分加熱処理が行われた。
[実施例2~5]
 加熱処理時の水素含有量および加熱処理時間が表1に示すように変更された以外は、実施例1と同様にして太陽電池セルが作製された。
[比較例1]
 水素を含む雰囲気下での加熱処理が行われなかったこと以外は、実施例1と同様にして太陽電池セルが作製された。
 上記各実施例、および比較例の太陽電池セルの光電変換特性を、ソーラーシミュレータを用いて評価した結果を表1に示す。なお、表1においては、光電変換特性(開放電圧、短絡電流密度、曲線因子および変換効率)の実測値に加えて、比較例1を基準値として規格化された数値も示されている。
Figure JPOXMLDOC01-appb-T000001
[実施例6および比較例2]
 加熱処理時の温度が表2に示すように変更された以外は、実施例1と同様にして太陽電池セルが作製された。得られた太陽電池セルの光電変換特性を、ソーラーシミュレータを用いて評価した結果を、比較例1および実施例2の結果とともに表2に示す。なお、表2においては、光電変換特性の実測値に加えて、比較例1を基準値として規格化された数値も示されている。
Figure JPOXMLDOC01-appb-T000002
[比較例3]
 比較例3では、比較例1と同様にして太陽電池セルが作製されたが、加熱処理が150℃の大気下にて行われた点において、比較例1とは製造方法が異なっていた。
[実施例7]
 実施例7では、実施例1と同様にして太陽電池セルが作製された。実施例7では、第1透明導電層6および第2透明導電層8を形成後、銀ペーストがスクリーン印刷される前に、水素を25%含む雰囲気下で温度170℃にて60分加熱処理が行われ、集電極形成後には、水素を含む雰囲気下での加熱処理が行われなかった。それ以外は、実施例1と同様にして太陽電池セルが作製された。
[比較例4]
 比較例4では、実施例1と同様にして太陽電池セルが作製されたが、各非晶質シリコン系層を形成後、透明導電層が形成される前に水素を25%含む雰囲気下で、温度170℃にて60分加熱処理が行われた点において、実施例1とは製造方法が異なっていた。また、比較例4において、集電極形成後には水素を含む雰囲気下での加熱処理が行われなかった。
 実施例7および比較例3,4で得られた太陽電池セルの光電変換特性を、ソーラーシミュレータを用いて評価した結果を表3に示す。表3における光電変換特性は、比較例3の測定値を基準値として規格化された数値が示されている。
Figure JPOXMLDOC01-appb-T000003
 表1の実施例1~5と比較例1との対比から、水素を含む雰囲気において加熱処理を行うことで、曲線因子が改善するために、変換効率が向上していることがわかる。また、実施例1と実施例4、5との対比から、高水素濃度雰囲気下では、短時間の加熱により変換特性の向上がみられることがわかる。
 表2によれば、加熱処理時の温度が200℃を超える比較例2では、曲線因子の向上がみられるものの、短絡電流密度および開放電圧の低下に起因して変換効率が低下している。これは、高温での加熱処理によって、導電型非晶質シリコン層から真性シリコン系層へのドープ不純物の拡散や、透明導電層からシリコン系層の異種元素の拡散等が生じたためであると考えられる。
 表3によれば、透明電極層形成前に水素含有雰囲気下で加熱処理が行われた比較例4では、比較例3に比して変換効率に変化がみられていない。これに対して、透明電極層形成後に水素含有雰囲気下で加熱処理が行われた実施例7では、上記実施例1~6と同様に曲線因子の改善に伴って変換効率が向上している。このことから、変換効率の向上には、透明導電層形成後に水素含有雰囲気下で加熱処理が行われることが重要であることがわかる。
[実施例8]
 実施例8では、図3に模式的に示す結晶シリコン系光電変換装置が製造された。
 実施例1と同様に、エッチングが終了した単結晶シリコン基板1がCVD装置へ導入され、一方の面(入射面側)に、第1真性非晶質シリコン層2が5nmの膜厚で製膜された。第1真性非晶質シリコン層2上にp型非晶質シリコン層3が10nmの膜厚で製膜された。第1真性非晶質シリコン層およびp型非晶質シリコン層の製膜条件は、実施例1と同様とであった。
 単結晶シリコン基板1の他方の面(裏面側)に、実施例1と同様に第2真性非晶質シリコン層4が5nmの膜厚で製膜された。第2真性非晶質シリコン層4上にn型非晶質シリコン層51が10nmの膜厚で製膜された。第1真性非晶質シリコン層およびn型非晶質シリコン層の製膜条件は、実施例1と同様であった。
 n型非晶質シリコン層51上にn型微結晶シリコン層52が20nmの膜厚で製膜された。n型微結晶シリコン層の製膜条件は、基板温度が150℃、圧力100Pa、SiH/希釈PH流量比が1/5、高周波パワー密度が0.01W/cmであった。上記希釈PHガスとしては、HによりPH濃度が5000ppmまで希釈されたガスが用いられた。
 p型非晶質シリコン層3上およびn型微結晶シリコン層52上のそれぞれに、実施例1と同様にして、ITO透明導電層6,8が100nmの膜厚で製膜された。光入射側の透明導電層6の表面には、実施例1と同様にして銀ペーストがスクリーン印刷され、150℃の大気下で60分間加熱処理が行われて、集電極7が形成された。裏面側の透明導電層8上には、パターン化を行わずに全面に銀ペーストが塗布され、同様に乾燥が行われて、金属電極10が形成された。
 電極形成後に、水素を25%含む雰囲気下で、温度190℃にて30分加熱処理が行われた。
[比較例5]
 水素を含む雰囲気下での加熱処理が行われなかったこと以外は、実施例8と同様にして太陽電池セルが作製された。
[実施例9]
 p型非晶質シリコン層の膜厚が5nmに変更された以外は、実施例8と同様にして太陽電池セルが作製された。
[比較例6]
 水素を含む雰囲気下での加熱処理が行われなかったこと以外は、実施例8と同様にして太陽電池セルが作製された。
 実施例8,9および比較例5,6の太陽電池セルの光電変換特性を、ソーラーシミュレータを用いて評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例8と比較例5との対比、および実施例9と比較例6との対比から明らかなように、n型シリコン系層が非晶質シリコン層と微結晶シリコン層の2層からなる構成においても、水素含有雰囲気下で加熱処理を行うことによって、曲線因子が改善されて、変換効率が向上していることが分かる。
 また、p型非晶質シリコン層の膜厚が5nmである実施例9と比較例6とを対比すると、実施例9では、曲線因子が約5%向上していることに加えて、開放電圧も約2%向上している。すなわち、p層の厚みが小さい場合には、水素含有雰囲気下での加熱処理による変換特性改善効果がより顕著であることが分かる。
[実施例10~17、比較例7]
 加熱処理時の水素含有量、温度および時間が表5に示すように変更された以外は、実施例9と同様にして太陽電池セルが作製された。
[比較例8]
 水素を含む雰囲気下での加熱処理が行われなかったこと以外は、実施例9と同様にして太陽電池セルが作製された。
[比較例9]
 電極形成後に、水素含有雰囲気下で加熱処理が行われる代わりに、温度190℃の大気下で30分加熱処理が行われたこと以外は、実施例9と同様にして太陽電池セルが作製された。
 実施例10~17、および比較例8,9で得られた太陽電池セルの光電変換特性を、ソーラーシミュレータを用いて評価した結果を、表5に示す。なお、表5においては、比較例8の測定値を基準値として規格化された変換特性の値が示されている。
Figure JPOXMLDOC01-appb-T000005
 水素を含む雰囲気下で加熱処理が行われた実施例10~17では、比較例8に比して、曲線因子および開放電圧が改善された結果、変換効率が向上している。また、上記実施例12~17では、比較例8に対して開放電圧が1%(約7mV)以上改善されている。
 従来より、太陽電池の製造工程において、大気雰囲気下で加熱処理を行うことで透明電極を低抵抗化する手法が知られていたが、透明電極の低抵抗化によって開放電圧が改善されることはないと考えられる。これらの結果を考慮すると、本発明における水素含有雰囲気下での加熱処理によって、界面に生じた欠陥が修復されるために、変換効率が向上していると考えられる。
 一方、水素を含有しない大気下(水素濃度0%)で、190℃30分の加熱が行われた比較例9の変換特性は比較例8と同様であった。これに対して、水素濃度0.5体積%の雰囲気下で、190℃30分の加熱処理が行われた実施例10では、主に曲線因子の改善による変換特性の向上がみられている。
 水素濃度80%で10分間の加熱処理が行われた実施例17では、短絡電流密度の低下がみられるが、曲線因子および開放電圧の改善効果が大きいために、比較例8に比して変換特性が向上している。これらの結果から、水素濃度が高い雰囲気下で短時間の加熱処理を行うことにより、透明導電層の還元による短絡電流密度の低下が抑制されつつ曲線因子が改善されるために、効率的に変換特性を向上し得ることがわかる。
 1    一導電型単結晶シリコン基板
 2,4  真性シリコン系層
 3    p型シリコン系層
 5    n型シリコン系層
 51   n型非晶質シリコン系層
 52   n型微結晶シリコン系層
 6,8  透明導電層
 7,9  集電極
 10   反射電極

Claims (3)

  1.  一導電型単結晶シリコン基板の一方の面に第1真性シリコン系層、p型シリコン系層、および第1透明導電層をこの順に有し、前記一導電型単結晶シリコン基板の他方の面に第2真性シリコン系層、n型シリコン系層および第2透明導電層をこの順に有する結晶シリコン系光電変換装置を製造する方法であって、
     前記第1透明導電層および前記第2透明導電層の少なくとも一方が形成された後に、加熱処理が行われ、
     前記加熱処理が、水素を含む雰囲気下で200℃未満の温度で行われる、結晶シリコン系光電変換装置の製造方法。
  2.  前記p型シリコン系層が、3nm~8nmの膜厚で形成される、請求項1に記載の結晶シリコン系光電変換装置の製造方法。
  3.  前記n型シリコン系層として、n型非晶質シリコン系層およびn型微結晶シリコン系層が、前記第2真性シリコン系層側から順に形成される、請求項1または2に記載の結晶シリコン系光電変換装置の製造方法。
PCT/JP2011/073640 2010-10-14 2011-10-14 結晶シリコン系太陽電池の製造方法 WO2012050186A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/879,367 US9276163B2 (en) 2010-10-14 2011-10-14 Method for manufacturing silicon-based solar cell
JP2012538724A JPWO2012050186A1 (ja) 2010-10-14 2011-10-14 結晶シリコン系太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-231168 2010-10-14
JP2010231168 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012050186A1 true WO2012050186A1 (ja) 2012-04-19

Family

ID=45938407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073640 WO2012050186A1 (ja) 2010-10-14 2011-10-14 結晶シリコン系太陽電池の製造方法

Country Status (3)

Country Link
US (1) US9276163B2 (ja)
JP (1) JPWO2012050186A1 (ja)
WO (1) WO2012050186A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002256A1 (ja) * 2012-06-29 2014-01-03 三洋電機株式会社 太陽電池
JP2014175441A (ja) * 2013-03-08 2014-09-22 Kaneka Corp 結晶シリコン系太陽電池およびその製造方法
JP2018110228A (ja) * 2016-12-30 2018-07-12 國立台湾師範大学 ヘテロ接合型太陽電池の製造方法
JP2018139329A (ja) * 2018-06-11 2018-09-06 株式会社カネカ 結晶シリコン系太陽電池の製造方法
KR101923728B1 (ko) 2013-02-06 2018-11-29 한국전자통신연구원 태양전지
JP2019091878A (ja) * 2017-11-15 2019-06-13 ベイジン ジュンタイイノベーション テクノロジー カンパニー,リミティッド 太陽電池及びその複合電極及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219561A1 (de) 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer photovoltaischen Solarzelle mit zumindest einem Heteroübergang
WO2016052635A1 (ja) * 2014-09-30 2016-04-07 株式会社カネカ 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
EP3021366A1 (en) * 2014-11-17 2016-05-18 Total Marketing Services Solar cell and method of manufacturing thereof
CN108389933B (zh) * 2018-03-05 2019-12-13 通威太阳能(成都)有限公司 一种高浓度磷硅玻璃且高方阻的扩散方法
CN112736151B (zh) * 2021-01-08 2022-11-15 上海交通大学 基于宽带隙窗口层的背结硅异质结太阳电池
CN113451431A (zh) * 2021-07-06 2021-09-28 安徽华晟新能源科技有限公司 一种异质结太阳能电池及其制备方法
CN115995512B (zh) * 2023-02-08 2024-05-14 通威太阳能(安徽)有限公司 太阳电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299658A (ja) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd 光起電力素子
JP2003016857A (ja) * 2001-06-28 2003-01-17 Fuji Xerox Co Ltd 基材上に設けた透明導電膜を低抵抗化する方法。
JP2004111551A (ja) * 2002-09-17 2004-04-08 Mitsubishi Heavy Ind Ltd シリコン光起電力素子及びその製造方法
JP2006310774A (ja) * 2005-03-29 2006-11-09 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2011003750A (ja) * 2009-06-19 2011-01-06 Kaneka Corp 結晶シリコン系太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104678A (ja) * 1984-10-29 1986-05-22 Mitsubishi Electric Corp アモルフアス太陽電池
JP3202362B2 (ja) * 1992-07-21 2001-08-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5397920A (en) * 1994-03-24 1995-03-14 Minnesota Mining And Manufacturing Company Light transmissive, electrically-conductive, oxide film and methods of production
JP4082077B2 (ja) 2002-04-24 2008-04-30 富士電機ホールディングス株式会社 薄膜太陽電池の製造方法
US7755157B2 (en) * 2005-03-29 2010-07-13 Sanyo Electric Co., Ltd. Photovoltaic device and manufacturing method of photovoltaic device
JP5376752B2 (ja) 2006-04-21 2013-12-25 信越半導体株式会社 太陽電池の製造方法及び太陽電池
JP5528653B2 (ja) * 2006-08-09 2014-06-25 信越半導体株式会社 半導体基板並びに電極の形成方法及び太陽電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299658A (ja) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd 光起電力素子
JP2003016857A (ja) * 2001-06-28 2003-01-17 Fuji Xerox Co Ltd 基材上に設けた透明導電膜を低抵抗化する方法。
JP2004111551A (ja) * 2002-09-17 2004-04-08 Mitsubishi Heavy Ind Ltd シリコン光起電力素子及びその製造方法
JP2006310774A (ja) * 2005-03-29 2006-11-09 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2011003750A (ja) * 2009-06-19 2011-01-06 Kaneka Corp 結晶シリコン系太陽電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002256A1 (ja) * 2012-06-29 2014-01-03 三洋電機株式会社 太陽電池
JPWO2014002256A1 (ja) * 2012-06-29 2016-05-30 パナソニックIpマネジメント株式会社 太陽電池
KR101923728B1 (ko) 2013-02-06 2018-11-29 한국전자통신연구원 태양전지
JP2014175441A (ja) * 2013-03-08 2014-09-22 Kaneka Corp 結晶シリコン系太陽電池およびその製造方法
JP2018110228A (ja) * 2016-12-30 2018-07-12 國立台湾師範大学 ヘテロ接合型太陽電池の製造方法
JP2019091878A (ja) * 2017-11-15 2019-06-13 ベイジン ジュンタイイノベーション テクノロジー カンパニー,リミティッド 太陽電池及びその複合電極及びその製造方法
JP2018139329A (ja) * 2018-06-11 2018-09-06 株式会社カネカ 結晶シリコン系太陽電池の製造方法

Also Published As

Publication number Publication date
US20130203210A1 (en) 2013-08-08
US9276163B2 (en) 2016-03-01
JPWO2012050186A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012050186A1 (ja) 結晶シリコン系太陽電池の製造方法
JP5456168B2 (ja) 光電変換装置の製造方法
WO2012020682A1 (ja) 結晶シリコン系太陽電池
JP5863391B2 (ja) 結晶シリコン系太陽電池の製造方法
JP5421701B2 (ja) 結晶シリコン太陽電池及びその製造方法
JP5374250B2 (ja) 結晶シリコン太陽電池
WO2016052635A1 (ja) 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
JPWO2003085746A1 (ja) タンデム型薄膜光電変換装置の製造方法
JP2011146528A (ja) 多結晶シリコン系太陽電池およびその製造方法
JP2011060970A (ja) 結晶シリコン系太陽電池とその製造方法
JP2012234847A (ja) 結晶シリコン系太陽電池
JP5919559B2 (ja) 光起電力装置
JP2014175441A (ja) 結晶シリコン系太陽電池およびその製造方法
JP5307688B2 (ja) 結晶シリコン系太陽電池
JP7228561B2 (ja) 太陽電池の製造方法
JP5400322B2 (ja) シリコン系薄膜太陽電池およびその製造方法
JP6185304B2 (ja) 結晶シリコン系光電変換装置およびその製造方法
JP2014072416A (ja) 太陽電池およびその製造方法、太陽電池モジュール
JP5541980B2 (ja) 結晶シリコン系太陽電池およびその製造方法
JP7237920B2 (ja) 太陽電池の製造方法
JP6143520B2 (ja) 結晶シリコン系太陽電池およびその製造方法
JP2011077454A (ja) 結晶シリコン系太陽電池とその製造方法
JP2011003639A (ja) 結晶シリコン系太陽電池とその製造方法
WO2006049003A1 (ja) 薄膜光電変換装置の製造方法
JPWO2006006368A1 (ja) 薄膜光電変換装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538724

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832616

Country of ref document: EP

Kind code of ref document: A1