CN116864548A - 一种p型背结TOPCon电池及其制备方法 - Google Patents

一种p型背结TOPCon电池及其制备方法 Download PDF

Info

Publication number
CN116864548A
CN116864548A CN202310758901.6A CN202310758901A CN116864548A CN 116864548 A CN116864548 A CN 116864548A CN 202310758901 A CN202310758901 A CN 202310758901A CN 116864548 A CN116864548 A CN 116864548A
Authority
CN
China
Prior art keywords
layer
type
doped
metal electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310758901.6A
Other languages
English (en)
Inventor
毛卫平
金竹
周晓炜
陈桂栋
杨阳
潘利民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Jietai New Energy Technology Co ltd
Original Assignee
Chuzhou Jietai New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuzhou Jietai New Energy Technology Co ltd filed Critical Chuzhou Jietai New Energy Technology Co ltd
Priority to CN202310758901.6A priority Critical patent/CN116864548A/zh
Publication of CN116864548A publication Critical patent/CN116864548A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种p型背结TOPCon电池及其制备方法,属于TOPCon电池领域,以p型晶硅为基底,其正面依次设置有局部p型掺杂层、掺杂钝化层、正面减反射层、正面金属电极;背面依次设置有隧穿氧化层、n型掺杂多晶硅层、背面减反射层和背面金属电极;正面金属电极穿透正面减反射层、掺杂钝化层与局部p型掺杂层形成欧姆接触;局部p型掺杂层为Al、B共掺杂层;正面金属电极为采用印刷烧结形成的Ag浆电极,Ag浆中不含Al粉。以p型晶硅为基底,并采用Ag浆印刷烧结形成导电性良好的金属电极,并针对Ag浆与p型掺杂区接触性能较差的问题,通过光辅助微导处理降低金属Ag浆电极与p型掺杂层之间的接触电阻,从而提升电池FF和转换效率。

Description

一种p型背结TOPCon电池及其制备方法
技术领域
本发明涉及TOPCon电池领域,具体而言,涉及一种p型背结TOPCon电池及其制备方法。
背景技术
目前,PERC电池已接近理论极限效率,以TOPCon、HJT、XBC为代表的N型技术快速渗透,其中TOPCon短期内因经济性、性价比优势凸显,在N型技术中脱颖而出,大规模产能率先落地。
N型电池技术中,TOPCon技术发展极为迅速,在量产效率的快速提升过程中离不开正面硼发射极及背面磷扩薄poly金属化浆料的有力支持。因受p型硼扩区发射极电子缺失及掺杂浓度低等制约因素的影响,常规银浆在硼扩区较难形成良好接触,在硼扩区银浆设计中通常通过加入铝来实现良好的电学接触。但铝对硅的强扩散作用又使得硼扩区金属复合非常严重,而带来开压的损失。
通过激光硼掺杂可帮助TOPCon电池在正面对硼硅玻璃进行选择性掺杂,实现选择性发射极SE结构,降低电极区域的接触电阻和金属区复合,可实现0.2%-0.3%的提效。但是,激光硼掺杂较PERC SE掺杂更为复杂。硼在硅的固溶度低于磷,掺杂难度更高,在推进时需求更高的能量。即使用激光掺杂时(即与PERC的SE方式类似),需要采用功率更高的激光器。因此PERC电池产线中的激光掺杂设备在TOPCon产线中不能兼容沿用,需要重新购置激光掺杂设备。而高功率激光掺杂会导致发射极损伤,需增加高温退火工艺来消除或降低损伤,这又增加了设备投资和工艺成本。
另外,与P型硅片相比,N型硅片工艺成本存在几点劣势:a.更难控制元素分布均匀性。P型掺硼和N型掺磷,其中硼在硅中的分散系数约为0.8,大于磷在硅中约为0.35的分散系数,因此N型较P型更难控制元素分布均匀性,带来非硅成本增加;b.增加单炉总投料量。单炉投量上升会增加炉内液面高度、介质内自然对流强度上升从而引发硅料缺陷、少子寿命降低,拉晶效率降低。c.需要更高纯度的硅料(电子II级以上)、石英坩埚、热场、更细金刚线。除了纯度,为防止加热过久导致涂层脱落使得硅料杂质上升,石英坩埚的耗量也更大;热场由于N型硅片开炉次数更多、对热场氧化加深,单耗增加。此外,由于N型硅片普遍更薄,需要使用更细的金刚线。
最后,TOPCon采用AgAl浆料,Al粉的加入可以降低B掺杂P型发射极表面接触电阻,但需玻璃料控制Al刺的大小,否则会导致p-n结击穿,造成严重接触复合;Al粉表面通常会形成一层绝缘的AlOx,AgAl浆料中的玻璃料需要打开Al粉表面的AlOx层,同时烧穿AlOx/SiNx/SiNxOy,才有可能形成好的欧姆接触。所以,AgAl浆料玻璃料成分与用量与现有PERCAg浆差异较大。通常,采用AgAl浆料制备的TOPCon电池,电池组件在做湿热(DH)测试过程中H2O的渗入加速羧酸的形成,羧酸容易腐蚀AgAl浆与硅片之间的界面玻璃层,另外Ag/Al化学势差异,导致Al被氧化腐蚀。最终,导致电池Rs快速上升,FF快速下降,严重时Isc下降明显,严重影响电池可靠性。
发明内容
为克服现有技术中N型硅片作为基底存在的生产工艺成本高,且进一步采用AgAl浆料制备TOPCon电池存在的AgAl浆中Al的扩散能深度大,容易导致正面金属接触区复合电流密度增加;由于Al的掺杂,导致浆料电阻率增大,从而导致电池正面栅线线电阻增大,串联电阻Rs增加,以及填充因子FF降低等的问题,本发明提供了一种p型背结TOPCon电池及其制备方法,采用Ag浆印刷烧结形成导电性良好的金属电极,并通过光辅助微导处理降低金属Ag浆电极与p型掺杂区之间的接触电阻,从而提升电池FF和转换效率。具体技术方案如下:
一种p型背结TOPCon电池,以p型晶硅为基底,其正面依次设置有局部p型掺杂层、掺杂钝化层、正面减反射层、正面金属电极;其背面依次设置有隧穿氧化层、n型掺杂多晶硅层、背面减反射层和背面金属电极;
所述正面金属电极穿透所述正面减反射层、所述掺杂钝化层与所述局部p型掺杂层形成欧姆接触;所述背面金属电极穿透所述背面减反射层与所述n型掺杂多晶硅层形成欧姆接触;
所述局部p型掺杂层为Al、B共掺杂层;所述正面金属电极为采用印刷烧结形成的Ag浆电极,所述Ag浆中不含Al粉。
这里,采用p型硅片制备电池,降低了电池硅片的成本;采用背结TOPCon电池结构,正面金属电极借助硅片横向导电,可以省去高温硼扩散工艺,简化工艺流程,节省设备投资,避免长时间高温工艺导致的氧沉淀缺陷的产生,降低制程不良率。
正面金属电极采用纯Ag浆料制备,其中Al含量为零。与常规AgAl浆料电极相比,纯Ag浆料电极电阻率更低,栅线的线电阻降低;浆料成分中,Al粉的取消,导致金属扩散渗透深度降低,金属区复合电流密度降低,Voc提升;Al粉取消和玻璃料的改变,提高了正面金属电极对羧酸的耐腐蚀性,降低DH衰减,改善电池可靠性。
优选地,所述基底为Ga或B掺杂p型单晶硅片。
优选地,其电阻率为0.1-3.0Ωcm,厚度为100-200um。
优选地,所述掺杂钝化层从内到外包括AlOx薄膜层和硼掺杂的SiNx薄膜层。
优选地,所述AlOx薄膜层的厚度为1-5nm,所述硼掺杂的SiNx薄膜层的厚度为5-50nm。
优选地,所述正面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组成的复合膜,其与掺杂钝化层结合的总厚度为70-150nm。
本发明还提供了一种上述p型背结TOPCon电池的制备方法,包括如下步骤:
步骤一,在基底背面沉积隧穿氧化层和本征多晶硅层,对本征多晶硅层进行n型磷掺杂;
步骤二,单面刻蚀去除正面PSG,保留背面的PSG阻挡层;单面制绒在单晶硅片正面形成金字塔绒面结构,并清洗去除背面的PSG阻挡层;
步骤三,在硅片正面硼掺杂层表面沉积一层致密的AlOx薄膜;在AlOx薄膜表面沉积一层硼掺杂的SiNx膜层;
步骤四,以正面沉积的掺杂钝化层为掺杂源,采用激光掺杂形成局部p型掺杂层;
步骤五,沉积正面减反射层和背面减反射层;
步骤六,在硅片正背面印刷Ag浆,烘干烧结后,背面Ag浆与n型磷掺杂多晶硅层形成良好的欧姆接触;
步骤七,光辅助微导处理正面Ag浆电极,使金属电极中的Ag与p型掺杂区的Si相互扩散,形成AgSix合金。
采用Ag浆印刷烧结形成导电性良好的金属电极,并针对Ag浆与p型掺杂区接触性能较差的问题,通过光辅助微导处理降低金属Ag浆电极与p型掺杂层之间的接触电阻,从而提升电池FF和转换效率。
优选地,步骤三中采用ALD原子层沉积方式,以TMA为前驱体,H2O为氧化剂,反应温度控制在200-350℃,在硅片正面硼掺杂层表面沉积一层AlOx薄膜,厚度1-5nm;然后采用管式或板式PECVD在AlOx薄膜表面沉积一层硼掺杂的SiNx薄膜层,沉积过程以SiH4、NH3为反应气体,以乙硼烷B2H6或三甲基硼TMB为掺杂气体,含硼气体在总气体中掺杂浓度掺杂浓度为1%-10%,硼掺杂的SiNx薄膜层厚度在5-50nm。
优选地,步骤四中所述激光掺杂采用波长为532nm的纳秒脉冲绿光,功率范围为20-100W,光斑尺寸为50-200μm,处理时间范围为1-10秒,激光掺杂区方阻控制在80-160Ω/□。
优选地,步骤七中光辅助微导处理时,对电池施加偏置电压,电源正极与电池正面电极接触,负极与背面电极接触,同时采用脉冲线光源扫描电池正面,形成局部高电流,产生瞬时高温;其中偏置电压控制在1-20V;脉冲线光源的辐射波长包含400-1500nm的光,辐照强度为1-10000W/cm2,线宽为1-1000um,脉冲作用时间为10ns-10ms。
有益效果:
采用本发明技术方案产生的有益效果如下:
(1)采用p型硅片制备电池,降低了电池硅片的成本;采用背结TOPCon电池结构,正面金属电极借助硅片横向导电,可以省去高温硼扩散工艺,简化工艺流程,节省设备投资,避免长时间高温工艺导致的氧沉淀缺陷的产生,降低制程不良率。
(2)正面金属电极采用纯Ag浆料制备,其中Al含量为零。与常规AgAl浆料电极相比,纯Ag浆料电极电阻率更低,栅线的线电阻降低;浆料成分中,Al粉的取消,导致金属扩散渗透深度降低,金属区复合电流密度降低,Voc提升;Al粉取消和玻璃料的改变,提高了正面金属电极对羧酸的耐腐蚀性,降低DH衰减,改善电池可靠性。
(3)采用Ag浆印刷烧结形成导电性良好的金属电极,并针对Ag浆与p型掺杂区接触性能较差的问题,通过光辅助微导处理降低金属Ag浆电极与p型掺杂层之间的接触电阻,从而提升电池FF和转换效率。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是实施例1中TOPCon电池层结构图;
图2是对比例1中TOPCon电池层结构图;
图3是实施例1中TOPCon电池制备工艺流程图;
图4是对比例1中TOPCon电池制备工艺流程图。
图中,1、基底;2、局部p型掺杂层;21、p型掺杂层;3、钝化层;4、正面减反射层;5、正面金属电极;6、隧穿氧化层;7、n型掺杂多晶硅层;8、背面减反射层;9、背面金属电极。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
如图1所示,一种p型背结TOPCon电池,以p型晶硅为基底1,其正面依次设置有局部p型掺杂层2、钝化层3、正面减反射层4、正面金属电极5;其背面依次设置有隧穿氧化层6、n型掺杂多晶硅层7、背面减反射层8和背面金属电极9;
正面金属电极5穿透所述正面减反射层4、所述钝化层3与所述局部p型掺杂层2形成欧姆接触;所述背面金属电极9穿透所述背面减反射层8与所述n型掺杂多晶硅层7形成欧姆接触;
局部p型掺杂层2为Al、B共掺杂层;所述正面金属电极5为采用印刷烧结形成的Ag浆电极,所述Ag浆中不含Al粉。
这里,采用p型硅片制备电池,降低了电池硅片的成本;采用背结TOPCon电池结构,正面金属电极借助硅片横向导电,可以省去高温硼扩散工艺,简化工艺流程,节省设备投资,避免长时间高温工艺导致的氧沉淀缺陷的产生,降低制程不良率。
正面金属电极5采用纯Ag浆料制备,其中Al含量为零。与常规AgAl浆料电极相比,纯Ag浆料电极电阻率更低,栅线的线电阻降低;浆料成分中,Al粉的取消,导致金属扩散渗透深度降低,金属区复合电流密度降低,Voc提升;Al粉取消和玻璃料的改变,提高了正面金属电极对羧酸的耐腐蚀性,降低DH衰减,改善电池可靠性。
其中,基底1为Ga或B掺杂p型单晶硅片,电阻率为0.1-3.0Ωcm,厚度为100-200um。
作为一种优选的实施方式,钝化层3从内到外包括AlOx薄膜层和硼掺杂的SiNx薄膜层,其中AlOx薄膜层的厚度为1-5nm,所述硼掺杂的SiNx薄膜层的厚度为5-50nm。
作为一种优选的实施方式,所述正面减反射层4为SiNx、SiOxNy、SiOx中的一种或多种组成的复合膜,其与掺杂钝化层结合的总厚度为70-150nm。
本实施方式还提供了一种上述p型背结TOPCon电池的制备方法,包括如下步骤:
步骤S101,对单晶硅片表面进行腐蚀抛光;利用酸碱化学品,消除硅片表面有机沾污和金属杂质,在单晶硅片表面进行腐蚀抛光;
步骤S102,在基底背面沉积隧穿氧化层和本征多晶硅层;首先在LPCVD炉管中,以O2为氧化剂,氧化温度550-650℃,在硅片背面原位氧化生长隧穿氧化层,其厚度1-3nm,其次在隧穿氧化层生长完成后,以SiH4为反应气体,N2为稀释气体,沉积温度550-650℃,继续利用LPCVD技术在隧穿氧化层表面沉积本征多晶硅薄膜,其厚度100-150nm;
步骤S103,对本征多晶硅层进行n型磷掺杂;以POCl3为扩散源,扩散温度800-900℃,对本征多晶硅层进行n型磷掺杂,掺杂浓度1-5E20cm-3
步骤S104,单面刻蚀去除正面PSG,保留背面的PSG阻挡层;单面HF刻蚀,去除扩散后正面绕镀多晶硅层表面的PSG,同时保留背面PSG用作后道工序的阻挡层;
步骤S105,单面制绒在单晶硅片正面形成金字塔绒面结构,并清洗去除背面的PSG阻挡层;采用碱溶液刻蚀,在单晶硅片正面形成金字塔绒面结构;并采用氢氟酸清洗去除所述背面的PSG阻挡层;
步骤S106,在硅片正面硼掺杂层表面沉积一层致密的AlOx薄膜;在AlOx薄膜表面沉积一层硼掺杂的SiNx膜层;采用ALD原子层沉积方式,以TMA为前驱体,H2O为氧化剂,反应温度控制在200-350℃,在硅片正面硼掺杂层表面沉积一层AlOx薄膜,厚度1-5nm;然后采用管式或板式PECVD在AlOx薄膜表面沉积一层硼掺杂的SiNx薄膜层,沉积过程以SiH4、NH3为反应气体,以乙硼烷B2H6或三甲基硼TMB为掺杂气体,含硼气体在总气体中掺杂浓度掺杂浓度为1%-10%,硼掺杂的SiNx薄膜层厚度在5-50nm;
步骤S107,以正面沉积的掺杂钝化层为掺杂源,采用激光掺杂形成局部p型掺杂层;所述激光掺杂采用波长为532nm的纳秒脉冲绿光,功率范围为20-100W,光斑尺寸为50-200μm,处理时间范围为1-10秒,激光掺杂区方阻控制在80-160Ω/□;
步骤S108,沉积正面减反射层和背面减反射层;采用管式或板式PECVD在硅片正面沉积减反射层,正面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组合,其与掺杂钝化层结合总厚度为70-150nm;采用管式或板式PECVD在硅片背面面沉积减反射层,背面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组合,其厚度为70-150nm;
步骤S109,在硅片正背面印刷Ag浆,烘干烧结后,背面Ag浆与n型磷掺杂多晶硅层形成良好的欧姆接触;
步骤S110,光辅助微导处理正面Ag浆电极,使金属电极中的Ag与p型掺杂区的Si相互扩散,形成AgSix合金。光辅助微导处理时,对电池施加偏置电压,电源正极与电池正面电极接触,负极与背面电极接触,同时采用脉冲线光源扫描电池正面,形成局部高电流,产生瞬时高温;其中偏置电压控制在1-20V;脉冲线光源的辐射波长包含400-1500nm的光,辐照强度为1-10000W/cm2,线宽为1-1000um,脉冲作用时间为10ns-10ms。
下面通过实施例和对比例对本实施方式中TOPCon电池结构及其制备方法的有益效果进行进一步的评述。
实施例1:
如图1和图3所示,一种p型背结TOPCon电池,以p型晶硅为基底、正面依次设置有局部p型掺杂层、掺杂钝化层、正面减反射层、正面金属电极,背面依次设置有隧穿氧化层、n型掺杂多晶硅层、背面减反射层和背面金属电极,所述正面金属电极采用印刷烧结形成的Ag浆电极,所述Ag浆中不含Al粉。
该p型背结TOPCon电池的制备方法,包括以下步骤:
步骤S101,硅片表面抛光:利用酸碱化学品,消除硅片表面有机沾污和金属杂质,在单晶硅片表面进行腐蚀抛光;所述单晶硅片为Ga或B掺杂p型单晶硅片,电阻率0.1-3Ωcm,厚度100-200um;
步骤S102,背面沉积隧穿氧化层和本征多晶硅层:首先,在LPCVD炉管中,以O2为氧化剂,氧化温度550-650℃,在硅片背面原位氧化生长隧穿氧化层,其厚度1-3nm,其次,在隧穿氧化层生长完成后,以SiH4为反应气体,N2为稀释气体,沉积温度550-650℃,继续利用LPCVD技术在隧穿氧化层表面沉积本征多晶硅薄膜,其厚度100-150nm;
步骤S103,磷扩散,以POCl3为扩散源,扩散温度800-900℃,对本征多晶硅层进行n型磷掺杂,掺杂浓度1~5E20cm-3
步骤S104,去正面PSG,单面HF刻蚀,去除扩散后正面绕镀多晶硅层表面的PSG,同时保留背面PSG用作后道工序的阻挡层;
步骤S105,单面制绒,采用碱溶液刻蚀,在单晶硅片正面形成金字塔绒面结构;并采用氢氟酸清洗去除所述背面的PSG阻挡层;
步骤S106,正面沉积AlOx/SiNx:B,采用ALD原子层沉积方式,以TMA为前驱体,H2O为氧化剂,反应温度控制在200-350℃,在硅片正面硼掺杂层表面沉积一层致密的AlOx薄膜,厚度1-5nm;然后采用管式或板式PECVD在AlOx薄膜表面沉积一层硼掺杂的氮化硅膜层SiNx:B,沉积过程以SiH4、NH3为反应气体,以乙硼烷B2H6或三甲基硼TMB为掺杂气体,含硼气体在总气体中掺杂浓度掺杂浓度为1%-10%,SiNx:B膜层厚度在5-50nm。
步骤S107,激光硼掺杂,以正面沉积的掺杂钝化膜层AlOx/SiNx:B为掺杂源,采用激光掺杂形成局部p型掺杂层,所述激光掺杂采用波长为532nm的纳秒脉冲绿光,功率范围为20-100W,光斑尺寸50-200μm,处理时间范围为1-10秒,激光掺杂区方阻控制到80-160Ω/□。
步骤S108,沉积正面减反射层和背面减反射层,采用管式或板式PECVD在硅片正面沉积减反射层,正面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组合,其与AlOx/SiNx:B结合总厚度为70-150nm;采用管式或板式PECVD在硅片背面面沉积减反射层,背面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组合,其厚度为70-150nm;
步骤S109,正背面印刷烧结Ag浆电极:分别在硅片正背面印刷Ag浆,烘干烧结后,背面Ag浆与n型磷掺杂多晶硅层形成良好的欧姆接触;因受p型硼掺杂区电子缺失及掺杂浓度低等制约因素的影响,正面Ag浆在正面硼掺杂区较难形成良好接触,其接触电阻较大;
步骤S110,光辅助微导处理正面Ag浆电极:对电池施加偏置电压,电源正极与电池正面电极接触,负极与背面电极接触,同时采用脉冲线光源扫描电池正面,形成局部高电流,产生瞬时高温,使金属电极中的Ag与p型掺杂区的Si相互扩散,形成AgSix合金,接触电阻显著降低,FF明显提升。由于脉冲线光源导致的电流加热时间较短,热量很快被周围的金属电极和硅片耗散,电池整体温度较低,非金属区的表面钝化和Voc基本不受影响。所述偏置电压在1-20V;所述脉冲线光源,辐射波长包含400-1500nm的光,辐照强度为1-10000W/cm2,线宽1-1000um;脉冲作用时间为10ns-10ms。
对比例1:
如图2和图4所示,一种TOPCon电池,包括基底1,基底正面依次设置有p型掺杂层21、钝化层3、正面减反射层4和正面金属电极5,背面依次设置有隧穿氧化层6、n型掺杂多晶硅层7、背面减反射层8和背面金属电极9。
该TOPCon电池的制备方法,包括如下步骤:
步骤S101,制绒,利用酸碱化学品,消除硅片表面有机沾污和金属杂质,在单晶硅片表面形成表面金字塔织构,增加太阳光的吸收减少反射;所述单晶硅片为磷掺杂N型单晶硅片,电阻率0.1-10Ωcm,厚度100-200um;
步骤S102,硼扩散,采用BCl3或BBr3为硼源,扩散温度900-1100℃,扩散方阻100-300Ω/□,形成正面p型硼掺杂层;
步骤S103,去背面BSG,单面HF刻蚀,去除背面BSG,保留正面BSG;
步骤S104,背面绕扩掺杂层刻蚀:以正面BSG为阻挡层,采用碱性溶液腐蚀去除背面绕扩掺杂层,防止边缘漏电;
步骤S105,沉积隧穿氧化层和本征多晶硅层,首先在LPCVD炉管中,以O2为氧化剂,氧化温度550-650℃,在硅片背面原位氧化生长隧穿氧化层,其厚度1-3nm,其次在隧穿氧化层生长完成后,以SiH4为反应气体,N2为稀释气体,沉积温度550-650℃,继续利用LPCVD技术在隧穿氧化层表面沉积本征多晶硅薄膜,其厚度100-150nm;
步骤S106,磷扩散,以POCl3为扩散源,扩散温度800-900℃,对本征多晶硅层进行n型磷掺杂,掺杂浓度1-5E20cm-3
步骤S107,去正面PSG,单面HF刻蚀,去除扩散后正面绕镀多晶硅层表面的PSG;
步骤S108,正面绕镀多晶硅刻蚀,采用碱溶液刻蚀去除正面BSG表面绕镀多晶硅层,并采用氢氟酸清洗去除所述正面的BSG及所述背面的PSG;
步骤S109,正面沉积AlOx:采用ALD原子层沉积方式,以TMA为前驱体,H2O为氧化剂,反应温度控制在200-350℃,在硅片正面硼掺杂层表面沉积一层致密的AlOx薄膜,厚度1-5nm;
步骤S110,沉积正面减反射层和背面减反射层,采用管式或板式PECVD在硅片正面沉积减反射层,正面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组合,其厚度为70-150nm;采用管式或板式PECVD在硅片背面面沉积减反射层,背面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组合,其厚度为70-150nm;
步骤S111,正背面印刷烧结AgAl浆和Ag浆电极,分别在硅片正面印刷AgAl浆,背面印刷Ag浆,烧结后形成正背面金属电极。
下面将实施例及对比例中得到的电池进行性能测试,采用IV测试仪测定太阳能电池片各参数,结果如表1所示。
表1实施例和对比例电池测试结果
从表1可以看出,采用实施例1中制备的具有正面Ag浆电极的p型背结TOPCon电池,效率高于采用正面AgAl浆的TOPCon电池。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种p型背结TOPCon电池,其特征在于,以p型晶硅为基底,其正面依次设置有局部p型掺杂层、掺杂钝化层、正面减反射层、正面金属电极;其背面依次设置有隧穿氧化层、n型掺杂多晶硅层、背面减反射层和背面金属电极;
所述正面金属电极穿透所述正面减反射层、所述掺杂钝化层与所述局部p型掺杂层形成欧姆接触;所述背面金属电极穿透所述背面减反射层与所述n型掺杂多晶硅层形成欧姆接触;
所述局部p型掺杂层为Al、B共掺杂层;所述正面金属电极为采用印刷烧结形成的Ag浆电极,所述Ag浆中不含Al粉。
2.根据权利要求1所述的一种p型背结TOPCon电池,其特征在于,所述基底为Ga或B掺杂p型单晶硅片。
3.根据权利要求1所述的一种p型背结TOPCon电池,其特征在于,其电阻率为0.1-3.0Ωcm,厚度为100-200um。
4.根据权利要求1所述的一种p型背结TOPCon电池,其特征在于,所述掺杂钝化层从内到外包括AlOx薄膜层和硼掺杂的SiNx薄膜层。
5.根据权利要求4所述的一种p型背结TOPCon电池,其特征在于,所述AlOx薄膜层的厚度为1-5nm,所述硼掺杂的SiNx薄膜层的厚度为5-50nm。
6.根据权利要求1所述的一种p型背结TOPCon电池,其特征在于,所述正面减反射层为SiNx、SiOxNy、SiOx中的一种或多种组成的复合膜,其与掺杂钝化层结合的总厚度为70-150nm。
7.一种如权利要求1-6任一项所述p型背结TOPCon电池的制备方法,其特征在于,包括如下步骤:
步骤一,在基底背面沉积隧穿氧化层和本征多晶硅层,对本征多晶硅层进行n型磷掺杂;
步骤二,单面刻蚀去除正面PSG,保留背面的PSG阻挡层;单面制绒在单晶硅片正面形成金字塔绒面结构,并清洗去除背面的PSG阻挡层;
步骤三,在硅片正面硼掺杂层表面沉积一层致密的AlOx薄膜;在AlOx薄膜表面沉积一层硼掺杂的SiNx膜层;
步骤四,以正面沉积的掺杂钝化层为掺杂源,采用激光掺杂形成局部p型掺杂层;
步骤五,沉积正面减反射层和背面减反射层;
步骤六,在硅片正背面印刷Ag浆,烘干烧结后,背面Ag浆与n型磷掺杂多晶硅层形成良好的欧姆接触;
步骤七,光辅助微导处理正面Ag浆电极,使金属电极中的Ag与p型掺杂区的Si相互扩散,形成AgSix合金。
8.根据权利要求7所述的一种p型背结TOPCon电池的制备方法,其特征在于,步骤三中采用ALD原子层沉积方式,以TMA为前驱体,H2O为氧化剂,反应温度控制在200-350℃,在硅片正面硼掺杂层表面沉积一层AlOx薄膜,厚度1-5nm;然后采用管式或板式PECVD在AlOx薄膜表面沉积一层硼掺杂的SiNx薄膜层,沉积过程以SiH4、NH3为反应气体,以乙硼烷B2H6或三甲基硼TMB为掺杂气体,含硼气体在总气体中掺杂浓度掺杂浓度为1%-10%,硼掺杂的SiNx薄膜层厚度在5-50nm。
9.根据权利要求7所述的一种p型背结TOPCon电池的制备方法,其特征在于,步骤四中所述激光掺杂采用波长为532nm的纳秒脉冲绿光,功率范围为20-100W,光斑尺寸为50-200μm,处理时间范围为1-10秒,激光掺杂区方阻控制在80-160Ω/□。
10.根据权利要求7所述的一种p型背结TOPCon电池的制备方法,其特征在于,步骤七中光辅助微导处理时,对电池施加偏置电压,电源正极与电池正面电极接触,负极与背面电极接触,同时采用脉冲线光源扫描
电池正面,形成局部高电流,产生瞬时高温;其中偏置电压控制在1-20V;
脉冲线光源的辐射波长包含400-1500nm的光,辐照强度为1-10000W/cm2
线宽为1-1000um,脉冲作用时间为10ns-10ms。
CN202310758901.6A 2023-06-26 2023-06-26 一种p型背结TOPCon电池及其制备方法 Pending CN116864548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310758901.6A CN116864548A (zh) 2023-06-26 2023-06-26 一种p型背结TOPCon电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310758901.6A CN116864548A (zh) 2023-06-26 2023-06-26 一种p型背结TOPCon电池及其制备方法

Publications (1)

Publication Number Publication Date
CN116864548A true CN116864548A (zh) 2023-10-10

Family

ID=88227787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310758901.6A Pending CN116864548A (zh) 2023-06-26 2023-06-26 一种p型背结TOPCon电池及其制备方法

Country Status (1)

Country Link
CN (1) CN116864548A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525197A (zh) * 2024-01-04 2024-02-06 中国科学院上海微系统与信息技术研究所 一种空间用低成本高环境耐受性硅异质结太阳电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525197A (zh) * 2024-01-04 2024-02-06 中国科学院上海微系统与信息技术研究所 一种空间用低成本高环境耐受性硅异质结太阳电池及其制备方法
CN117525197B (zh) * 2024-01-04 2024-03-08 中国科学院上海微系统与信息技术研究所 一种空间用低成本高环境耐受性硅异质结太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
KR102100909B1 (ko) 넓은 밴드갭 반도체 재료를 갖는 이미터 영역을 구비한 태양 전지
US20080216893A1 (en) Process for Manufacturing Photovoltaic Cells
US20050189013A1 (en) Process for manufacturing photovoltaic cells
JP2008021993A (ja) 全背面接点構成を含む光起電力デバイス及び関連する方法
CN111106188B (zh) N型电池及其选择性发射极的制备方法、以及n型电池
JP7368653B2 (ja) 太陽電池及び光起電力モジュール
CN110943143A (zh) 用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法
TWI390755B (zh) 太陽能電池的製造方法
CN116914012A (zh) 一种双面掺杂多晶硅钝化接触电池及其制备方法
CN115566093A (zh) 一种高效选择性掺杂电池及其制备方法
CN116864548A (zh) 一种p型背结TOPCon电池及其制备方法
Raval et al. Industrial silicon solar cells
CN118099285A (zh) 一种指叉式钝化接触太阳能电池片制备方法及太阳能电池片
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
WO2012040917A1 (zh) 一种浅结太阳能电池及其制备方法
EP4379816A1 (en) Solar cell and manufacturing method therefor
CN108172637A (zh) 一种多晶掺镓背钝化太阳电池及其制备方法
CN116053353A (zh) 硼掺杂选择性发射极的制备方法及n型晶体硅太阳能电池
CN111755563B (zh) 一种p型单晶硅硼背场双面电池及其制备方法
KR20160122467A (ko) 태양 전지의 제조 방법
CN114188429A (zh) 一种带有隧穿隧道结的同质异质结电池及其制备方法
CN116913985A (zh) 一种正面采用Ag浆电极的TOPCon电池及其制备方法
CN118380515B (zh) 一种用于制备背接触太阳电池的半导体硅片的制备工艺
CN220604704U (zh) 一种双面掺杂多晶硅钝化接触电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination