CN112736151B - 基于宽带隙窗口层的背结硅异质结太阳电池 - Google Patents

基于宽带隙窗口层的背结硅异质结太阳电池 Download PDF

Info

Publication number
CN112736151B
CN112736151B CN202110022467.6A CN202110022467A CN112736151B CN 112736151 B CN112736151 B CN 112736151B CN 202110022467 A CN202110022467 A CN 202110022467A CN 112736151 B CN112736151 B CN 112736151B
Authority
CN
China
Prior art keywords
layer
silicon
silicon wafer
pecvd
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110022467.6A
Other languages
English (en)
Other versions
CN112736151A (zh
Inventor
沈文忠
李正平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110022467.6A priority Critical patent/CN112736151B/zh
Publication of CN112736151A publication Critical patent/CN112736151A/zh
Application granted granted Critical
Publication of CN112736151B publication Critical patent/CN112736151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种基于宽带隙窗口层的背结硅异质结太阳电池,包括:作为基底的N型单晶硅层、依次设置于基底一侧的本征非晶硅层、宽带隙窗口层和透明导电氧化物层以及依次设置于基底另一侧的本征非晶硅层、P型掺杂非晶硅发射极层和透明导电氧化物层,其中:P型掺杂非晶硅发射极层与基底之间形成PN异质结。本发明通过在背结硅异质结太阳电池的正面应用宽带隙窗口层,采用非晶氧化硅或非晶碳化硅作为宽带隙窗口层能透过更多光而减少光吸收的特性,提升背结异质结电池的短路电流,从而提升电池的转换效率的同时大幅度缩短制备时间。

