CN110767772A - 局域接触钝化太阳电池的制备方法 - Google Patents

局域接触钝化太阳电池的制备方法 Download PDF

Info

Publication number
CN110767772A
CN110767772A CN201910913495.XA CN201910913495A CN110767772A CN 110767772 A CN110767772 A CN 110767772A CN 201910913495 A CN201910913495 A CN 201910913495A CN 110767772 A CN110767772 A CN 110767772A
Authority
CN
China
Prior art keywords
silicon
solar cell
phosphorus
namely
local contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910913495.XA
Other languages
English (en)
Other versions
CN110767772B (zh
Inventor
袁声召
崔艳峰
庄宇峰
万义茂
黄强
林海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Risheng (Anhui) new energy Co.,Ltd.
Original Assignee
Dongfang Risheng (changzhou) New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Risheng (changzhou) New Energy Co Ltd filed Critical Dongfang Risheng (changzhou) New Energy Co Ltd
Priority to CN201910913495.XA priority Critical patent/CN110767772B/zh
Publication of CN110767772A publication Critical patent/CN110767772A/zh
Application granted granted Critical
Publication of CN110767772B publication Critical patent/CN110767772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能电池制备技术领域,尤其涉及一种局域接触钝化太阳电池的制备方法。本发明,依次包括制绒、隧穿氧化硅沉积、掺磷非晶硅栅线印刷、烘干、清洗、磷扩散、刻蚀、钝化层生长、激光开模和丝网印刷及烧结等步骤。本发明采用印刷非晶硅浆料、烘干实现微晶硅的图形化,从而形成局域接触钝化,减少寄生吸收,同时相比于离子注入法具有更低的生产成本,适合大规模产业化应用,并且,本发明制得的太阳能电池板形成有微晶硅/氧化硅叠层结构,以此结构的选择性载流子输运特性来实现接触钝化,保证金属电极的欧姆接触的同时,完全消除金属区复合。

Description

局域接触钝化太阳电池的制备方法
技术领域
本发明属于太阳能电池制备技术领域,尤其涉及一种局域接触钝化太阳电池的制备方法。
背景技术
降低制造成本、提高转换效率始终是光伏产业发展的两条主线。PERC电池由于其工艺相对简单,成本增加较少,是目前和未来的主流量产工艺。目前行业内PERC电池的量产效率在21.5%左右,近期叠加激光掺杂形成的选择性发射极后可以达到21.7%。如何进一步提升电池效率,就成为亟待解决的问题。分析PERC 电池的结构我们可以看出,其背面采用氧化铝Al2O3钝化,可以有效降低背表面复合,提高开路电压,增加背表面反射,提高短路电流,从而提高电池效率;选择性发射极结构中的浅扩散区域能够降低晶体硅太阳能电池的俄歇复合,提升太阳能电池的光谱响应,从而提高开路电压和短路电流;重扩散区域有利于降低扩散层和金属电极的接触电阻,从而降低太阳能电池的串联电阻,提高填充因子。以上可以看出,PERC电池的结构已经相当完美,尤其是复合已经被极大的降低,仅剩下金属区的复合。如何降低甚至消除掉金属区的复合就成为未来PERC电池提效的关键。
针对这一问题,人们在长期的生产生活时间中也进行了探索研究,例如,中国发明专利申请公开了一种全正面钝化接触高效 P型晶硅太阳电池的制备方法[申请号:201910124067.9],该发明专利申请包括衬底,所述衬底采用P型单晶硅片,所述电池的正面包含发射极,即pn结区,以及全面积接触钝化的隧穿氧化硅/n 型掺杂多晶硅层,其中pn结区和隧穿氧化硅/n型掺杂多晶硅层上有正面钝化层;所述电池的背面有背面钝化层,所述电池正面的局域接触钝化的隧穿氧化硅/n型掺杂多晶硅层与金属电极接触;所述电池的背面局部区域有一层烧结铝浆层形成铝背场。但该专利申请所采用的方法是将正面全面接触钝化,存在较大的寄生吸收。
再例如,中国发明专利申请公开了一种局域接触钝化的P型晶硅太阳电池及其制备方法[申请号:201811418678.6],该发明专利申请包括衬底,所述衬底采用P型单晶硅片,所述电池的正面包含发射极,所述发射极为pn结区,以及局域接触钝化的隧穿氧化硅/n型掺杂多晶硅区,其中pn结区和局域接触钝化的隧穿氧化硅/n型掺杂多晶硅区上有正面钝化层、氧化硅/氮化硅叠层薄膜或者单层氮化硅薄膜;所述局域接触钝化的隧穿氧化硅/n型掺杂多晶硅区与金属电极接触;所述电池的背面有背面钝化层,所述背面钝化层为氧化铝/氮化硅叠层薄膜;所述电池的背面还有一层烧结铝浆层形成铝背场。但该专利申请的工艺流程中所采用的是离子注入的方法,且离子注入结合刻蚀工艺才能形成局域接触钝化,导致生产成本较高。
发明内容
本发明的目的是针对上述问题,提供一种局域接触钝化太阳电池的制备方法。
为达到上述目的,本发明采用了下列技术方案:
一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,然后在氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,利用热氧设备,在洗净的硅片两面均沉积一层隧穿氧化硅薄膜;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为100-200μm,厚度为100-200nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量小于3ppm,峰值温度为500-700℃;
步骤五:清洗,利用氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,然后分别沉积背面和正面的氮化硅薄膜;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度小于50μm,高度大于5μm,烧结峰值温度为 740-780℃左右,时间为30-50s,制得太阳能电池。
在上述的局域接触钝化太阳电池的制备方法中,步骤一中所用制绒溶液按照质量比KOH:制绒添加剂:H2O=20:3:160的比例配制,制绒溶液温度为80℃。
在上述的局域接触钝化太阳电池的制备方法中,步骤一和步骤五中氢氟酸的体积浓度均为2-5%。
在上述的局域接触钝化太阳电池的制备方法中,步骤二中隧穿氧化硅薄膜厚度小于2nm,沉积温度为500-700℃。
在上述的局域接触钝化太阳电池的制备方法中,步骤六中磷扩散温度的扩散温度为700-900℃。
在上述的局域接触钝化太阳电池的制备方法中,步骤八中氧化铝薄膜厚度为5-25nm。
在上述的局域接触钝化太阳电池的制备方法中,步骤八中背面氮化硅薄膜的厚度为100-120nm,正面氮化硅薄膜的厚度为70-90nm。
在上述的局域接触钝化太阳电池的制备方法中,所述步骤二被以下步骤替代:将洗净的硅片浸泡在硝酸溶液中,所述硝酸溶液的温度为70℃以上。
与现有的技术相比,本发明的优点在于:
1、本发明采用印刷非晶硅浆料、烘干实现微晶硅的图形化,从而形成局域接触钝化,减少寄生吸收,同时相比于离子注入法具有更低的生产成本,适合大规模产业化应用。
2、本发明制得的太阳能电池板形成有微晶硅/氧化硅叠层结构,以此结构的选择性载流子输运特性来实现接触钝化,保证金属电极的欧姆接触的同时,完全消除金属区复合。
3、本发明采用一步扩散同时形成轻扩区域并激活微晶硅层的钝化,简化工艺。
具体实施方式
下面结合具体实施方式对本发明做进一步详细的说明。
实施例1
本实施例提供一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,所述制绒溶液按照质量比KOH:制绒添加剂: H2O=20:3:160的比例配制,制绒溶液温度为80℃,然后在体积浓度为5%氢氟酸中进行清洗,清洗干净硅片表面,这里的制绒添加剂是指在单晶硅太阳能电池的制绒工艺过程中,添加有利于反应结果和产品性能的化学助剂,其一般由水、IPA、NaOH、弱酸盐以及若干表面活性剂组成,可采用市售产品;
步骤二:隧穿氧化硅沉积,利用热氧设备,在洗净的硅片两面均沉积一层隧穿氧化硅薄膜,所述隧穿氧化硅薄膜厚度为2nm,沉积温度为700℃;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为200μm,厚度为200nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量为3ppm,峰值温度为700℃;
步骤五:清洗,利用体积浓度为5%氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,磷扩散温度的扩散温度为900℃,形成pn结,磷扩散工艺的高温步骤将使非晶硅薄膜晶化成微晶硅薄膜,同时磷扩散工艺还起到激活微晶硅薄膜钝化的作用;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,氧化铝薄膜厚度为25nm,氧化铝薄膜的沉积可以利用ALD或 PECVD设备实现,然后分别沉积背面和正面的氮化硅薄膜,背面氮化硅薄膜的厚度为120nm,正面氮化硅薄膜的厚度为90nm;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜,这样可以形成局域铝背场和金属区欧姆接触;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度为50μm,高度为5μm,烧结峰值温度为780℃左右,时间为50s,制得太阳能电池。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体,通常是硅或锗基片上,在它们的交界面就形成空间电荷区称为PN结。
实施例2
本实施例提供一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,所述制绒溶液按照质量比KOH:制绒添加剂: H2O=20:3:160的比例配制,制绒溶液温度为80℃,然后在体积浓度为2%氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,利用热氧设备,在洗净的硅片两面均沉积一层隧穿氧化硅薄膜,所述隧穿氧化硅薄膜厚度为1nm,沉积温度为500℃;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为100μm,厚度为100nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量为1ppm,峰值温度为500℃;
步骤五:清洗,利用体积浓度为2%氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,磷扩散温度的扩散温度为700℃,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,氧化铝薄膜厚度为5nm,然后分别沉积背面和正面的氮化硅薄膜,背面氮化硅薄膜的厚度为100nm,正面氮化硅薄膜的厚度为 70nm;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度为40μm,高度为8μm,烧结峰值温度为740℃左右,时间为30s,制得太阳能电池。
实施例3
本实施例提供一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,所述制绒溶液按照质量比KOH:制绒添加剂: H2O=20:3:160的比例配制,制绒溶液温度为80℃,然后在体积浓度为3%氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,利用热氧设备,在洗净的硅片两面均沉积一层隧穿氧化硅薄膜,所述隧穿氧化硅薄膜厚度为 1.5nm,沉积温度为600℃;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为150μm,厚度为150nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量为2ppm,峰值温度为600℃;
步骤五:清洗,利用体积浓度为3%氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,磷扩散温度的扩散温度为800℃,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,氧化铝薄膜厚度为15nm,然后分别沉积背面和正面的氮化硅薄膜,背面氮化硅薄膜的厚度为110nm,正面氮化硅薄膜的厚度为 80nm;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度为45μm,高度为6μm,烧结峰值温度为760℃左右,时间为40s,制得太阳能电池。
实施例4
本实施例提供一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,所述制绒溶液按照质量比KOH:制绒添加剂: H2O=20:3:160的比例配制,制绒溶液温度为80℃,然后在体积浓度为5%氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,将洗净的硅片浸泡在硝酸溶液中,所述硝酸溶液的温度为70℃;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为200μm,厚度为200nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量为3ppm,峰值温度为700℃;
步骤五:清洗,利用体积浓度为5%氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,磷扩散温度的扩散温度为900℃,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,氧化铝薄膜厚度为25nm,然后分别沉积背面和正面的氮化硅薄膜,背面氮化硅薄膜的厚度为120nm,正面氮化硅薄膜的厚度为 90nm;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度为50μm,高度为5μm,烧结峰值温度为780℃左右,时间为50s,制得太阳能电池。
实施例5
本实施例提供一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,所述制绒溶液按照质量比KOH:制绒添加剂: H2O=20:3:160的比例配制,制绒溶液温度为80℃,然后在体积浓度为2%氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,将洗净的硅片浸泡在硝酸溶液中,所述硝酸溶液的温度为90℃;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为100μm,厚度为100nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量为1ppm,峰值温度为500℃;
步骤五:清洗,利用体积浓度为2%氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,磷扩散温度的扩散温度为700℃,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,氧化铝薄膜厚度为5nm,然后分别沉积背面和正面的氮化硅薄膜,背面氮化硅薄膜的厚度为100nm,正面氮化硅薄膜的厚度为 70nm;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度为40μm,高度为8μm,烧结峰值温度为740℃左右,时间为30s,制得太阳能电池。
实施例6
本实施例提供一种局域接触钝化太阳电池的制备方法,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,所述制绒溶液按照质量比KOH:制绒添加剂: H2O=20:3:160的比例配制,制绒溶液温度为80℃,然后在体积浓度为3%氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,将洗净的硅片浸泡在硝酸溶液中,所述硝酸溶液的温度为80℃;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为150μm,厚度为150nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量为2ppm,峰值温度为600℃;
步骤五:清洗,利用体积浓度为3%氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,磷扩散温度的扩散温度为800℃,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,氧化铝薄膜厚度为15nm,然后分别沉积背面和正面的氮化硅薄膜,背面氮化硅薄膜的厚度为110nm,正面氮化硅薄膜的厚度为 80nm;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度为45μm,高度为6μm,烧结峰值温度为760℃左右,时间为40s,制得太阳能电池。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了金属浆料区域1、非金属浆料区域2 等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (8)

1.一种局域接触钝化太阳电池的制备方法,其特征在于,包括以下步骤:
步骤一:制绒,以P型单晶硅片作为硅衬底,放置在制绒液中进行制绒处理,然后在氢氟酸中进行清洗,清洗干净硅片表面;
步骤二:隧穿氧化硅沉积,利用热氧设备,在洗净的硅片两面均沉积一层隧穿氧化硅薄膜;
步骤三:掺磷非晶硅栅线印刷,按照网版图形在硅片正面丝网印刷上掺磷非晶硅栅线,掺磷非晶硅栅线宽度为100-200μm,厚度为100-200nm;
步骤四:烘干,利用无氧气氛炉进行烘干,无氧气氛炉中的氧含量小于3ppm,峰值温度为500-700℃;
步骤五:清洗,利用氢氟酸清洗印刷掺磷非晶硅及未印刷区域的晶硅表面;
步骤六:磷扩散,将硅片放置于磷扩散炉管中,形成pn结;
步骤七:刻蚀,去除背面的pn结,利用氢氟酸清洗除去表面的磷硅玻璃;
步骤八:钝化层生长,在电池的背面沉积一层氧化铝薄膜,然后分别沉积背面和正面的氮化硅薄膜;
步骤九:激光开模,利用激光打开步骤八中沉积在电池背面的氮化硅薄膜;
步骤十:丝网印刷及烧结,按照网版图形进行丝网印刷和烧结,正面细栅宽度小于50μm,高度大于5μm,烧结峰值温度为740-780℃左右,时间为30-50s,制得太阳能电池。
2.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:步骤一中所用制绒溶液按照质量比KOH:制绒添加剂:H2O=20:3:160的比例配制,制绒溶液温度为80℃。
3.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:步骤一和步骤五中氢氟酸的体积浓度均为2-5%。
4.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:步骤二中隧穿氧化硅薄膜厚度小于2nm,沉积温度为500-700℃。
5.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:步骤六中磷扩散温度的扩散温度为700-900℃。
6.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:步骤八中氧化铝薄膜厚度为5-25nm。
7.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:步骤八中背面氮化硅薄膜的厚度为100-120nm,正面氮化硅薄膜的厚度为70-90nm。
8.如权利要求1所述的局域接触钝化太阳电池的制备方法,其特征在于:所述步骤二被以下步骤替代:将洗净的硅片浸泡在硝酸溶液中,所述硝酸溶液的温度为70℃以上。
CN201910913495.XA 2019-09-25 2019-09-25 局域接触钝化太阳电池的制备方法 Active CN110767772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910913495.XA CN110767772B (zh) 2019-09-25 2019-09-25 局域接触钝化太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910913495.XA CN110767772B (zh) 2019-09-25 2019-09-25 局域接触钝化太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN110767772A true CN110767772A (zh) 2020-02-07
CN110767772B CN110767772B (zh) 2021-09-03

Family

ID=69330173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910913495.XA Active CN110767772B (zh) 2019-09-25 2019-09-25 局域接触钝化太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN110767772B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628547A (zh) * 2022-03-10 2022-06-14 泰州中来光电科技有限公司 一种背表面局域形貌的太阳电池及其制备方法
CN114649425A (zh) * 2022-05-20 2022-06-21 正泰新能科技有限公司 一种TopCon晶硅太阳能电池及其制备方法
CN115101627A (zh) * 2022-07-08 2022-09-23 三一集团有限公司 双面钝化接触太阳电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2436194C1 (ru) * 2010-08-31 2011-12-10 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления чипов концентраторных солнечных фотоэлементов
WO2013148047A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
CN106409956A (zh) * 2016-06-27 2017-02-15 泰州乐叶光伏科技有限公司 一种n型晶体硅双面太阳能电池结构及其制备方法
CN109103294A (zh) * 2017-06-20 2018-12-28 镇江大全太阳能有限公司 烧穿型局部接触背钝化太阳能电池的制作方法
CN109524480A (zh) * 2018-11-26 2019-03-26 东方日升(常州)新能源有限公司 一种局域接触钝化的p型晶硅太阳电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2436194C1 (ru) * 2010-08-31 2011-12-10 Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления чипов концентраторных солнечных фотоэлементов
WO2013148047A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
CN106409956A (zh) * 2016-06-27 2017-02-15 泰州乐叶光伏科技有限公司 一种n型晶体硅双面太阳能电池结构及其制备方法
CN109103294A (zh) * 2017-06-20 2018-12-28 镇江大全太阳能有限公司 烧穿型局部接触背钝化太阳能电池的制作方法
CN109524480A (zh) * 2018-11-26 2019-03-26 东方日升(常州)新能源有限公司 一种局域接触钝化的p型晶硅太阳电池及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628547A (zh) * 2022-03-10 2022-06-14 泰州中来光电科技有限公司 一种背表面局域形貌的太阳电池及其制备方法
CN114628547B (zh) * 2022-03-10 2023-07-21 泰州中来光电科技有限公司 一种背表面局域形貌的太阳电池及其制备方法
CN114649425A (zh) * 2022-05-20 2022-06-21 正泰新能科技有限公司 一种TopCon晶硅太阳能电池及其制备方法
CN115101627A (zh) * 2022-07-08 2022-09-23 三一集团有限公司 双面钝化接触太阳电池及其制备方法

Also Published As

Publication number Publication date
CN110767772B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
US11721783B2 (en) Solar cell and method for manufacturing the same
CN110518088B (zh) 一种se太阳能电池的制备方法
WO2023178918A1 (zh) 一种低成本接触钝化全背电极太阳能电池及其制备方法
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
CN110767772B (zh) 局域接触钝化太阳电池的制备方法
CN110880541A (zh) 一种新结构n型晶硅PERT双面电池及其制备方法
CN112968074A (zh) 一种选择性钝化接触电池的制备方法
CN112599636B (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN102751371A (zh) 一种太阳能薄膜电池及其制造方法
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
CN114823935B (zh) 一种异质结电池及其制备方法
CN114823936A (zh) 一种异质结电池及其制备方法
CN115274913B (zh) 一种带有钝化接触结构的ibc太阳电池的制备方法及电池、组件和系统
CN114744050B (zh) 太阳能电池及光伏组件
CN116130558B (zh) 一种新型全背电极钝化接触电池的制备方法及其产品
CN116666479B (zh) 一种双面发电的高效选择性发射极晶硅电池及其制备方法
AU2023343930A1 (en) Solar cell and manufacturing method therefor
CN117153948A (zh) 一种钝化接触太阳能电池制备方法
CN110600583A (zh) 适用于太阳电池的低成本低接触电阻的金属化方法
CN112349801B (zh) 叠层电池的中间串联层及生产方法、叠层电池
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
CN210136886U (zh) 一种含氮化合物晶硅叠瓦双面太阳电池
CN209981229U (zh) 一种局部背场TOPCon太阳能电池
CN113066874A (zh) 异质结太阳能电池及其制备方法
CN220604704U (zh) 一种双面掺杂多晶硅钝化接触电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210802

Address after: 239000 east of Changzhou Road, south of Haining Road, west of Chuzhou Avenue and north of Tongling Road, Chuzhou City, Anhui Province

Applicant after: Dongfang Risheng (Anhui) new energy Co.,Ltd.

Address before: 213251 No.1, Shuinan Road, Zhixi town industrial concentration zone, Jintan District, Changzhou City, Jiangsu Province

Applicant before: DONGFANG RISHENG (CHANGZHOU) NEW ENERGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant