WO2012048503A1 - 聚烯烃微孔膜的形成方法及其应用 - Google Patents

聚烯烃微孔膜的形成方法及其应用 Download PDF

Info

Publication number
WO2012048503A1
WO2012048503A1 PCT/CN2010/080329 CN2010080329W WO2012048503A1 WO 2012048503 A1 WO2012048503 A1 WO 2012048503A1 CN 2010080329 W CN2010080329 W CN 2010080329W WO 2012048503 A1 WO2012048503 A1 WO 2012048503A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
polyolefin microporous
polyolefin
forming
membrane
Prior art date
Application number
PCT/CN2010/080329
Other languages
English (en)
French (fr)
Inventor
陈秀峰
陈良
雷彩红
高东波
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Publication of WO2012048503A1 publication Critical patent/WO2012048503A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0051Oriented mono-axially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of polyolefin film manufacturing, and in particular relates to a method for forming a polyolefin microporous film and an application thereof.
  • the membrane material has a crucial influence on the performance of the actual battery.
  • the membrane itself is not a good conductor of electrons, but it also allows electrolyte ions to pass through.
  • the separator material must have good chemical, electrochemical stability and mechanical properties as well as maintain high wettability of the electrolyte during repeated charge and discharge.
  • the diaphragm is generally made of polypropylene or polyethylene plastic material, which can isolate the positive and negative electrodes of the battery to prevent short circuit.
  • the performance of the diaphragm determines the interface structure and internal resistance of the battery, which directly affects the battery capacity, cycle performance and safety performance.
  • the separator with excellent performance plays an important role in improving the overall performance of the battery.
  • Lithium-ion battery separators are mainly polyolefin microporous membranes.
  • industrial preparation methods mainly include wet biaxial stretching and dry uniaxial stretching.
  • Wet method also known as phase separation method or thermal phase separation method, is to add high-boiling small molecules as porogen to polyolefin, heat and melt into a homogeneous system, then phase-separate after cooling, and extract with organic solvent after stretching. Small molecules can be used to prepare microporous membrane materials that are interpenetrating.
  • Representative foreign companies using this method include Japan's Asahi Kasei, Toho, and Entek of the United States, and are currently mainly used to produce single-layer polyethylene (PE) separators.
  • PE polyethylene
  • the basic principle of the preparation of the microporous membrane by the dry melt drawing method is that the polymer melt is extruded and crystallized under a high tensile stress field to form a platelet crystal structure which is parallel to the extrusion direction and arranged in parallel, and then subjected to heat treatment. A hard elastic material is obtained. After the polymer film having hard elasticity is stretched, the platelets are separated to form a large number of microporous structures, and then the microporous film is prepared by heat setting. Japan UBE and the United States Celgard Company used this method to prepare microporous membranes of PE and polypropylene (PP).
  • PP polypropylene
  • the separator formed by the method has disadvantages such as difficulty in controlling the pore diameter and porosity, and the transverse strength of the film is low, which brings a series of problems to the production and use process.
  • the low transverse strength causes the separator to be easily torn in the longitudinal direction, resulting in a lateral direction. It is easy to stretch and deform, resulting in dimensional changes, making it difficult to flatten the film.
  • the performance of the diaphragm directly affects the overall performance of the battery.
  • the permeability is a key indicator, the permeability is too low, the lithium ion penetration ability is too small; the gas permeability is too high, the internal branch of the battery When the crystal is formed, the battery is easily short-circuited. Due to current process limitations, it is difficult to achieve better gas permeability.
  • a method for forming a polyolefin microporous membrane comprising the steps of:
  • the polyolefin is melt extruded at 180 to 260 ° C, and cast into a film to obtain a polyolefin cast base film;
  • the primary polyolefin microporous membrane is heat-set at 110 to 150 ° C, and the primary polyolefin microporous membrane is transversely stretched to obtain the polyolefin microporous membrane.
  • the above method for forming a polyolefin microporous film on the basis of longitudinal uniaxial stretching to obtain a primary polyolefin microporous film, and then stretching in a transverse direction at a predetermined temperature, the finally obtained pore of the polyolefin microporous film It is more rounded, thereby improving the gas permeability of the polyolefin microporous membrane.
  • the specific data is shown in Table 1.
  • the transverse stretching is performed after the longitudinal uniaxial stretching, the transverse strength of the microporous film is improved.
  • the method can be widely applied to prepare a separator or a lithium ion battery, and improves the comprehensive performance of the lithium ion battery.
  • FIG. 1 is a flow chart showing a method of forming a polyolefin microporous membrane according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of two corrugated rolls used in an embodiment of the present invention
  • FIG. 3 is a schematic view showing the first arrangement structure of six rollers used in the embodiment of the present invention.
  • FIG. 4 is a schematic view showing a second arrangement structure of six rollers used in the embodiment of the present invention.
  • Figure 5 is a schematic view showing a third arrangement of six rollers used in the embodiment of the present invention.
  • FIG. 6 is a scanning electron micrograph of a polyolefin microporous film obtained by a method for forming a polyolefin microporous film according to an embodiment of the present invention (hereinafter referred to as an SEM image);
  • Figure 7 is an SEM image of a polyolefin microporous film formed by conventional longitudinal uniaxial stretching without transverse stretching;
  • Figure 8 is a graph showing the pore size distribution of a conventional smooth roller and a corrugated roller of the present embodiment.
  • a flow chart of a method for forming a polyolefin microporous membrane according to an embodiment of the present invention includes the following steps:
  • the polyolefin is melt extruded at 180 to 260 ° C, and cast into a film to obtain a polyolefin cast base film;
  • the polyolefin may be selected from homopolypropylene or copolymerized polypropylene, polyethylene or the like, or a mixture thereof, and is not limited thereto.
  • the polyolefin used has a melt index of from 0.5 to 15.0 g/10 min, preferably from 0.8 to 3.0 g/10 min.
  • some blends are pre-added to the polypropylene and melt extruded.
  • the blend can be high density polyethylene, low density polyethylene, linear low density polyethylene or ultra high molecular weight polyethylene.
  • additives such as antioxidants, slip agents, etc., which do not adversely affect the main properties of the polyolefin material, may be added to the above blend, and the antioxidant can enhance the oxidation resistance of the polyolefin material.
  • slip agents are used to reduce friction between the film and the film and between the film and the processing equipment.
  • the mass ratio of the above polyolefin raw materials and blends may be, for example, 1:0.2-1.
  • the specific melt extrusion process comprises: extruding the polyolefin (or together with the blend) by an extruder at 180 to 260 ° C, casting the film through a casting die or a ring-shaped blow molding die, and cooling the film. (For example, forced cooling) is towed at a certain speed to obtain a polyolefin cast base film having a uniform thickness.
  • the melt extrusion may be performed by a single screw or twin screw extruder, and the extrusion temperature is not lower than 190 ° C in consideration of molding processing and plasticizing properties of the material.
  • the roll temperature for casting film formation is 30 to 100 ° C
  • the line speed is 10 to 80 m/min
  • the molding thickness is 10 to 40 ⁇ m.
  • the obtained polyolefin cast base film may be further heat treated to further improve the crystallinity of the base film and the integrity of the wafer, the heat treatment temperature is 110 to 150 ° C, and the heat treatment time is 10 minutes to 15 hours. .
  • Step S02 is specifically that the polyolefin cast base film is stretched twice in the longitudinal direction, and the total stretching temperature ranges from 10 to 150 °C.
  • the stretching temperature in the first stretching process is 10 to 40 ° C, and the stretching ratio is 10 to 50%, that is, 1.1 to 1.5 times that of the cast film before stretching.
  • the stretching temperature in the second stretching process is 110 to 150 ° C, and the stretching ratio is 100 to 500%.
  • the polyolefin initially forms a microporous film, that is, a primary polyolefin microporous film.
  • the microstructure of the micropores obtained at this time is shown in Fig. 7.
  • the micropores are long in the stretching direction, are elongated and long holes, have no round hole shape, and have poor gas permeability.
  • the median pore diameter of the micropores in the primary polyolefin microporous membrane after longitudinal stretching is 70 to 90 nm.
  • the stretching ratio in the transverse stretching is 0.2 to 2 times.
  • the lateral stretching of the present embodiment is carried out using a roller, but is not limited thereto.
  • the rolls are preferably carried out using a plurality of rolls comprising at least two corrugating rolls.
  • six rolls 12 can be used for heat setting processing. It can be understood that the practical application is not limited to six rollers.
  • the arrangement of the six rollers is as shown in Figures 3-5, and there are three arrangements, that is, the two corrugating rollers 16 may be located at the foremost end or at the middle or the last end.
  • the tension is controllable during the above heat setting process.
  • the two corrugated rollers 16 are shown to cooperate with each other, and the structure thereof is as shown in FIG. 2.
  • the ratio of the chord height (H) of the corrugating roller 16 to the radius of the arc (R) is 0 to 1, and the transverse stretching ratio of the corresponding film is 1.0 to 1.5 times.
  • the ratio of the chord height to the radius of the arc of the corrugating roller 16 is 0.1 to 0.6, and the stretching ratio of the transverse stretching of the film is 1.1 to 1.3 times.
  • the heat setting treatment temperature is preferably 120 to 150 ° C.
  • the heat setting treatment time is preferably from 10 seconds to 3 minutes.
  • Fig. 7 is an SEM image of a polyolefin microporous film which is formed by conventional longitudinal uniaxial stretching without lateral stretching.
  • the microporous structure of the polyolefin microporous membrane of the present embodiment is improved.
  • the elongated pores in Fig. 7 are deformed into the circular pores in Fig. 6, and the pore diameter becomes large, thereby increasing the aggregation.
  • the gas permeability of the olefin microporous membrane is also greatly improved.
  • the pore diameter of the micropores of the polyolefin microporous film finally formed after the transverse stretching is 100 to 125 nm.
  • the primary polyolefin microporous film is obtained by longitudinal uniaxial stretching, and then stretched laterally at a predetermined temperature, and finally The pores of the polyolefin microporous membrane became rounded, thereby improving the gas permeability of the polyolefin microporous membrane.
  • the specific data is shown in Table 1.
  • the transverse stretching is performed after the longitudinal uniaxial stretching, the transverse strength of the microporous film is improved.
  • the method can be widely applied to prepare a separator or a lithium ion battery, and improves the comprehensive performance of the lithium ion battery.
  • the polyolefin microporous membrane When applied to the preparation of the separator, the polyolefin microporous membrane is first produced by the above method, and the resulting polyolefin microporous membrane can be directly used as a separator after being cut.
  • a separator When the separator is applied to a lithium ion battery, for example, a separator is mounted on an electrode material, and other components are mounted, positioned, and packaged to form a lithium ion battery.
  • the gas permeability and lateral strength of the separator are improved by utilizing the excellent gas permeability, and the electrochemical performance of the lithium ion battery is improved.
  • a homopolypropylene having a melt index of 3.0 g/10 min was used, melt-extruded by a single-screw extruder, and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 150 ° C for 10 hours.
  • the cold drawing temperature is 20 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 140 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 140 ° C, and the heat setting time is 20 s.
  • a homopolypropylene having a melt index of 3.0 g/10 min was used, melt-extruded by a single-screw extruder, and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 150 ° C for 10 hours.
  • the cold drawing temperature is 25 ° C
  • the cold drawing rate is 20%
  • the hot drawing temperature is 140 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 140 ° C, and the heat setting time is 20 s.
  • a homopolypropylene having a melt index of 3.0 g/10 min was used, melt-extruded by a single-screw extruder, and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 150 ° C for 10 hours.
  • the cold drawing temperature is 25 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 140 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 140 ° C, and the heat setting time is 20 s.
  • a high-density polyethylene having a melt index of 0.8 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 120 ° C for 10 hours.
  • the cold drawing temperature is 30 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 120 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 125 ° C
  • the heat setting time is 20 s.
  • a high-density polyethylene having a melt index of 0.8 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 120 ° C for 10 hours.
  • the cold drawing temperature is 30 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 120 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 125 ° C
  • the heat setting time is 20 s.
  • a high-density polyethylene having a melt index of 0.8 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 120 ° C for 10 hours.
  • the cold drawing temperature is 35 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 120 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 125 ° C
  • the heat setting time is 20 s.
  • a high-density polyethylene having a melt index of 0.8 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 120 ° C for 10 hours.
  • the cold drawing temperature is 40 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 120 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 125 ° C
  • the heat setting time is 20 s.
  • a high-density polyethylene having a melt index of 0.8 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 120 ° C for 10 hours.
  • the cold drawing temperature is 40 ° C
  • the cold drawing ratio is 20%
  • the hot drawing temperature is 120 ° C
  • the hot drawing ratio is 120%.
  • the heat setting temperature is 125 ° C
  • the heat setting time is 20 s.
  • a high-density polyethylene having a melt index of 0.8 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 120 ° C for 10 hours.
  • the cold drawing temperature is normal temperature, the cold drawing ratio is 20%, the hot drawing temperature is 120 ° C, and the hot drawing ratio is 120%.
  • the heat setting temperature is 125 ° C, the heat setting time is 20 s, and the final HDPE microporous film is obtained by setting 6 rolls with smooth surface.
  • the polypropylene having a melt index of 3.0 g/10 min was melt-extruded by a single-screw extruder and cast into a thick film at an extrusion temperature of 220 ° C, a casting roll temperature of 60 ° C, and a cast film thickness of 30 ⁇ m. It was then heat treated in an oven at 150 ° C for 10 hours.
  • the cold drawing temperature is normal temperature, the cold drawing ratio is 20%, the hot drawing temperature is 140 ° C, and the hot drawing ratio is 120%.
  • the heat setting temperature is 140 ° C, and the heat setting time is 20 s.
  • the final PP microporous membrane was obtained by shaping the six rollers with a smooth surface.
  • Transverse strength The transverse tensile strength of the separator was tested according to the GB1040-2006 standard, and the test speed was 50 mm/min.
  • Diaphragm microstructure The sample was sprayed with gold by S3400 scanning electron microscope of Shimadzu Corporation of Japan, and the test voltage was 5KV, and the magnification was 20,000 times.
  • Aperture size and distribution using Quantachrome Instruments, USA) Quantachrome PM33 mercury intrusion meter, test pressure 20-20000 psi.
  • FIG. 8 there is shown a plot of the pore size distribution after conventionally employing all smooth rolls and the corrugated rolls of this embodiment. It can be seen from the test results of Fig. 8 that the pore diameter of the polypropylene microporous membrane of the present embodiment is increased by the corrugated roller treatment, and the direct effect is that the microporous membrane gas permeability is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供一种聚烯烃微孔膜的形成方法,包括以下步骤:将聚丙烯在180~260℃下熔融挤出,流延成膜,得到聚烯烃流延基膜;在10~150℃下纵向拉伸聚烯烃流延基膜,获得具有微孔的初级聚烯烃微孔膜;在110~150℃下对所述初级聚烯烃微孔膜进行热定型处理,将初级聚烯烃微孔膜横向拉伸,获得所述的聚烯烃微孔膜。本发明还提供上述聚烯烃微孔膜的形成方法在制备隔膜或锂离子电池中的应用。在该方法中,在纵向拉伸获得初级微孔膜的基础上,再在预定温度下横向进行拉伸,最后使聚烯烃微孔膜的孔变圆变大,由此改善聚烯烃微孔膜的透气性能,并提高微孔膜的横向强度。

Description

聚烯烃微孔膜的形成方法及其应用 技术领域
本发明属于聚烯烃薄膜制造技术领域,具体涉及一种聚烯烃微孔膜的形成方法及其应用。
背景技术
目前,聚烯烃薄膜材料获得越来越多的应用和发展,当前最广泛的应用是作为锂离子电池的隔膜材料,成为锂离子电池的关键内层组件之一。隔膜材料对实际电池的性能有着至关重要的影响,隔膜本身既是电子的非良导体,但也允许电解质离子通过。此外,隔膜材料还必须具备良好的化学、电化学稳定性和机构性能以及在反复充放电过程中对电解液保持高度浸润性。隔膜一般采用聚丙烯或聚乙烯塑料材料制成,可隔离电池正负极,以防止出现短路;还可以在电池过热时,通过闭孔功能来阻隔电池中的电流传导。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。
锂离子电池隔膜主要是聚烯烃微孔膜,目前工业化的制备方法主要有湿法双向拉伸和干法单向拉伸两种。湿法又称相分离法或热致相分离法,是将高沸点小分子作为致孔剂添加到聚烯烃中,加热熔融成均匀体系,然后降温发生相分离,拉伸后用有机溶剂萃取出小分子,可制备相互贯通的微孔膜材料。采用该法的具有代表性的国外公司有日本旭化成、东燃及美国Entek等,目前主要用于生产单层聚乙烯(PE)隔膜。用湿法双向拉伸方法生产的隔膜由于经过了双向拉伸具有较高的纵向和横向强度,但由于在生产过程中需要用有机溶剂进行萃取,带来了一定的环保问题和生产安全性的考虑。
干法熔融拉伸法制备微孔膜的基本原理是将聚合物熔体挤出后在高拉伸应力场下结晶,形成具有垂直于挤出方向而又平行排列的片晶结构,然后经过热处理得到硬弹性材料。具有硬弹性的聚合物膜拉伸后片晶之间分离,形成大量的微孔结构,再经过热定型即制得微孔膜。日本UBE与美国Celgard公司采用该法制备PE和聚丙烯(PP)的微孔膜。该方法形成的隔膜存在孔径及孔隙率较难控制等缺点,而且薄膜横向强度较低,给生产和使用过程带来了一系列的问题,例如横向强度低造成隔膜容易沿纵向撕裂,造成横向容易拉伸变形导致尺寸发生变化,给膜的展平造成困难等。
正如上面所述,隔膜性能的高低直接影响电池的综合性能,在隔膜性能指标中,透气性是一关键指标,透气性太低,锂离子穿过能力太小;透气性太高,电池内部树枝状晶体生成时,电池易短路。由于目前工艺局限性,难以达到较好的透气性能。
技术问题
有鉴于此,需要提供一种能增强横向强度及改善透气性能的聚烯烃微孔膜的形成方法。
以及,提供聚烯烃微孔膜的形成方法在制备隔膜或锂离子电池中的应用。
技术解决方案
一种聚烯烃微孔膜的形成方法,其包括如下步骤:
将聚烯烃在180~260℃下熔融挤出,流延成膜,得到聚烯烃流延基膜;
在10~150℃下,纵向拉伸聚烯烃流延基膜,获得具有微孔的初级聚烯烃微孔膜;
在110~150℃下对所述初级聚烯烃微孔膜进行热定型处理,将初级聚烯烃微孔膜横向拉伸,获得所述的聚烯烃微孔膜。
以及,上述聚烯烃微孔膜的形成方法在制备隔膜或锂离子电池中的应用。
有益效果
在上述聚烯烃微孔膜的形成方法中,在纵向单向拉伸获得初级聚烯烃微孔膜的基础上,再在预定温度下沿横向进行拉伸,最后获得的聚烯烃微孔膜的孔更圆更大,由此改善聚烯烃微孔膜的透气性能,具体数据如表1所示。另外,由于在纵向单向拉伸后还进行横向拉伸,从而提高了微孔膜横向强度。该方法可广泛应用于制备隔膜或锂离子电池,提升锂离子电池的综合性能。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的聚烯烃微孔膜的形成方法流程图;
图2是本发明实施例中采用的两条波纹辊筒剖面结构示意图;
图3是本发明实施例中采用的六条辊筒第一种排布结构示意图;
图4是本发明实施例中采用的六条辊筒第二种排布结构示意图;
图5是本发明实施例中采用的六条辊筒第三种排布结构示意图;
图6是本发明实施例的聚烯烃微孔膜的形成方法得到的聚烯烃微孔膜扫描电镜图(以下简称SEM图);
图7是传统纵向单向拉伸而未进行横向拉伸形成的聚烯烃微孔膜SEM图;
图8是传统采用全部光滑辊筒和本实施例的具有波纹辊筒处理后的孔径分布曲线图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,示出本发明实施例的聚烯烃微孔膜的形成方法流程图,包括如下步骤:
S01,熔融挤出、流延成膜:将聚烯烃在180~260℃下熔融挤出,流延成膜,得到聚烯烃流延基膜;
S02,纵向拉伸,获得初级微孔膜:在10~150℃下,纵向拉伸聚烯烃流延基膜,获得具有微孔的初级聚烯烃微孔膜;
S03,热定型处理,得到聚烯烃微孔膜:在110~150℃下对所述初级聚烯烃微孔膜进行热定型处理,将初级聚烯烃微孔膜横向拉伸,获得所述的聚烯烃微孔膜。
步骤S01中,聚烯烃可选用均聚聚丙烯或者是共聚聚丙烯,或者是聚乙烯等,或者是它们的混合物,并不限于些。所选用的聚烯烃的熔融指数为0.5~15.0g/10min,优选0.8~3.0g/10min。当采用共混物时,预先添加一些共混物于聚丙烯中,再进行熔融挤出。例如,共混物可以是高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯或超高分子量聚乙烯。此外,在上述共混物中还可以添加一些对聚烯烃材料主要性能不会带来负面影响的一些助剂,如抗氧剂、爽滑剂等,抗氧剂能增强聚烯烃材料的抗氧化性能,爽滑剂用于减小膜与膜之间的磨擦和薄膜与加工设备之间的磨擦。上述聚烯烃原料及共混物的质量比例例如可以为1:0.2-1。
具体熔融挤出过程包括:将聚烯烃(或者与共混物一起)采用挤出机在180~260℃下熔融挤出,通过流延模头或环形吹塑口模,流延成膜,冷却后(如强制冷却)以一定的速度牵引,得到厚度均匀的聚烯烃流延基膜。具体地,熔融挤出可以采用单螺杆或双螺杆挤出机挤出,考虑材料的成型加工和塑化性能,挤出温度不低于190℃。流延成膜用的辊温度为30~100℃,生产线速度为10~80m/min,成型厚度10~40微米。
在流延成膜后,可进一步对得到的聚烯烃流延基膜进行热处理,进一步提高基膜的结晶度和晶片的完整性,热处理温度为110~150℃,热处理时间为10分钟~15小时。
步骤S02具体为,将聚烯烃流延基膜沿纵向进行两次拉伸,总的拉伸温度范围为10~150℃。第一次拉伸过程的拉伸温度为10~40℃,拉伸倍率为10~50%,即相对拉伸前的流延膜的1.1-1.5倍。第二次拉伸过程的拉伸温度为110~150℃下,拉伸倍率为100~500%。经过步骤S02的两次纵向拉伸后,聚烯烃初步形成了微孔膜,即初级聚烯烃微孔膜。此时获得的微孔微观结构如图7所示,由图可知,微孔沿拉伸方向较长,为狭长型孔,不具有圆孔形状,其透气性能较差。纵向拉伸后的初级聚烯烃微孔膜中微孔的中值孔径为70~90nm。
步骤S03的热定型处理步骤中,横向拉伸的拉伸倍率为0.2~2倍。本实施例的横向拉伸采用辊筒进行,但不限于此。辊筒优选采用多条辊筒进行,多条辊筒包括至少两条波纹辊。在一个具体实施例中,如图3-5所示,可采用六条辊筒12进行热定型处理。可以理解,实际应用时并不限于六条辊筒。六条辊筒的排布如图3-5所示,具有三种排布方式,即两条波纹辊16可位于最前端,也可位于中间或最后端。上述热定型过程中张力可控。图示的两条波纹辊16相互配合,其结构如图2所示,波纹辊16的弦高(H)与圆弧半径(R)之比为0~1,对应膜的横向拉伸倍率为1.0~1.5倍。优选地,波纹辊16的弦高与圆弧半径之比为0.1~0.6,对应膜的横向拉伸的拉伸倍率为1.1~1.3倍。热定型处理温度优选为120~150℃, 热定型处理时间优选为10秒~3分钟。
在上述横向拉伸作用下,将微孔扩大增圆,最后可获得又圆又大的微孔膜,该微孔膜具有良好的透气性能。此时获得的微孔微观结构如图6所示,图7是传统纵向单向拉伸而未进行横向拉伸形成的聚烯烃微孔膜SEM图。由图6和7比较可知,本实施例的聚烯烃微孔膜的微孔结构得到改善,例如,图7中的狭长型孔变形为图6中的圆孔,而且孔径变大,从而提高聚烯烃微孔膜的透气性能。而且,请参阅表1,说明聚烯烃微孔膜的横向强度也得到较大提高。具体地,横向拉伸后最终形成的聚烯烃微孔膜的微孔的中值孔径为100~125nm。
在上述聚烯烃微孔膜的形成方法中,依据硬弹性体拉伸致孔机理,在纵向单向拉伸获得初级聚烯烃微孔膜的基础上,再在预定温度横向进行拉伸,最后使聚烯烃微孔膜的孔变圆变大,由此改善聚烯烃微孔膜的透气性能,具体数据如表1所示。另外,由于在纵向单向拉伸后还进行横向拉伸,从而提高了微孔膜横向强度。该方法可广泛应用于制备隔膜或锂离子电池,提升锂离子电池的综合性能。在应用于制备隔膜时,先通过上述方法生成聚烯烃微孔膜,再对生成的聚烯烃微孔膜进行裁剪后可直接用作隔膜。隔膜应用于锂离子电池时,例如将隔膜安装在电极材料上,再进行其它部件的安装、定位及封装等工序,形成锂离子电池。通过采用上述聚烯烃微孔膜,利用其优异的透气性能,提高隔膜的透气性能和横向强度,提升锂离子电池的电化学性能。
以下通过多个实施例来举例说明发光材料的各种适用的组成及其制备方法,以及其性能等方面。
实施例1
采用熔融指数3.0g/10min的均聚聚丙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中于150℃热处理10小时。冷拉温度为20℃,冷拉倍率20%,热拉温度140℃,热拉倍率120%。热定型温度为140℃,热定型时间20s。两条波纹辊位于6条定型辊筒的中间,波纹辊H/R=0.35,横向拉伸倍率1.2倍,得到最终PP微孔膜。
实施例2
采用熔融指数3.0g/10min的均聚聚丙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中150℃热处理10小时。冷拉温度为25℃,冷拉倍率20%,热拉温度140℃,热拉倍率120%。热定型温度140℃,热定型时间20s。两条波纹辊位于6条定型辊筒的中间,波纹辊H/R=0.1,横向拉伸倍率1.1倍,得到最终PP微孔膜。
实施例3:
采用熔融指数3.0g/10min的均聚聚丙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中150℃热处理10小时。冷拉温度25℃,冷拉倍率20%,热拉温度140℃,热拉倍率120%。热定型温度140℃,热定型时间20s。两条波纹辊位于6条定型辊筒的中间,波纹辊H/R=0.6,横向拉伸倍率1.3倍,得到最终PP微孔膜。
实施例4:
采用熔融指数0.8g/10min的高密度聚乙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中120℃热处理10小时。冷拉温度30℃,冷拉倍率20%,热拉温度120℃,热拉倍率120%。热定型温度125℃,热定型时间20s。两条波纹辊位于6条定型辊筒的中间,波纹辊H/R=0.1,横向拉伸倍率1.1倍,得到最终HDPE(高密度聚乙烯)微孔膜。
实施例5:
采用熔融指数0.8g/10min的高密度聚乙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中120℃热处理10小时。冷拉温度30℃,冷拉倍率20%,热拉温度120℃,热拉倍率120%。热定型温度125℃,热定型时间20s。两条波纹辊位于6条定型辊筒的中间,波纹辊H/R=0.6,横向拉伸倍率1.3倍,得到最终HDPE微孔膜。
实施例6:
采用熔融指数0.8g/10min的高密度聚乙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中120℃热处理10小时。冷拉温度35℃,冷拉倍率20%,热拉温度120℃,热拉倍率120%。热定型温度125℃,热定型时间20s。两条波纹辊位于6条定型辊筒的中间,波纹辊H/R=0.35,横向拉伸倍率1.2倍,得到最终HDPE微孔膜。
实施例7:
采用熔融指数0.8g/10min的高密度聚乙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中120℃热处理10小时。冷拉温度40℃,冷拉倍率20%,热拉温度120℃,热拉倍率120%。热定型温度125℃,热定型时间20s。两条波纹辊位于6条定型辊的前端,波纹辊H/R=0.35,横向拉伸倍率1.2倍,得到最终HDPE微孔膜。
实施例8:
采用熔融指数0.8g/10min的高密度聚乙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中120℃热处理10小时。冷拉温度40℃,冷拉倍率20%,热拉温度120℃,热拉倍率120%。热定型温度125℃,热定型时间20s。两条波纹辊位于6条定型辊的后端,波纹辊H/R=0.35,横向拉伸倍率1.2倍,得到最终HDPE微孔膜。
比较例1
采用熔融指数0.8g/10min的高密度聚乙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中120℃热处理10小时。冷拉温度常温,冷拉倍率20%,热拉温度120℃,热拉倍率120%。热定型温度125℃,热定型时间20s,采用表面光滑的6条辊筒定型处理,得到最终HDPE微孔膜。
比较例2
采用熔融指数3.0g/10min的聚丙烯,用单螺杆挤出机熔融挤出,流延成厚膜,挤出温度220℃,流延辊温度60℃,流延成型厚膜厚度30μm。然后在烘箱中150℃热处理10小时。冷拉温度常温,冷拉倍率20%,热拉温度140℃,热拉倍率120%。热定型温度140℃,热定型时间20s。采用表面光滑的6条辊筒定型处理,得到最终PP微孔膜。
微孔膜的性能测试:
横向强度:依据GB1040-2006标准测试隔膜的横向拉伸强度,测试速度50mm/min。
透气性:以Gurley值表征微孔膜的透气性能,根据ASTM D726标准,Gurley值为在一定压力下50ml气体通过隔膜所需的时间,低Gurley值表明薄膜具有好的透气性。
隔膜微观结构:采用日本岛津公司的S3400扫描电子显微镜将样品喷金处理后测试,测试电压5KV,放大倍数20000倍。
孔径大小及分布:采用美国康塔仪器公司(Quantachrome Instruments, USA)的Quantachrome PM33压汞仪,测试压力20-20000 psi。
表1 实施例1-8与比较例1-2的比较结果
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 比较例1 比较例2
厚度( 微米 ) 25 25 25 25 25 25 25 25 25 25
横向拉伸强度 MPa 17.8 15.4 19.8 13.8 19.0 16.5 16.8 17.0 10 11
透气率 s 530 590 490 630 480 520 500 510 650 690
表1中结果可知,在相同厚度下,实施例1-8中形成聚烯烃微孔膜横向拉伸强度范围为13.8-19.0,明显高于比较例1和2中的聚烯烃微孔膜,普遍高30%-90%。在透气率方面,实施例1-8的Gurley值明显低于比较例1和2的结果,而且,横向拉伸强度高的实施例,其透气率也高,如实施例3和5。
请参阅图8,显示传统采用全部光滑辊筒和本实施例的具有波纹辊筒处理后的孔径分布曲线图。由图8测试结果可知,通过波纹辊筒处理,本实施例的聚丙烯微孔膜孔径变大,带来直接效果是微孔膜透气性能得到改善。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种聚烯烃微孔膜的形成方法,其包括如下步骤:
    将聚烯烃在180~260℃下熔融挤出,流延成膜,得到聚烯烃流延基膜;
    在10~150℃下,纵向拉伸聚烯烃流延基膜,获得具有微孔的初级聚烯烃微孔膜;
    在110~150℃下对所述初级聚烯烃微孔膜进行热定型处理,将初级聚烯烃微孔膜横向拉伸,获得所述的聚烯烃微孔膜。
  2. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,所述横向拉伸的拉伸倍率为1.0~1.5倍。
  3. 如权利要求2所述的聚烯烃微孔膜的形成方法,其特征在于,所述热定型处理采用多条辊筒进行,所述多条辊筒包括至少两条波纹辊。
  4. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,所述波纹辊的弦高与圆弧半径之比为0~1。
  5. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,所述波纹辊的弦高与圆弧半径之比为0.1~0.6,所述横向拉伸的拉伸倍率为1.1~1.3倍。
  6. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,所述纵向拉伸包括两次拉伸过程,第一次拉伸过程的拉伸温度为10~40℃,拉伸倍率为10~50%;第二次拉伸过程的拉伸温度为110~150℃,拉伸倍率为100~500%。
  7. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,在流延成膜后,对得到的聚烯烃流延基膜进行热处理,所述热处理温度为110~150℃,热处理时间为10分钟~15小时。
  8. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,所述纵向拉伸后的初级聚烯烃微孔膜中微孔的中值孔径为70~90nm,横向拉伸后最终形成的聚烯烃微孔膜的微孔的中值孔径为100~125nm。
  9. 如权利要求1所述的聚烯烃微孔膜的形成方法,其特征在于,所述热定型处理温度为120~150℃, 热定型处理时间为10秒~3分钟。
  10. 如权利要求1-9任一项所述的聚烯烃微孔膜的形成方法在制备隔膜或锂离子电池中的应用。
PCT/CN2010/080329 2010-10-13 2010-12-27 聚烯烃微孔膜的形成方法及其应用 WO2012048503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010505781.1 2010-10-13
CN2010105057811A CN102001186A (zh) 2010-10-13 2010-10-13 聚烯烃微孔膜的形成方法及其应用

Publications (1)

Publication Number Publication Date
WO2012048503A1 true WO2012048503A1 (zh) 2012-04-19

Family

ID=43809013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080329 WO2012048503A1 (zh) 2010-10-13 2010-12-27 聚烯烃微孔膜的形成方法及其应用

Country Status (2)

Country Link
CN (1) CN102001186A (zh)
WO (1) WO2012048503A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390761A (zh) * 2016-10-20 2017-02-15 合肥创想能源环境科技有限公司 一种用通用树脂制备分离膜的方法
CN110048055A (zh) * 2018-01-16 2019-07-23 溧阳月泉电能源有限公司 一种锂离子二次电池隔膜的生产方法及系统
CN111533933A (zh) * 2020-05-11 2020-08-14 上海暖友实业有限公司 一种透气性均匀的微孔复合膜制备方法
CN113442401A (zh) * 2021-06-22 2021-09-28 广东工业大学 一种高强高阻隔pga/pbat食品包装膜及其制备方法
CN115377608A (zh) * 2022-09-15 2022-11-22 河北金力新能源科技股份有限公司 一种高安全锂电池隔膜及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285108B (zh) * 2011-05-14 2013-09-25 中材科技股份有限公司 一种聚烯烃微多孔膜的制备方法及其所得的微多孔膜
CN102908910A (zh) * 2012-11-16 2013-02-06 广东工业大学 一种聚偏氟乙烯多孔膜的制备方法
CN102956859B (zh) * 2012-11-28 2015-11-18 广东工业大学 一种多层聚烯烃复合微孔膜的制备方法
CN103178230A (zh) * 2013-03-06 2013-06-26 珠海市赛纬电子材料有限公司 一种锂离子电池隔膜的生产方法
CN105500724A (zh) * 2015-12-18 2016-04-20 江苏安瑞达新材料有限公司 一种动力锂电池隔膜的制备方法
CN109834961A (zh) * 2019-02-22 2019-06-04 中国科学技术大学 一种高孔隙率、大比表面积聚烯烃多孔膜的制备方法
CN110744840A (zh) * 2019-10-10 2020-02-04 深圳中兴新材技术股份有限公司 一种干法单拉多层隔膜的制备方法、电池隔膜及其应用
CN113637252B (zh) * 2021-08-23 2023-07-04 中国科学技术大学先进技术研究院 一种强力交叉膜及其制备方法、以及其应用
CN114179403B (zh) * 2022-02-15 2022-05-20 深圳市博盛新材料有限公司 充电电池的电池隔膜制造系统及其制造方法
CN114899550A (zh) * 2022-02-26 2022-08-12 武汉惠强新能源材料科技有限公司 一种纵向高屈服强度干法单拉隔膜的制备方法
CN114784462B (zh) * 2022-04-14 2024-06-28 中材锂膜(常德)有限公司 隔离膜制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134174A (en) * 1990-11-13 1992-07-28 Institute Of Chemistry, Academia Sinica Polypropylene microporous film
CN1233051C (zh) * 2003-08-08 2005-12-21 新乡无氧铜材总厂 一种锂离子电池隔膜的生产方法
CN100388533C (zh) * 2006-03-15 2008-05-14 新乡市中科科技有限公司 锂离子电池隔膜
CN101384409A (zh) * 2006-02-21 2009-03-11 赛尔格有限责任公司 双轴向取向的微孔膜
CN101695869A (zh) * 2009-10-30 2010-04-21 沧州明珠塑料股份有限公司 聚烯烃微孔膜制备方法
CN101724168A (zh) * 2009-11-16 2010-06-09 深圳市星源材质科技股份有限公司 一种聚烯烃微孔膜制备方法
CN1891444B (zh) * 2005-06-30 2010-06-16 佛山塑料集团股份有限公司 一种聚烯烃微多孔膜的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134174A (en) * 1990-11-13 1992-07-28 Institute Of Chemistry, Academia Sinica Polypropylene microporous film
CN1233051C (zh) * 2003-08-08 2005-12-21 新乡无氧铜材总厂 一种锂离子电池隔膜的生产方法
CN1891444B (zh) * 2005-06-30 2010-06-16 佛山塑料集团股份有限公司 一种聚烯烃微多孔膜的制作方法
CN101384409A (zh) * 2006-02-21 2009-03-11 赛尔格有限责任公司 双轴向取向的微孔膜
CN100388533C (zh) * 2006-03-15 2008-05-14 新乡市中科科技有限公司 锂离子电池隔膜
CN101695869A (zh) * 2009-10-30 2010-04-21 沧州明珠塑料股份有限公司 聚烯烃微孔膜制备方法
CN101724168A (zh) * 2009-11-16 2010-06-09 深圳市星源材质科技股份有限公司 一种聚烯烃微孔膜制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390761A (zh) * 2016-10-20 2017-02-15 合肥创想能源环境科技有限公司 一种用通用树脂制备分离膜的方法
CN110048055A (zh) * 2018-01-16 2019-07-23 溧阳月泉电能源有限公司 一种锂离子二次电池隔膜的生产方法及系统
CN111533933A (zh) * 2020-05-11 2020-08-14 上海暖友实业有限公司 一种透气性均匀的微孔复合膜制备方法
CN111533933B (zh) * 2020-05-11 2022-12-02 上海暖友实业有限公司 一种透气性均匀的微孔复合膜制备方法
CN113442401A (zh) * 2021-06-22 2021-09-28 广东工业大学 一种高强高阻隔pga/pbat食品包装膜及其制备方法
CN115377608A (zh) * 2022-09-15 2022-11-22 河北金力新能源科技股份有限公司 一种高安全锂电池隔膜及其制备方法

Also Published As

Publication number Publication date
CN102001186A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2012048503A1 (zh) 聚烯烃微孔膜的形成方法及其应用
WO2012062011A1 (zh) 聚烯烃微孔膜制备方法及其应用
JP5528361B2 (ja) 微多孔性フィルム及びその製造方法
KR101723275B1 (ko) 폴리올레핀제 미다공막
CN109065817B (zh) 一种多孔多层复合隔膜及其制备方法
TWI392132B (zh) 積層微多孔性膜及其製造方法,以及電池用分隔件
JP5512461B2 (ja) 微多孔性フィルム及び電池用セパレータ
WO2010120056A2 (en) Method of producing microporous polymer membrane and microporous polymer membrane produced by the method
JP5398016B2 (ja) 微多孔膜及びその製造方法、並びに非水電解液2次電池用セパレータ
WO2017043728A1 (ko) 다공성 필름의 제조 방법, 이로 제조된 다공성 필름, 및 이를 포함한 분리막 또는 전기화학 전지
TW201836852A (zh) 聚烯烴微多孔膜
JP6248459B2 (ja) フッ素系樹脂多孔体
JP2014012857A (ja) 微多孔膜及びその製造方法、並びに非水電解液2次電池用セパレータ
JP6507650B2 (ja) 微多孔膜およびその製造方法
JP2018076474A (ja) 高温低熱収縮性ポリオレフィン単層微多孔膜及びその製造方法。
JP2012087223A (ja) 微多孔性フィルム及び電池用セパレータ
JP6311585B2 (ja) 多孔体及びその製造方法
US20210367309A1 (en) Separator for electric storage device
KR20100073753A (ko) 내열성 및 강도가 개선된 다공성 분리막, 이의 제조방법 및이를 포함하는 전기화학 소자
WO2023276468A1 (ja) ポリオレフィン微多孔膜および電池用セパレータ
JP2015034194A (ja) フッ素系樹脂多孔体、及びその製造方法
JP2024502817A (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
JP2022146342A (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
JP6201500B2 (ja) フッ素系樹脂多孔体
KR20120063876A (ko) 리튬이차전지용 폴리올레핀 분리막의 제조방법과 이로부터 제조된 리튬이차전지용 폴리올레핀 분리막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858335

Country of ref document: EP

Kind code of ref document: A1