Description

基于宽带隙窗口层的背结硅异质结太阳电池
技术领域
本发明涉及的是一种硅太阳电池领域的技术,具体是一种基于宽带隙窗口层的背结硅异质结太阳电池。
背景技术
硅异质结太阳电池因其制备工艺简单、能获得较高转换效率,因此近年来备受关注。硅异质结电池在掺杂非晶硅层和N型单晶硅的异质结之间插入一层本征非晶硅层,实现了异质结界面的良好钝化效果,因此电池能获得较高的开路电压。为便于工艺的实现和规模化生产,通常将PN异质结置于硅异质结太阳电池的背面,即是背结硅异质结太阳电池。
但是背结硅异质结太阳电池正面的N型掺杂非晶硅层(N-a-Si:H)和本征非晶硅层的光吸收引起电池短路电流的损失,制约着背结硅异质结电池转换效率的进一步提高。现有改进技术通过宽带隙窗口层替代现有背结硅异质结电池中的N型掺杂非晶硅层,能使得更多的光透过非晶硅层而被N型单晶硅所吸收,有利于减少光吸收损失和提高短路电流。一般采用微晶氧化硅和微晶碳化硅薄膜做窗口层,但是微晶氧化硅和微晶碳化硅的晶化时间较长,显著影响产能和技术推广。发明内容
本发明针对现有窗口层沉积速率较慢影响产能的问题,提出一种基于宽带隙窗口层的背结硅异质结太阳电池,在背结硅异质结太阳电池的正面应用宽带隙窗口层,采用非晶氧化硅或非晶碳化硅作为宽带隙窗口层能透过更多光而减少光吸收的特性,提升背结异质结电池的短路电流,从而提升电池的转换效率的同时大幅度缩短制备时间。
本发明是通过以下技术方案实现的:
本发明涉及一种基于宽带隙窗口层的背结硅异质结太阳电池,包括:作为基底的N型单晶硅层、依次设置于基底一侧的本征非晶硅层、宽带隙窗口层和透明导电氧化物层以及依次设置于基底另一侧的本征非晶硅层、P型掺杂非晶硅发射极层和透明导电氧化物层,其中:P型掺杂非晶硅发射极层与基底之间形成PN异质结。
所述的宽带隙窗口层具体为非晶氧化硅层或非晶碳化硅层,优选为氢化非晶氧化硅薄膜(a-SiOx:H)或氢化非晶碳化硅薄膜(a-SiCx:H)。
所述的氢化非晶氧化硅薄膜为N型掺杂氢化非晶氧化硅,其厚度为3~10nm,光学带隙在1.5~3.0eV范围内可调,该薄膜以硅烷(SiH4)作为硅源、二氧化碳(CO2)为氧源、磷烷(PH3)为N型掺杂源,通过等离子增强化学气相沉积(PECVD)方法制备。
所述的氢化非晶碳化硅薄膜为N型掺杂氢化非晶碳化硅,其厚度为3~10nm,光学带隙在1.5~3.0eV范围内可调,该薄膜以硅烷(SiH4)作为硅源、甲烷(CH4)为碳源、磷烷(PH3)为N型掺杂源,通过PECVD方法制备。
本发明涉及上述基于宽带隙窗口层的背结硅异质结太阳电池的制备方法,通过在两侧带有本征非晶硅层的N型单晶硅的外表面分别通过PECVD方法沉积得到位于一侧的P型掺杂非晶硅发射极层以及位于另一侧的氢化非晶氧化硅薄膜(a-SiOx:H)或氢化非晶碳化硅薄膜(a-SiCx:H)作为宽带隙窗口层,再在其外侧进一步通过磁控溅射的方法沉积得到透明导电氧化物层,在透明导电氧化物层上制备出金属电极。
所述的PECVD沉积温度小于250℃。
所述方法,具体包括以下步骤:
步骤1,准备工业级晶向为(100)的N型Cz单晶硅片,进行标准清洗、制绒工艺,得到预处理后的N型单晶硅片;
步骤2,将制绒后的N型单晶硅片放入PECVD设备,两侧分别沉积本征非晶硅层,厚度为3~10nm;
步骤3,在步骤2得到所述硅片的背表面用PECVD方法沉积P型掺杂非晶硅发射极层,厚度为3~10nm;
步骤4,在步骤3得到所述硅片的正表面用PECVD方法沉积a-SiOx:H层或a-SiCx:H层作为窗口层,厚度为3~10nm。
所述的a-SiOx:H层,通过PECVD方法制备得到,具体为:以SiH4作为硅源,CO2为氧源,氢稀释磷烷(记作PH3/H2,体积比PH3:H2=1:99)为N型掺杂源,控制[SiH4]:[CO2]:[PH3/H2]:[H2]的流量比在5:y:25:20(y=1~5),PECVD的沉积气压为40~100Pa,PECVD的射频电源功率密度为10~30mW/cm2,PECVD的基底温度为100~250℃,PECVD的沉积时间10~60s。
所述的a-SiCx:H层,通过PECVD方法制备得到,具体为:以SiH4作为硅源,CH4为碳源,氢稀释磷烷(记作PH3/H2,体积比PH3:H2=1:99)为N型掺杂源,控制[SiH4]:[CH4]:[PH3/H2]:[H2]的流量比在20:z:25:20(z=1~15),PECVD的沉积气压为40~100Pa,PECVD的射频电源功率密度为10~30mW/cm2,PECVD的基底温度为100~250℃,PECVD的沉积时间10~60s。
所述的PECVD射频电源的频率为13.56MHz。
步骤5,在步骤4得到的硅片的背面和正面用磁控溅射的方法沉积透明导电氧化物层。
所述的透明导电氧化物层的厚度为80nm;
步骤6,在步骤5得到的硅片的正面和背面根据图形进行低温银浆的丝网印刷,然后低温烧结,形成正面和背面金属电极,即得所述的应用宽带隙窗口层的背结硅异质结太阳电池。
所述的低温烧结,其烧结温度不超过300℃。
技术效果
本发明整体解决了现有背结硅异质结太阳电池的正面非晶硅的寄生吸收影响电池短路电流和效率的提高;常规微晶氧化硅或微晶碳化硅作窗口层,由于晶化时间较长,制约着生产产能的问题。
与现有技术相比,本发明通过在背结硅异质结电池正面引入宽带隙窗口层使得更多的光透过进入单晶硅并背被吸收,减少非晶硅层所引起的光吸收损失,有利于提高电池的短路电流和效率。同时本发明采用非晶氧化硅或非晶碳化硅作为宽带隙窗口层,非晶氧化硅或非晶碳化硅的PECVD沉积生长速率可达
Figure BDA0002889084050000031
以上,显著高于微晶氧化硅或微晶碳化硅的PECVD沉积生长速率
Figure BDA0002889084050000032
能大幅提高窗口层的制备速度,有利于生产产能的提升。
附图说明
图1为本发明结构示意图:
图中:1正面金属电极、2正面透明导电氧化物层、3宽带隙窗口层、4正面本征非晶硅层、5N型单晶硅片、6背面本征非晶硅层、7P型掺杂非晶硅发射极层、8背面透明导电氧化物层、9背面金属电极;
图2为实施例制备工艺流程图;
图3为实施例1以a-SiOx:H为窗口层的背结硅异质结电池与现有以N型a-Si:H为前掺杂层的常规背结硅异质结电池的外量子效率(EQE)的对比示意图;
图4为实施例2以a-SiCx:H为窗口层的背结硅异质结电池与现有以N型a-Si:H为前掺杂层的常规背结硅异质结电池的外量子效率(EQE)的对比示意图。
具体实施方式
实施例1
如图1所示,为本实施例涉及一种基于宽带隙窗口层的背结硅异质结太阳电池,包括:N型单晶硅基底5、由内至外依次位于基底5的背面的背面本征非晶硅层6、P型掺杂非晶硅发射极层7、背面透明导电氧化物层8和背面金属电极9以及由内至外依次位于基底5的正面的正面本征非晶硅层4、宽带隙窗口层3、正面透明导电氧化物层2、正面金属电极1。图2是所述基于宽带隙窗口层的背结硅异质结太阳电池的制备工艺流程示意图。
本实施例涉及上述太阳电池的应用a-SiOx:H为窗口层的背结硅异质结太阳电池的制备方法,包括以下步骤:
步骤1,准备工业级晶向为(100)、电阻率在0.5~3Ω.cm,厚度为100~180μm的N型Cz单晶硅片作为N型硅片基底,用氢氧化钾溶液去除所述N型硅片基底表面的线切割损伤层;
步骤2,用氢氧化钾溶液对步骤1得到的N型单晶硅基底制绒,然后进行标准RCA清洗,得到预处理后的硅片;
步骤3,将步骤2所得的硅片放入PECVD设备的真空腔室,在硅片基底温度150~250℃条件下,以H2和SiH4为反应气体,沉积气压为10~300Pa,利用PECVD在硅片正面和背面各生长一层本征非晶硅层,厚度为5nm;
步骤4,将步骤3所得的硅片放入PECVD的真空腔室,在硅片基底温度100~300℃条件下,以H2、SiH4、B2H6为反应气体,沉积气压为10~300Pa,在背面的本征非晶硅层上,用PECVD方法再生长一层P型掺杂非晶硅发射极层,厚度为5nm;
步骤5,将步骤4所得的硅片放入PECVD的真空腔室,以SiH4作为硅源,CO2为氧源,氢稀释磷烷(记作PH3/H2,体积比PH3:H2=1:99)为N型掺杂源,控制[SiH4]:[CO2]:[PH3/H2]:[H2]的流量比在5:2:25:20,PECVD的沉积气压为66Pa,PECVD的射频电源功率密度为13mW/cm2,PECVD的基底温度为180℃,PECVD的沉积时间40s。本实施例中a-SiOx:H的沉积生长速率为
Figure BDA0002889084050000041
本实施例得到厚度为8nm的N型掺杂a-SiOx:H窗口层。改变[CO2]/[SiH4]的体积比,可实现a-SiOx:H的光学带隙在1.5~3.0eV范围内可调,本实施例中所用a-SiOx:H的光学带隙为2.3eV,高于常规N型a-Si:H掺杂层的光学带隙(约1.8eV);
步骤6,将步骤5所得的硅片放入磁控溅射设备的真空腔室,用磁控溅射的方法在背面P型掺杂非晶硅发射极层上沉积一层透明导电氧化物层,该层膜的厚度为80nm;用磁控溅射的方法在正面a-SiOx:H窗口层上沉积一层透明导电氧化物层,该层膜的厚度为80nm;
步骤7,将步骤6所得的硅片,用丝网印刷的方法在正面的透明导电氧化物层和背面的透明导电氧化物层上再分别印刷一层低温导电银浆,然后在150~300℃的低温下进行烧结以形成良好的欧姆接触,分别形成正面金属电极和背面金属电极。
经过上述步骤得到的应用a-SiOx:H为窗口层的背结硅异质结太阳电池,在电池的正面引入a-SiOx:H为宽带隙窗口层,使得更多光透射进硅片,减少光学吸收损失。在本实施例1的具体环境设置下,以步骤5的工艺参数制备a-SiOx:H窗口层,得到的技术效果如图3所示,以a-SiOx:H为窗口层的背结硅异质结电池与现有以N型a-Si:H为前掺杂层的常规背结硅异质结电池的外量子效率(EQE)的对比,提升了3~5%,表明有更多的光透进硅片并被吸收。吸收更多的光能够提高电池的短路电流,从而有利于提升电池效率。本实施例中a-SiOx:H的沉积生长速率为
Figure BDA0002889084050000042
远高于微晶氧化硅的生长速率
Figure BDA0002889084050000043
从而能够提高生产速度,提升生产产能。
实施例2
本实施例涉及一种应用a-SiCx:H为窗口层的背结硅异质结太阳电池的制备方法,与实施例1相比其区别在于:
步骤5,将步骤4所得的硅片放入PECVD的真空腔室,以SiH4作为硅源,CH4为碳源,氢稀释磷烷(记作PH3/H2,体积比PH3:H2=1:99)为N型掺杂源,控制[SiH4]:[CH4]:[PH3/H2]:[H2]的流量比在20:15:25:20,PECVD的沉积气压为40Pa,PECVD的射频电源功率密度为20mW/cm2,PECVD的基底温度为230℃,PECVD的沉积时间40s。本实施例中a-SiCx:H的沉积生长速率为
Figure BDA0002889084050000051
本实施例得到厚度为10nm的N型掺杂a-SiCx:H窗口层。改变[CH4]/[SiH4]的体积比,可实现a-SiCx:H的光学带隙在1.5~3.0eV范围内可调,本实施例中所用a-SiCx:H的光学带隙为2.0eV,高于常规N型a-Si:H掺杂层的光学带隙(约1.8eV);
步骤6,将步骤5所得的硅片放入磁控溅射设备的真空腔室,用磁控溅射的方法在背面P型掺杂非晶硅发射极层上沉积一层透明导电氧化物层,该层膜的厚度为80nm;用磁控溅射的方法在正面a-SiCx:H窗口层上沉积一层透明导电氧化物层,该层膜的厚度为80nm;
步骤7,将步骤6所得的硅片,用丝网印刷的方法在正面的透明导电氧化物层和背面的透明导电氧化物层上再分别印刷一层低温导电银浆,然后在150~300℃的低温下进行烧结以形成良好的欧姆接触,分别形成正面金属电极和背面金属电极。
经过上述步骤得到的应用a-SiCx:H为窗口层的背结硅异质结太阳电池,在电池的正面引入a-SiCx:H为宽带隙窗口层,可使更多光透射进硅片,减少光学吸收损失。在本实施例2的具体环境设置下,以步骤5的工艺参数制备a-SiCx:H窗口层,得到的技术效果如图4所示,以a-SiCx:H为窗口层的背结硅异质结电池与现有以N型a-Si:H为前掺杂层的常规背结硅异质结电池的外量子效率(EQE)的对比,提升了2~3%,表明有更多的光透进硅片并被吸收。吸收更多的光能够提高电池的短路电流,从而有利于提升电池效率。本实施例中a-SiCx:H的沉积生长速率为
Figure BDA0002889084050000052
远高于微晶碳化硅的生长速率
Figure BDA0002889084050000053
从而能够提高生产速度,提升生产产能。
与现有技术相比,本发明以a-SiOx:H或a-SiCx:H为窗口层的背结硅异质结太阳电池的外量子效率(EQE)具有显著提升,能有更多的光透进硅片并被吸收,有利于提高电池短路电流和转换效率。同时a-SiOx:H或a-SiCx:H的沉积速率明显高于微晶氧化硅或微晶碳化硅,能够大幅缩短窗口层的制备时间,从而解决窗口层沉积速率较慢影响产能的技术问题。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (1)

1.一种基于宽带隙窗口层的背结硅异质结太阳电池的制备方法,其特征在于,包括以下步骤:
步骤1,准备工业级晶向为100、电阻率在0.5~3Ω.cm、厚度为100~180μm的N型Cz单晶硅片作为N型硅片基底,用氢氧化钾溶液去除所述N型硅片基底表面的线切割损伤层;
步骤2,用氢氧化钾溶液对步骤1得到的N型单晶硅基底制绒,然后进行标准RCA清洗,得到预处理后的硅片;
步骤3,将步骤2所得的硅片放入PECVD设备的真空腔室,在硅片基底温度150~250℃条件下,以H2和SiH4为反应气体,沉积气压为10~300Pa,利用PECVD在硅片正面和背面各生长一层本征非晶硅层,厚度为5nm;
步骤4,将步骤3所得的硅片放入PECVD的真空腔室,在硅片基底温度100~300℃条件下,以H2、SiH4、B2H6为反应气体,沉积气压为10~300Pa,在背面的本征非晶硅层上,用PECVD方法再生长一层P型掺杂非晶硅发射极层,厚度为5nm;
步骤5,
将步骤4所得的硅片放入PECVD的真空腔室,以SiH4作为硅源,CO2为氧源,氢稀释磷烷,记作PH3/H2,体积比PH3:H2=1:99,为N型掺杂源,控制[SiH4]:[CO2]:[PH3/H2]:[H2]的流量比在5:y:25:20,PECVD的沉积气压为66Pa,PECVD的射频电源功率密度为13mW/cm2,PECVD的基底温度为180℃,PECVD的沉积时间40s;其中a-SiOx:H的沉积生长速率为
Figure FDF0000019470090000012
得到厚度为8nm的N型掺杂a-SiOx:H窗口层;y=1~5,a-SiOx:H的光学带隙在1.5~3.0eV范围内可调;
或,
将步骤4所得的硅片放入PECVD的真空腔室,以SiH4作为硅源,CH4为碳源,氢稀释磷烷,记作PH3/H2,体积比PH3:H2=1:99,为N型掺杂源,控制[SiH4]:[CH4]:[PH3/H2]:[H2]的流量比在20:z:25:20,PECVD的沉积气压为40Pa,PECVD的射频电源功率密度为20mW/cm2,PECVD的基底温度为230℃,PECVD的沉积时间40s,其中a-SiCx:H的沉积生长速率为
Figure FDF0000019470090000011
得到厚度为10nm的N型掺杂a-SiCx:H窗口层;z=1~15,a-SiCx:H的光学带隙在1.5~3.0eV范围内可调;
步骤6,将步骤5所得的硅片放入磁控溅射设备的真空腔室,用磁控溅射的方法在背面P型掺杂非晶硅发射极层上沉积一层透明导电氧化物层,该层膜的厚度为80nm;用磁控溅射的方法在正面a-SiOx:H或a-SiCx:H窗口层上沉积一层透明导电氧化物层,该层膜的厚度为80nm;
步骤7,将步骤6所得的硅片,用丝网印刷的方法在正面的透明导电氧化物层和背面的透明导电氧化物层上再分别印刷一层低温导电银浆,然后在150~300℃的低温下进行烧结以形成良好的欧姆接触,分别形成正面金属电极和背面金属电极;
即得所述的应用宽带隙窗口层的背结硅异质结太阳电池。
CN202110022467.6A 2021-01-08 2021-01-08 基于宽带隙窗口层的背结硅异质结太阳电池 Active CN112736151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110022467.6A CN112736151B (zh) 2021-01-08 2021-01-08 基于宽带隙窗口层的背结硅异质结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110022467.6A CN112736151B (zh) 2021-01-08 2021-01-08 基于宽带隙窗口层的背结硅异质结太阳电池

Publications (2)

Publication Number Publication Date
CN112736151A CN112736151A (zh) 2021-04-30
CN112736151B true CN112736151B (zh) 2022-11-15

Family

ID=75591199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110022467.6A Active CN112736151B (zh) 2021-01-08 2021-01-08 基于宽带隙窗口层的背结硅异质结太阳电池

Country Status (1)

Country Link
CN (1) CN112736151B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344630A (zh) * 2021-12-24 2023-06-27 西安隆基乐叶光伏科技有限公司 一种太阳能电池的窗口层、太阳能电池及其制备方法
CN114361295B (zh) * 2021-12-31 2023-06-06 通威太阳能(眉山)有限公司 太阳能电池板、电池片及电池片的生产工艺
CN114464708A (zh) * 2022-04-12 2022-05-10 季华实验室 一种异质结太阳电池及其制备方法
CN114843175A (zh) * 2022-05-05 2022-08-02 苏州联诺太阳能科技有限公司 一种n型掺杂氧化微晶硅、异质结太阳能电池及两者的制备方法
CN114823935B (zh) * 2022-05-16 2024-05-03 东方日升新能源股份有限公司 一种异质结电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872176A (zh) * 2012-12-18 2014-06-18 国际商业机器公司 具有集成光伏电池的器件及其制造方法
CN104505418A (zh) * 2014-11-27 2015-04-08 湖南共创光伏科技有限公司 具有过渡层的晶硅及锗化硅薄膜复合型单结pin太阳能电池及其制备方法
CN104733557A (zh) * 2015-01-13 2015-06-24 福建铂阳精工设备有限公司 Hit太阳能电池及提高hit电池的短路电流密度的方法
WO2017130654A1 (ja) * 2016-01-25 2017-08-03 長州産業株式会社 光発電素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276163B2 (en) * 2010-10-14 2016-03-01 Kaneka Corporation Method for manufacturing silicon-based solar cell
CN105981180B (zh) * 2014-02-10 2018-04-17 夏普株式会社 光电转换元件和具备该光电转换元件的太阳能电池模块
EP3182468A1 (en) * 2015-12-18 2017-06-21 Lg Electronics Inc. Method of manufacturing solar cell
JP6430468B2 (ja) * 2015-12-18 2018-11-28 エルジー エレクトロニクス インコーポレイティド 太陽電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872176A (zh) * 2012-12-18 2014-06-18 国际商业机器公司 具有集成光伏电池的器件及其制造方法
CN104505418A (zh) * 2014-11-27 2015-04-08 湖南共创光伏科技有限公司 具有过渡层的晶硅及锗化硅薄膜复合型单结pin太阳能电池及其制备方法
CN104733557A (zh) * 2015-01-13 2015-06-24 福建铂阳精工设备有限公司 Hit太阳能电池及提高hit电池的短路电流密度的方法
WO2017130654A1 (ja) * 2016-01-25 2017-08-03 長州産業株式会社 光発電素子

Also Published As

Publication number Publication date
CN112736151A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN112736151B (zh) 基于宽带隙窗口层的背结硅异质结太阳电池
AU2021404856B2 (en) High-efficiency silicon heterojunction solar cell and manufacturing method thereof
CN103915523B (zh) 一种含复合发射层硅异质结太阳电池的制备方法
CN111509058A (zh) 一种以非晶氧化硅薄膜为本征钝化层的异质结太阳电池
WO2013001863A1 (ja) 光起電力装置
WO2022142007A1 (zh) 高效异质结电池结构及其制备方法
CN111952381B (zh) 一种硅异质结太阳电池及其制备方法
CN111416013A (zh) 一种以氢化非晶氮氧化硅薄膜为钝化层的异质结太阳电池
CN108922937B (zh) Hit太阳电池的硼掺杂发射极结构与制备方法
CN218788382U (zh) 一种高效异质结太阳能电池
CN116779693A (zh) 一种高效异质结太阳能电池及其制作方法
CN215220730U (zh) 一种高效硅异质结太阳能电池
WO2012040917A1 (zh) 一种浅结太阳能电池及其制备方法
CN111416014B (zh) 一种钝化接触背结硅异质结太阳电池及其制备方法
CN113410334A (zh) 多层薄膜钝化接触结构的制备方法及全钝化接触晶硅太阳电池
CN112768549A (zh) 一种高光电转换效率的hjt电池及其制备方法
CN114725239B (zh) 一种异质结电池的制备方法
CN215220744U (zh) 一种高光电转换效率的hjt电池
CN101414650B (zh) 一种纳米晶/非晶硅两相薄膜太阳电池的制备方法
CN211016566U (zh) 一种单晶金刚石n-i-p结核动力电池
CN210156405U (zh) 具有氢退火tco导电膜的异质结电池结构
KR20110044442A (ko) 박막 태양전지용 투명전극 및 그의 제조방법
CN217606831U (zh) 一种高效异质结太阳能电池
CN103107227B (zh) 非晶硅薄膜太阳能电池及其制作方法
CN114284374B (zh) 钛酸锌在晶硅太阳电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant