CN115566093A - 一种高效选择性掺杂电池及其制备方法 - Google Patents

一种高效选择性掺杂电池及其制备方法 Download PDF

Info

Publication number
CN115566093A
CN115566093A CN202211087529.2A CN202211087529A CN115566093A CN 115566093 A CN115566093 A CN 115566093A CN 202211087529 A CN202211087529 A CN 202211087529A CN 115566093 A CN115566093 A CN 115566093A
Authority
CN
China
Prior art keywords
doped
boron
layer
silicon
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211087529.2A
Other languages
English (en)
Inventor
张三洋
陶俊
邵玉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Kunsheng Intelligent Equipment Co ltd
Original Assignee
Wuxi Kunsheng Intelligent Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Kunsheng Intelligent Equipment Co ltd filed Critical Wuxi Kunsheng Intelligent Equipment Co ltd
Priority to CN202211087529.2A priority Critical patent/CN115566093A/zh
Publication of CN115566093A publication Critical patent/CN115566093A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种高效选择性掺杂电池及其制备方法,涉及太阳能电池技术领域,所述选择性掺杂电池由下至上分别包括n型硅片、掺硼非晶硅层、AL2O3层和SiNx钝化减反射层,金属电极通过选择性掺杂发射极与n型硅片相导通。本发明通过PECVD沉积技术得到掺硼非晶硅/多晶硅薄膜层,再进行退火激活的方式可以得到均匀的掺硼的低表面浓度浅结,有更好的蓝光响应和更低的表面复合,可进一步提升开压和短流;通过PECVD沉积掺硼非晶硅表面无BSG层,激光照射非晶/多晶掺硼薄层,实现选择性硼重掺杂,从而形成发射极SE结构,硼重掺杂区域可以和银浆形成更低接触电阻更好欧姆接触的电极接触。

Description

一种高效选择性掺杂电池及其制备方法
技术领域
本发明涉及太阳能电池技术领域,特别涉及一种高效选择性掺杂电池及其制备方法。
背景技术
晶硅太阳能电池是一种有效吸收太阳辐射能,利用光生伏打效应把光能转换成电能的器件。当太阳光照射在半导体p-n结上,形成电子-空穴对,在p-n结电场作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后形成电流。
目前光伏行业主流的电池结构为PERC电池(Passivated Emitter and Rear Cell钝化发射器和后部接触的太阳能电池),该电池采用p型硅片作为基底,正面扩磷形成n型区,在硅片正表面沉积SiNx膜层,背面沉积AL2O3/SiNx膜层实现太阳能电池表面钝化(减少载流子复合:也可理解为减少光生电子和硅表面缺陷的复合湮没)和减少光的反射,正、背面印刷银浆及银铝浆料形成电极,从而制备出完整的PERC晶硅太阳能电池。当前的PERC电池均叠加了SE(selective emitter选择性掺杂发射级)选择性掺杂工艺,即在磷扩散后针对电极区通过激光将磷原子进一步推进形成重掺杂,这样可以在整体低表面掺杂浓度发射极的情况下,又能拥有更好的金属半导体电学接触性能,电池效率可以得到大幅度的提高。近两年TOPCON太阳能电池发展迅速,该电池拥有更高的电池效率,目前新增产能基本上都为TOPCON电池(隧穿氧化钝化接触电池),其采用n型硅片作为基底,扩硼产生p型层发射极与n型硅基底形成p-n结。
目前掺杂方式主要有两个问题:1.采用的高温气态硼源扩散方式,由于硼在硅中固溶度较低,比较难扩散,为了保证良好的均匀性和掺杂效果,需要采用高温长时间推进的方式,这样p-n结深会较深,且表面掺杂浓度会很高,容易产生同心圆中心发黑等电池不良,蓝光响应差,短流、开压提升受限,限制电池效率进一步提升。(较低的表面浓度、相对浅的结深、且扩散均匀可以有更好的蓝光响应、更低的表面复合,即更高的电池效率)。2.高温气态硼源扩散方式表面会形成一层较厚的硼硅玻璃(BSG)。利用激光照射BSG层进行硼选择性重掺杂,实现硼扩散的SE结构,很难穿透BSG进行硼的选择性重掺杂,填充提升受限,因此目前尚未有成熟的TOPCON电池叠加SE的工艺方案。
发明内容
为了解决上述技术问题,本发明提供了一种高效选择性掺杂电池及其制备方法,本发明通过等离子体增强化学气相沉积法(PECVD)得到掺硼非晶硅/多晶硅薄膜层,再进行退火激活的方式可以得到均匀的掺硼的低表面浓度浅结,有更好的蓝光响应和更低的表面复合,可进一步提升开压和短流;PECVD沉积掺硼非晶硅表面无硼硅玻璃(BSG)层,激光照射非晶/多晶掺硼薄层,实现选择性硼重掺杂,从而形成选择性掺杂发射极(SE)结构,硼重掺杂区域可以和银浆形成更低接触电阻更好欧姆接触的电极接触,从而使得电池效率有进一步提升。
本发明的目的之一在于提供一种高效选择性掺杂电,所述选择性掺杂电池由下至上分别包括n型硅片、掺硼非晶硅层、AL2O3层和SiNx钝化减反射层,金属电极通过选择性掺杂发射极与n型硅片相导通。
本发明的目的之二在于提供一种高效选择性掺杂电池的制备方法,所述方法包括:
(1)制绒;
(2)等离子体增强化学气相沉积法掺硼非晶硅:在四氢化硅:氢气:硼烷流量比为1:(1-6):(0.1-1),温度为200-600℃下,经过射频电源将气体离子化后沉积在硅片表面形成掺硼非晶硅薄膜,压力为5-300pa,沉积时间为1-60min,薄膜厚度为5-300nm;
具体可以采用如下方案:
可以采用如公开号为CN 112593214A的中国专利公开的等离子体增强化学气相沉积法(PECVD)掺硼非晶硅沉积设备,该设备包括自动上下料系统,温控系统,真空系统,特气H2/SiH4/BH3或B2H6供应系统,射频电源等。掺硼非晶硅的生长过程为:四氢化硅(SiH4):氢气(H2):硼烷(BH3或B2H6)流量比为1:(1-6):(0.1-1),沉积温度在200-600℃范围内,经过射频电源将气体离子化后沉积在硅片表面,工艺压力优选的控制在5-300pa,沉积时间为1-60min,形成掺硼的非晶硅薄膜,薄膜的厚度控制在5-300nm范围内。
(3)激光选择性掺杂发射极:通过激光在电极栅线处对硼原子的推进处理,在电极栅线区得到选择性掺杂发射极,激光波长为50-1200nm,时间为0.1-20s;确保硅片和电极浆料形成良好的欧姆接触,发射极的掺杂浓度越高,越容易形成良好的欧姆接触;
(4)退火激活:退火温度为650-1100℃,退火时间为10-200min;通过退火处理对非晶硅进行晶化处理以及对硅中硼推进到n型硅基底内,所述退火温度优选的控制在650-1100℃范围内,退火时间控制在10-200min进行激活,所述退火激活工序包含非晶硅/多晶硅的氧化过程,氧化过程可以选择在前段、中段、后段或者贯穿整个退火工艺中,退火工艺中通入的气体包括N2/Ar/H2/O2将非晶硅/多晶硅氧化成硼硅玻璃,从而可以通过后面的碱抛光工序的酸槽进行去除。
(5)背面抛光;
(6)背面隧穿氧化层/掺磷多晶硅制备;
(7)去磷硅玻璃表面绕镀清洗;
(8)正面AL2O3沉积;
(9)正反面SiNx沉积;
(10)丝网印刷烧结。
其中,步骤(1)、(5)、(6)(7)、(8)、(9)和(10)采用产线常规工艺,且可根据电池结构需求,进行工艺菜单的微调匹配。
优选的,步骤(1)中制绒的工艺温度为78-85℃,n型硅片在KOH和制绒添加剂的混合溶液下反应400-700s。
具体可以采用如下方案:
n型硅片先后经过槽式单晶制绒机在78-85℃的工艺温度下,在3-8%体积浓度的KOH和0.01-2%体积浓度的制绒添加剂混合溶液下反应400-700s,通过碱和硅的各向异性反应原理制备金字塔状陷光结构,使陷光结构表面反射率控制在12%以下。
优选的,步骤(2)中所述硼烷为甲硼烷或乙硼烷。
优选的,步骤(5)中采用氢氟酸清洗n型硅片背面退火激活后产生的氧化层,再进行抛光处理,抛光处理后反射率为20%以上。
具体可以采用如下方案:
采用链式去氧化层设备和槽式碱抛机,通过链式去氧化层设备中氢氟酸(HF)清洗硅片背面退火激活后产生的氧化层,然后进入槽式碱抛机中,通过碱/添加剂的作用下在55-70℃下对背面进行抛光处理;或者可以采用链式酸刻方式通过HF/HNO3对硅片背面进行抛光处理。抛光后硅片的反射率控制在20%以上。槽式碱抛机中至少包含一个HF的酸槽,以对退火工序氧化成硼硅玻璃的非晶硅/多晶硅层进行去除。
优选的,步骤(6)中通过气相沉积法制备0.5-2nm厚度的SiO2层,通过磷扩散制备掺磷多晶硅层,所述掺磷多晶硅厚度为50-300nm,优选为80-130nm,形成SiO2/掺磷多晶硅的层。
具体可以采用如下方案:
通过低压力化学气相沉积法(LPCVD)、等离子体增强化学气相沉积法(PECVD)或物理气相沉积法(PVD)在硅片背面制备0.5-2nm的SiO2层,通过磷扩散制备掺磷多晶硅层,掺磷多晶硅层较佳的厚度为50-300nm,更佳的厚度优选为80-130nm。
优选的,步骤(8)中通过原子层沉积法(ALD)在硅片正面沉积5-30nm厚度的AL2O3层。
优选的,步骤(9)中通过等离子体增强化学气相沉积法(PECVD)在硅片正反面分别沉积70-120nm厚度的SiNx钝化减反射膜。
优选的,步骤(10)中通过印刷烧结方式在电池表面制备金属电极。
采用上述技术方案,(1)本发明通过PECVD沉积技术得到掺硼非晶硅/多晶硅薄膜层,再进行退火激活的方式可以得到均匀的掺硼的低表面浓度浅结,有更好的蓝光响应和更低的表面复合,可进一步提升开压和短流;;蓝光对应短波,其主要作用在硅片表面,长波长的光穿透能力更强作用在电池背面。增强短波响应即更多短波长的光转换成光生载流子,短路电流会提升,表面浓度降低时硅内部缺陷更少减少光生载流子的复合,开压会提高。
(2)通过PECVD沉积掺硼非晶硅表面无BSG层,激光照射非晶/多晶掺硼薄层,实现选择性硼重掺杂,从而形成发射极SE结构,硼重掺杂区域可以和银浆形成更低接触电阻更好欧姆接触的电极接触,能够进一步提升电池效率。
附图说明
图1为本发明的选择性掺杂电池的结构示意图。
图中,1-n型硅片,2-掺硼非晶硅层,3-AL2O3层,4-SiNx钝化减反射层,5-金属电极,6-选择性掺杂发射极。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
如图1所示,一种高效选择性掺杂电,由下至上分别包括n型硅片1、掺硼非晶硅层2、AL2O3层3和SiNx钝化减反射层4,金属电极5通过选择性掺杂发射极6与n型硅片1相导通。
实施例2
一种高效选择性掺杂电池的制备方法,包括:
(1)制绒:n型硅片先后经过槽式单晶制绒机在80℃的工艺温度下,在5%体积浓度的KOH和1%体积浓度的制绒添加剂混合溶液下反应500s,通过碱和硅的各向异性反应原理制备金字塔状陷光结构;
(2)等离子体增强化学气相沉积法掺硼非晶硅:采用如公开号为CN 112593214A的中国专利公开的等离子体增强化学气相沉积法(PECVD)掺硼非晶硅沉积设备,该设备包括自动上下料系统,温控系统,真空系统,特气H2/SiH4/BH3或B2H6供应系统,射频电源等。掺硼非晶硅的生长过程为:SiH4:H2:BH3流量比为1:3:0.5,沉积温度为400℃,经过射频电源将气体离子化后沉积在硅片表面,工艺压力为150pa,沉积时间为30min,形成掺硼的非晶硅薄膜;
(3)激光选择性掺杂发射极:通过激光在电极栅线处对硼原子的推进处理,在电极栅线区得到选择性掺杂发射极,激光波长为600nm,时间为10s;
(4)退火激活:退火温度为800℃,退火时间为100min;通过退火处理对非晶硅进行晶化处理以及对硅中硼推进到n型硅基底内,退火工艺中通入的气体包括N2/Ar/H2/O2将非晶硅/多晶硅氧化成硼硅玻璃,从而可以通过后面的碱抛光工序的酸槽进行去除;
(5)背面抛光:采用链式去氧化层设备和槽式碱抛机,通过链式去氧化层设备中HF清洗硅片背面退火激活后产生的氧化层,然后进入槽式碱抛机中,通过碱/添加剂的作用下在60℃下对背面进行抛光处理;
(6)背面隧穿氧化层/掺磷多晶硅制备:通过低压力化学气相沉积法(LPCVD)在硅片背面制备1nm的SiO2层,通过磷扩散制备掺磷多晶硅层,掺磷多晶硅层厚度为200nm;
(7)去磷硅玻璃表面绕镀清洗;
(8)正面AL2O3沉积:通过原子层沉积法(ALD)在硅片正面沉积15nm厚度的AL2O3层;
(9)正反面SiNx沉积:通过等离子体增强化学气相沉积法(PECVD)在硅片正反面分别沉积100nm厚度的SiNx钝化减反射膜;
(10)丝网印刷烧结:通过印刷烧结方式在电池表面制备金属电极。
实施例3
一种高效选择性掺杂电池的制备方法,包括:
(1)制绒:n型硅片先后经过槽式单晶制绒机在78℃的工艺温度下,在3%体积浓度的KOH和0.01%体积浓度的制绒添加剂混合溶液下反应400s,通过碱和硅的各向异性反应原理制备金字塔状陷光结构;
(2)等离子体增强化学气相沉积法掺硼非晶硅:采用如公开号为CN 112593214A的中国专利公开的等离子体增强化学气相沉积法(PECVD)掺硼非晶硅沉积设备,该设备包括自动上下料系统,温控系统,真空系统,特气H2/SiH4/BH3或B2H6供应系统,射频电源等。掺硼非晶硅的生长过程为:SiH4:H2:B2H6流量比为1:1:0.1,沉积温度为200℃,经过射频电源将气体离子化后沉积在硅片表面,工艺压力为5pa,沉积时间为1min,形成掺硼的非晶硅薄膜;
(3)激光选择性掺杂发射极:通过激光在电极栅线处对硼原子的推进处理,在电极栅线区得到选择性掺杂发射极,激光波长为50nm,时间为0.1s;
(4)退火激活:退火温度为650℃,退火时间为10min;通过退火处理对非晶硅进行晶化处理以及对硅中硼推进到n型硅基底内,退火工艺中通入的气体包括N2/Ar/H2/O2将非晶硅/多晶硅氧化成硼硅玻璃,从而可以通过后面的碱抛光工序的酸槽进行去除;
(5)背面抛光:采用链式去氧化层设备和槽式碱抛机,通过链式去氧化层设备中氢氟酸(HF)清洗硅片背面退火激活后产生的氧化层,然后通过链式酸刻方式通过HF/HNO3对硅片背面进行抛光处理;
(6)背面隧穿氧化层/掺磷多晶硅制备:通过等离子体增强化学气相沉积法(PECVD)在硅片背面制备0.5nm的SiO2层,通过磷扩散制备掺磷多晶硅层,掺磷多晶硅层较佳的厚度为50nm;
(7)去磷硅玻璃表面绕镀清洗;
(8)正面AL2O3沉积:通过原子层沉积法(ALD)在硅片正面沉积5nm厚度的AL2O3层;
(9)正反面SiNx沉积:通过等离子体增强化学气相沉积法(PECVD)在硅片正反面分别沉积70nm厚度的SiNx钝化减反射膜;
(10)丝网印刷烧结:通过印刷烧结方式在电池表面制备金属电极。
实施例4
一种高效选择性掺杂电池的制备方法,包括:
(1)制绒:n型硅片先后经过槽式单晶制绒机在85℃的工艺温度下,在8%体积浓度的KOH和2%体积浓度的制绒添加剂混合溶液下反应700s,通过碱和硅的各向异性反应原理制备金字塔状陷光结构;
(2)等离子体增强化学气相沉积法掺硼非晶硅:采用如公开号为CN 112593214A的中国专利公开的等离子体增强化学气相沉积法(PECVD)掺硼非晶硅沉积设备,该设备包括自动上下料系统,温控系统,真空系统,特气H2/SiH4/BH3或B2H6供应系统,射频电源等。掺硼非晶硅的生长过程为:SiH4:H2:BH3流量比为1:6:1,沉积温度为600℃,经过射频电源将气体离子化后沉积在硅片表面,工艺压力为300pa,沉积时间为60min,形成掺硼的非晶硅薄膜;
(3)激光选择性掺杂发射极:通过激光在电极栅线处对硼原子的推进处理,在电极栅线区得到选择性掺杂发射极,激光波长为1200nm,时间为20s;
(4)退火激活:退火温度为1100℃,退火时间为200min;退火工艺中通入的气体包括N2/Ar/H2/O2将非晶硅/多晶硅氧化成硼硅玻璃,从而可以通过后面的碱抛光工序的酸槽进行去除;
(5)背面抛光:采用链式去氧化层设备和槽式碱抛机,通过链式去氧化层设备中氢氟酸(HF)清洗硅片背面退火激活后产生的氧化层,然后进入槽式碱抛机中,通过碱/添加剂的作用下在70℃下对背面进行抛光处理;
(6)背面隧穿氧化层/掺磷多晶硅制备:通过物理气相沉积法(PVD)在硅片背面制备2nm的SiO2层,通过磷扩散制备掺磷多晶硅层,掺磷多晶硅层厚度为300nm;
(7)去磷硅玻璃表面绕镀清洗;
(8)正面AL2O3沉积:通过原子层沉积法(ALD)在硅片正面沉积30nm厚度的AL2O3层;
(9)正反面SiNx沉积:通过等离子体增强化学气相沉积法(PECVD)在硅片正反面分别沉积120nm厚度的SiNx钝化减反射膜;
(10)丝网印刷烧结:通过印刷烧结方式在电池表面制备金属电极。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (9)

1.一种高效选择性掺杂电池,其特征在于所述选择性掺杂电池由下至上分别包括n型硅片(1)、掺硼非晶硅层(2)、AL2O3层(3)和SiNx钝化减反射层(4),金属电极(5)通过选择性掺杂发射极(6)与n型硅片(1)相导通。
2.一种如权利要求1所述的高效选择性掺杂电池的制备方法,其特征在于所述方法包括:
(1)制绒;
(2)等离子体增强化学气相沉积法掺硼非晶硅:在四氢化硅:氢气:硼烷流量比为1:(1-6):(0.1-1),温度为200-600℃下,经过射频电源将气体离子化后沉积在硅片表面形成掺硼非晶硅薄膜,压力为5-300pa,沉积时间为1-60min,薄膜厚度为5-300nm;
(3)激光选择性掺杂发射极:通过激光在电极栅线处对硼原子的推进处理,在电极栅线区得到选择性掺杂发射极,激光波长为50-1200nm,时间为0.1-20s;
(4)退火激活:退火温度为650-1100℃,退火时间为10-200min;
(5)背面抛光;
(6)背面隧穿氧化层/掺磷多晶硅制备;
(7)去磷硅玻璃表面绕镀清洗;
(8)正面AL2O3沉积;
(9)正反面SiNx沉积;
(10)丝网印刷烧结。
3.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(1)中制绒的工艺温度为78-85℃,n型硅片在KOH和制绒添加剂的混合溶液下反应400-700s。
4.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(2)中所述硼烷为甲硼烷或乙硼烷。
5.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(5)中采用氢氟酸清洗n型硅片背面退火激活后产生的氧化层,再进行抛光处理,抛光处理后反射率为20%以上。
6.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(6)中通过气相沉积法制备0.5-2nm厚度的SiO2层,通过磷扩散制备掺磷多晶硅层,所述掺磷多晶硅厚度为50-300nm,优选为80-130nm,形成SiO2/掺磷多晶硅的层。
7.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(8)中通过原子层沉积法在硅片正面沉积5-30nm厚度的AL2O3层。
8.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(9)中通过等离子体增强化学气相沉积法在硅片正反面分别沉积70-120nm厚度的SiNx钝化减反射膜。
9.根据权利要求2所述的高效选择性掺杂电池的制备方法,其特征在于:步骤(10)中通过印刷烧结方式在电池表面制备金属电极。
CN202211087529.2A 2022-09-07 2022-09-07 一种高效选择性掺杂电池及其制备方法 Pending CN115566093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211087529.2A CN115566093A (zh) 2022-09-07 2022-09-07 一种高效选择性掺杂电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211087529.2A CN115566093A (zh) 2022-09-07 2022-09-07 一种高效选择性掺杂电池及其制备方法

Publications (1)

Publication Number Publication Date
CN115566093A true CN115566093A (zh) 2023-01-03

Family

ID=84739682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211087529.2A Pending CN115566093A (zh) 2022-09-07 2022-09-07 一种高效选择性掺杂电池及其制备方法

Country Status (1)

Country Link
CN (1) CN115566093A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117043A (zh) * 2023-10-20 2023-11-24 苏州腾晖光伏技术有限公司 N型钝化接触电池的形成方法及其制造系统
CN117199186A (zh) * 2023-09-27 2023-12-08 淮安捷泰新能源科技有限公司 一种N-TOPCon电池的制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199186A (zh) * 2023-09-27 2023-12-08 淮安捷泰新能源科技有限公司 一种N-TOPCon电池的制作方法
CN117117043A (zh) * 2023-10-20 2023-11-24 苏州腾晖光伏技术有限公司 N型钝化接触电池的形成方法及其制造系统
CN117117043B (zh) * 2023-10-20 2024-01-26 苏州腾晖光伏技术有限公司 N型钝化接触电池的形成方法及其制造系统

Similar Documents

Publication Publication Date Title
CN110010721B (zh) 一种基于se的碱抛光高效perc电池工艺
CN110880541A (zh) 一种新结构n型晶硅PERT双面电池及其制备方法
CN115566093A (zh) 一种高效选择性掺杂电池及其制备方法
CN112490304A (zh) 一种高效太阳能电池的制备方法
CN114975691A (zh) 一种具有选择性发射极的钝化接触太阳电池及其制备方法、组件和系统
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN113644142A (zh) 一种具有钝化接触的太阳能电池及其制备方法
CN112054090A (zh) 一种叠加tco透明导电薄膜的高效双面topcon电池工艺
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
CN116247123A (zh) P型背面隧穿氧化钝化接触太阳能电池的制备方法
TWI390755B (zh) 太陽能電池的製造方法
CN110571303A (zh) 一种p型晶体硅电池的制备方法
CN114050105A (zh) 一种TopCon电池的制备方法
EP4060752A1 (en) Solar cell stack passivation structure and preparation method therefor
WO2024060933A1 (zh) 太阳电池及其制备方法
CN116130558B (zh) 一种新型全背电极钝化接触电池的制备方法及其产品
CN110534614B (zh) 一种p型晶体硅电池的制备方法
CN117457797A (zh) TOPCon电池结构的制备方法及应用
CN117153948A (zh) 一种钝化接触太阳能电池制备方法
CN116864548A (zh) 一种p型背结TOPCon电池及其制备方法
CN114937706B (zh) 一种晶硅太阳能电池用叠层钝化薄膜及其制备方法
CN116314471A (zh) 一种背面se结构制备方法
CN115642203A (zh) 背结太阳能电池及其制备方法
EP4053918A1 (en) Solar cell stack passivation structure and preparation method therefor
CN115440853A (zh) 太阳能光伏电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination