WO2012046545A1 - 複合ゼオライト膜、およびその製造方法 - Google Patents
複合ゼオライト膜、およびその製造方法 Download PDFInfo
- Publication number
- WO2012046545A1 WO2012046545A1 PCT/JP2011/070788 JP2011070788W WO2012046545A1 WO 2012046545 A1 WO2012046545 A1 WO 2012046545A1 JP 2011070788 W JP2011070788 W JP 2011070788W WO 2012046545 A1 WO2012046545 A1 WO 2012046545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite membrane
- oxygen
- ring structure
- membered ring
- membrane
- Prior art date
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 231
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 228
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 227
- 239000002131 composite material Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 101
- 239000012528 membrane Substances 0.000 claims description 201
- 239000001301 oxygen Substances 0.000 claims description 94
- 229910052760 oxygen Inorganic materials 0.000 claims description 94
- 239000000843 powder Substances 0.000 claims description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 abstract description 21
- 238000007873 sieving Methods 0.000 abstract description 6
- 238000001179 sorption measurement Methods 0.000 abstract description 6
- 238000007796 conventional method Methods 0.000 abstract description 2
- 239000012013 faujasite Substances 0.000 description 34
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000011148 porous material Substances 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000005371 permeation separation Methods 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 238000001027 hydrothermal synthesis Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- XTUSEBKMEQERQV-UHFFFAOYSA-N propan-2-ol;hydrate Chemical compound O.CC(C)O XTUSEBKMEQERQV-UHFFFAOYSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/028—Molecular sieves
- B01D71/0281—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0051—Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/106—Membranes in the pores of a support, e.g. polymerized in the pores or voids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
Definitions
- the present invention relates to a highly functional composite zeolite membrane and a production method thereof.
- zeolite membranes can be separated at the molecular level by molecular sieving and adsorption characteristics, and therefore, application to separation membranes, membrane reactors, chemical sensors, etc. is considered.
- Non-patent Document 1 A-type zeolite (LTA) exhibits strong hydrophilicity, and therefore, an A-type zeolite membrane was put into practical use around 1998 as a separation membrane for alcohol dehydration (Non-patent Document 1).
- Non-patent Document 2 a high-performance A-type zeolite membrane having a water permeation flux exceeding 50 kg ⁇ m ⁇ 2 ⁇ h ⁇ 1 was developed (Non-patent Document 2) and put into practical use.
- the A-type zeolite membrane has poor resistance among zeolites, and its application range is limited. For this reason, a hydrophilic FAU (faujasite) type (mainly Y type) zeolite membrane with higher resistance has been developed (Patent Document 3).
- Non-patent Document 3 FAU-type zeolite membranes
- the FAU type zeolite membrane has large oxygen 12-membered ring pores (about 0.74 nm), and is derived from the separation ability derived from the adsorption characteristics of the FAU type zeolite and the relatively large pore structure that is easy to diffuse. High transparency is expected.
- the sizes of various molecules such as water, CO 2 (carbon dioxide), and CH 4 (methane) are as follows.
- Molecular name Molecular size Water: 0.30 nm CO 2 : 0.33 nm CH 4: 0.38 nm
- Ethanol 0.43 nm
- Acetic acid 0.43 nm
- IPA isopropyl alcohol
- Separation with a zeolite membrane is difficult when the size of the molecule that you do not want to permeate through the zeolite membrane, such as molecular separation, is smaller than the FAU-type zeolite pore diameter, or at high temperatures and conditions where the concentration of permeated molecules is small. Therefore, it is necessary to perform separation by adsorption, but since the separation ability by adsorption is difficult to function, a reduction in separation ability is inevitable.
- Separation using a molecular sieve is often effective under the conditions of low separation by adsorption as described above.
- the separation membrane is made of zeolite having an oxygen 8-membered ring structure (pore size 0.28 to 0.002). 42 nm), molecular sieving ability can be expected.
- Non-patent Document 4 a CHA (Chabasite) type membrane
- MER Marlinoite
- PHI Philip Site
- the CHA-type zeolite membrane having an oxygen 8-membered ring structure with a small pore diameter has a larger film thickness because the diffusion of the molecules is slow compared to the FAU-type zeolite having an oxygen 12-membered ring structure with a large pore diameter. In this case, there is a problem that a sufficient permeation flux cannot be obtained.
- the object of the present invention is to solve the above-mentioned problems of the prior art and to provide a zeolite membrane having an oxygen 8-membered ring structure such as a CHA-type zeolite membrane on the surface of a zeolite membrane having an oxygen 12-membered ring structure such as a FAU-type zeolite membrane.
- a composite zeolite membrane that has a structure capable of drastically reducing the thickness of a zeolite membrane layer having an oxygen 8-membered ring structure and having excellent molecular separation performance compared to the conventional synthesis method, and
- An object of the present invention is to provide a method for producing the composite zeolite membrane.
- the present inventors have an oxygen 12-membered ring structure formed on a support in an alkaline aqueous solution to which zeolite powder having an oxygen 12-membered ring structure is added. A part of the surface of the zeolite membrane having an oxygen 12-membered ring structure formed on the support is immersed in the zeolite membrane and subjected to heat and pressure treatment under predetermined conditions.
- the present invention is completed by finding that a composite zeolite membrane having a zeolite membrane having an oxygen 8-membered ring structure is formed on the surface of the zeolite membrane having an oxygen 12-membered ring structure can be converted to a zeolite membrane having Has been reached.
- the invention of a composite zeolite membrane according to claim 1 is directed to a zeolite membrane having an oxygen 8-membered ring structure on the surface of a zeolite membrane having an oxygen 12-membered ring structure formed on a support. It is characterized by being provided.
- the invention according to claim 2 is the composite zeolite membrane according to claim 1, wherein the zeolite membrane having an oxygen 12-membered ring structure is constituted by a FAU type zeolite membrane, and the zeolite membrane having an oxygen 8-membered ring is CHA. It is characterized by comprising a type zeolite membrane.
- the invention of claim 3 is the composite zeolite membrane according to claim 1 or 2, wherein the zeolite membrane having an oxygen 12-membered ring structure has a thickness of 0.1 ⁇ m to 10 ⁇ m and has an oxygen 8-membered ring The zeolite membrane has a thickness of 10 nm to 2 ⁇ m.
- the invention of claim 4 is a method for producing a composite zeolite membrane, wherein the zeolite has an oxygen 12-membered ring structure formed on a support in an alkaline aqueous solution to which zeolite powder having an oxygen 12-membered ring structure is added.
- a part of the surface of the zeolite membrane having an oxygen 12-membered ring structure formed on the support by immersing the membrane and subjecting it to heat and pressure treatment under a predetermined condition is used for the zeolite having an oxygen 8-membered ring structure.
- the invention of claim 5 is a method for producing a composite zeolite membrane according to claim 4, wherein a zeolite powder having an oxygen 12-membered ring structure is added at a rate of 0.01 to 20 wt% in a proportion of 0.01 to 3 mol /
- a zeolite membrane having an oxygen 12-membered ring structure formed on a support is immersed in a potassium hydroxide aqueous solution of L, and is heated at a temperature of 80 to 150 ° C. under a pressure of 0.05 to 2 MPa. It is characterized by heat and pressure treatment for a time.
- the invention of claim 6 is the method for producing a composite zeolite membrane according to claim 4 or 5, wherein the zeolite membrane having an oxygen 12-membered ring structure is composed of a FAU type zeolite membrane and has an oxygen 8-membered ring.
- the zeolite membrane is constituted by a CHA-type zeolite membrane.
- the invention of the composite zeolite membrane of claim 1 is such that a zeolite membrane having an oxygen 8-membered ring structure is provided on the surface of a zeolite membrane having an oxygen 12-membered ring structure formed on a support.
- a zeolite membrane having an oxygen 8-membered ring structure is provided on the surface of a zeolite membrane having an oxygen 12-membered ring structure formed on a support.
- the invention of the method for producing a composite zeolite membrane according to claim 4 immerses the zeolite membrane having an oxygen 12-membered ring structure formed on a support in an alkaline aqueous solution to which zeolite powder having an oxygen 12-membered ring structure is added. Then, a part of the surface of the zeolite membrane having an oxygen 12-membered ring structure formed on the support is converted into a zeolite membrane having an oxygen 8-membered ring structure by heat and pressure treatment under predetermined conditions. And forming a composite zeolite membrane in which a zeolite membrane having an oxygen 8-membered ring structure is provided on the surface of the zeolite membrane having an oxygen 12-membered ring structure.
- FIG. 1A is a graph showing XRD (X-ray diffraction) patterns of zeolite powder before and after the conversion treatment.
- FIG. 1B is a graph showing XRD patterns before and after conversion treatment of a FAU type zeolite membrane formed on an alumina support. It is a partial expanded sectional view which shows the conventional zeolite membrane structure and the composite zeolite membrane structure of this invention.
- 3 is a flow sheet showing a water-IPA vapor permeation separation test apparatus.
- FIG. 1A is a graph showing XRD (X-ray diffraction) patterns of zeolite powder before and after the conversion treatment.
- FIG. 1B is a graph showing XRD patterns before and after conversion treatment of a FAU type zeolite membrane formed on an alumina support. It is a partial expanded sectional view which shows the conventional zeolite membrane structure and the composite zeolite membrane structure of this invention.
- 3 is a flow sheet showing a water-IPA vapor per
- FIG. 4A is a graph showing a comparison of the IPA dehydration performance of a CHA / FAU composite zeolite membrane according to the present invention in which the surface of the FAU type zeolite membrane is converted to a CHA type zeolite membrane, and a conventional FAU type zeolite membrane.
- FIG. 4B is a graph showing the relationship between the IPA concentration and the relationship between the water separation coefficient and the IPA concentration.
- the composite zeolite membrane according to the present invention is such that a zeolite membrane having an oxygen 8-membered ring structure is provided on the surface of a zeolite membrane having an oxygen 12-membered ring structure formed on a support such as porous alumina. It is a feature.
- porous support used in the present invention examples include porous bodies such as alumina, silica, cordierite, zirconia, titania, Vycor glass, and sintered metal.
- a porous body can be used.
- the shape of the porous support is usually a tube shape or a plate shape.
- the pore size of the porous support is usually from 0.01 to 5 ⁇ m, preferably from 0.05 to 2 ⁇ m.
- Formation of a zeolite membrane having an oxygen 12-membered ring structure is performed, for example, by applying an aqueous suspension of a zeolite powder (seed crystal) on the surface of a porous support, drying at a predetermined temperature, and then hydrothermally synthesizing. Is done by.
- the soot rubbing (rubbing) method is a method in which a zeolite powder suspension (seed crystal) is uniformly coated by rubbing a zeolite powder suspension on the surface of a porous support and then drying it if desired.
- the dipping method is a method in which a porous support is dipped in a zeolite powder suspension, and a zeolite powder (seed crystal) is uniformly coated on the surface.
- hydrothermal synthesis is carried out.
- a zeolite membrane can be formed from the zeolite powder coated on the porous support.
- the temperature of the hydrothermal synthesis is not particularly limited, but is preferably 80 to 300 ° C. from the viewpoint of more uniformly forming a zeolite membrane on the porous support, and the reaction time is usually 2 to 720 hours, preferably 6 ⁇ 120 hours.
- the composite zeolite membrane of the present invention is provided with a zeolite membrane having an oxygen 8-membered ring structure on the surface of the zeolite membrane having an oxygen 12-membered ring structure formed on a support such as porous alumina as described above. It is what has been.
- the zeolite membrane having an oxygen 12-membered ring structure is constituted by a FAU type zeolite membrane, and the zeolite membrane having an oxygen 8-membered ring is a CHA type zeolite or MER type zeolite membrane, preferably a CHA type zeolite. It is preferable that it is comprised.
- Y-type zeolite is a zeolite having the same crystal structure as faujasite, which is a natural zeolite, and is formed by a polyhedron including a 12-membered ring of oxygen. It is known to be 0.74 nm.
- the CHA-type zeolite has a pore formed by a polyhedron including an oxygen 8-membered ring, and the pore diameter of the oxygen 8-membered ring is 0.38 nm.
- the CHA-type zeolite having such structural characteristics has a relatively small pore size among zeolites.
- a zeolite membrane having an oxygen 12-membered ring structure formed on a support is immersed in an alkaline aqueous solution to which zeolite powder having an oxygen 12-membered ring structure is added,
- zeolite powder having an oxygen 12-membered ring structure is added
- the composite zeolite membrane is characterized in that a zeolite membrane having an oxygen 8-membered ring structure is formed on the surface of the zeolite membrane having an oxygen 12-membered ring structure.
- a zeolite powder having an oxygen 12-membered ring structure is added in an amount of 0.01 to 20 wt%, preferably 1 to 10 wt%, and 0.01 to 3 mol / L, preferably 0.
- a zeolite membrane having an oxygen 12-membered ring structure formed on a support is immersed in a 1 to 1 mol / L potassium hydroxide aqueous solution, and the temperature is 80 to 150 ° C., preferably 95 to 125 ° C., and the pressure is 0 It is preferable to heat and pressure-treat under the conditions of 0.05 to 2 MPa, preferably 0.1 to 1 MPa, for 1 to 120 hours, preferably 6 to 36 hours.
- the zeolite membrane having an oxygen 12-membered ring structure is constituted by a FAU type zeolite membrane
- the zeolite membrane having an oxygen 8-membered ring is constituted by a CHA type zeolite membrane. Particularly preferred.
- the surface of a FAU-type zeolite membrane formed on a substrate such as a porous alumina tube is converted to a zeolite membrane having an oxygen 8-membered ring structure, so that oxygen can be produced compared to conventional synthesis methods.
- a zeolite membrane layer having an eight-membered ring structure can be greatly reduced in thickness, and a composite zeolite membrane having a molecular sieve function can be synthesized.
- the film thickness of the FAU type zeolite membrane before the conversion treatment is desirably 0.1 ⁇ m to 10 ⁇ m.
- the film thickness of the converted CHA-type zeolite layer having an 8-membered ring structure is preferably 10 nm or more from the viewpoint of durability and 2 ⁇ m or less from the viewpoint of membrane permeability.
- the thickness of the zeolite layer is measured by observing a cross section with an electron microscope or by examining a XRD (X-ray diffraction) pattern after grinding and removing a layer having a predetermined thickness from the surface of the zeolite membrane. can do.
- XRD X-ray diffraction
- Example 1 In this example, a suspension of FAU-type zeolite powder (seed crystal) (manufactured by Tosoh Corporation) was applied and dried on the surface of a porous alumina tube (substrate) (manufactured by Hitachi Zosen) by a conventional method, and then the temperature was 100 ° C.
- the FAU type zeolite membrane was synthesized by hydrothermal synthesis for 4.75 hours.
- the film thickness of the FAU type zeolite membrane on the surface of the porous alumina tube before the conversion treatment was 2 to 6 ⁇ m.
- a 12-membered oxygen film formed on a support made of the above porous alumina tube in a 0.5 mol / L potassium hydroxide aqueous solution to which FAU type zeolite powder was added at a rate of 10 wt%.
- a composite zeolite membrane in which a CHA-type zeolite membrane was provided on the surface of the FAU-type zeolite membrane was formed.
- a FAU type zeolite membrane having an oxygen 12-membered ring structure formed on a porous alumina tube (substrate) is converted into a CHA type zeolite membrane having an oxygen 8-membered ring structure.
- the film thickness of the converted zeolite layer having an oxygen 8-membered ring structure is estimated to be 0.01 to 2 ⁇ m, and the CHA-type zeolite membrane layer having an oxygen 8-membered ring structure can be greatly thinned. did it.
- FIG. 1A is a graph showing XRD (X-ray diffraction) patterns of FAU type zeolite powder before and after the conversion treatment.
- FIG. 1B shows that the surface of an FAU type zeolite membrane having an oxygen 12-membered ring structure formed on an alumina support is converted into a CHA type zeolite membrane having an oxygen 8-membered ring structure, and XRD patterns before and after the conversion treatment are converted. It is a graph to show.
- a FAU type zeolite membrane having an oxygen 12-membered ring structure is obtained by subjecting the FAU type zeolite membrane (pore diameter 0.74 nm) to heat and pressure treatment under the above treatment conditions for 24 hours. It was confirmed that a CHA / FAU composite zeolite membrane in which the surface having a pore diameter of 0.74 nm was converted to a CHA-type zeolite membrane having an oxygen 8-membered ring structure (pore diameter: 0.38 nm) could be synthesized.
- the FAU type zeolite membrane on the porous alumina tube is finally converted into a complete CHA type zeolite membrane, but the treatment conditions are changed.
- conversion to other 8-membered ring zeolite such as MER type zeolite membrane is also possible.
- FIG. 2 is a partially enlarged sectional view showing a conventional zeolite membrane structure and a composite zeolite membrane structure of the present invention.
- the present invention only the surface of the FAU type zeolite membrane having an oxygen 12-membered ring structure is converted to a zeolite membrane having an oxygen 8-membered ring structure, so that it is compared with the conventional synthesis method.
- the zeolite membrane layer having an oxygen 8-membered ring structure can be greatly reduced in thickness.
- FIG. 3 is a flow sheet of a test apparatus for permeation separation performance of a zeolite membrane, and a water-IPA vapor permeation separation test was conducted as an evaluation of the permeation separation performance of the zeolite membrane using this apparatus.
- a tubular membrane cut to a length of 3 cm was first attached to a stainless steel membrane module using a graphite ring. Then, the membrane module was installed in a thermostat and kept at a predetermined temperature. Further, the solution was fed at a rate of 1 ml / min of a water-IPA mixed solution using a pump, and vapor vaporized in a constant temperature bath was supplied to the outside of the membrane. Components that did not permeate the membrane were condensed and then pumped again to circulate outside the zeolite membrane, and after 1 to 20 hours, the composition was measured by GC (gas chromatograph).
- the inside of the membrane was depressurized by a vacuum pump, and components that permeated the membrane were collected by a trap cooled with liquid nitrogen, and the weight and composition were measured.
- the amount of water permeated was evaluated by water permeability [mol / (m 2 ⁇ s ⁇ Pa)], which is the amount of water permeated per unit area, unit time, and unit pressure.
- FIG. 4 shows the results of a water-IPA vapor permeation separation test (membrane temperature 130 ° C., normal pressure) of a CHA / FAU composite membrane obtained by converting the surface of a FAU type zeolite membrane to CHA type by the method of the present invention.
- a water-IPA vapor permeation separation test membrane temperature 130 ° C., normal pressure
- the amount of IPA permeation increased in the FAU type membrane, so that the water separation factor decreased greatly from about 500 to about 100, whereas in the CHA / FAU composite membrane in which the membrane surface was converted to the CHA type A high water separation factor of about 500 was maintained.
- CHA / FAU composite membrane As for water permeability, a high water permeability exceeding 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa) could be obtained with the CHA / FAU composite membrane. This is because the CHA-type zeolite membrane layer having an oxygen 8-membered ring structure that provides diffusion resistance is very thin, and IPA that inhibits water permeation can be prevented from entering the membrane by providing molecular sieving ability. It is thought to be caused.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
【課題】 分子篩や吸着特性による分子レベルでの分離が可能であるゼオライト膜について、FAU型ゼオライト膜などの酸素12員環構造を有するゼオライト膜の表面を、CHA型ゼオライト膜などの酸素8員環構造を有するゼオライト膜に転換させることにより、従来法に比べて、酸素8員環構造を有するゼオライト膜層の大幅な薄膜化が可能であり、分子分離能に優れた複合ゼオライト膜、およびその製造方法を提供する。 【解決手段】 複合ゼオライト膜は、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられている。酸素12員環構造を有するゼオライト膜がFAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜がCHA型ゼオライト膜により構成されることが好ましい。
Description
本発明は、高機能化した複合ゼオライト膜、およびその製造方法に関する。
近年、ゼオライト膜は、分子篩や吸着特性による分子レベルでの分離が可能であることから、分離膜、膜反応器、化学センサー等への応用が考えられている。
ゼオライトの中でもA型ゼオライト(LTA)は強い親水性を示すことから、アルコールの脱水用分離膜としてA型ゼオライト膜が1998年頃に実用化されている(非特許文献1)。また、例えばエタノール脱水(水10wt%,温度130oC)において、水透過流束50kg・m-2・h-1を超える高性能A型ゼオライト膜が開発され(非特許文献2)、実用化に至っている。
一方で、A型ゼオライト膜は、ゼオライトの中では耐性に乏しく、その適応範囲が限られている。そのため、より耐性に富む親水性FAU(フォージャサイト)型(主にY型)ゼオライト膜が開発されている(特許文献3)。
一方で、A型ゼオライト膜は、ゼオライトの中では耐性に乏しく、その適応範囲が限られている。そのため、より耐性に富む親水性FAU(フォージャサイト)型(主にY型)ゼオライト膜が開発されている(特許文献3)。
FAU型ゼオライト膜については、A型ゼオライト膜が適用できない過酷な条件でも脱水膜として高い透過分離性能を発揮することが確認されており(非特許文献3)、今後、需要が高まることが予想される。なお、結晶間空隙の少ない緻密なY型ゼオライト膜の合成法(特許文献2)など、ゼオライト膜の製膜技術は、精力的に研究されている。
また一般に、FAU型ゼオライト膜は、大きな酸素12員環細孔(約0.74nm)をもち、FAU型ゼオライトの吸着特性に由来する分離能と、拡散が容易な比較的大きな細孔構造に由来する高透過度が期待される。
例えば、水、CO2(二酸化炭素)、CH4(メタン)などの各種の分子の大きさは、下記の通りである。
分子名 分子サイズ
水: 0.30 nm
CO2 : 0.33 nm
CH4 : 0.38 nm
エタノール: 0.43 nm
酢酸: 0.43 nm
IPA(イソプロピルアルコール):約0.47 nm
ここで、例えば、水(0.30nm)/エタノール(0.43nm)、水/IPA(約0.47nm)、CO2(0.33nm)/CH4(0.38nm)などの組み合わせによる混合物における分子分離など、ゼオライト膜を透過させたくない分子の大きさが、FAU型ゼオライト細孔径よりも小さい場合、あるいはまた高温や、透過させる分子の濃度が小さい条件下では、ゼオライト膜による分離は困難であるため、吸着による分離を行う必要があるが、吸着による分離能が機能しにくいため、分離能の低下が避けられない。
分子名 分子サイズ
水: 0.30 nm
CO2 : 0.33 nm
CH4 : 0.38 nm
エタノール: 0.43 nm
酢酸: 0.43 nm
IPA(イソプロピルアルコール):約0.47 nm
ここで、例えば、水(0.30nm)/エタノール(0.43nm)、水/IPA(約0.47nm)、CO2(0.33nm)/CH4(0.38nm)などの組み合わせによる混合物における分子分離など、ゼオライト膜を透過させたくない分子の大きさが、FAU型ゼオライト細孔径よりも小さい場合、あるいはまた高温や、透過させる分子の濃度が小さい条件下では、ゼオライト膜による分離は困難であるため、吸着による分離を行う必要があるが、吸着による分離能が機能しにくいため、分離能の低下が避けられない。
上記のように吸着による分離能が低い条件では、分子篩を利用した分離が有効になることが多い。例えば水(0.30nm)のみを膜透過させてIPA(0.47nm)などの分子を透過させたくない場合、分離膜を、酸素8員環構造を有するゼオライト(細孔径0.28~0.42 nm)によって構築することで、分子篩能が期待できる。
ここで、酸素8員環構造を有するゼオライト膜としては、近年、CHA(チャバサイト)型膜(非特許文献4)、MER(マーリノアイト)型膜(特許文献3)、PHI(フィリップサイト)型膜(特許文献4)などが開発されている。
Y. Morigami et al., Sep. Purif. Technol. 25 (2001) 251-260
Hitz技報(日立造船技報)第68巻第2号7章(2008年3月1日発行)
特許第3537908号公報
K. Sawamura et al., Proc. of the International Symposium on Zeolites and Microporous Crystals (ZMPC) 2009, RRR2-8
特開2009-11980号公報
Y. Hasegawa et al., J. Membr. Sci. 347 (2010) 193-196
特開2007-313389号公報
特開2007-313390号公報
しかしながら、細孔径の大きな酸素12員環構造を有するFAU型ゼオライトに比べて、細孔径の小さな酸素8員環構造を有するCHA型ゼオライト膜では、分子の拡散が遅くなるため、その膜厚が厚い場合、十分な透過流束が得られないという問題があった。
本発明の目的は、上記の従来技術の問題を解決し、FAU型ゼオライト膜などの酸素12員環構造を有するゼオライト膜の表面を、CHA型ゼオライト膜などの酸素8員環構造を有するゼオライト膜に転換させることにより、従来の合成方法に比べて、酸素8員環構造を有するゼオライト膜層の大幅な薄膜化が可能により構成され、分子分離能に優れた複合ゼオライト膜を提供すること、および該複合ゼオライト膜の製造方法を提供することにある。
本発明者らは、上記の点に鑑み鋭意研究を重ねた結果、酸素12員環構造を有するゼオライト粉末を添加したアルカリ水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、所定の条件下で加熱加圧処理をすることで、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面の一部を、酸素8員環構造を有するゼオライト膜に転換させることができ、酸素12員環構造を有するゼオライト膜の表面に酸素8員環構造を有するゼオライト膜が設けられた複合ゼオライト膜を形成することを見出し、本発明を完成するに至ったものである。
上記の目的を達成するために、請求項1の複合ゼオライト膜の発明は、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられていることを特徴としている。
請求項2の発明は、請求項1に記載の複合ゼオライト膜であって、酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライト膜により構成されることを特徴としている。
請求項3の発明は、請求項1又は2に記載の複合ゼオライト膜であって、酸素12員環構造を有するゼオライト膜の厚さが、0.1μm~10μmであり、酸素8員環を有するゼオライト膜の厚さが、10nm~2μmであることを特徴としている。
請求項4の発明は、複合ゼオライト膜の製造方法であって、酸素12員環構造を有するゼオライト粉末を添加したアルカリ水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、所定の条件下で加熱加圧処理することで、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面の一部を、酸素8員環構造を有するゼオライト膜に転換させることにより、酸素12員環構造を有するゼオライト膜の表面に酸素8員環構造を有するゼオライト膜が設けられた複合ゼオライト膜を形成することを特徴としている。
請求項5の発明は、請求項4に記載の複合ゼオライト膜の製造方法であって、酸素12員環構造を有するゼオライト粉末を0.01~20wt%の割合で添加した0.01~3mol/Lの水酸化カリウム水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、温度80~150℃、圧力0.05~2MPaの条件下で、1~120時間、加熱加圧処理することを特徴としている。
請求項6の発明は、請求項4または5に記載の複合ゼオライト膜の製造方法であって、酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライト膜により構成されることを特徴としている。
請求項1の複合ゼオライト膜の発明は、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられているもので、請求項1の発明によれば、FAU型ゼオライト膜の表面の一部が酸素8員環構造を有するゼオライト膜に転換されるため、従来の合成方法に比べて、酸素8員環を有するゼオライト膜層の大幅な薄膜化が可能であり、分子分離能に優れた複合ゼオライト膜を得ることができるという効果を奏する。
請求項4の複合ゼオライト膜の製造方法の発明は、酸素12員環構造を有するゼオライト粉末を添加したアルカリ水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、所定の条件下で加熱加圧処理することで、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面の一部を、酸素8員環構造を有するゼオライト膜に転換させることにより、酸素12員環構造を有するゼオライト膜の表面に酸素8員環構造を有するゼオライト膜が設けられた複合ゼオライト膜を形成することを特徴とするもので、請求項4の発明によれば、酸素12員環構造を有するゼオライト膜の表面の一部が酸素8員環構造を有するゼオライト膜に転換されるため、従来の合成方法に比べて、酸素8員環を有するゼオライト膜層の大幅な薄膜化が可能であり、分子分離能に優れた複合ゼオライト膜を製造することができるという効果を奏する。
つぎに、本発明の実施の形態を説明するが、本発明はこれらに限定されるものではない。
本発明による複合ゼオライト膜は、多孔質アルミナ等の支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられていることを特徴としている。
ここで、本発明に用いられる多孔質支持体としては、例えばアルミナ、シリカ、コージェライト、ジルコニア、チタニア、バイコールガラス、焼結金属などの多孔質体が挙げられるが、これらに限らず、種々の多孔質体を用いることができる。多孔質支持体の形状は、通常は、チューブ状もしくは板状である。多孔質支持体の孔径は、通常、0.01~5μmであり、好ましくは0.05~2μmである。
酸素12員環構造を有するゼオライト膜の形成は、例えば、多孔質支持体の表面にゼオライトの粉末(種結晶)の懸濁水溶液を塗布したのち、所定の温度で乾燥したのち、水熱合成させることによって行われる。
原料として用いるゼオライトの種類は、特に限定されず、例えばY型ゼオライト(FAU)、ベータ型ゼオライト(BEA)、モルデナイト(MOR)などが挙げられる。ゼオライト膜の形成のための塗布方法は、特に限定されないが、ラビング(擦り込み)法や浸漬法が好ましい。
ラビング(擦り込み)法は、多孔質支持体の表面にゼオライト粉末懸濁液を擦り込み、次いで所望により乾燥することにより、ゼオライトの粉末(種結晶)を均一塗布する方法である。
また、浸漬法は、ゼオライト粉末懸濁液内に、多孔質支持体を浸し、表面にゼオライトの粉末(種結晶)を均一塗布する方法である。
ゼオライト粉末の塗布および乾燥ののち、水熱合成させるが、この水熱合成により、多孔質支持体上に塗布したゼオライトの粉末からゼオライト膜を形成することができる。水熱合成の温度は、特に限定されないが、多孔質支持体上にゼオライト膜がより均一に生成するという観点から、80~300℃が好ましく、反応時間は、通常2~720時間、好ましくは6~120時間である。
本発明の複合ゼオライト膜は、上記のように、多孔質アルミナ等の支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられているものである。
本発明の複合ゼオライトにおいて、酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライトまたはMER型ゼオライト膜、好ましくはCHA型ゼオライトにより構成されることが好ましい。
ここで、Y型ゼオライト(FAU)は、天然ゼオライトであるホージャサイトと同じ結晶構造を有するゼオライトであり、酸素の12員環を含む多面体によって形成されているとともに、酸素12員環の細孔径は0.74nmであることが知られている。
一方、CHA型ゼオライトは、その細孔が酸素8員環を含む多面体によって形成されているとともに、酸素8員環の細孔径は0.38nmであることが知られている。このような構造上の特徴を有するCHA型ゼオライトは、ゼオライトの中では比較的細孔径が小さいものである。
また、本発明の複合ゼオライト膜において、転換処理を行う前の酸素12員環構造を有するゼオライト膜の膜厚は、高い膜透過度を維持するために、10μm以下が望ましく、0.1μm~10μmが好ましい。また転換した酸素8員環構造を有するゼオライト層の膜厚は、耐久性の観点からは10nm以上、膜透過度の観点からは2μm以下が好ましい。
本発明による複合ゼオライト膜の製造方法は、酸素12員環構造を有するゼオライト粉末を添加したアルカリ水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、所定の条件下で加熱加圧処理することで、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面の一部を、酸素8員環構造を有するゼオライト膜に転換させることにより、酸素12員環構造を有するゼオライト膜の表面に酸素8員環構造を有するゼオライト膜が設けられた複合ゼオライト膜を形成することを特徴とする。
本発明による複合ゼオライト膜の製造方法において、酸素12員環構造を有するゼオライト粉末を0.01~20wt%、好ましくは1~10wt%の割合で添加した0.01~3mol/L、好ましくは0.1~1mol/Lの水酸化カリウム水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、温度80~150℃、好ましくは95~125℃、圧力0.05~2MPa、好ましくは0.1~1MPaの条件下で、1~120時間、好ましくは6~36時間、加熱加圧処理することが好ましい。
本発明による複合ゼオライト膜の製造方法において、酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライト膜により構成されることが、特に、好ましい。
本発明によれば、多孔質アルミナ管等の基体上に製膜したFAU型ゼオライト膜の表面を、酸素8員環構造を有するゼオライト膜に転換させることにより、従来の合成方法に比べて、酸素8員環構造を有するゼオライト膜層の大幅な薄膜化が可能であり、分子篩機能を付与した複合ゼオライト膜を合成することができる。
特に、基体上に製膜したFAU膜表面のみを、8員環ゼオライトに転換させることで、高い膜透過度を維持したまま分子篩能を維持させる。さらに高い膜透過度を維持するためには、転換処理を行う前のFAU型ゼオライト膜の膜厚は、0.1μm~10μmが望ましい。また転換した8員環構造を有するCHA型ゼオライト層の膜厚については、耐久性の観点からは10nm以上、膜透過度の観点からは2μm以下が好ましい。
ここで、ゼオライト層の膜厚は、断面を電子顕微鏡によって観察するか、または、ゼオライト膜表面から所定の厚さの層を研削・除去した後、XRD(X線回折)パターンを調べることによって測定することができる。
つぎに、本発明の実施例を説明するが、本発明は、これらの実施例に限定されるものではない。
実施例1
本実施例では、定法により、多孔質アルミナ管(基体)(Hitz日立造船社製)表面にFAU型ゼオライト粉末(種結晶)(東ソー社製)の懸濁水溶液を塗布乾燥したのち、温度100℃で4.75時間、水熱合成させることによってFAU型ゼオライト膜を合成した。転換処理を行う前の多孔質アルミナ管表面のFAU型ゼオライト膜の膜厚は、2~6μmであった。
本実施例では、定法により、多孔質アルミナ管(基体)(Hitz日立造船社製)表面にFAU型ゼオライト粉末(種結晶)(東ソー社製)の懸濁水溶液を塗布乾燥したのち、温度100℃で4.75時間、水熱合成させることによってFAU型ゼオライト膜を合成した。転換処理を行う前の多孔質アルミナ管表面のFAU型ゼオライト膜の膜厚は、2~6μmであった。
つぎに、本発明のゼオライト膜の転換処理により、本発明による複合ゼオライト膜を、つぎのようにして製造した。
すなわち、オートクレーブ内で、FAU型ゼオライト粉末を、10wt%の割合で添加した0.5mol/Lの水酸化カリウム水溶液中に、上記多孔質アルミナ管よりなる支持体上に製膜された酸素12員環構造を有するFAU型ゼオライト膜を浸漬し、温度95℃、圧力0.1MPaの条件下で、24時間、静置することで加熱加圧処理し、支持体上に製膜されたFAU型ゼオライト膜の表面を、酸素8員環構造を有するCHA型ゼオライト膜に転換させることにより、FAU型ゼオライト膜の表面にCHA型ゼオライト膜が設けられた複合ゼオライト膜を形成した。
本発明の方法によれば、多孔質アルミナ管(基体)上に製膜した酸素12員環構造を有するFAU型ゼオライト膜の表面のみを、酸素8員環構造を有するCHA型ゼオライト膜に転換させることで、高い膜透過度を維持したまま分子篩能を付与したゼオライト膜を合成することができた。なお、転換した酸素8員環構造を有するゼオライト層の膜厚は、0.01~2μmであると推定され、酸素8員環構造を有するCHA型ゼオライト膜層の大幅な薄膜化を果たすことができた。
ここで、図1Aは、転換処理前後のFAU型ゼオライト粉末のXRD(X線回折)パターンを示すグラフである。図1Bは、アルミナ支持体上に製膜された酸素12員環構造を有するFAU型ゼオライト膜表面を、酸素8員環構造を有するCHA型ゼオライト膜に転換させ、その転換処理前後のXRDパターンを示すグラフである。
同図に示すXRD測定の結果より、FAU型ゼオライト膜(細孔径0.74nm)を上記の処理条件で24時間、加熱加圧処理することで、酸素12員環構造を有するFAU型ゼオライト膜(細孔径0.74nm)の表面を、酸素8員環構造を有するCHA型ゼオライト膜(細孔径0.38nm)に転換したCHA/FAU複合ゼオライト膜を合成できることが確認された。
また、同図に示すように、同条件で処理時間を長くすると、多孔質アルミナ管上のFAU型ゼオライト膜は、最終的には、完全なCHA型ゼオライト膜に転換するが、処理条件を変えることで、MER型ゼオライト膜など他の8員環ゼオライトへの転換も可能である。
また図2は、従来型のゼオライト膜構造と、本発明の複合ゼオライト膜構造を示す部分拡大断面図である。
同図に示すように、本発明によれば、酸素12員環構造を有するFAU型ゼオライト膜の表面のみが、酸素8員環構造を有するゼオライト膜に転換されるため、従来の合成方法に比べて、酸素8員環構造を有するゼオライト膜層の大幅な薄膜化が可能である。
つぎに図3は、ゼオライト膜の透過分離性能の試験装置のフローシートであり、この装置を用いてゼオライト膜の透過分離性能の評価として、水-IPAの蒸気透過分離試験を行った。
同図に示すように、まず長さ3cmに切断した管状の膜を、ステンレス製の膜モジュールにグラファイトリングを用いて取り付けた。その後、膜モジュールを恒温槽内に設置し、所定の温度に保持した。さらに、ポンプを用いて水-IPAの混合液1ml/minにて送液し、恒温槽内にて気化した蒸気を膜の外側に供給した。膜を透過しなかった成分は、凝縮後、再度ポンプにて送液し、ゼオライト膜の外側を循環させ、1~20時間後に、その組成をGC(ガスクロマトグラフ)により測定した。また膜の内側は真空ポンプして減圧し、膜を透過する成分を液体窒素にて冷却したトラップにて捕集し、その重量および組成を測定した。水の透過量は、単位面積、単位時間、単位圧力あたりに透過する水の物質量である水透過度[mol/(m2・s・Pa)]にて評価した。
なお、分離性能の評価としては、下記式で定義する水分離係数:αにより評価した。
水分離係数:α=(PA/PB)/(FA/FB)
上記式中、FA,FBはそれぞれ供給蒸気中のA、Bの濃度(wt%)、PA,PBはそれぞれ透過蒸気中のA,Bの濃度(wt%)を意味する。
上記式中、FA,FBはそれぞれ供給蒸気中のA、Bの濃度(wt%)、PA,PBはそれぞれ透過蒸気中のA,Bの濃度(wt%)を意味する。
図4に、本発明の方法により、FAU型ゼオライト膜表面をCHA型に転換したCHA/FAU複合膜の水-IPA蒸気透過分離試験の結果(膜温度130oC、常圧)を示した。IPAの脱水濃縮とともに、FAU型膜ではIPAの透過量が増大することにより、水分離係数が500から100程度まで大きく低下したのに対し、膜表面をCHA型に転換したCHA/FAU複合膜では、500程度の高い水分離係数が維持された。
また水の透過性についても、CHA/FAU複合膜で、10-6mol/(m2・s・Pa)を超える高い水透過度を得ることができた。これは拡散抵抗となる酸素8員環構造を有するCHA型ゼオライト膜層が非常に薄いことに加え、分子篩能付与により、水の透過阻害となるIPAが膜内部に侵入することを抑制できることなどが起因していると考えられる。
Claims (6)
- 支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられていることを特徴とする、複合ゼオライト膜。
- 酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライト膜により構成されることを特徴とする、請求項1に記載の複合ゼオライト膜。
- 酸素12員環構造を有するゼオライト膜の厚さが、0.1μm~10μmであり、酸素8員環を有するゼオライト膜の厚さが、10nm~2μmであることを特徴とする、請求項1または2に記載の複合ゼオライト膜。
- 酸素12員環構造を有するゼオライト粉末を添加したアルカリ水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、所定の条件下で加熱加圧処理することで、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面の一部を、酸素8員環構造を有するゼオライト膜に転換させることにより、酸素12員環構造を有するゼオライト膜の表面に酸素8員環構造を有するゼオライト膜が設けられた複合ゼオライト膜を形成することを特徴とする、複合ゼオライト膜の製造方法。
- 酸素12員環構造を有するゼオライト粉末を0.01~20wt%の割合で添加した0.01~3mol/Lの水酸化カリウム水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、温度80~150℃、圧力0.05~2MPaの条件下で、1~120時間、加熱加圧処理することを特徴とする、請求項4に記載の複合ゼオライト膜の製造方法。
- 酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜であり、酸素8員環を有するゼオライト膜が、CHA型ゼオライト膜により構成されることを特徴とする、請求項4または5に記載の複合ゼオライト膜の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012537615A JP5852963B2 (ja) | 2010-10-06 | 2011-09-13 | 複合ゼオライト膜、およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010226832 | 2010-10-06 | ||
JP2010-226832 | 2010-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012046545A1 true WO2012046545A1 (ja) | 2012-04-12 |
Family
ID=45927542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070788 WO2012046545A1 (ja) | 2010-10-06 | 2011-09-13 | 複合ゼオライト膜、およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5852963B2 (ja) |
WO (1) | WO2012046545A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012236137A (ja) * | 2011-05-11 | 2012-12-06 | Hitachi Zosen Corp | 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備 |
JP2014198308A (ja) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | セラミック分離フィルタ及び脱水方法 |
JP2015066532A (ja) * | 2013-09-30 | 2015-04-13 | 独立行政法人産業技術総合研究所 | ゼオライト薄膜を有する複合膜およびその製造方法 |
WO2016006564A1 (ja) * | 2014-07-10 | 2016-01-14 | 日立造船株式会社 | ゼオライト膜、その製造方法およびこれを用いた分離方法 |
WO2016158583A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本碍子株式会社 | ゼオライト膜構造体及びその製造方法 |
JP2017124966A (ja) * | 2016-01-12 | 2017-07-20 | 東ソー株式会社 | Cha型ゼオライトの製造方法 |
JP2017523113A (ja) * | 2014-07-23 | 2017-08-17 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Sda非存在下におけるゼオライト転換及び金属内包 |
EP3225297A4 (en) * | 2014-11-25 | 2018-01-03 | Mitsubishi Chemical Corporation | (porous support)-(zeolite membrane) assembly, and method for producing (porous support)-(zeolite membrane) assembly |
DE112018001707T5 (de) | 2017-03-31 | 2019-12-24 | Ngk Insulators, Ltd. | Zeolithmembranverbund und Verfahren zur Herstellung eines Zeolithmembranverbunds |
WO2020179432A1 (ja) * | 2019-03-04 | 2020-09-10 | 日本碍子株式会社 | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015186776A (ja) * | 2014-03-26 | 2015-10-29 | 三菱化学株式会社 | ゼオライト膜の評価方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004532095A (ja) * | 2001-02-17 | 2004-10-21 | アーフロウシステムズ・ゲーエムベーハー・ウント・コー・カーゲー | フィルタ体 |
JP2011016123A (ja) * | 2009-06-08 | 2011-01-27 | National Institute Of Advanced Industrial Science & Technology | ゼオライト膜、分離膜モジュール及びその製造方法 |
-
2011
- 2011-09-13 WO PCT/JP2011/070788 patent/WO2012046545A1/ja active Application Filing
- 2011-09-13 JP JP2012537615A patent/JP5852963B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004532095A (ja) * | 2001-02-17 | 2004-10-21 | アーフロウシステムズ・ゲーエムベーハー・ウント・コー・カーゲー | フィルタ体 |
JP2011016123A (ja) * | 2009-06-08 | 2011-01-27 | National Institute Of Advanced Industrial Science & Technology | ゼオライト膜、分離膜モジュール及びその製造方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012236137A (ja) * | 2011-05-11 | 2012-12-06 | Hitachi Zosen Corp | 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備 |
JP2014198308A (ja) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | セラミック分離フィルタ及び脱水方法 |
JP2015066532A (ja) * | 2013-09-30 | 2015-04-13 | 独立行政法人産業技術総合研究所 | ゼオライト薄膜を有する複合膜およびその製造方法 |
US10639594B2 (en) | 2014-07-10 | 2020-05-05 | Hitachi Zosen Corporation | Zeolite membrane, production method therefor, and separation method using same |
WO2016006564A1 (ja) * | 2014-07-10 | 2016-01-14 | 日立造船株式会社 | ゼオライト膜、その製造方法およびこれを用いた分離方法 |
JPWO2016006564A1 (ja) * | 2014-07-10 | 2017-06-08 | 日立造船株式会社 | ゼオライト膜、その製造方法およびこれを用いた分離方法 |
JP2017523113A (ja) * | 2014-07-23 | 2017-08-17 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Sda非存在下におけるゼオライト転換及び金属内包 |
US11141703B2 (en) | 2014-11-25 | 2021-10-12 | Mitsubishi Chemical Corporation | Porous support-zeolite membrane composite, and method for producing porous support-zeolite membrane composite |
EP3225297A4 (en) * | 2014-11-25 | 2018-01-03 | Mitsubishi Chemical Corporation | (porous support)-(zeolite membrane) assembly, and method for producing (porous support)-(zeolite membrane) assembly |
US10369528B2 (en) | 2014-11-25 | 2019-08-06 | Mitsubishi Chemical Corporation | Porous support-zeolite membrane composite, and method for producing porous support-zeolite membrane composite |
WO2016158583A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本碍子株式会社 | ゼオライト膜構造体及びその製造方法 |
US10688445B2 (en) | 2015-03-31 | 2020-06-23 | Ngk Insulators, Ltd. | Zeolite membrane structure and method for producing same |
JP2017124966A (ja) * | 2016-01-12 | 2017-07-20 | 東ソー株式会社 | Cha型ゼオライトの製造方法 |
DE112018001707T5 (de) | 2017-03-31 | 2019-12-24 | Ngk Insulators, Ltd. | Zeolithmembranverbund und Verfahren zur Herstellung eines Zeolithmembranverbunds |
US10994247B2 (en) | 2017-03-31 | 2021-05-04 | Ngk Insulators, Ltd. | Zeolite membrane composite and process for producing zeolite membrane composite |
WO2020179432A1 (ja) * | 2019-03-04 | 2020-09-10 | 日本碍子株式会社 | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法 |
CN113490541A (zh) * | 2019-03-04 | 2021-10-08 | 日本碍子株式会社 | 沸石膜复合体、沸石膜复合体的制造方法及分离方法 |
JPWO2020179432A1 (ja) * | 2019-03-04 | 2021-11-18 | 日本碍子株式会社 | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法 |
JP7230176B2 (ja) | 2019-03-04 | 2023-02-28 | 日本碍子株式会社 | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012046545A1 (ja) | 2014-02-24 |
JP5852963B2 (ja) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5852963B2 (ja) | 複合ゼオライト膜、およびその製造方法 | |
JP6373381B2 (ja) | ゼオライト膜、その製造方法およびこれを用いた分離方法 | |
Lin et al. | Synthesis of silicalite tubular membranes by in situ crystallization | |
CA2278995C (en) | A membrane for separating fluids | |
JP5569901B2 (ja) | ゼオライト膜、分離膜モジュール及びその製造方法 | |
JP4856595B2 (ja) | ガス分離用ゼオライト膜複合体の製造方法 | |
JP6999114B2 (ja) | ゼオライト分離膜およびその製造方法 | |
JP2008074695A (ja) | ゼオライト膜製造用の種結晶含有層付き多孔質基材、ゼオライト膜及びゼオライト膜の製造方法 | |
JP7321260B2 (ja) | ゼオライト膜複合体およびその製造方法、並びに流体分離方法 | |
JP6748104B2 (ja) | 結晶性シリカ膜複合体およびその製造方法、並びに流体分離方法 | |
WO2020195105A1 (ja) | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、ゼオライト膜複合体の処理方法、および、分離方法 | |
JP5051815B2 (ja) | マーリノアイト型ゼオライト複合膜及びその製造方法 | |
JP5051816B2 (ja) | フィリップサイト型ゼオライト複合膜及びその製造方法 | |
Raza et al. | HCl modification and pervaporation performance of BTESE membrane for the dehydration of acetic acid/water mixture | |
Zeynali et al. | Experimental evaluation of graphene oxide/TiO2-alumina nanocomposite membranes performance for hydrogen separation | |
WO2017115454A1 (ja) | ゼオライト膜複合体およびその製造方法、並びにガス分離方法 | |
Huang et al. | Stepwise synthesis of sandwich-structured composite zeolite membranes with enhanced separation selectivity | |
Kong et al. | Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis | |
JP2008188564A (ja) | 有機混合溶液の分離膜及びその製造方法 | |
JP2006326490A (ja) | 無機分離膜及びその製造方法 | |
JP2019508241A (ja) | 透過膜及び透過膜を作成する方法 | |
Wang et al. | Synthesis optimization and separation mechanism of ZSM-5 zeolite membranes for pervaporation dehydration of organic solvents | |
JP4820631B2 (ja) | フィリップサイト型ゼオライト膜及びその製造方法 | |
JP5032742B2 (ja) | ゼオライト膜の製造方法 | |
JP2012081463A (ja) | 含水有機化合物の脱水濃縮方法及びそれに用いる脱水濃縮装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11830478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012537615 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11830478 Country of ref document: EP Kind code of ref document: A1 |