CN111416003A - 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法 - Google Patents

一种氧化铝钝化的背结硅异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN111416003A
CN111416003A CN202010380465.XA CN202010380465A CN111416003A CN 111416003 A CN111416003 A CN 111416003A CN 202010380465 A CN202010380465 A CN 202010380465A CN 111416003 A CN111416003 A CN 111416003A
Authority
CN
China
Prior art keywords
layer
amorphous silicon
silicon
aluminum oxide
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010380465.XA
Other languages
English (en)
Inventor
陈昌明
周国平
李正平
刘超
杨杰
任栋樑
徐小娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entropy Shanghai Energy Technology Co ltd
Original Assignee
Entropy Shanghai Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entropy Shanghai Energy Technology Co ltd filed Critical Entropy Shanghai Energy Technology Co ltd
Priority to CN202010380465.XA priority Critical patent/CN111416003A/zh
Publication of CN111416003A publication Critical patent/CN111416003A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种氧化铝钝化的背结硅异质结太阳电池,其特征在于,以n型单晶硅片为衬底,在衬底硅片的背面由内至外依次为背面本征非晶硅层、p型非晶硅发射极层、氧化铝钝化层、背面透明导电氧化物层和背面金属电极;在衬底硅片的正面由内至外依次为正面本征非晶硅层、n型非晶硅前电场层、正面透明导电氧化物层、正面金属电极;所述氧化铝钝化的背结硅异质结太阳电池的p‑n异质结位于电池背面,由p型非晶硅层与n型单晶硅片之间形成p‑n异质结。本发明所述异质结电池的p型非晶硅发射极层位于电池的背面,同时利用氧化铝的场效应钝化来钝化p型非晶硅发射极层,提升异质结电池的开路电压和转换效率。

Description

一种氧化铝钝化的背结硅异质结太阳电池及其制备方法
技术领域
本发明涉及硅太阳电池技术领域,尤其涉及一种氧化铝钝化的背结硅异质结太阳电池。
背景技术
近年来,钝化发射极和背面电池(PERC)获得长足的发展,已经取代常规铝背场太阳电池成为主流的晶体硅电池技术。这主要得益于氧化铝(AlOx)背钝化膜的应用。AlOx薄膜与其他钝化材料的主要区别在于AlOx/Si接触面具有大量的固定负电荷,能屏蔽p型表面的少子,表现出显著的场效应钝化特性。
非晶硅/晶体硅异质结太阳电池的结构是在n型单晶硅片的正面从里到外依次是本征非晶硅薄膜层、p型非晶硅薄膜层、透明导电氧化物薄膜层(TCO)和正面电极;背面从里到外依次是本征非晶薄膜层、n型非晶硅薄膜层、TCO层和背面电极。这里在p型非晶硅和n型单晶硅的p-n异质结之间插入了一层本征非晶硅,实现异质结界面的良好钝化效果。但是p型非晶硅作为发射极直接与TCO层接触,没有良好的钝化,影响着电池的开路电压。因此,实现对p型非晶硅发射极的钝化将成为异质结电池提效的手段之一。
借鉴PERC电池的氧化铝钝化的思路,用氧化铝薄膜来实现对异质结电池p型非晶硅发射极的钝化,在异质结电池中同时实现本征非晶硅的化学钝化和氧化铝的场效应钝化,将有助于异质结电池开路电压和效率的提升。同时,考虑到p型非晶硅发射极置于背面的背结异质结电池,能降低异质结电池对p型非晶硅和TCO的要求,有利于工艺的优化。
发明内容
本发明的目的在于开发一种氧化铝钝化的背结硅异质结太阳电池,利用氧化铝的场效应钝化来钝化p型非晶硅发射极,提升异质结电池的开路电压和转换效率。
为实现上述目的,本发明提供了一种氧化铝钝化的背结硅异质结太阳电池,其特征在于,以n型单晶硅片为衬底,在衬底硅片的背面由内至外依次为背面本征非晶硅层、p型非晶硅发射极层、氧化铝钝化层、背面透明导电氧化物层和背面金属电极;在衬底硅片的正面由内至外依次为正面本征非晶硅层、n型非晶硅前电场层、正面透明导电氧化物层、正面金属电极;所述氧化铝钝化的背结硅异质结太阳电池的p-n异质结位于电池背面,由p型非晶硅层与n型单晶硅片之间形成p-n异质结。
进一步地,所述氧化铝钝化的背结硅异质结太阳电池,电池背面需进行激光开槽,槽孔贯穿所述的背面透明导电氧化物层和氧化铝钝化层,然后再进行低温银浆的丝网印刷和低温烧结,以实现背面金属电极的良好接触。
本发明还提供了一种氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,包括以下步骤:
步骤1,准备工业级晶向为(100)的n型Cz单晶硅片,进行标准清洗、制绒工艺,得到预处理后的n型单晶硅片;
步骤2,在清洗后的硅片正面用等离子增强化学气相沉积(PECVD)依次沉积正面本征非晶硅层、n型非晶硅前电场层;背面用PECVD依次沉积背面本征非晶硅层、p型非晶硅发射极层;
步骤3,在步骤2得到所述硅片的背面用原子层沉积(ALD)或PECVD沉积氧化铝钝化层;
步骤4,在步骤3得到所述硅片的正面和背面用磁控溅射的方法分别沉积正面透明导电氧化物层和背面透明导电氧化物层;
步骤5,在步骤4得到所述硅片的背面进行激光开槽;
步骤6,在步骤5得到所述硅片的正面和背面分别进行低温银浆的丝网印刷,然后在低温下烧结形成正面金属电极和背面金属电极。
优选地,步骤2中所述的正面本征非晶硅层、n型非晶硅前电场层、背面本征非晶硅层、p型非晶硅发射极层的厚度均为5nm;所述的PECVD沉积温度<300℃。
优选地,步骤3中所述的氧化铝钝化层厚度为15nm,所述ALD或PECVD沉积的沉积温度为200℃,所述沉积的反应原料为三甲基铝和水蒸汽。
优选地,步骤4中所述的正面透明导电氧化物层的厚度为80nm,所述的背面透明导电氧化物层厚度为65nm。
优选地,步骤5中所述的激光开槽用激光切割机制成,槽孔贯穿所述的背面透明导电氧化物层和氧化铝钝化层,槽深不超过80nm。
优选地,步骤6中所述的低温烧结,其烧结温度不超过300℃。
本发明具有以下技术效果:
本发明在背结硅异质结电池的背面引入氧化铝钝化层,实现对p型非晶硅发射极层的场效应钝化,在异质结电池中同时实现本征非晶硅的化学钝化和氧化铝的场效应钝化,有助于异质结电池开路电压和转换效率的提升。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的氧化铝钝化的背结硅异质结太阳电池结构示意图:
其中,1-n型单晶硅片,2-背面本征非晶硅层,3-p型非晶硅发射极层,4-氧化铝钝化层,5-背面透明导电氧化物层,6-背面金属电极,7-正面本征非晶硅层,8-n型非晶硅前电场层,9-正面透明导电氧化物层,10-正面金属电极。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
在附图中,所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1所示,n型单晶硅衬底1的背面由内至外依次为背面本征非晶硅层2、p型非晶硅发射极层3、氧化铝钝化层4、背面透明导电氧化物层5和背面金属电极6;n型单晶硅衬底1的正面由内至外依次为正面本征非晶硅层7、n型非晶硅前电场层8、正面透明导电氧化物层9、正面金属电极10。
实施例1
本实施例提供了一种氧化铝钝化的背结硅异质结太阳电池的制备方法,具体步骤如下:
步骤1,准备工业级晶向为(100)、电阻率在0.5~3Ω.cm,厚度为100~180μm的n型Cz单晶硅片作为n型硅片衬底,用氢氧化钾溶液去除所述n型硅片衬底表面的线切割损伤层;
步骤2,用氢氧化钾溶液对步骤1得到的n型晶硅衬底制绒,然后进行标准RCA清洗,得到预处理后的n型单晶硅片;
步骤3,将步骤2所得的硅片放入PECVD的真空腔室,在真空室的本底真空达到~5×10-4Pa后,在硅片衬底温度150~300℃条件下,以H2和SiH4为反应气体,沉积气压为10~300Pa,利用PECVD在硅片正面和背面各生长一层本征非晶层,厚度为2~10nm;
步骤4,将步骤3所得的硅片放入PECVD的真空腔室,在真空室的本底真空达到~5×10-4Pa后,在硅片衬底温度100~300℃条件下,以H2、SiH4、B2H6为反应气体,沉积气压为10~300Pa,在背面的本征非晶硅薄膜上,用PECVD方法再生长一层硼掺杂的p型非晶硅发射极层,厚度为2~20nm;以H2、SiH4、PH3为反应气体,其它工艺条件相同的情况下,在正面的本征非晶硅层上沉积一层磷掺杂的n型非晶硅前电场层,厚度为2~20nm;
步骤5,将步骤4所得的硅片放入ALD沉积设备中,以三甲基铝和水蒸汽为反应原料,沉积温度为200℃,在背面的p型非晶硅发射极层上沉积一层厚度为15nm的氧化铝钝化层;
步骤6,将步骤5所得的硅片放入磁控溅射设备的真空腔室,用磁控溅射的方法在背面氧化铝钝化层上沉积一层透明导电的掺锡氧化铟薄膜,该层膜的厚度为65nm;用磁控溅射的方法在正面n型非晶硅前电场层上沉积一层透明导电的掺锡氧化铟薄膜,该层膜的厚度为80nm;
步骤7,将步骤6所得的硅片在背面用激光切割机开槽,槽孔贯穿背面透明导电氧化物层和氧化铝钝化层,槽深不超过80nm;激光工艺参数包括:激光波长为532nm,频率为17kHz,扫描速度为18000mm/s;
步骤8,将步骤7所得的硅片,用丝网印刷的方法在正面的透明导电氧化物层和背面的透明导电氧化物层上再分别印刷一层低温导电银浆,然后在150~300℃的低温下进行烧结以形成良好的欧姆接触,分别形成正面金属电极和背面金属电极。
经过上述步骤得到的氧化铝钝化的背结硅异质结太阳电池,在电池的背面引入氧化铝钝化层,实现对p型非晶硅发射极层的场效应钝化,在异质结电池中同时实现本征非晶硅的化学钝化和氧化铝的场效应钝化,有助于异质结电池开路电压和转换效率的提升。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (8)

1.一种氧化铝钝化的背结硅异质结太阳电池,其特征在于,以n型单晶硅片(1)为衬底,在衬底硅片的背面由内至外依次为背面本征非晶硅层(2)、p型非晶硅发射极层(3)、氧化铝钝化层(4)、背面透明导电氧化物层(5)和背面金属电极(6);在衬底硅片的正面由内至外依次为正面本征非晶硅层(7)、n型非晶硅前电场层(8)、正面透明导电氧化物层(9)、正面金属电极(10);所述氧化铝钝化的背结硅异质结太阳电池的p-n异质结位于电池背面,由p型非晶硅层(3)与n型单晶硅片(1)之间形成p-n异质结。
2.如权利要求1所述的氧化铝钝化的背结硅异质结太阳电池,其特征在于,所述氧化铝钝化的背结硅异质结太阳电池,电池背面需进行激光开槽,槽孔贯穿所述的背面透明导电氧化物层(5)和氧化铝钝化层(4),然后再进行低温银浆的丝网印刷和低温烧结,以实现背面金属电极的良好接触。
3.权利要求1或2所述的氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,包括以下步骤:
步骤1,准备工业级晶向为100的n型Cz单晶硅片,进行标准清洗、制绒工艺,得到预处理后的n型单晶硅片;
步骤2,在清洗后的硅片正面用等离子增强化学气相沉积依次沉积正面本征非晶硅层(7)、n型非晶硅前电场层(8);背面用PECVD依次沉积背面本征非晶硅层(2)、p型非晶硅发射极层(3);
步骤3,在步骤2得到所述硅片的背面用原子层沉积或PECVD沉积氧化铝钝化层(4);
步骤4,在步骤3得到所述硅片的正面和背面用磁控溅射的方法分别沉积正面透明导电氧化物层(9)和背面透明导电氧化物层(5);
步骤5,在步骤4得到所述硅片的背面进行激光开槽;
步骤6,在步骤5得到所述硅片的正面和背面分别进行低温银浆的丝网印刷,然后在低温下烧结形成正面金属电极(10)和背面金属电极(6)。
4.如权利要求3所述的氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,步骤2中所述的正面本征非晶硅层(7)、n型非晶硅前电场层(8)、背面本征非晶硅层(2)、p型非晶硅发射极层(3)的厚度均为5nm;所述的PECVD沉积温度<300℃。
5.如权利要求3所述的氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,步骤3中所述的氧化铝钝化层(4)厚度为15nm,所述ALD或PECVD沉积的沉积温度为200℃,所述沉积的反应原料为三甲基铝和水蒸汽。
6.如权利要求3所述的氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,步骤4中所述的正面透明导电氧化物层(9)的厚度为80nm,所述的背面透明导电氧化物层(5)厚度为65nm。
7.如权利要求3所述的氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,步骤5中所述的激光开槽用激光切割机制成,槽孔贯穿所述的背面透明导电氧化物层(5)和氧化铝钝化层(4),槽深不超过80nm。
8.如权利要求3所述的氧化铝钝化的背结硅异质结太阳电池的制备方法,其特征在于,步骤6中所述的低温烧结,其烧结温度不超过300℃。
CN202010380465.XA 2020-05-08 2020-05-08 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法 Pending CN111416003A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010380465.XA CN111416003A (zh) 2020-05-08 2020-05-08 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010380465.XA CN111416003A (zh) 2020-05-08 2020-05-08 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN111416003A true CN111416003A (zh) 2020-07-14

Family

ID=71493791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010380465.XA Pending CN111416003A (zh) 2020-05-08 2020-05-08 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111416003A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799350A (zh) * 2022-11-11 2023-03-14 通威太阳能(金堂)有限公司 太阳电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356488A (en) * 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
CN101692466A (zh) * 2009-09-17 2010-04-07 中电电气(南京)光伏有限公司 基于丝网印刷工艺的制作高效双面n型晶体硅太阳电池的方法
CN101882642A (zh) * 2010-06-29 2010-11-10 常州大学 一种异质结太阳电池及其制备方法
CN109950354A (zh) * 2019-03-26 2019-06-28 天合光能股份有限公司 一种同质-异质结太阳能电池及其制备方法
CN209561421U (zh) * 2019-04-24 2019-10-29 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池
CN209658201U (zh) * 2019-04-11 2019-11-19 深圳市捷佳伟创新能源装备股份有限公司 一种具有透明导电层的单多晶n型双面perc电池
CN110993700A (zh) * 2019-10-16 2020-04-10 晋能清洁能源科技股份公司 一种异质结太阳电池及其制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356488A (en) * 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
CN101692466A (zh) * 2009-09-17 2010-04-07 中电电气(南京)光伏有限公司 基于丝网印刷工艺的制作高效双面n型晶体硅太阳电池的方法
CN101882642A (zh) * 2010-06-29 2010-11-10 常州大学 一种异质结太阳电池及其制备方法
CN109950354A (zh) * 2019-03-26 2019-06-28 天合光能股份有限公司 一种同质-异质结太阳能电池及其制备方法
CN209658201U (zh) * 2019-04-11 2019-11-19 深圳市捷佳伟创新能源装备股份有限公司 一种具有透明导电层的单多晶n型双面perc电池
CN209561421U (zh) * 2019-04-24 2019-10-29 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池
CN110993700A (zh) * 2019-10-16 2020-04-10 晋能清洁能源科技股份公司 一种异质结太阳电池及其制备工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799350A (zh) * 2022-11-11 2023-03-14 通威太阳能(金堂)有限公司 太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
CN109216509B (zh) 一种叉指型背接触异质结太阳电池制备方法
De Wolf et al. High-efficiency silicon heterojunction solar cells: A review
US7943416B2 (en) Local heterostructure contacts
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
US9214576B2 (en) Transparent conducting oxide for photovoltaic devices
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
JP5058184B2 (ja) 光起電力装置の製造方法
EP3021366A1 (en) Solar cell and method of manufacturing thereof
CN112510121B (zh) 一种perc电池碱抛前后保护工艺
CN114975691A (zh) 一种具有选择性发射极的钝化接触太阳电池及其制备方法、组件和系统
CN112054096A (zh) 一种切片单晶硅电池的制备方法
CN113410328A (zh) 一种晶硅异质结太阳能电池
KR20130082066A (ko) 광기전력소자 및 제조 방법
CN112736151A (zh) 基于宽带隙窗口层的背结硅异质结太阳电池
JPWO2017110457A1 (ja) 光電変換装置の製造方法
CN116581181A (zh) 一种双掺杂层TOPCon电池结构及其制备方法
CN115274913B (zh) 一种带有钝化接触结构的ibc太阳电池的制备方法及电池、组件和系统
Korte et al. Overview on a-Si: H/c-Si heterojunction solar cells-physics and technology
CN111416014B (zh) 一种钝化接触背结硅异质结太阳电池及其制备方法
CN114068731A (zh) 一种以低激光损伤为特征的背接触异质结太阳能电池及其制造方法
CN111952381B (zh) 一种硅异质结太阳电池及其制备方法
CN111416003A (zh) 一种氧化铝钝化的背结硅异质结太阳电池及其制备方法
CN218788382U (zh) 一种高效异质结太阳能电池
CN112466989A (zh) 一种异质结太阳能电池的制备工艺
CN116130558A (zh) 一种新型全背电极钝化接触电池的制备方法及其产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200714