CN111416014B - 一种钝化接触背结硅异质结太阳电池及其制备方法 - Google Patents

一种钝化接触背结硅异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN111416014B
CN111416014B CN202010380493.1A CN202010380493A CN111416014B CN 111416014 B CN111416014 B CN 111416014B CN 202010380493 A CN202010380493 A CN 202010380493A CN 111416014 B CN111416014 B CN 111416014B
Authority
CN
China
Prior art keywords
silicon
layer
solar cell
silicon wafer
heterojunction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010380493.1A
Other languages
English (en)
Other versions
CN111416014A (zh
Inventor
任栋樑
陈昌明
杨杰
李正平
刘超
徐小娜
周国平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entropy Shanghai Energy Technology Co ltd
Original Assignee
Entropy Shanghai Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entropy Shanghai Energy Technology Co ltd filed Critical Entropy Shanghai Energy Technology Co ltd
Priority to CN202010380493.1A priority Critical patent/CN111416014B/zh
Publication of CN111416014A publication Critical patent/CN111416014A/zh
Application granted granted Critical
Publication of CN111416014B publication Critical patent/CN111416014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种钝化接触背结硅异质结太阳电池,其特征在于,以n型单晶硅片为基底,在基底硅片的背面由内至外依次为背面本征非晶硅层、p型非晶硅发射极层、透明导电氧化物薄膜层和背面金属栅线电极;在基底硅片的正面由内至外依次为超薄氧化硅层、n型多晶硅层、氮化硅减反射层、正面金属电极;所述钝化接触背结硅异质结太阳电池的钝化接触层位于电池正面,包括超薄氧化硅层和n型多晶硅层;所述钝化接触背结硅异质结太阳电池的p‑n异质结位于电池背面,由p型非晶硅层与n型单晶硅片之间形成p‑n异质结。本发明在电池正面引入钝化接触结构,能实现正面良好的全面积钝化,将p‑n异质结置于电池背面,能够拓宽异质结电池的工艺窗口,有利于电池的优化设计。

Description

一种钝化接触背结硅异质结太阳电池及其制备方法
技术领域
本发明涉及硅太阳电池技术领域,尤其涉及一种钝化接触背结硅异质结太阳电池及其制备方法。
背景技术
近年来,热门的隧穿氧化钝化接触(TOPCon)技术在晶硅太阳电池中受到重视。TOPCon结构由超薄氧化硅(SiO2)层和掺杂多晶硅(poly-Si)层组成,TOPCon结构中的掺杂多晶硅与晶硅衬底实际形成的是异质结,TOPCon结构具有载流子选择性,具有全面积钝化接触的特性,钝化效果较好。而具有本征薄层的硅异质结太阳电池(HJT)本身就是异质结、全面积钝化。因此,TOPCon和HJT两种技术可以互相融合。主要是基于TOPCon技术与现有晶硅电池技术基本兼容,而HJT技术则是完全不同的工艺。如果将TOPCon和HJT两种技术融合,一方面可以发挥TOPCon在低接触电阻时也能得到较低的复合电流密度(<10fA·cm-2)和能兼容高温金属化工艺的特点,另一方面也能发挥HJT高效率的特点。
对硅异质结电池的研究,大部分工作集中于正面结结构,即入光面是p型非晶硅(a-Si:H(p))发射极一侧。然而,正面结硅异质结电池对a-Si:H(p)和正面透明导电氧化物薄膜(TCO)的要求很高,使制备高效率正面结硅异质结电池的工艺窗口较窄,不利于实际生产控制。将a-Si:H(p)置于电池背面,形成背结硅异质结电池,则对a-Si:H(p)和TCO的要求能适当降低,能很大程度解决正面结电池在设计优化上的问题。
发明内容
本发明的目的在于开发一种钝化接触背结硅异质结太阳电池,能部分兼容高温金属化工艺,又能拓宽异质结电池的工艺窗口,实现以较低的成本制备全面积钝化的高效电池。
为了达到上述目的,本发明提供了一种钝化接触背结硅异质结太阳电池结构设计及其制备方法。
本发明的技术方案之一:
本发明提供了一种钝化接触背结硅异质结太阳电池,其特征在于,以n型单晶硅片为基底,在基底硅片的背面由内至外依次为背面本征非晶硅层、p型非晶硅层、透明导电氧化物层和背面金属栅线电极;在基底硅片的正面由内至外依次为超薄氧化硅层、n型多晶硅层、氮化硅减反射层、正面金属电极;
所述钝化接触背结硅异质结太阳电池的钝化接触层位于电池正面,包括超薄氧化硅层和n型多晶硅层;所述钝化接触背结硅异质结太阳电池的p-n异质结位于电池背面,由p型非晶硅层与n型单晶硅之间形成p-n异质结。
优选地,所述的超薄氧化硅层用低压化学气相沉积而得,厚度为~1.5 nm。
优选地,所述的n型多晶硅层是先用低压化学气相沉积方法在管式炉中通过硅烷热分解沉积得到多晶硅层,随后再进行高温磷扩散掺杂形成的,厚度为~25 nm。
本发明的技术方案之二:
本发明还提供了一种钝化接触背结硅异质结太阳电池的制备方法,其特征在于,包括以下步骤:
步骤1,准备工业级晶向为(100)的n型Cz单晶硅片,进行标准清洗、制绒工艺,得到预处理后的型单晶硅片;
步骤2,在制绒后的硅片放入管式低压化学气相沉积(LPCVD)设备中,在550 ~600℃条件下热氧化,在所述硅片的正表面形成超薄氧化硅层;接着在所述硅片的正表面于相同LPCVD管式炉中通过硅烷热分解沉积多晶硅层,随后进行高温磷扩散掺杂形成n型多晶硅层;这样便得到具有载流子选择性钝化接触的TOPCon结构硅片;
步骤3,在步骤2得到所述硅片的正表面用等离子增强化学气相沉积(PECVD)方法沉积氮化硅(SiNx:H)减反射层;
步骤4,在步骤3得到所述硅片的正表面丝网印刷Ag浆料,然后通过红外带式烧结炉进行共烧结,形成正面金属电极;
步骤5,在步骤4得到所述硅片的背面用PECVD方法在低温下分别沉积本征非晶硅层和p型非晶硅层;
步骤6,在步骤5得到所述硅片的背面用磁控溅射的方法沉积透明导电氧化物层;
步骤7,在步骤6得到所述硅片的背面进行低温银浆的丝网印刷,然后低温烧结,形成背面金属栅线电极,即得所述的钝化接触背结硅异质结太阳电池。
优选地,步骤2中所述的热氧化时间为10 min,所述的超薄氧化硅层的厚度~1.5nm。
优选地,步骤3中所述的SiNx:H层厚度为80 nm。
优选地,步骤5中所述的本征非晶硅层、p型非晶硅层的厚度为5 nm;所述的PECVD沉积温度<250℃。
优选地,步骤6中所述的透明导电氧化物层厚度为80 nm。
优选地,步骤7中所述的低温烧结,其烧结温度不超过300℃。
本发明的有益效果在于:
本发明在电池正面引入钝化接触TOPCon结构,能实现正面良好的全面积钝化,同时能兼容高温工艺,使得现有晶硅电池生产线的部分设备可得到使用,有利于降低异质结电池生产线投入成本。本发明将p-n异质结置于电池背面,实现了背结异质结电池,能够拓宽异质结电池的工艺窗口,有利于电池的优化设计。
附图说明
图1是本发明的钝化接触背结硅异质结太阳电池结构示意图:
其中,1-n型单晶硅片,2-本征非晶硅层,3-p型非晶硅层,4-透明导电氧化物层,5-背面金属栅线电极,6-超薄氧化硅层,7-n型多晶硅层,8-氮化硅减反射层,9-正面金属电极。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
在附图中,所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1所示,n型单晶硅片基底1的背表面依次是本征非晶硅层2、p型非晶硅层3、透明导电氧化物层4、背面金属栅线电极5;n型单晶硅片基底1的正表面依次是超薄氧化硅层6、n型多晶硅层7、氮化硅减反射层8、正面金属电极9。
实施例1
本实施例提供了一种钝化接触背结硅异质结太阳电池的制备方法,具体步骤如下:
步骤1,准备工业级晶向为(100)、电阻率在0.5~3 Ω.cm,厚度为100~180 μm的n型Cz单晶硅片作为n型晶硅片基底,用氢氧化钾溶液去除所述n型晶硅基底表面的线切割损伤层;
步骤2,用氢氧化钾溶液对步骤1得到的n型晶硅衬底制绒,然后进行标准RCA清洗,得到预处理后的n型单晶硅片1;
步骤3,将步骤2所得的硅片放在管式LPCVD设备中,在550~600℃条件下热氧化10min,形成厚度~1.5 nm的超薄氧化硅层6;
步骤4,将步骤3所得的硅片接着使用LPCVD设备相同的管式炉,在610℃条件下通过硅烷热分解5 min,沉积厚度~25 nm的n型多晶硅层7,然后采用硅片两两背靠背的放置方式,已沉积膜层面朝外,用高温扩散对多晶硅层进行磷掺杂并在780℃退火以充分激活磷离子,得到了具有载流子选择性钝化接触的全面积TOPCon结构;
步骤5,将步骤4所得的具有磷掺杂多晶硅结构的硅片,用氢氟酸溶液进行去磷硅玻璃处理;
步骤6,将步骤5所得的硅片放入一种PECVD管式炉中,通入硅烷和氨气,接通高频电源用PECVD工艺在硅片前表面沉积氢化氮化硅减反射层,厚度为80 nm;
步骤7,将步骤6所得的硅片用丝网印刷方法在前表面印刷Ag浆,并且通过红外带式烧结炉进行烧结以形成良好的欧姆接触,形成正面金属电极9;
步骤8,将步骤7所得的硅片放入另一种PECVD设备的真空腔中,在真空室的本底真空达到~5×10-4 Pa 后,在硅片衬底温度150~300 ℃条件下,以H2和SiH4为反应气体,沉积气压为10~300Pa,利用PECVD在硅片背面生长一层本征非晶硅层2,厚度为2~10 nm;在该PECVD设备的另一个腔室中,在本底真空达到~5×10-4 Pa 后,在硅片衬底温度100~300 oC条件下,以H2、SiH4、B2H6为反应气体,沉积气压为10~300 Pa,在背面的本征非晶硅层上,用PECVD方法再生长一层硼掺杂的p型非晶硅层3,厚度为2 ~ 20 nm;
步骤9,将步骤8所得的硅片放入磁控溅射设备的真空腔室,用磁控溅射的方法在背面p型非晶硅层上沉积一层透明导电的掺锡氧化铟薄膜,该层膜的厚度为80 nm,透过率为 ~ 90%,方块电阻为50 ~ 100 Ω;
步骤10,将步骤9所得的样品,用丝网印刷的方法在背面的TCO层上再印刷一层低温导电银浆,然后在<300 oC的低温下进行烧结以形成良好的欧姆接触,形成背面金属栅线电极5。
经过上述步骤得到的钝化接触背结硅异质结太阳电池,在电池正面引入钝化接触TOPCon结构,能实现正面良好的全面积钝化,同时能兼容高温工艺,使得现有晶硅电池生产线的部分设备可得到使用,有利于降低异质结电池生产线投入成本。同时实现背结硅异质结电池,能够拓宽异质结电池的工艺窗口,有利于电池的优化设计。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (8)

1.一种钝化接触背结硅异质结太阳电池的制备方法,其特征在于,包括以下步骤:
步骤1,准备工业级晶向为(100)的n型Cz单晶硅片,进行标准清洗、制绒工艺,得到预处理后的n型单晶硅片(1);
步骤2,在制绒后的硅片放入管式低压化学气相沉积设备中,在550~600℃条件下热氧化,在所述硅片的正表面形成超薄氧化硅层(6);接着在所述硅片的正表面于相同LPCVD管式炉中通过硅烷热分解沉积多晶硅层,随后进行高温磷扩散掺杂形成n型多晶硅层(7);这样便得到具有载流子选择性钝化接触的TOPCon结构硅片;
步骤3,在步骤2得到所述硅片的正表面用等离子增强化学气相沉积方法沉积氮化硅减反射层(8);
步骤4,在步骤3得到所述硅片的正表面丝网印刷Ag浆料,然后通过红外带式烧结炉进行共烧结,形成正面金属电极(9);
步骤5,在步骤4得到所述硅片的背面用PECVD方法在低温下分别沉积本征非晶硅层(2)和p型非晶硅层(3);
步骤6,在步骤5得到所述硅片的背面用磁控溅射的方法沉积透明导电氧化物层(4);
步骤7,在步骤6得到所述硅片的背面进行低温银浆的丝网印刷,然后低温烧结,形成背面金属栅线电极(5),即得所述的钝化接触背结硅异质结太阳电池;所述钝化接触背结硅异质结太阳电池以n型单晶硅片(1)为基底,在n型单晶硅片(1)的背面由内至外依次为本征非晶硅层(2)、p型非晶硅层(3)、透明导电氧化物层(4)和背面金属栅线电极(5);在基底硅片的正面由内至外依次为超薄氧化硅层(6)、n型多晶硅层(7)、氮化硅减反射层(8)、正面金属电极(9);所述钝化接触背结硅异质结太阳电池的钝化接触层位于电池正面,包括超薄氧化硅层(6)和n型多晶硅层(7);所述钝化接触背结硅异质结太阳电池的p-n异质结位于电池背面,由p型非晶硅层(3)与n型单晶硅片(1)之间形成p-n异质结。
2.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,所述的超薄氧化硅层(6)用低压化学气相沉积而得,厚度为1.5nm。
3.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,所述的n型多晶硅层(7)是先用低压化学气相沉积方法在管式炉中通过硅烷热分解沉积得到多晶硅层,随后再进行高温磷扩散掺杂形成的,厚度为25nm。
4.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,步骤2中所述的热氧化时间为10min,所述的超薄氧化硅层(6)的厚度1.5nm。
5.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,步骤3中所述的氮化硅减反射层(8)厚度为80nm。
6.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,步骤5中所述的本征非晶硅层(2)、p型非晶硅层(3)的厚度为5nm;所述的PECVD沉积温度<250℃。
7.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,步骤6中所述的透明导电氧化物层(4)厚度为80nm。
8.如权利要求1所述的钝化接触背结硅异质结太阳电池的制备方法,其特征在于,步骤7中所述的低温烧结,其烧结温度不超过300℃。
CN202010380493.1A 2020-05-08 2020-05-08 一种钝化接触背结硅异质结太阳电池及其制备方法 Active CN111416014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010380493.1A CN111416014B (zh) 2020-05-08 2020-05-08 一种钝化接触背结硅异质结太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010380493.1A CN111416014B (zh) 2020-05-08 2020-05-08 一种钝化接触背结硅异质结太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN111416014A CN111416014A (zh) 2020-07-14
CN111416014B true CN111416014B (zh) 2022-03-04

Family

ID=71493768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010380493.1A Active CN111416014B (zh) 2020-05-08 2020-05-08 一种钝化接触背结硅异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111416014B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349802B (zh) * 2020-10-27 2022-07-15 福建新峰二维材料科技有限公司 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN114188429B (zh) * 2021-10-18 2023-11-24 晋能光伏技术有限责任公司 一种带有隧穿隧道结的同质异质结电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810771A (zh) * 2016-05-12 2016-07-27 南昌大学 一种背结晶硅异质结双面太阳电池及制备方法
CN209104161U (zh) * 2018-09-17 2019-07-12 浙江爱旭太阳能科技有限公司 一种选择性钝化接触太阳能电池
CN110880541A (zh) * 2019-11-14 2020-03-13 上海交通大学 一种新结构n型晶硅PERT双面电池及其制备方法
CN111029438A (zh) * 2019-12-04 2020-04-17 江苏杰太光电技术有限公司 一种n型钝化接触太阳能电池的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090211627A1 (en) * 2008-02-25 2009-08-27 Suniva, Inc. Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
KR20150114792A (ko) * 2014-04-02 2015-10-13 한국에너지기술연구원 초박형 hit 태양전지 및 그 제조방법
CN108922938B (zh) * 2018-09-06 2024-03-15 福建钜能电力有限公司 一种背接触异质结太阳能电池及其制备方法
WO2020060487A1 (en) * 2018-09-17 2020-03-26 National University Of Singapore Solar cell and method for fabricating a solar cell
CN109935660A (zh) * 2019-03-04 2019-06-25 晋能光伏技术有限责任公司 一种管式pecvd设备生产异质结太阳能电池非晶硅镀膜沉积层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810771A (zh) * 2016-05-12 2016-07-27 南昌大学 一种背结晶硅异质结双面太阳电池及制备方法
CN209104161U (zh) * 2018-09-17 2019-07-12 浙江爱旭太阳能科技有限公司 一种选择性钝化接触太阳能电池
CN110880541A (zh) * 2019-11-14 2020-03-13 上海交通大学 一种新结构n型晶硅PERT双面电池及其制备方法
CN111029438A (zh) * 2019-12-04 2020-04-17 江苏杰太光电技术有限公司 一种n型钝化接触太阳能电池的制备方法

Also Published As

Publication number Publication date
CN111416014A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN110880541A (zh) 一种新结构n型晶硅PERT双面电池及其制备方法
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
WO2022012180A1 (zh) 一种基于lpcvd的高效掺杂非晶硅技术的交叉指式背接触异质结太阳电池
JP5058184B2 (ja) 光起電力装置の製造方法
CN112736151B (zh) 基于宽带隙窗口层的背结硅异质结太阳电池
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
CN111416014B (zh) 一种钝化接触背结硅异质结太阳电池及其制备方法
CN115172481B (zh) 异质结太阳能电池
CN111952381B (zh) 一种硅异质结太阳电池及其制备方法
CN218414591U (zh) 太阳能电池
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
CN114005888A (zh) 一种太阳能电池及其制备方法
CN111416013A (zh) 一种以氢化非晶氮氧化硅薄膜为钝化层的异质结太阳电池
CN115566093A (zh) 一种高效选择性掺杂电池及其制备方法
CN114267753A (zh) 一种TOPCon太阳能电池及其制备方法、光伏组件
CN111416011B (zh) 一种p型PERC晶硅太阳电池及制备方法
US20240079511A1 (en) Heterojunction solar cell and manufacturing method thereof
CN112768549A (zh) 一种高光电转换效率的hjt电池及其制备方法
CN113410334A (zh) 多层薄膜钝化接触结构的制备方法及全钝化接触晶硅太阳电池
CN116914012A (zh) 一种双面掺杂多晶硅钝化接触电池及其制备方法
CN115132884B (zh) 一种异质结太阳能电池的制作方法
CN103367526A (zh) 一种背面局部接触硅太阳电池的制造方法
CN115425114A (zh) 一种异质结太阳能电池的制造方法
CN111416003A (zh) 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法
CN111416012A (zh) 一种包含氮化硅减反射层的硅异质结太阳电池及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yang Jie

Inventor after: Ren Dongliang

Inventor after: Chen Changming

Inventor after: Liu Chao

Inventor after: Xu Xiaona

Inventor after: Zhou Guoping

Inventor before: Ren Dongliang

Inventor before: Chen Changming

Inventor before: Yang Jie

Inventor before: Li Zhengping

Inventor before: Liu Chao

Inventor before: Xu Xiaona

Inventor before: Zhou Guoping