CN114023636A - 一种硼扩SE结构的高效N型TOPCon电池制作方法 - Google Patents

一种硼扩SE结构的高效N型TOPCon电池制作方法 Download PDF

Info

Publication number
CN114023636A
CN114023636A CN202111238152.1A CN202111238152A CN114023636A CN 114023636 A CN114023636 A CN 114023636A CN 202111238152 A CN202111238152 A CN 202111238152A CN 114023636 A CN114023636 A CN 114023636A
Authority
CN
China
Prior art keywords
boron
manufacturing
boron diffusion
diffusion
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111238152.1A
Other languages
English (en)
Inventor
欧文凯
董思敏
向亮睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pule New Energy Technology Xuzhou Co ltd
Original Assignee
Pule New Energy Technology Xuzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pule New Energy Technology Xuzhou Co ltd filed Critical Pule New Energy Technology Xuzhou Co ltd
Priority to CN202111238152.1A priority Critical patent/CN114023636A/zh
Publication of CN114023636A publication Critical patent/CN114023636A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及本发明提供了一种硼扩SE结构的高效N型TOPCon电池制作方法,具体包含S1、清洗制绒;S2、硼扩轻掺杂;S3、背面抛光;S4、生长隧穿氧化层+Poly‑si层或S4、生长隧穿氧化层;S5、生长原位磷掺杂薄层;S6、正面与四周去Poly绕镀及BSG;S7、印刷硼浆;S8、退火激活磷掺杂及形成硼扩SE结构;本发明的优点:在实现硼扩SE结构上工艺路线简单,与常规TOPCon工艺匹配性强,采用硼扩轻掺杂与丝网印刷硼浆重掺杂的相结合的制作方法,使得该电池正面结构使得非印刷区为轻掺高方阻,提高光线的短波响应,同时丝网印刷区为重掺低方阻,减少前金属电极的接触电阻,使得短路电流和填充因子都得到较好的改善,从而提高转换效率。

Description

一种硼扩SE结构的高效N型TOPCon电池制作方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种硼扩SE结构的高效N型TOPCon电池制作方法。
背景技术
相对P型晶硅电池,N型晶硅电池的少子寿命高,无光致衰减,弱光效应好,温度系数小,是晶硅太阳能电池迈向理论最高效率的希望。TOPCon是一种基于选择性载流子原理的隧穿氧化层钝化接触(Tunnel Oxide Passivated Contact)太阳能电池技术,其电池结构为N型硅衬底电池,在电池背面制备一层超薄氧化硅,然后再沉积一层掺杂硅薄层,二者共同形成了钝化接触结构,有效降低表面复合和金属接触复合。但在Top Con电池正面金属诱导复合是太阳能组件中总复合损失的重要组成部分。在P型PERC电池中,通过缩小电池背面的金属接触面积,可有效降低金属化造成的复合损失。正面通过叠加激光SE可有效在金属栅线(电极)与硅片接触部位进行重掺杂,在电极之间位置进行轻掺杂。这样的结构可降低扩散层复合,由此可提高光线的短波响应,同时减少前金属电极与硅的接触电阻,使得短路电流、填充因子都得到较好的改善,从而提高转换效率。但在N型电池上由于硼原子较小则很难实现。
发明内容
本发明的目的在于提供一种硼扩SE结构的高效N型TOPCon电池制作方法,以解决上述背景技术中提出的问题。
为解决上述技术问题,本发明提供的技术方案为:一种硼扩SE结构的高效N型TOPCon电池制作方法,采用硼扩轻掺杂与丝网印刷硼浆重掺杂的相结合的制作方法,使得该电池正面结构使得非印刷区为轻掺高方阻,提高光线的短波响应,同时丝网印刷区为重掺低方阻,减少前金属电极的接触电阻,使得短路电流和填充因子都得到较好的改善,从而提高转换效率。
作为一种优选方案,所述N型硅片作为衬底材料,通过清洗制绒使硅片表面产生金字塔状表面结构,反射率不超过10%。
作为一种优选方案,所述硼扩轻掺杂区扩散方阻控制在120ohm/squ~160ohm/squ。
作为一种优选方案,所述背面抛光后反射率>30%。
作为一种优选方案,所述隧穿氧化层厚度在1nm-2nm。
作为一种优选方案,激光开槽后硅片进行硼浆印刷并烘干,硼浆印刷图形与丝网印刷图形一致。
作为一种优选方案,硼浆印刷后硅片进行退火,退火温度在900℃-1000℃,时间保持在20min-60min。
作为一种优选方案,退火激活磷掺杂及形成硼扩SE结构,在重掺杂区域的方阻控制在70ohm/squ~90ohm/squ。
作为一种优选方案,硼扩轻掺杂硼源为BBr3/BCl3蒸汽。
本发明优点在于:实现硼扩SE结构上工艺路线简单,与常规TOPCon工艺匹配性强,采用硼扩轻掺杂与丝网印刷硼浆重掺杂的相结合的制作方法,使得该电池正面结构使得非印刷区为轻掺高方阻,提高光线的短波响应,同时丝网印刷区为重掺低方阻,减少前金属电极的接触电阻,使得短路电流和填充因子都得到较好的改善,从而提高转换效率。
附图说明
图1为本发明一种硼扩SE结构的高效N型TOPCon电池示意图;
图中数字表示:1、N型硅片基底;2、重掺杂层;3、轻掺杂层;4、印刷浆料;5、隧穿氧化层;6、掺杂晶硅层。
具体实施方式
下面用具体实施例说明本发明,并不是对本发明的限制。
一种硼扩SE结构的高效N型TOPCon电池制作方法,包括以下步骤:
1)对硅片进行清洗以及绒面的制作,使用溶液为双氧水,去离子水,添加剂以及氢氧化钠的混液,其中碱制绒氢氧化钠的质量浓度为2.5%,温度控制在82℃,制作出反射率在10%的金字塔绒面。
2)将清洗制绒后的硅片垂直或水平插入低压扩散炉的石英晶舟内,并进管进行硼扩轻掺杂;
S1:升温至扩散温度880℃并稳定3min后,通过抽空及检漏步骤;
S2:温度保持在扩散温度880℃,恒压通入氮气、氧气,氮气流量控制在2000sccm,氧气流量控制在500sccm,时间5min,在硅片表面制作一层薄层氧化硅;
S3:温度保持在扩散温度880℃,通入氮气、氧气和硼源对硅片表面进行沉积,将硼原子均匀分布在硅片表面,氮气流量在1300sccm,氧气在700sccm,硼源蒸汽在500sccm,时间控制在15min,将硼原子均匀分布在硅片表面;
S4:升温至推结温度940℃,并通入氮气稳压;
S5:温度保持在推结温度940℃,并恒温推进45min,形成生成浅结轻掺杂区;
S6:氮气氛围下缓慢降温出管,得到方阻监控范围在120~160ohm/squ;
3)将硅片置于2-10%的碱性溶液进行背面抛光,得到反射率大于30%的抛光面。
4)以LPCVD/原子沉积的方式对硅片背面进行隧穿氧化层生长。
5)采用PECVD的方式在背面生长原位磷掺杂晶硅薄层;
6)对硅片进行清洗,去除正面绕镀Poly-si及BSG层;
7)在硅片正面对应电极的激光开槽位置印刷硼浆,并在200℃下烘干3min;
8)将印刷硼浆后的硅片送入退火炉管,进行硼扩SE结构推进及背面磷掺杂退火;
S7:通过抽空及检漏步骤,在氮气、氧气氛围下,进行高温920℃恒压重掺杂推进及退火,氮气流量在2000sccm,氧气流量在500sccm,时间控制在30min;
S8:氮气氛围下缓慢降温出管,完成硼扩SE结构;
对比例:
对比例与实施例以表1的形式呈现:
表1
Figure BDA0003318196320000031
表2
ITEM Voc Jsc FF EFF
实施例 708.4 41.34 82.83 24.26
对比例 708.3 41.13 82.68 24.09
从表2的对比结果来看,本发明的新型N型电池硼扩SE结构,有更优的电性表现,电池正面结构使得非印刷区为轻掺高方阻,提高光线的短波响应,使得Isc增益明显,同时印刷区为重掺低方阻,减少前金属电极的接触电阻,使得短路电流、填充因子都得到较好的改善,从而提高转换效率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,采用硼扩轻掺杂与丝网印刷硼浆重掺杂的相结合的制作方法,使得该电池正面结构使得非印刷区为轻掺高方阻,提高光线的短波响应,同时丝网印刷区为重掺低方阻,减少前金属电极的接触电阻,使得短路电流和填充因子都得到较好的改善,从而提高转换效率。
2.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,所述N型硅片作为衬底材料,通过清洗制绒使硅片表面产生金字塔状表面结构,反射率不超过10%。
3.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,所述硼扩轻掺杂区扩散方阻控制在120ohm/squ~160ohm/squ。
4.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,所述背面抛光后反射率>30%。
5.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,所述隧穿氧化层厚度在1nm-2nm。
6.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,激光开槽后硅片进行硼浆印刷并烘干,硼浆印刷图形与丝网印刷图形一致。
7.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,硼浆印刷后硅片进行退火,退火温度在900℃-1000℃,时间保持在20min-60min。
8.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于,退火激活磷掺杂及形成硼扩SE结构,在重掺杂区域的方阻控制在70ohm/squ~90ohm/squ。
9.根据权利要求1所述的一种硼扩SE结构的高效N型TOPCon电池制作方法,其特征在于:硼扩轻掺杂硼源为BBr3/BCl3蒸汽。
CN202111238152.1A 2021-10-25 2021-10-25 一种硼扩SE结构的高效N型TOPCon电池制作方法 Withdrawn CN114023636A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111238152.1A CN114023636A (zh) 2021-10-25 2021-10-25 一种硼扩SE结构的高效N型TOPCon电池制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111238152.1A CN114023636A (zh) 2021-10-25 2021-10-25 一种硼扩SE结构的高效N型TOPCon电池制作方法

Publications (1)

Publication Number Publication Date
CN114023636A true CN114023636A (zh) 2022-02-08

Family

ID=80057324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111238152.1A Withdrawn CN114023636A (zh) 2021-10-25 2021-10-25 一种硼扩SE结构的高效N型TOPCon电池制作方法

Country Status (1)

Country Link
CN (1) CN114023636A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883443A (zh) * 2022-03-28 2022-08-09 普乐新能源科技(徐州)有限公司 poly-Si绕镀去除方法及在TopCon电池制备的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883443A (zh) * 2022-03-28 2022-08-09 普乐新能源科技(徐州)有限公司 poly-Si绕镀去除方法及在TopCon电池制备的应用

Similar Documents

Publication Publication Date Title
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
CN111564503B (zh) 一种背结背接触太阳能电池结构及其制备方法
CN110518088B (zh) 一种se太阳能电池的制备方法
CN111029438A (zh) 一种n型钝化接触太阳能电池的制备方法
CN110880541A (zh) 一种新结构n型晶硅PERT双面电池及其制备方法
CN112490304A (zh) 一种高效太阳能电池的制备方法
CN111276568A (zh) 一种钝化接触太阳能电池及其制备方法
CN110571303B (zh) 一种p型晶体硅电池的制备方法
CN115411146A (zh) 一种TOPCon电池制备方法及电池
CN115394863A (zh) 一种太阳电池及其制备方法
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN116666479B (zh) 一种双面发电的高效选择性发射极晶硅电池及其制备方法
CN113948374A (zh) 一种n型电池硼扩se结构的制作方法
CN114050105A (zh) 一种TopCon电池的制备方法
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
CN115176345A (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN116130558B (zh) 一种新型全背电极钝化接触电池的制备方法及其产品
CN110534614B (zh) 一种p型晶体硅电池的制备方法
CN116864548A (zh) 一种p型背结TOPCon电池及其制备方法
CN110767772A (zh) 局域接触钝化太阳电池的制备方法
CN114188429B (zh) 一种带有隧穿隧道结的同质异质结电池及其制备方法
CN115566093A (zh) 一种高效选择性掺杂电池及其制备方法
CN111755563B (zh) 一种p型单晶硅硼背场双面电池及其制备方法
CN110739366A (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220208

WW01 Invention patent application withdrawn after publication