WO2012043824A1 - 射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法 - Google Patents

射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法 Download PDF

Info

Publication number
WO2012043824A1
WO2012043824A1 PCT/JP2011/072647 JP2011072647W WO2012043824A1 WO 2012043824 A1 WO2012043824 A1 WO 2012043824A1 JP 2011072647 W JP2011072647 W JP 2011072647W WO 2012043824 A1 WO2012043824 A1 WO 2012043824A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
injection molding
ethylene
resin composition
resin
Prior art date
Application number
PCT/JP2011/072647
Other languages
English (en)
French (fr)
Inventor
阿部 成彦
鈴木 謙一
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to KR20137010231A priority Critical patent/KR20130140680A/ko
Priority to EP11829377.8A priority patent/EP2623560A4/en
Priority to CN2011800576449A priority patent/CN103228726A/zh
Priority to US13/877,095 priority patent/US20130189512A1/en
Publication of WO2012043824A1 publication Critical patent/WO2012043824A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension

Definitions

  • the present invention relates to a resin composition for injection molding, an injection foam molded article, and a method for producing an injection foam molded article.
  • the resin composition for injection molding of the present invention has excellent impact strength at low temperatures and is suitable for producing an injection molded product having no flow mark, particularly an injection foam molded product.
  • Polypropylene resin is excellent in rigidity, hardness, heat resistance, etc., can be easily formed into a desired shape by an injection molding method, and is inexpensive. Therefore, it is widely used for a wide range of applications, such as housings for home appliances, films, containers, automobile interiors, fenders, bumpers, side moldings, mudguards, mirror covers, and other general automobiles.
  • polyethylene or rubber components such as polyisobutylene, polybutadiene, amorphous or low crystalline ethylene / propylene copolymer (EPR), etc. are blended with polypropylene resin to improve impact resistance.
  • Improved polypropylene compositions are also known.
  • a polypropylene composition in which an inorganic filler such as talc is added to polypropylene together with a rubber component in order to compensate for the rigidity that is reduced by the blending of the rubber component see, for example, Patent Document 1).
  • the resin is injected in a molten state, so that the resulting injection-molded product usually has a flow mark extending in the flow direction of the molten resin. is doing.
  • injection molded products such as automobile interior / exterior parts
  • this flow mark is conspicuous, there is a problem that the product value is lowered because the appearance is poor.
  • compositions in which polyethylene is blended with polypropylene resins, and compositions in which polyethylene and ethylene-propylene rubber are blended with polypropylene resins are widely used to improve the impact strength of polypropylene resins and to further improve impact whitening and bending whitening. It is used.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a resin composition having an improved appearance of an injection molded product, which is a drawback of conventionally used resin compositions.
  • the present inventor has obtained a resin composition comprising a polypropylene resin and an ethylene- ⁇ -olefin copolymer having a high melt tension and a polyolefin resin having a low melt tension.
  • the present inventors have found that an injection molded product having excellent impact strength at low temperature and no flow mark is provided, and has completed the present invention.
  • the present invention was measured at 160 ° C., 70 to 90 parts by weight of propylene polymer resin resin (I) having an MFR measured at 230 ° C. in accordance with ASTM D-1238 at 30 g / 10 min to 200 g / 10 min.
  • ethylene - ⁇ - olefin copolymer melt tension (MS 160) is less than 300mN exceed 50mN (II) 5 ⁇ 25 parts by weight, and density conforming to JIS K6760 is 850 kg / m 3 or more 930 kg / m 3 or less
  • An injection molding resin composition is provided.
  • the present invention further provides an injection foam molded article comprising the above resin composition.
  • the present invention further supplies the above injection molding resin composition, carbon dioxide and / or a carbon dioxide generating chemical foaming agent to an injection molding machine, and then injects it in a mold attached to the injection molding machine. Accordingly, there is provided a method for producing an injection-foamed molded article characterized by performing foam molding.
  • the resin composition for injection molding of the present invention is excellent for producing an injection molded article, particularly an injection foam molded article having excellent impact strength at low temperature and having no flow mark.
  • the resin composition for injection molding of the present invention has a propylene polymer resin resin (I) having an MFR of 30 g / 10 min or more and less than 200 g / 10 min measured at a temperature of 230 ° C. according to ASTM D-1238, 70 to 90 wt. Parts, 5 to 25 parts by weight of an ethylene- ⁇ -olefin copolymer (II) having a melt tension (MS 160 ) measured at 160 ° C. of more than 50 mN and 300 mN or less, and a density according to JIS K6760 is 850 kg / m 3.
  • a propylene polymer resin resin (I) having an MFR of 30 g / 10 min or more and less than 200 g / 10 min measured at a temperature of 230 ° C. according to ASTM D-1238, 70 to 90 wt. Parts, 5 to 25 parts by weight of an ethylene- ⁇ -olefin copolymer (II) having a melt tension (MS
  • Propylene polymer resin (I) As the propylene polymer resin (I) constituting the resin composition for injection molding of the present invention, a propylene homopolymer and a propylene-ethylene block copolymer are preferably used. A commercially available product may be used.
  • the propylene-ethylene block copolymer is composed of, for example, a highly crystalline polypropylene block component and a rubber component, and the rubber component is composed of an ethylene homopolymer block and a block obtained by random copolymerization of propylene and ethylene. Those are preferred. Among them, the rubber component is preferably 5 to 25% by weight, more preferably 5 to 20% by weight.
  • the highly crystalline polypropylene component can be defined as an n-decane insoluble component at 64 ° C., and the rubber component can be defined as an n-decane soluble component at 64 ° C.
  • the propylene-ethylene block copolymer rubber component which is a 64 ° C. n-decane soluble component and the highly crystalline polypropylene component, 64 ° C. n-decane insoluble component is a propylene-ethylene block copolymer sample. 5 g was dissolved by immersing in 200 cc of boiling n-decane for 5 hours, cooled to 64 ° C., the precipitated solid phase was filtered through a G4 glass filter, dried and measured from the solid phase weight measured The component and the insoluble component can be calculated and obtained.
  • the propylene-ethylene block copolymer component described above includes ethylene and ⁇ -olefins other than propylene, such as 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, ⁇ -olefins such as dodecene, 1-hexadecene, 4-methyl-1-pentene, vinyl compounds such as vinylcyclopentene, vinylcyclohexane, vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or It may contain units derived from derivatives thereof.
  • ⁇ -olefins other than propylene such as 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, ⁇ -olefins such as dodecene, 1-hexadecene, 4-methyl-1-pentene, vinyl compounds such as vinylcyclopentene,
  • the melt flow rate (MFR) measured at 230 ° C. in accordance with ASTM D-1238 is 30 g / 10 min or more and 200 g / 10. Use less than a minute. It is preferably 30 g / 10 min or more and less than 150 g / 10 min.
  • the ethylene- ⁇ -olefin copolymer (II) constituting the resin composition for injection molding of the present invention has a melt tension (MS 160 ) measured at 160 ° C. of more than 50 mN and not more than 300 mN, preferably not less than 100 mN and not more than 300 mN.
  • MS 160 melt tension
  • the resulting resin composition has a low melt tension, and when subjected to injection foam molding, a molded article having a high expansion ratio is obtained. It becomes difficult.
  • MS 160 exceeds 300 mN, the resulting resin composition is inferior in mixing properties, and the resulting injection-molded product has a flow mark and is inferior in product appearance.
  • the melt tension (MS 160 ) at 160 ° C. is, for example, a capillary viscometer (Toyo Seiki Seisakusho, (trade name) Capillograph) with a barrel diameter of 9.55 mm, a length of 8 mm, a diameter of 2.095 mm, and an inflow angle. Is set by setting a temperature of 160 ° C., a piston lowering speed of 10 mm / min, a draw ratio of 47, and measuring a load (mN) required for take-up.
  • mN load
  • the ethylene- ⁇ -olefin copolymer (II) is an injection molding resin composition from which a molded product having a particularly high expansion ratio can be obtained when performing injection foam molding.
  • An ethylene- ⁇ -olefin copolymer satisfying the characteristics of (C) is preferred.
  • (A) The density (d) measured by the density gradient tube method in accordance with JIS K6760 is 920 kg / m 3 or more and 960 kg / m 3 or less.
  • the melt flow rate (MFR) measured at 190 ° C. and a 2.16 kg load is 1 g / 10 min or more and 30 g / 10 min or less.
  • C The relationship between the melt tension measured at 160 ° C. (MS 160 (mN)) and the MFR measured at 190 ° C. under a 2.16 kg load satisfies the following formula (1). MS 160 > 230-200 ⁇ log (MFR) (1)
  • ⁇ -olefins having 3 to 8 carbon atoms are preferably used as the ⁇ -olefin copolymerized with ethylene. Specific examples thereof include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-heptene, Examples include octene.
  • the copolymerization ratio of ethylene and ⁇ -olefin having 3 to 8 carbon atoms is such that ethylene / ⁇ -olefin having 3 to 8 carbon atoms (molar ratio) is 1/1 to 200/1, preferably 3/1 to 100 / 1, more preferably 5/1 to 50/1.
  • an ethylene- ⁇ -olefin copolymer having a long chain branch having more than 20 carbon atoms can be given.
  • Such a polymer is disclosed in JP-T-2001-515114.
  • a typical example is a polymer in which a long chain branch having more than 20 carbon atoms derived from a polyethylene macromonomer is bonded to a polyethylene main chain, and at least one of the long chain branch or the polyethylene main chain is ⁇ - Mention may be made of ethylene- ⁇ -olefin copolymers in which olefin comonomer units are introduced by copolymerization.
  • ethylene- ⁇ -olefin copolymer (II) constituting the resin composition for injection molding is known as a method for producing an ethylene- ⁇ -olefin copolymer, such as a Ziegler-Natta catalyst. And a copolymer of ethylene and an ⁇ -olefin having 3 to 8 carbon atoms obtained by a method such as a low pressure polymerization method using a polymerization catalyst such as a chromium-based catalyst or a metallocene catalyst.
  • two cyclopentadienyl groups are cross-linked with a cross-linking group consisting of a chain of two or more atoms, or cross-linked with a cross-linking group consisting of a chain of two or more atoms.
  • Bridged biscyclopentadienyl zirconium complex (hereinafter referred to as component (a)), bridged (cyclopentadienyl) (fluorenyl) zirconium complex and / or bridged (indenyl) (fluorenyl) zirconium
  • component (a) Bridged biscyclopentadienyl zirconium complex
  • component (b) bridged (cyclopentadienyl) (fluorenyl) zirconium complex and / or bridged (indenyl) (fluorenyl) zirconium
  • component (b) complex
  • a method of copolymerizing ethylene and an ⁇ -olefin having 3 to 8 carbon atoms can be used.
  • component (a) include 1,1,3,3-tetramethyldisiloxane-1,3-diyl-bis (cyclopentadienyl) zirconium dichloride, 1,1-dimethyl-1-silaethane-1 , 2-diyl-bis (cyclopentadienyl) zirconium dichloride, propane-1,3-diyl-bis (cyclopentadienyl) zirconium dichloride, butane-1,4-diyl-bis (cyclopentadienyl) zirconium dichloride Cis-2-butene-1,4-diyl-bis (cyclopentadienyl) zirconium dichloride, 1,1,2,2-tetramethyldisilane-1,2-diyl-bis (cyclopentadienyl) zirconium dichloride Dichlorides of the above and the transition metal compounds dimethyl, diethyl, Hydro body, diphenyl body, can be
  • component (b) include diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, Diphenylmethylene (1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride, isopropylidene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, isopropylidene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylsila Diylm
  • Examples thereof include dimethyl, diethyl, dihydro, diphenyl, and dibenzyl isomers of dichloride and the above transition metal compounds. Furthermore, the compound which substituted the zirconium atom of the said transition metal compound with the titanium atom or the hafnium atom can also be illustrated.
  • the amount of the component (b) with respect to the component (a) is not particularly limited, and is preferably 0.0001 to 100 times mol, particularly preferably 0.001 to 10 times mol.
  • Examples of the metallocene catalyst using component (a) and component (b) include a catalyst comprising component (a), component (b) and an organoaluminum compound (hereinafter referred to as component (c)); component (a) And a component (b) and an aluminoxane (hereinafter referred to as component (d)); a catalyst further comprising component (c); component (a), component (b) and protonic acid salt (hereinafter referred to as component (c)) A catalyst comprising at least one salt selected from a Lewis acid salt (hereinafter referred to as component (f)) or a metal salt (hereinafter referred to as component (g)); A catalyst further comprising component (c); a catalyst comprising component (a), component (b), component (d) and inorganic oxide (hereinafter referred to as component (h)); component (a); Component (b), Component (h), Component (e), Component (f), Component (g) A catalyst composed of one kind of salt; a catalyst
  • Catalysts comprising a component (a), a component (b), and a clay mineral treated with an organic compound (hereinafter referred to as component (j)) can be exemplified.
  • component (a) and the component ( A catalyst comprising b) and component (j) can be used.
  • examples of the clay mineral that can be used as the component (i) and the component (j) include fine particles mainly composed of microcrystalline silicate.
  • a layered structure is formed, and various layers of negative charges are included in the layer.
  • a metal oxide having a three-dimensional structure such as silica or alumina.
  • These clay minerals generally have a large layer charge, with pyrophyllite, kaolinite, dickite and talc groups (negative charge per chemical formula is approximately 0), smectite groups (negative charge per chemical formula is from about 0.25).
  • each group shown here includes various clay minerals.
  • the clay mineral belonging to the smectite group include montmorillonite, beidellite, saponite, and hectorite. Further, a plurality of the above clay minerals can be mixed and used.
  • the organic compound treatment in component (j) refers to introducing an organic ion between clay mineral layers to form an ionic complex.
  • Examples of the organic compound used in the organic compound treatment include N, N-dimethyl-n-octadecylamine hydrochloride, N, N-dimethyl-n-eicosylamine hydrochloride, N, N-dimethyl-n-docosylamine hydrochloride, N, N-dimethyloleylamine hydrochloride, N, N-dimethylbehenylamine hydrochloride, N-methyl-bis (n-octadecyl) amine hydrochloride, N-methyl-bis (n-eicosyl) amine hydrochloride, N-methyl -Dioleylamine hydrochloride, N-methyl-dibehenylamine hydrochloride, N, N-dimethylaniline hydrochloride can be exemplified.
  • a catalyst comprising component (a), component (b) and component (j) can be obtained by bringing component (a), component (b) and component (j) into contact in an organic solvent.
  • the method includes adding component (b) to the contact product of component (a) and component (j); adding component (a) to the contact product of component (b) and component (j)
  • a method of adding component (j) to the contact product of component (a) and component (b) illustrating a method of adding the contact product of component (a) and component (b) to component (j) Can do.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane, nonane, decane, cyclopentane or cyclohexane, aromatic hydrocarbons such as benzene, toluene or xylene, ethyl ether or n-butyl ether Examples thereof include ethers such as: halogenated hydrocarbons such as methylene chloride or chloroform, 1,4-dioxane, acetonitrile or tetrahydrofuran.
  • the contact temperature is preferably selected from 0 to 200 ° C. for treatment.
  • the amount of each component used is 0.0001 to 100 mmol, preferably 0.001 to 10 mmol of component (a) per gram of component (j).
  • component (a), component (b), and component (j) prepared in this manner may be used without washing or after washing. Further, when the component (a) or the component (b) is a dihalogen, it is preferable to further add the component (c). Further, component (c) can be added for the purpose of removing impurities in component (j), polymerization solvent and olefin.
  • the ethylene- ⁇ -olefin copolymer (II) constituting the resin composition of the present invention is produced, it is preferably polymerized at a polymerization temperature of ⁇ 100 to 120 ° C., particularly considering productivity, 20 to 120. ° C is preferable, and it is more preferable to carry out in the range of 60 to 120 ° C.
  • the polymerization time is preferably in the range of 10 seconds to 20 hours, and the polymerization pressure is preferably in the range of normal pressure to 300 MPa.
  • the supply ratio of ethylene and the ⁇ -olefin having 3 to 8 carbon atoms is ethylene / ⁇ -olefin having 3 to 8 carbon atoms.
  • the olefin (molar ratio) is 1/1 to 200/1, preferably 3/1 to 100/1, more preferably 5/1 to 50/1. It is also possible to adjust the molecular weight using hydrogen during polymerization.
  • the polymerization can be carried out by any of batch, semi-continuous and continuous methods, and can be carried out in two or more stages by changing the polymerization conditions.
  • the ethylene copolymer can be obtained by separating and recovering from the polymerization solvent by a conventionally known method after the completion of the polymerization and drying.
  • Polymerization can be carried out in a slurry state, a solution state, or a gas phase state.
  • an ethylene-based copolymer having a powder particle shape is efficiently and stably produced.
  • the solvent used for the polymerization may be any organic solvent that is generally used, and specific examples include benzene, toluene, xylene, propane, isobutane, pentane, hexane, heptane, cyclohexane, gasoline, propylene, Olefins such as 1-butene, 1-hexene and 1-octene can be used as a solvent.
  • examples include polyolefin resins produced by radical polymerization, alkenyl aromatic compound unit-containing rubbers, and those belonging to the category of ethylene- ⁇ -olefin copolymers. These can be used individually by 1 type or in combination of 2 or more types.
  • the density of the olefin polymer resin according to JIS K6760 is less than 850 kg / m 3 , the obtained molded product is sticky, resulting in a problem with the product appearance.
  • the density exceeds 930 kg / m 3 , the adhesiveness with the mold during the injection molding is lowered, which causes a problem in appearance characteristics.
  • An MS 160 of 30 mN or more is not preferable because the melt elasticity of the resin at the time of injection molding is too strong and the reproducibility of the mold is lowered.
  • the low density polyethylene is generally referred to as a high pressure method low density polyethylene.
  • the melt flow rate measured at a temperature of 190 ° C. in accordance with ASTM D1238 is preferably 70 g / 10 min or more and 300 g / 10 because it is suitable for a molded article having a high expansion ratio particularly when subjected to injection foam molding.
  • High pressure low density polyethylene that is less than a minute is preferred.
  • the high-pressure low-density polyethylene preferably has a density of 910 to 925 kg / m 3 .
  • Examples of the ethylene- ⁇ -olefin copolymer include an ethylene- ⁇ -olefin copolymer and an ethylene- ⁇ -olefin-nonconjugated diene copolymer.
  • an ⁇ -olefin having 4 to 20 carbon atoms is used as the ⁇ -olefin in the ethylene- ⁇ -olefin copolymer and the ethylene- ⁇ -olefin-nonconjugated diene copolymer.
  • the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, isobutene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene and 2-methyl-1-pentene. , 3-methyl-1-pentene, 4-methyl-1-pentene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene and the like. These may be used alone or in combination of two or more. Preferably, it is one or more selected from 1-butene, 1-hexene and 1-octene.
  • non-conjugated diene in the ethylene- ⁇ -olefin-non-conjugated diene copolymer examples include 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, and 6-methyl-1 , 5-heptadiene, 7-methyl-1,6-octadiene and other chain non-conjugated dienes; cyclohexadiene, dicyclopentadiene, methyltetrahydroindene, 5-vinylnorbornene, 5-ethylidene-2-norbornene, 5-methylene Cyclic non-conjugated dienes such as -2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl-5-isopropylenyl-2-norbornene; 2,3-diisopropylidene-5-norbornene, 2-ethylidene -3-
  • the ethylene- ⁇ -olefin copolymer is particularly excellent in compatibility with the propylene polymer resin, and the resulting injection-foamed molded article has excellent impact resistance. Therefore, the density is 850 kg / m 3 or more and 910 kg / m. 3 preferably has a less, and particularly preferably 870 kg / m 3 or more 905 kg / m 3 or less. Further, the ethylene- ⁇ -olefin copolymer is excellent in processability at the time of molding an injection foamed molded product, and the resulting molded product is also excellent in impact strength. Therefore, the MFR is 5 to 50 g / 10 min. It is preferably 10 to 40 g / 10 min.
  • Examples of the method for producing the ethylene- ⁇ -olefin copolymer include a production method by a known polymerization method using a known polymerization catalyst.
  • Known polymerization catalysts include, for example, a Ziegler-Natta catalyst system comprising a vanadium compound, an organoaluminum compound and a halogenated ester compound, or at least one cyclopentadienyl anion skeleton on a titanium atom, a zirconium atom or a hafnium atom.
  • Examples thereof include a so-called metallocene catalyst system in which a metallocene compound coordinated with a group having an alumoxane or boron compound is combined.
  • Known polymerization methods include, for example, a method of copolymerizing ethylene and ⁇ -olefin in an inert organic solvent such as a hydrocarbon compound, and a method of copolymerizing in ethylene and ⁇ -olefin without using a solvent. Can be mentioned.
  • the alkenyl aromatic compound unit-containing rubber is produced by a method in which an alkenyl aromatic compound is bonded to an olefin copolymer or conjugated diene rubber by polymerization, reaction, or the like.
  • the rubber include a block copolymer composed of a vinyl aromatic compound polymer block and a conjugated diene polymer block, and a block polymer in which the double bond of the conjugated diene portion of the block copolymer is hydrogenated. Etc.
  • a block polymer in which a double bond of a conjugated diene portion of a block copolymer comprising a vinyl aromatic compound polymer block and a conjugated diene polymer block is hydrogenated is preferable, and in particular, a conjugated diene portion of the block copolymer.
  • a block polymer in which 80% or more of the double bond is hydrogenated is preferable, and a block polymer in which 85% or more of the double bond of the conjugated diene portion of the block copolymer is hydrogenated is more preferable.
  • alkenyl aromatic compound unit examples include p-methylstyrene, m-methylstyrene, o-methylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, 2,4-dimethylstyrene, 2,5-dimethyl.
  • Alkyl styrenes such as styrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, 3-methyl-5-ethylstyrene, p-tert-butylstyrene, p-sec-butylstyrene; styrene, 2-phenyl-1
  • alkenylbenzenes such as propylene and 2-phenyl-1-butene
  • bisalkenylbenzenes such as divinylbenzene
  • vinylnaphthalene such as 1-vinylnaphthalene and the like.
  • styrene is generally used.
  • alkenyl aromatic compound unit-containing rubber examples include styrene-ethylene-butene-styrene rubber (SEBS), styrene-ethylene-propylene-styrene rubber (SEPS), styrene-butadiene rubber (SBR), and styrene.
  • SEBS styrene-ethylene-butene-styrene rubber
  • SEPS styrene-ethylene-propylene-styrene rubber
  • SBR styrene-butadiene rubber
  • styrene examples include block copolymers such as butadiene-styrene rubber (SBS) and styrene-isoprene-styrene rubber (SIS), and block copolymers obtained by hydrogenating these rubber components.
  • SEBS styrene-ethylene-butene-styrene rubber
  • SEBS styrene-ethylene-butene-s
  • Examples of the method for producing the alkenyl aromatic compound unit-containing rubber include a method in which an alkenyl aromatic compound is bonded to an olefin copolymer or conjugated diene rubber by polymerization, reaction, or the like.
  • the MFR at 230 ° C. of the alkenyl aromatic compound unit-containing rubber is preferably 1 to 15 g / 10 minutes, and more preferably 2 to 13 g / 10 minutes. When the MFR is within the above range, the compatibility with the modified polypropylene resin tends to be good.
  • the propylene polymer resin (I) when the propylene polymer resin (I) is less than 70 parts by weight, the ethylene- ⁇ -olefin copolymer (II) exceeds 25 parts by weight, or the olefin polymer resin (III) is 25 parts by weight. When exceeding a part, the obtained resin composition is inferior in heat resistance. When the propylene polymer resin (I) exceeds 90 parts by weight, or when the ethylene- ⁇ -olefin copolymer (II) is less than 5 parts by weight, the resulting resin composition is subjected to foam molding. It becomes inferior to foamability. Further, when the olefin polymer resin (III) is less than 5 parts by weight, the resin composition is inferior in moldability, and the obtained molded article is inferior in impact strength at low temperature and easily generates a flow mark. .
  • the resin composition for injection molding of the present invention is excellent in moldability and particularly difficult to generate a flow mark when formed into a molded product. Therefore, the MFR measured at a measurement temperature of 230 ° C. by ASTM D-1238 is 30 g / It is preferably 10 minutes or more and less than 200 g / 10 minutes, more preferably 50 g / 10 minutes or more and less than 200 g / 10 minutes.
  • the melt tension (MS 190) measured at 190 ° C. and a winding speed of 10 m / min. ) Is preferably in the range of 2 to 30 mN, more preferably in the range of 2 to 20 mN.
  • a stabilizer In the resin composition of the present invention, a stabilizer, a lubricant, a flame retardant, a dispersant, a filler, a crosslinking agent, an ultraviolet ray inhibitor, an antioxidant, as necessary, within a range not departing from the gist of the present invention. It may contain a coloring agent. It can also be used by mixing with other thermoplastic resins.
  • high-density polyethylene linear low-density polyethylene (L-LDPE), low-density polyethylene, polypropylene resin, poly-1-butene, poly-4-methyl-1-pentene, ethylene / vinyl acetate
  • L-LDPE linear low-density polyethylene
  • polypropylene resin poly-1-butene
  • poly-4-methyl-1-pentene ethylene / vinyl acetate
  • examples thereof include polymers, ethylene / vinyl alcohol copolymers, polystyrene, and maleic anhydride grafts thereof.
  • the method for producing the injection foam molded body of the present invention comprising the above resin composition for injection molding, and a method known as injection foam molding can be applied.
  • the resin composition for injection foaming and various known foaming agents can be used.
  • the foaming agent may be any of a solvent-type foaming agent, a decomposable foaming agent, or a gaseous foaming agent.
  • the solvent-type foaming agent or the gaseous foaming agent is a substance that is injected from the cylinder portion of the extruder and absorbed or dissolved in the molten resin composition, and evaporates in the cylinder to function as a foaming agent.
  • low-boiling point aliphatic hydrocarbons such as propane, butane, neopentane, heptane, isohexane, hexane, isoheptane, heptane, or low-boiling point fluorine-containing hydrocarbons typified by Freon gas are used.
  • the decomposable foaming agent is a compound that is pre-blended into the resin composition and supplied to the extruder, and the foaming agent decomposes under the cylinder temperature conditions of the extruder to generate a gas such as carbon dioxide gas or nitrogen gas, It may be an inorganic foaming agent or an organic foaming agent, and an organic acid or the like that promotes gas generation may be added in combination.
  • decomposable foaming agent examples include the following compounds.
  • N-nitroso compounds such as N, N′-dinitrosoterephthalamide, N, N′-dinitrosopentaethylenetetramine
  • azodicarbonamide azobisisobutyronitrile
  • azocyclohexylnitrile Azo compounds such as azodiaminobenzene and barium azodicarboxylate
  • Azide compounds such as calcium azide, 4,4'-diphenyldisulfonyl azide, p-toluenesulfonyl azide, and the like.
  • foaming with carbon dioxide is preferred when making an injection foam molded article.
  • Examples of carbon dioxide used at that time include carbon dioxide generated from a carbon dioxide generating chemical foaming agent in addition to carbon dioxide itself.
  • At least an injection foaming resin composition and carbon dioxide and / or a carbon dioxide-generating chemical foaming agent are supplied to an injection molding machine and injected into a mold to be used for foam molding.
  • Carbon dioxide and / or a carbon dioxide generating chemical foaming agent may be contained in the resin component and supplied to the injection molding machine, or may be added after the resin component is supplied to the injection molding machine.
  • the carbon dioxide generating chemical foaming agent is preferably one that is premixed with the resin component and then supplied to an injection molding machine and decomposes in a cylinder to generate carbon dioxide.
  • Examples of such a carbon dioxide generating chemical foaming agent include inorganic chemical foaming agents such as sodium bicarbonate, sodium bicarbonate and ammonium carbonate, and organic systems such as azodicarbonamide and N, N′-dinitrosopentamethylenetetramine. A chemical foaming agent is mentioned.
  • Carbon dioxide includes supercritical carbon dioxide in addition to carbon dioxide gas itself. Carbon dioxide is injected as a gaseous or supercritical fluid into the molten resin component in the cylinder of the injection molding machine, and is dispersed or dissolved. It functions as a foaming agent by being released from pressure after being injected into the mold. To do.
  • a foaming aid such as an organic acid such as citric acid, talc, lithium carbonate, etc.
  • Nucleating agents such as inorganic fine particles may be added.
  • the inorganic chemical foaming agent is used by preparing a masterbatch of an olefin polymer resin having a concentration of 10 to 50% by weight from the viewpoints of handleability, storage stability, and dispersibility in the resin composition for injection foaming. It is preferable.
  • the amount used may be set as appropriate depending on the expansion ratio of the obtained injection foam molded article and the resin temperature at the time of molding. Among them, since it is easy to obtain an injection-foamed molded article having an expansion ratio of 2 times or more and uniform fine bubbles economically, 0.5 parts by weight or more and 20 parts by weight with respect to 100 parts by weight of the resin composition for injection foaming The amount is preferably 1 to 10 parts by weight.
  • the production method of the injection foamed molded product will be specifically described.
  • a known method can be applied to the injection foam molding method itself.
  • the molding conditions may be appropriately adjusted depending on the MFR of the resin composition for injection foaming, the type of foaming agent, the type of molding machine, or the shape of the mold.
  • the resin temperature is 170 to 250 ° C.
  • the mold temperature is 10 to 100 ° C.
  • the molding cycle is 1 to 60 minutes
  • the injection speed is 10 to 300 mm / second
  • the injection pressure is 10 to 200 MPa, etc. It is performed under the conditions of
  • a mold composed of a fixed mold and a movable mold that can be moved forward and backward at any position is used, and after the injection is completed, the movable mold is moved backward.
  • the so-called core back method in which foaming is performed, forms a non-foamed layer on the surface, and the foamed inner layer tends to be uniform fine cells, making it easy to obtain a foam molded article with excellent lightness and impact resistance.
  • a method for retracting the movable mold it may be performed in one step, may be performed in multiple steps of two or more steps, and the speed of retraction may be adjusted as appropriate.
  • the injection-foamed molded article of the present invention preferably has a foaming ratio of 1.8 times or more and 10 times or less, particularly preferably 2 times or more and 4 times or less because of its excellent balance between lightness and rigidity. Moreover, it is preferable that the average cell diameter of a foam layer is 200 micrometers or less. Furthermore, since it becomes an injection foam molded article having excellent rigidity, it is preferable to have a non-foamed layer on the surface of the foamed layer, and the thickness of the non-foamed layer is preferably 300 ⁇ m or less, and more preferably 100 ⁇ m or less. .
  • the load (mN) required for taking-up at the highest draw ratio that did not break was MS 160 .
  • the Mw / Mn of the polyethylene macromonomer was calculated by measuring the weight average molecular weight ( Mw ) and the number average molecular weight ( Mn ), which are standard polyethylene equivalent values, by gel permeation chromatography (GPC). .
  • Propylene polymer resin (Ii) Propylene polymer resin (I) The following were used as propylene polymer resin (I).
  • Ethylene- ⁇ -olefin copolymer (II) As the ethylene- ⁇ -olefin copolymer (II), the one prepared in the following Production Example 1-11 was used.
  • Production Example 1 (1) Preparation of organically modified clay 3 L of industrial alcohol (trade name: Echinen F-3 manufactured by Nippon Alcohol Sales Co., Ltd.) and 3 L of distilled water were placed in a 10 L reactor, and 100 mL of concentrated hydrochloric acid and 585 g of N-methyldioleylamine ( 1.1 mol: Lion Corporation (trade name) Armin M2O) was added and heated to 45 ° C to disperse 1 kg of synthetic hectorite (Rockwood Additives (trade name) Laponite RDS), and then to 60 ° C. The mixture was heated up and stirred for 1 hour while maintaining the temperature.
  • industrial alcohol trade name: Echinen F-3 manufactured by Nippon Alcohol Sales Co., Ltd.
  • 3 L of distilled water 100 mL of concentrated hydrochloric acid and 585 g of N-methyldioleylamine ( 1.1 mol: Lion Corporation (trade name) Armin M2O) was added and heated to 45 ° C to disperse 1 kg of
  • the slurry was separated by filtration, washed twice with 50 L of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 1.5 kg of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 10.5 ⁇ m.
  • catalyst suspension 500 g of the organically modified clay obtained in (1) was suspended in 1.7 liters of hexane, and 6.97 g (20.0 mmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride. ), Diphenylmethylene (1-cyclopentadienyl) (2,7-di-tert-butyl-9-fluorenyl) zirconium dichloride 2.33 g (3.53 mmol) and hexane solution of triisobutylaluminum (0.714 M) 2 .8 liter (2 mol) was added and stirred at room temperature for 6 hours. The supernatant was removed by standing, the catalyst solid was washed twice with hexane, and hexane was added to finally obtain a catalyst slurry of 100 g / L.
  • Polyethylene resin pellets were obtained by melt-kneading and pelletizing the polyethylene resin powder using a 50 mm diameter single screw extruder set at 200 ° C.
  • the density of the obtained polyethylene resin pellets was 950 kg / m 3
  • the MFR was 4.0 g / 10 min
  • the melt tension measured at 160 ° C. was 120 mN.
  • the slurry was separated by filtration, washed twice with 5 L of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 1.3 kg of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 10.5 ⁇ m.
  • Polyethylene resin pellets were obtained by melt-kneading and pelletizing the polyethylene resin powder using a 50 mm diameter single screw extruder set at 200 ° C.
  • the density of the obtained polyethylene resin pellets was 955 kg / m 3
  • the MFR was 4.0 g / 10 min
  • the melt tension measured at 160 ° C. was 150 mN.
  • Production Example 3 In Production Example 1 [(3) Production of Polyethylene Resin], the production was performed in the same manner as in Production Example 1 except that the hydrogen supply amount was changed from 19 NL / hour to 12 NL / hour.
  • the density of the obtained polyethylene resin was 950 kg / m 3
  • the MFR was 2.0 g / 10 min
  • the melt tension measured at 160 ° C. was 170 mN.
  • the slurry was separated by filtration, washed twice with 5 L of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 1.3 kg of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 10.5 ⁇ m.
  • the slurry was filtered, washed twice with 600 mL of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 118 g of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 15 ⁇ m.
  • the slurry was filtered, washed twice with 600 mL of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 122 g of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 15 ⁇ m.
  • Production Example 7 (1) Preparation of organically modified clay A 1 L flask was charged with 300 mL of industrial alcohol (trade name: Echinen F-3, manufactured by Nippon Alcohol Sales Co., Ltd.) and 300 mL of distilled water, 17.5 g of concentrated hydrochloric acid and dimethylbehenylamine (Lion Corporation) 49.4 g (140 mmol) of company (trade name) Armin DM22D) was added and heated to 45 ° C. to disperse 100 g of synthetic hectorite (Rockwood Additives (trade name) Laponite RDS) and then to 60 ° C. The mixture was heated up and stirred for 1 hour while maintaining the temperature.
  • industrial alcohol trade name: Echinen F-3, manufactured by Nippon Alcohol Sales Co., Ltd.
  • the slurry was separated by filtration, washed twice with 600 mL of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 132 g of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 15 ⁇ m.
  • Production Example 8 (1) Preparation of organically modified clay (2) Preparation of catalyst suspension The same procedure as in Production Example 6 was performed. (3) Polymerization 1.2 L of hexane and 1.0 mL of 20% triisobutylaluminum were added to a 2 L autoclave, and 58 mg (corresponding to a solid content of 7.0 mg) of the catalyst suspension obtained in (2) were added. After the temperature increase, 8.3 g of 1-butene was added, and an ethylene / hydrogen mixed gas was continuously supplied so that the partial pressure became 0.85 MPa (concentration of hydrogen in the ethylene / hydrogen mixed gas: 850 ppm).
  • polymer (B6) (activity: 7,000 g / g catalyst).
  • the polymer had an MFR of 3.7 g / 10 min, a density of 939 kg / m 3 , and a melt tension measured at 160 ° C. of 130 mN.
  • Production Example 9 (1) Preparation of organically modified clay (2) Preparation of catalyst suspension The same procedure as in Production Example 6 was performed. (3) Polymerization 1.2 L of hexane, 1.0 mL of 20% triisobutylaluminum in a 2 L autoclave, and 70 mg of catalyst suspension obtained in (2) (equivalent to 8.4 mg of solid content) were added, After the temperature rise, 2.4 g of 1-butene was added, and an ethylene / hydrogen mixed gas was continuously supplied so that the partial pressure became 0.90 MPa (concentration of hydrogen in the ethylene / hydrogen mixed gas: 750 ppm).
  • polymer (B7) (activity: 7,500 g / g catalyst).
  • the polymer had an MFR of 15.5 g / 10 min, a density of 954 kg / m 3 , and a melt tension measured at 160 ° C. of 40 mN.
  • Production Example 10 (1) Preparation of organically modified clay (2) Preparation of catalyst suspension The same procedure as in Production Example 6 was performed. (3) Polymerization 1.2 L of hexane, 1.0 mL of 20% triisobutylaluminum in a 2 L autoclave, and 70 mg of the catalyst suspension obtained in (2) (equivalent to 8.4 mg of solid content) were added, and the mixture was heated to 80 ° C. After the temperature increase, an ethylene / hydrogen mixed gas was continuously supplied so that the partial pressure became 0.90 MPa (concentration of hydrogen in the ethylene / hydrogen mixed gas: 550 ppm).
  • polymer (B8) (activity: 7,000 g / g catalyst).
  • the polymer had an MFR of 5.9 g / 10 min, a density of 959 kg / m 3 , and a melt tension measured at 160 ° C. of 78 mN.
  • the slurry was filtered, washed twice with 600 mL of water at 60 ° C., and dried in an oven at 85 ° C. for 12 hours to obtain 140 g of organically modified clay.
  • This organically modified clay was crushed by a jet mill to have a median diameter of 14 ⁇ m.
  • Olefin polymer resin (III) (Iv) -1
  • the following were used as the low density polyethylene produced by high pressure radical polymerization.
  • Table 1 shows the characteristics of the ethylene- ⁇ -olefin copolymer (II) and the propylene polymer resin (III).
  • the barrel temperature was C1; 180 ° C., C2; 200 ° C., C3; 220 ° C., die head: 220 ° C.
  • the obtained polypropylene resin composition was injection molded under the conditions of a resin temperature of 220 ° C., an injection pressure of 1000 kg / cm 2 , and a mold temperature of 40 ° C. The appearance of the obtained injection molded product was evaluated. The results are shown in Table 2.
  • Examples 2 to 19 A polypropylene resin composition as in Example 1, except that the propylene polymer resin (I), the ethylene- ⁇ -olefin copolymer (II), and the olefin polymer resin (III) were changed to those shown in Table 1. Were prepared and injection molded. The evaluation results are shown in Table 2.
  • Comparative Examples 1-6 A polypropylene resin composition as in Example 1, except that the propylene polymer resin (I), the ethylene- ⁇ -olefin copolymer (II), and the olefin polymer resin (III) were changed to those shown in Table 1. Were prepared and injection molded. The evaluation results are shown in Table 2.
  • the resin composition for injection molding of the present invention has excellent impact strength at low temperatures and is suitable for producing an injection molded product having no flow mark, particularly an injection foam molded product.
  • the resin composition of the present invention can be used for the production of various injection-molded articles, particularly injection-molded articles.
  • injection-molded products include automotive interior applications such as instrument panels and column covers, automotive exterior applications such as fenders, bumpers, side moldings, mudguards, and mirror covers, housings for home appliances, and general miscellaneous goods.
  • automotive interior applications such as instrument panels and column covers
  • automotive exterior applications such as fenders, bumpers, side moldings, mudguards, and mirror covers
  • housings for home appliances and general miscellaneous goods.

Abstract

 ASTM D-1238に準拠して温度230℃で測定したMFRが30g/10分以上200g/10分未満のプロピレン重合体樹脂樹脂(I)70~90重量部、160℃で測定した溶融張力(MS160)が50mNを超え300mN以下であるエチレン-α-オレフィン共重合体(II)5~25重量部、およびJIS K6760に準拠した密度が850kg/m以上930kg/m以下で、160℃で測定した溶融張力(MS160)が30mN未満であるオレフィン重合体樹脂(III)5~25重量部(ただし、(I)+(II)+(III)=100重量部)を含んでなる射出成形用樹脂組成物。この樹脂組成物は、低温での衝撃強度に優れ、フローマークの発生がない射出成形品を与える。

Description

射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法
 本発明は、射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法に関する。
 本発明の射出成形用樹脂組成物は、低温での衝撃強度に優れ、フローマークのない射出成型体、特に射出発泡成形体を製造するのに好適である。
  ポリプロピレン系樹脂は、剛性、硬度および耐熱性などに優れており、射出成形法によって容易に所望形状にすることができ、しかも安価である。そのため、広範な用途、例えば家電製品のハウジング、フィルム、容器、自動車内装、フェンダー、バンパー、サイドモール、マッドガード、ミラーカバーなどの自動車外装、一般雑貨などに広く利用されている。
 このような種々用途に応じて、ポリプロピレン系樹脂にポリエチレンまたはゴム成分、例えば、ポリイソブチレン、ポリブタジエン、非晶性または低結晶性エチレン・プロピレン共重合体(EPR)などを配合し、耐衝撃性を改善したポリプロピレン組成物も知られている。また、ゴム成分の配合により低下する剛性を補うために、ポリプロピレンに、ゴム成分とともにタルクなどの無機充填材を添加したポリプロピレン組成物も知られている(例えば、特許文献1参照。)。
 そして、上記のようなポリプロピレン系樹脂またはポリプロピレン組成物を射出成形する際には、樹脂を溶融状態で射出するので、得られる射出成形品には通常、溶融樹脂の流れ方向に伸びるフローマークが発生している。射出成形品、例えば自動車内外装部品などにおいて、このフローマークが目立つと、外観が劣るのでその商品価値が低下するという課題があった。
 また、近年、自動車の燃費向上、家電製品のユニバーサルデザイン化のための軽量化を目的として、ポリプロピレン系樹脂製品の発泡成形による軽量化の要求が強まってきている。
 また、ポリプロピレン系樹脂の射出成形品の衝撃強度を改良するため、エチレンとプロピレンのブロック共重合体を用いること、また、ポリプロピレン系樹脂にポリエチレンやエチレン-プロピレンゴムを配合することが知られている。ポリプロピレン系樹脂にポリエチレンを配合した組成物、およびポリプロピレン系樹脂にポリエチレンおよびエチレン-プロピレンゴムを配合した組成物は、ポリプロピレン系樹脂の衝撃強度を改良し、さらに衝撃白化、折り曲げ白化を改良するため広く使われている。
 しかし、射出成形品においてはポリプロピレン系樹脂とポリエチレンの流動性の違い、結晶化温度の違いにより成形品表面に樹脂の流れ模様であるフローマークが発生し成形品外観がはなはだしく阻害されているのが現状である。特に、軽量化を目的とした射出発泡成形を実施した場合は、フローマークが顕著になることが問題となっている。
 そして、その外観改良対策として造粒時の混練強化が行われているが、目立った改善は実現されていない。
特開2006-124520号公報(特許請求の範囲)
 本発明は、上記の実情に鑑みてなされたものであり、その目的は、従来使用されていた樹脂組成物の欠点である射出成形品の外観を改良した樹脂組成物を提供することにある。
 本発明者は、上記課題を解決するために鋭意検討した結果、ポリプロピレン系樹脂に、高溶融張力を有するエチレン-α-オレフィン共重合体と低溶融張力を有するポリオレフィン系樹脂を配合した樹脂組成物が、低温での衝撃強度に優れ、フローマークも発生しない射出成形品を与えることを見出し、本発明を完成させるに至った。
 本発明は、ASTM D-1238に準拠して温度230℃で測定したMFRが30g/10分以上200g/10分未満のプロピレン重合体樹脂樹脂(I)70~90重量部、160℃で測定した溶融張力(MS160)が50mNを超え300mN以下であるエチレン-α-オレフィン共重合体(II)5~25重量部、およびJIS K6760に準拠した密度が850kg/m以上930kg/m以下で、160℃で測定した溶融張力(MS160)が30mN未満であるオレフィン重合体樹脂(III)5~25重量部(ただし、(I)+(II)+(III)=100重量部)を含んでなることを特徴とする射出成形用樹脂組成物を提供する。
  本発明は、さらに、上記樹脂組成物からなる射出発泡成形体を提供する。
 本発明は、さらに、上記射出成形用樹脂組成物、さらに二酸化炭素および/または二酸化炭素発生化学発泡剤を射出成形機に供給し、次いで、該射出成形機に付随する金型内にて射出することにより発泡成形を行うことを特徴とする射出発泡成形体の製造方法を提供する。
  本発明の射出成形用樹脂組成物は、低温での衝撃強度に優れ、フローマークのない射出成型体、特に射出発泡成形体を製造するのに好適である。
  以下、本発明に関し、詳細に説明する。
 本発明の射出成形用樹脂組成物は、ASTM D-1238に準拠して温度230℃で測定したMFRが30g/10分以上200g/10分未満のプロピレン重合体樹脂樹脂(I)70~90重量部、160℃で測定した溶融張力(MS160)が50mNを超え300mN以下であるエチレン-α-オレフィン共重合体(II)5~25重量部、およびJIS K6760に準拠した密度が850kg/m以上930kg/m以下で、160℃で測定した溶融張力(MS160)が30mN未満であるオレフィン重合体樹脂(III)5~25重量部(ただし、(I)+(II)+(III)=100重量部)を含んでなることを特徴とする射出成形用樹脂組成物である。
   プロピレン重合体樹脂(I)
  本発明の射出成形用樹脂組成物を構成するプロピレン重合体樹脂(I)としては、プロピレン単独重合体、およびプロピレン-エチレンブロック共重合体が好ましく用いられる。一般に市販されているものでもよい。プロピレン-エチレンブロック共重合体は、例えば、高結晶性ポリプロピレンブロック成分と、ゴム成分とからなり、該ゴム成分が、エチレン単独重合体ブロックと、プロピレンとエチレンとがランダムに共重合したブロックからなるものが好ましい。その中でもゴム成分が5~25重量%であるものが好ましく、5~20重量%であるものが特に好ましい。なお、該高結晶性ポリプロピレン成分は、64℃のn-デカン不溶成分として定義することができ、ゴム成分は、64℃のn-デカン可溶成分として定義することが可能である。
  そして、プロピレン-エチレンブロック共重合体中のゴム成分である64℃のn-デカン可溶成分および高結晶性ポリプロピレン成分である64℃のn-デカン不溶成分は、プロピレン-エチレンブロック共重合体試料5gを、沸騰n-デカン200cc中に5時間浸漬して溶解した後、64℃まで冷却して、析出した固相をG4ガラスフィルターで濾過した後、乾燥して測定した固相重量から可溶成分および不溶成分を算出して求めることができる。
  上記のようなプロピレン-エチレンブロック共重合体成分は、エチレン、プロピレン以外のα-オレフィン、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、4-メチル-1-ペンテンなどのα-オレフィン、ビニルシクロペンテン、ビニルシクロヘキサン、ビニルノルボルナンなどのビニル化合物;酢酸ビニルなどのビニルエステル;無水マレイン酸などの不飽和有機酸またはその誘導体などから導かれる単位を含有していてもよい。
 プロピレン重合体樹脂(I)としては、射出成形時の流動性が優れることから、ASTM D-1238に準拠して温度230℃で測定したメルトフローレート(MFR)が30g/10分以上200g/10分未満のものを用いる。30g/10分以上150g/10分未満のものが好ましい。
 エチレン-α-オレフィン共重合体(II)
 本発明の射出成形用樹脂組成物を構成するエチレン-α-オレフィン共重合体(II)は、160℃で測定した溶融張力(MS160)が50mNを超え300mN以下、好ましくは100mN以上、300mN以下のエチレン-α-オレフィン共重合体である。
 ここで、MS160が50mN以下のエチレン-α-オレフィン共重合体である場合、得られる樹脂組成物は溶融張力が低く、射出発泡成形に供した場合、高発泡倍率を有する成形体を得ることが困難となる。一方、MS160が300mNを越える場合、得られる樹脂組成物は混合性に劣るものとなり、得られる射出成形体はフローマークが発生し、製品外観に劣るものとなる。
 なお、160℃での溶融張力(MS160)は、例えばバレル直径9.55mmの毛管粘度計(東洋精機製作所、(商品名)キャピログラフ)に、長さが8mm,直径が2.095mm、流入角が90°のダイスを装着し、温度160℃、ピストン降下速度10mm/分、延伸比47に設定し、引き取りに必要な荷重(mN)を測定することにより求めることができる。
 そして、エチレン-α-オレフィン共重合体(II)としては、射出発泡成形を行う際に特に高発泡倍率を有する成形体が得られる射出成形用樹脂組成物となることから、以下(A)~(C)の特性を満足するエチレン-α-オレフィン共重合体であることが好ましい。
(A)JIS K6760に準拠して密度勾配管法により測定した密度(d)が920kg/m以上960kg/m以下である。
(B)190℃、2.16kg荷重で測定したメルトフローレート(MFR)が1g/10分以上30g/10分以下である。
(C)160℃で測定した溶融張力(MS160(mN))と、190℃、2.16kg荷重で測定したMFRの関係が、下記式(1)を満足する。
     MS160>230-200×log(MFR)     (1)
 エチレンと共重合されるα-オレフィンとしては、炭素数3~8のα-オレフィンが好ましく用いられ、その具体例としては、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテンなどが挙げられる。エチレンと炭素数3~8のα-オレフィンの共重合比は、エチレン/炭素数3~8のα-オレフィン(モル比)が、1/1~200/1、好ましくは3/1~100/1、さらに好ましくは5/1~50/1である。
 このようなエチレン-α-オレフィン共重合体の好ましい一例としては、炭素数20を超える長鎖分岐を有するエチレン-α-オレフィン共重合体を挙げることができる。そのような重合体は、特表2001-515114号公報に開示されている。代表的な例としては、ポリエチレンマクロモノマーに由来する炭素数20を超える長鎖分岐が、ポリエチレン主鎖に結合した重合体であって、その長鎖分枝またはポリエチレン主鎖の少なくとも一方にα-オレフィンコモノマー単位が共重合により導入されているエチレン-α-オレフィン共重合体を挙げることができる。
 射出成形用樹脂組成物を構成するエチレン-α-オレフィン共重合体(II)の他の好ましい例は、エチレン-α-オレフィン共重合体の製造方法として知られている、例えば、チーグラー・ナッタ触媒、クロム系触媒、メタロセン触媒などの重合触媒による低圧重合法などの方法により得られるエチレンと炭素数3~8のα-オレフィンとの共重合体である。
 特に好ましい上記(A)~(C)を満足するエチレン-α-オレフィン共重合体の製造方法としては、例えば、後述する本願実施例の製造条件そのものを採用することができ、また、条件因子の微調整によって任意に作り分けることが可能である。
 より具体的には、例えばメタロセン化合物として、2つのシクロペンタジエニル基が2種類以上の原子の連鎖からなる架橋基で架橋されているか、もしくは2個以上の原子の連鎖からなる架橋基で架橋されている架橋型ビスシクロペンタジエニルジルコニウム錯体(以下、成分(a)と記す。)と、架橋型(シクロペンタジエニル)(フルオレニル)ジルコニウム錯体および/または架橋型(インデニル)(フルオレニル)ジルコニウム錯体(以下、成分(b)と記す。)を用いたメタロセン触媒の存在下に、エチレンを重合する、またはエチレンと炭素数3~8のα-オレフィンを共重合する方法を用いることができる。
 成分(a)の具体例としては、1,1,3,3-テトラメチルジシロキサン-1,3-ジイル-ビス(シクロペンタジエニル)ジルコニウムジクロライド、1,1-ジメチル-1-シラエタン-1,2-ジイル-ビス(シクロペンタジエニル)ジルコニウムジクロライド、プロパン-1,3-ジイル-ビス(シクロペンタジエニル)ジルコニウムジクロライド、ブタン-1,4-ジイル-ビス(シクロペンタジエニル)ジルコニウムジクロライド、シス-2-ブテン-1,4-ジイル-ビス(シクロペンタジエニル)ジルコニウムジクロライド、1,1,2,2-テトラメチルジシラン-1,2-ジイル-ビス(シクロペンタジエニル)ジルコニウムジクロライドなどのジクロライドおよび上記遷移金属化合物のジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体を例示することができる。
 成分(b)の具体例としては、ジフェニルメチレン(1-シクロペンタジエニル)(9-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2-トリメチルシリル-1-シクロペンタジエニル)(9-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1-シクロペンタジエニル)(2,7-ジメチル-9-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1-シクロペンタジエニル)(2,7-ジ-t-ブチル-9-フルオレニル)ジルコニウムジクロリド、イソプロピリデン(1-シクロペンタジエニル)(9-フルオレニル)ジルコニウムジクロリド、イソプロピリデン(1-シクロペンタジエニル)(2,7-ジ-t-ブチル-9-フルオレニル)ジルコニウムジクロリド、ジフェニルシランジイル(1-シクロペンタジエニル)(9-フルオレニル)ジルコニウムジクロリド、ジメチルシランジイル(1-シクロペンタジエニル)(9-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1-インデニル)(9-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2-フェニル-1-インデニル)(9-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2-フェニル-1-インデニル)(2,7-ジ-t-ブチル-9-フルオレニル)ジルコニウムジクロリドなどのジクロライドおよび上記遷移金属化合物のジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体を例示することができる。
 さらに、上記遷移金属化合物のジルコニウム原子をチタン原子またはハフニウム原子に置換した化合物も例示することもできる。
 また、成分(a)に対する成分(b)の量は、特に制限はなく、0.0001~100倍モルであることが好ましく、特に好ましくは0.001~10倍モルである。
 成分(a)と成分(b)を用いたメタロセン触媒としては、例えば成分(a)と成分(b)と有機アルミニウム化合物(以下、成分(c)と記す。)からなる触媒;成分(a)と成分(b)とアルミノオキサン(以下、成分(d)と記す。)からなる触媒;さらに成分(c)を含んでなる触媒;成分(a)と成分(b)とプロトン酸塩(以下、成分(e)と記す。)、ルイス酸塩(以下、成分(f)と記す。)または金属塩(以下、成分(g)と記す。)から選ばれる少なくとも1種類の塩からなる触媒;さらに成分(c)を含んでなる触媒;、成分(a)と成分(b)と成分(d)と無機酸化物(以下、成分(h)と記す。)からなる触媒;成分(a)と成分(b)と成分(h)と成分(e)、成分(f)、成分(g)から選ばれる少なくとも1種類の塩からなる触媒;さらに成分(c)を含んでなる触媒;成分(a)と成分(b)と粘土鉱物(以下、成分(i)と記す。)と成分(c)からなる触媒;成分(a)と成分(b)と有機化合物で処理された粘土鉱物(以下、成分(j)と記す。)からなる触媒を例示することができ、好ましくは成分(a)と成分(b)と成分(j)からなる触媒を用いることができる。
 ここで、成分(i)および成分(j)として用いることが可能な粘土鉱物としては、微結晶状のケイ酸塩を主成分とする微粒子を挙げることができ、粘土鉱物の大部分は、その構造上の特色として層状構造を成しており、層の中に種々の大きさの負電荷を有することが挙げられる。この点で、シリカやアルミナのような三次元構造を持つ金属酸化物と大きく異なる。これらの粘土鉱物は、一般に層電荷の大きさで、パイロフィライト、カオリナイト、ディッカイトおよびタルク群(化学式当たりの負電荷がおよそ0)、スメクタイト群(化学式当たりの負電荷がおよそ0.25から0.6)、バーミキュライト群(化学式当たりの負電荷がおよそ0.6から0.9)、雲母群(化学式当たりの負電荷がおよそ1)、脆雲母群(化学式当たりの負電荷がおよそ2)に分類されている。ここで示した各群には、それぞれ種々の粘土鉱物が含まれるが、スメクタイト群に属する粘土鉱物としては、モンモリロナイト、バイデライト、サポナイト、ヘクトライトなどが挙げられる。また、上記粘土鉱物は複数混合して用いることもできる。
 成分(j)における有機化合物処理とは、粘土鉱物層間に有機イオンを導入し、イオン複合体を形成することをいう。有機化合物処理で用いられる有機化合物としては、N,N-ジメチル-n-オクタデシルアミン塩酸塩、N,N-ジメチル-n-エイコシルアミン塩酸塩、N,N-ジメチル-n-ドコシルアミン塩酸塩、N,N-ジメチルオレイルアミン塩酸塩、N,N-ジメチルベヘニルアミン塩酸塩、N-メチル-ビス(n-オクタデシル)アミン塩酸塩、N-メチル-ビス(n-エイコシル)アミン塩酸塩、N-メチル-ジオレイルアミン塩酸塩、N-メチル-ジベヘニルアミン塩酸塩、N,N-ジメチルアニリン塩酸塩を例示することができる。
 成分(a)と成分(b)と成分(j)からなる触媒は、有機溶媒中、成分(a)と成分(b)と成分(j)を接触させることによって得ることができる。その方法としては、成分(a)と成分(j)の接触生成物に成分(b)を添加する方法;成分(b)と成分(j)の接触生成物に成分(a)を添加する方法;成分(a)と成分(b)の接触生成物に成分(j)を添加する方法;成分(j)に成分(a)と成分(b)の接触生成物を添加する方法を例示することができる。
 接触溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロペンタンもしくはシクロヘキサンなどの脂肪族炭化水素類、ベンゼン、トルエンもしくはキシレンなどの芳香族炭化水素類、エチルエーテルもしくはn-ブチルエーテルなどのエーテル類;塩化メチレンもしくはクロロホルムなどのハロゲン化炭化水素類、1,4-ジオキサン、アセトニトリルまたはテトラヒドロフランを例示することができる。
 接触温度については、0~200℃の間で選択して処理を行うことが好ましい。
 各成分の使用量は、成分(j)1gあたり成分(a)が、0.0001~100mmol、好ましくは0.001~10mmolである。
 このようにして調製された成分(a)と成分(b)と成分(j)の接触生成物は、洗浄せずに用いても良く、また洗浄した後に用いても良い。また、成分(a)または成分(b)がジハロゲン体の時、さらに成分(c)を添加することが好ましい。また、成分(j)、重合溶媒およびオレフィン中の不純物を除去することを目的に成分(c)を添加することができる。
 本発明の樹脂組成物を構成するエチレン-α-オレフィン共重合体(II)を製造する際には、重合温度-100~120℃で重合することが好ましく、特に生産性を考慮すると20~120℃が好ましく、さらには60~120℃の範囲で行うことが好ましい。また、重合時間は10秒~20時間の範囲が好ましく、重合圧力は常圧~300MPaの範囲で行うことが好ましい。
 重合性単量体として、エチレンと炭素数3~8のα-オレフィンを共重合する場合、エチレンと炭素数3~8のα-オレフィンの供給割合は、エチレン/炭素数3~8のα-オレフィン(モル比)が、1/1~200/1、好ましくは3/1~100/1、さらに好ましくは5/1~50/1である。また、重合時に水素などを用いて分子量の調節を行うことも可能である。重合はバッチ式、半連続式、連続式のいずれの方法でも行うことが可能であり、重合条件を変えて2段階以上に分けて行うことも可能である。また、エチレン系共重合体は、重合終了後に従来既知の方法により重合溶媒から分離回収され、乾燥して得ることができる。
 重合はスラリー状態、溶液状態または気相状態で実施することができ、特に、重合をスラリー状態で行う場合にはパウダー粒子形状の整ったエチレン系共重合体を効率よく、安定的に生産することができる。また、重合に用いる溶媒は一般に用いられる有機溶媒であればいずれでもよく、具体的には例えばベンゼン、トルエン、キシレン、プロパン、イソブタン、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、ガソリンなどが挙げられ、プロピレン、1-ブテン、1-ヘキセン、1-オクテンなどのオレフィン自身を溶媒として用いることもできる。
 オレフィン重合体樹脂(III)
 本発明で用いるJIS K6760に準拠した密度が850kg/m以上930kg/m以下で、160℃で測定した溶融張力(MS160)が30mN未満であるオレフィン重合体樹脂(III)としては、高圧ラジカル重合により製造されたポリオレフィン樹脂、アルケニル芳香族化合物単位含有ゴム、およびエチレン-α-オレフィン系共重合体の範疇に属するものが挙げられる。これらは一種を単独でまたは2種以上を組み合わせて用いることができる。
 オレフィン重合体樹脂のJIS K6760に準拠した密度が850kg/m未満であると得られた成形体にベタツキが発生し、製品外観に問題が発生する。また、密度が930kg/mを超えると射出成形を行った際の金型との密着性が低下するため、外観特性に問題が生じる。MS160が30mN以上であると、射出成形時の樹脂の溶融弾性が強すぎ、金型の再現性が低下するため好ましくない。
 高圧ラジカル重合により製造されたポリオレフィン系樹脂としては、高圧ラジカル重合により製造された低密度ポリエチレンの範疇に属するものが好ましく用いられる。該低密度ポリエチレンは一般的には高圧法低密度ポリエチレンと称されている。その中でも、特に射出発泡成形に供した際に高発泡倍率を有する成形体に好適であることから、ASTM D1238に準拠して温度190℃で測定したメルトフローレートが70g/10分以上300g/10分未満である高圧法低密度ポリエチレンが好ましい。また、該高圧法低密度ポリエチレンとしては、910~925kg/m3の密度を有するものが好ましい。
 エチレン-α-オレフィン系共重合体としては、エチレン-α-オレフィン共重合体およびエチレン-α-オレフィン-非共役ジエン共重合体を挙げることができる。
 エチレン-α-オレフィン共重合体およびエチレン-α-オレフィン-非共役ジエン共重合体におけるα-オレフィンとしては、例えば、炭素数4~20のα-オレフィンが用いられる。炭素数4~20のα-オレフィンとしては、例えば1-ブテン、イソブテン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。好ましくは1-ブテン、1-ヘキセン、1-オクテンから選ばれる1以上である。
 また、エチレン-α-オレフィン-非共役ジエン共重合体における非共役ジエンとしては、例えば、1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエンのような鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネンのような環状非共役ジエン;2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリテン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン、1,3,7-オクタトリエン、1,4,9-デカトリエンのようなトリエンがあげられ、なかでも5-エチリデン-2-ノルボルネンまたはジシクロペンタジエンが好ましい。
 エチレン-α-オレフィン系共重合体におけるエチレン/α-オレフィンの比率(モル比)は1/(0.1~10)である。
 上記エチレン-α-オレフィン系共重合体は、特にプロピレン重合体樹脂に対する相溶性に優れ、得られる射出発泡成形体が耐衝撃性に優れるものとなることから、密度850kg/m以上910kg/m以下を有するものが好ましく、特に870kg/m以上905kg/m以下であることが好ましい。
 また、上記エチレン-α-オレフィン系共重合体は、射出発泡成形体の成形時の加工性が優れ、得られる成形体も衝撃強度に優れるものとなることから、MFRが5~50g/10分であることが好ましく、特に10~40g/10分であることが好ましい。
 上記エチレン-α-オレフィン系共重合体の製造方法としては、公知の重合触媒を用いて、公知の重合方法による製造方法が挙げられる。公知の重合触媒としては、例えば、バナジウム化合物、有機アルミニウム化合物およびハロゲン化エステル化合物からなるチーグラー・ナッタ触媒系や、チタン原子、ジルコニウム原子またはハフニウム原子に少なくとも1種以上のシクロペンタジエニルアニオン骨格を有する基が配位したメタロセン化合物とアルモキサンあるいはホウ素化合物とを組み合わせた触媒系、いわゆるメタロセン触媒系が挙げられる。
 公知の重合方法としては、例えば、炭化水素化合物のような不活性有機溶媒中でエチレンとα-オレフィンを共重合させる方法や、溶媒を用いずにエチレンおよびα-オレフィン中で共重合させる方法が挙げられる。
 上記アルケニル芳香族化合物単位含有ゴムとしては、オレフィン系共重合体もしくは共役ジエンゴムに対し、アルケニル芳香族化合物を重合、反応などにより結合させる方法で製造されるものである。このゴムとしては、例えば、ビニル芳香族化合物重合体ブロックと共役ジエン系重合体ブロックからなるブロック共重合体、前記ブロック共重合体の共役ジエン部分の二重結合が水素添加されているブロック重合体などが挙げられる。ビニル芳香族化合物重合体ブロックと共役ジエン系重合体ブロックからなるブロック共重合体の共役ジエン部分の二重結合が水素添加されているブロック重合体が好ましく、特に、ブロック共重合体の共役ジエン部分の二重結合の80%以上水素添加されているブロック重合体が好ましく、ブロック共重合体の共役ジエン部分の二重結合の85%以上が水素添加されているブロック重合体がより好ましい。
 アルケニル芳香族化合物単位としては、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、p-エチルスチレン、m-エチルスチレン、o-エチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、3-メチル-5-エチルスチレン、p-tert-ブチルスチレン、p-sec-ブチルスチレンなどのアルキルスチレン;スチレン、2-フェニル-1-プロピレン、2-フェニル-1-ブテン等のアルケニルベンゼン;ジビニルベンゼンなどのビスアルケニルベンゼン;1-ビニルナフタレンなどのビニルナフタレン等をあげることができる。これらの中でもスチレンが一般的に使用される。
 上記アルケニル芳香族化合物単位含有ゴムの具体例としては、スチレン-エチレン-ブテン-スチレン系ゴム(SEBS)、スチレン-エチレン-プロピレン-スチレン系ゴム(SEPS)、スチレン-ブタジエン系ゴム(SBR)、スチレン-ブタジエン-スチレン系ゴム(SBS)、スチレン-イソプレン-スチレン系ゴム(SIS)などのブロック共重合体またはこれらのゴム成分を水添したブロック共重合体などが挙げられる。中でも、スチレン-エチレン-ブテン-スチレンゴム(SEBS)を使用することが、ポリプロピレン系樹脂との相溶性が良好であるため好ましい。
 アルケニル芳香族化合物単位含有ゴムの製造方法としては、例えば、オレフィン系共重合体もしくは共役ジエンゴムに対し、アルケニル芳香族化合物を重合、反応などにより結合させる方法が挙げられる。
 アルケニル芳香族化合物単位含有ゴムの230℃のMFRとして、好ましくは1~15g/10分であり、より好ましくは2~13g/10分である。MFRが前記範囲内であると改質ポリプロピレン系樹脂との相溶性が良好となる傾向にある。 
 射出成形用樹脂組成物
 本発明の射出成形用樹脂組成物は、ASTM D-1238に準拠して温度230℃で測定したMFRが30g/10分以上200g/10分未満のプロピレン重合体樹脂(I)70~90重量部、160℃で測定した溶融張力(MS160)が50mNを超え300mN以下であるエチレン-α-オレフィン共重合体(II)5~25重量部、およびJIS K6760に準拠した密度が850kg/m以上930kg/m以下で、160℃で測定した溶融張力(MS160)が30mN未満であるオレフィン重合体樹脂(III)5~25重量部(ただし、(I)+(II)+(III)=100重量部)を含んでなる。
 ここで、プロピレン重合体樹脂(I)が70重量部未満である場合、エチレン-α-オレフィン共重合体(II)が25重量部を超える場合、または、オレフィン重合体樹脂(III)が25重量部を超える場合、得られる樹脂組成物は耐熱性に劣るものとなる。プロピレン重合体樹脂(I)が90重量部を超える場合、またはエチレン-α-オレフィン共重合体(II)が5重量部未満である場合、得られる樹脂組成物は、発泡成形に供した際の発泡性に劣るものとなる。また、オレフィン重合体樹脂(III)が5重量部未満である場合、樹脂組成物は、成形性に劣り、また、得られる成形体は、低温での衝撃強度に劣るとともにフローマークが発生しやすい。
 本発明の射出成形用樹脂組成物は、成形性に優れ、成形品とした際に特にフローマークが発生し難くなることから、ASTM D-1238により、測定温度230℃で測定したMFRが30g/10分以上200g/10分未満であることが好ましい、50g/10分以上200g/10分未満であることが更に好ましい。
 本発明の射出成形用樹脂組成物は、成形性に優れ、成形品とした際に特にフローマークが発生し難くなることから、190℃、巻取り速度10m/分で測定した溶融張力(MS190)が2~30mNの範囲内であることが好ましく、2~20mNの範囲内であることが更に好ましい。
 本発明の樹脂組成物には、本発明の要旨を逸脱しない範囲において、必要に応じて、さらに安定剤、滑剤、難燃剤、分散剤、充填剤、架橋剤、紫外線防止剤、酸化防止剤、着色剤などを含有していてもよい。他の熱可塑性樹脂と混合して用いることもできる。これらの例として、高密度ポリエチレン、直鎖状低密度ポリエチレン(L-LDPE)、低密度ポリエチレン、ポリプロピレン系樹脂、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、ポリスチレン、これらの無水マレイン酸グラフト物などを例示することができる。
 射出発泡成形体およびその製造方法
 上記射出成形用樹脂組成物からなる本発明の射出発泡成形体の製造方法に制限はなく、射出発泡成形法として知られている方法を適応することが可能であり、例えば前記射出発泡用樹脂組成物、さらに公知の各種発泡剤が使用できる。発泡剤は溶剤型発泡剤、分解型発泡剤、あるいはガス状発泡剤のいずれであってもよい。
 溶剤型発泡剤、あるいはガス状発泡剤は、押出機のシリンダー部分から注入して溶融樹脂組成物に吸収ないし溶解させ、シリンダー中で蒸発して発泡剤として機能する物質であって、炭酸ガス、またはプロパン、ブタン、ネオペンタン、ヘプタン、イソヘキサン、ヘキサン、イソヘプタン、ヘプタン等の低沸点脂肪族炭化水素や、あるいはフロンガスで代表される低沸点のフッ素含有炭化水素等が使用される。
 分解型発泡剤は、樹脂組成物に予め配合されて押出機へ供給され、押出機のシリンダー温度条件下で発泡剤が分解して炭酸ガス、窒素ガス等の気体を発生する化合物であって、無機系の発泡剤であっても有機系の発泡剤であってもよく、また気体の発生を促す有機酸等を併用添加してもよい。
 分解型発泡剤の具体例として、次の化合物をあげることができる。
(a)無機系発泡剤:重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム、クエン酸、クエン酸ナトリウムなど。
(b)有機系発泡剤:N,N′-ジニトロソテレフタルアミド、N,N′-ジニトロソペンタチレンテトラミン等のN-ニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p′-オキシビス(ベンゼンスルフェニルヒドラジド)、ジフェニルスルフォン-3,3′-ジスルフォニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4′-ジフェニルジスルフォニルアジド、p-トルエンスルフォニルアジド等のアジド化合物など。
 特に、射出発泡成形体とする際には二酸化炭素により発泡を行うことが好ましい。その際使用する二酸化炭素としては、二酸化炭素そのもの以外に二酸化炭素発生化学発泡剤から発生する二酸化炭素を挙げることができる。
 射出成形発泡体とする際には、少なくとも射出発泡用樹脂組成物と、二酸化炭素および/または二酸化炭素発生化学発泡剤を射出成形機に供給し、金型に射出して発泡成形に供される。二酸化炭素および/または二酸化炭素発生化学発泡剤は、樹脂成分に含有し、射出成形機に供給してもよいし、樹脂成分を射出成形機に供給した後、添加してもよい。
 上記二酸化炭素発生化学発泡剤は、前記樹脂成分と予め混合してから射出成形機に供給し、シリンダ内で分解して二酸化炭素を発生するものが好ましい。このような二酸化炭素発生化学発泡剤としては、例えば重炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウムなどの無機系化学発泡剤や、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミンなどの有機系化学発泡剤が挙げられる。
 二酸化炭素としては、二酸化炭素ガスそのもののほかに超臨界二酸化炭素を挙げることができる。二酸化炭素は、射出成形機のシリンダ内の溶融樹脂成分にガス状または超臨界流体として注入され、分散または溶解されるもので、金型内に射出後、圧力開放されることによって発泡剤として機能する。
 射出発泡成形体の製造方法に際して、射出発泡成形体の気泡を安定的に均一微細にするために必要に応じて、例えばクエン酸のような有機酸などの発泡助剤やタルク、炭酸リチウムのような無機微粒子などの造核剤を添加してもよい。通常、上記無機系化学発泡剤は取扱性、貯蔵安定性、射出発泡用樹脂組成物への分散性の点から、10~50重量%濃度のオレフィン重合体樹脂のマスターバッチを作製し、使用されることが好ましい。
 射出発泡成形体の製造方法において、二酸化炭素発生化学発泡剤により実施する際、その使用量は、得られる射出発泡成形体の発泡倍率と成形時の樹脂温度によって適宜設定すればよい。中でも、経済的に発泡倍率が2倍以上、且つ均一微細気泡の射出発泡成形体が得られやすいことから、射出発泡用樹脂組成物100重量部に対して、0.5重量部以上20重量部以下であることが好ましく、特に1重量部以上10重量部以下であることが好ましい。
 射出発泡成形体の製造方法について具体的に説明する。射出発泡成形法自体は公知の方法が適用できる。射出発泡用樹脂組成物のMFR、発泡剤の種類、成形機の種類あるいは金型の形状によって適宜成形条件を調整すればよい。通常、本発明の射出発泡用樹脂組成物の場合は樹脂温度170~250℃、金型温度10~100℃、成形サイクル1~60分、射出速度10~300mm/秒、射出圧10~200MPaなどの条件で行われる。
 金型内で発泡させる方法としては種々有るが、なかでも固定型と任意の位置に前進および後退が可能な可動型とから構成される金型を使用し、射出完了後、可動型を後退させて発泡させる、いわゆるコアバック法が、表面に非発泡層が形成され、内部の発泡層が均一微細気泡になりやすく、軽量性に優れ、耐衝撃性の良好な発泡成形体が得られやすいことから好ましい。可動型を後退させる方法としては、一段階で行ってもよいし、二段階以上の多段階で行ってもよく、後退させる速度も適宜調整してもよい。
 また、予め金型内を不活性ガスなどで圧力をかけながら射出発泡成形用樹脂組成物を金型内に導入するいわゆるカウンタープレッシャー法を併用することで、スワールマークと呼ばれる表面外観不良を低減することが出来るため好ましい。
 本発明の射出発泡成形体は、軽量性と剛性のバランスに優れることから発泡倍率が、1.8倍以上10倍以下であることが好ましく、特に2倍以上4倍以下であることが好ましい。また、発泡層の平均気泡径200μm以下であることが好ましい。さらに剛性に優れた射出発泡成形体となることから、発泡層の表面に非発泡層を有することが好ましく、該非発泡層の厚みは300μm以下であることが好ましく、100μm以下であることが更に好ましい。
 以下、実施例および比較例により本発明を説明するが、本発明はこれらに限定されるものではない。
(i)重合体、樹脂組成物および成形体の特性の測定および評価は、下記の方法によって行った。
(i)-1 重合体密度
 エチレン-α-オレフィン共重合体(II)およびオレフィン重合体樹脂(III)中のエチレン-α-オレフィン共重合体の密度(d)は、JIS K6760(1995)に準拠して密度勾配管法で測定した。
(i)-2 溶融張力(MS160、MS190
 エチレン-α-オレフィン共重合体(II)および樹脂組成物の溶融張力(MS)は、バレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に、長さが8mm,直径が2.095mm、流入角が90°のダイスを装着し測定した。MS160は、温度を160℃に設定し、ピストン降下速度を10mm/分、巻取り速度10m/分、延伸比を47に設定して測定した。引き取りに必要な荷重(mN)をMS160とした。最大延伸比が47未満の場合は、破断しない最高の延伸比での引き取りに必要な荷重(mN)をMS160とした。また、温度を190℃に設定した他は同様の方法で測定した荷重(mN)をMS190とした。
 (i)-3 M/M
 ポリエチレンマクロモノマーのM/Mは、ゲル・パーミエーション・クロマトグラフィー(GPC)によって標準ポリエチレン換算値である重量平均分子量(M)と数平均分子量(M)を測定することにより算出した。
(i)-4 外観(非発泡体の外観)
 射出成形機にて成形温度210℃、金型温度40℃にて成形された円板(直径10cm×厚さ2mm)の外観(フローマーク)の良否を目視により判断した。
 ◎ フローマークなしあるいは極めて目立ちにくい
 ○ フローマーク目立ちにくい
 △ フローマークやや目立つ
 × フローマーク目立つ
(i)-5 外観(発泡体の外観)
 射出成形用樹脂組成物100質量部と発泡剤[炭酸水素ナトリウム,永和化成工業社製,セルボン]0.9質量部を、混練機にて温度200℃で混練し、得られた組成物を、温度210℃で射出成形(直径10cm×厚さ2mm)し、外観を評価した。
 円板表面外観(フローマーク)の良否を目視により判断した。
 ◎ フローマークなしあるいは極めて目立ちにくい
 ○ フローマーク目立ちにくい
 △ フローマークやや目立つ
 × フローマーク目立つ
(ii)プロピレン重合体樹脂(I)
 プロピレン重合体樹脂(I)として、以下のものを用いた。
 商品名 住友ノーブレン#AX674:住友化学株式会社製、プロピレン-エチレンブロック共重合体、MFR=65g/10分
 商品名 住友ノーブレン#AX574:住友化学株式会社製、プロピレン-エチレンブロック共重合体、MFR=45g/10分
 商品名 住友ノーブレン#AX564:住友化学株式会社製、プロピレン-エチレンブロック共重合体、MFR=28g/10分
(iii)エチレン-α-オレフィン共重合体(II)
 エチレン-α-オレフィン共重合体(II)として、以下の製造例1-11において調製したものを用いた。
 製造例1
(1)有機変性粘土の調製
 10Lの反応器に工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)3Lおよび蒸留水3Lを入れ、濃塩酸100mLおよびN-メチルジオレイルアミン585g(1.1mol:ライオン株式会社製(商品名)アーミンM2O)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を1kg分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水50Lで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより1.5kgの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を10.5μmとした。
(2)触媒懸濁液の調製
 (1)で得られた有機変性粘土500gをヘキサン1.7リットルに懸濁させ、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド6.97g(20.0mmol)、ジフェニルメチレン(1-シクロペンタジエニル)(2,7-ジ-tert-ブチル-9-フルオレニル)ジルコニウムジクロライド2.33g(3.53mmol)およびトリイソブチルアルミニウムのヘキサン溶液(0.714M)2.8リットル(2mol)を添加して室温で6時間撹拌した。静置して上澄み液を除去、ヘキサンで触媒固体を2回洗浄し、ヘキサンを添加して最終的に100g/Lの触媒スラリーを得た。
(3)ポリエチレン系樹脂の製造
 内容積540Lの重合器に、ヘキサンを145kg/時、エチレンを33.0kg/時、ブテン-1を1.0kg/時、水素を19NL/時およびポリマー生産量が30kg/時になるように(2)で調製した触媒懸濁液を連続的に供給し、全圧を3,000kPa、重合器内温を85℃に保ちながら連続的に重合反応を行った。重合器から連続的にスラリー抜き出し、未反応の水素、エチレン、ブテン-1を除去した後、分離、乾燥の工程を経てポリエチレン系樹脂粉末を得た。ポリエチレン系樹脂粉末を200℃に設定した50mm径の単軸押出機を使用して溶融混練し、ペレタイズすることでポリエチレン系樹脂ペレットを得た。得られたポリエチレン系樹脂ペレットの密度は950kg/m、MFRは4.0g/10分、160℃で測定した溶融張力は120mNであった。
 製造例2
(1)有機変性粘土の調製
 10Lの反応器に工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)3Lおよび蒸留水3Lを入れ、濃塩酸100mLおよびN,N-ジメチル-オクタデシルアミン330g(1.1mol:ライオン株式会社製(商品名)アーミンDM18D)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を1kg分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水5Lで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより1.3kgの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を10.5μmとした。
(2)マクロモノマー合成触媒の調製
 (1)で得られた有機変性粘土500gをヘキサン1.7リットルに懸濁させ、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド6.97g(20.0mmol)およびトリイソブチルアルミニウムのヘキサン溶液(0.714M)2.8リットル(2mol)を添加して室温で6時間撹拌した。静置して上澄み液を除去、ヘキサンで触媒固体を2回洗浄し、ヘキサンを添加して最終的に100g/Lの触媒スラリーを得た。
(3)マクロモノマーの合成
 内容積370Lの重合器に、ヘキサンを80kg/時で、エチレンを33kg/時で、ブテン-1を0.3kg/時で、トリイソブチルアルミニウムを液中の濃度が0.19mmol/kgヘキサンとなるように連続的に供給しながら、上記(2)で調製したマクロモノマー合成触媒を、マクロマー合成量が30kg/時になるように連続的に供給した。重合温度は85℃に制御した。重合器から連続的に抜き出したマクロモノマースラリーは、未反応の水素、エチレンを除去した後、内容積540Lの2段目の重合器に移送した。重合器から抜き出したマクロモノマーのMn=9,600であり、Mw/Mn=2.5であった。また、NMRによりマクロモノマーの末端構造を解析したところ、マクロモノマー1mol当たりの末端ビニル量(Z)は0.35molであった。
(4)ポリエチレン系樹脂の製造触媒の調製
 ヘキサン21.2リットルに、トリイソブチルアルミニウムのヘキサン溶液(0.714M)2.8リットル(2.0mol)およびジフェニルメチレン(1-シクロペンタジエニル)(2,7-ジ-tert-ブチル-9-フルオレニル)ジルコニウムジクロライド670g(1.0mol)を添加し、室温で1時間攪拌することによって触媒溶液を調製した。
(5)ポリエチレン系樹脂の製造
 (3)で合成したマクロモノマーが移送された内容積540Lの2段目の重合器に、エチレンを2.5kg/時で、水素を20NL/時で連続的に供給しながら、(4)で調製した触媒溶液を、ポリエチレン系樹脂の製造量が32kg/時になるように連続的に供給した。重合温度は85℃に制御した。得られたポリエチレン系樹脂を含むスラリーを重合器から連続的に抜き出し、未反応の水素、エチレンを除去した後、分離、乾燥の工程を経てポリエチレン系樹脂粉末を得た。ポリエチレン系樹脂粉末を200℃に設定した50mm径の単軸押出機を使用して溶融混練し、ペレタイズすることでポリエチレン系樹脂ペレットを得た。得られたポリエチレン系樹脂ペレットの密度は955kg/m、MFRは4.0g/10分、160℃で測定した溶融張力は150mNであった。 
 製造例3
 製造例1[(3)ポリエチレン系樹脂の製造]において、水素供給量を19NL/時から12NL/時に変えたこと以外は、製造例1と同様に行なった。得られたポリエチレン系樹脂の密度は950kg/m、MFRは2.0g/10分、160℃で測定した溶融張力は170mNであった。
 製造例4
(1)有機変性粘土の調製
 10Lの反応器に工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)3Lおよび蒸留水3Lを入れ、濃塩酸100mLおよびN,N-ジメチル-オクタデシルアミン330g(1.1mol:ライオン株式会社製(商品名)アーミンDM18D)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を1kg分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水5Lで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより1.3kgの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を10.5μmとした。
(2)マクロモノマー合成触媒の調製
 (1)で得られた有機変性粘土500gをヘキサン1.7リットルに懸濁させ、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド6.97g(20.0mmol)およびトリイソブチルアルミニウムのヘキサン溶液(0.714M)2.8リットル(2mol)を添加して室温で6時間撹拌した。静置して上澄み液を除去、ヘキサンで触媒固体を2回洗浄し、ヘキサンを添加して最終的に100g/Lの触媒スラリーを得た。
(3)マクロモノマーの合成
 内容積370Lの重合器に、ヘキサンを80kg/時で、エチレンを33kg/時で、ブテン-1を0.6kg/時で、トリイソブチルアルミニウムを液中の濃度が0.19mmol/kgヘキサンとなるように連続的に供給しながら、(2)で調製したマクロモノマー合成触媒を、マクロマー合成量が30kg/時になるように連続的に供給した。重合温度は85℃に制御した。重合器から連続的に抜き出したマクロモノマースラリーは、未反応の水素、エチレン、ブテン-1を除去した後、内容積540Lの2段目の重合器に移送した。重合器から抜き出したマクロモノマーのMn=9,200であり、Mw/Mn=2.5であった。また、NMRによりマクロモノマーの末端構造を解析したところ、マクロモノマー1mol当たりの末端ビニル量(Z)は0.37molであった。
(4)ポリエチレン系樹脂の製造触媒の調製
 ヘキサン21.2リットルに、トリイソブチルアルミニウムのヘキサン溶液(0.714M)2.8リットル(2.0mol)およびジフェニルメチレン(1-シクロペンタジエニル)(2,7-ジ-tert-ブチル-9-フルオレニル)ジルコニウムジクロライド670g(1.0mol)を添加し、室温で1時間攪拌することによって触媒溶液を調製した。
(5)ポリエチレン系樹脂の製造
 (3)で合成したマクロモノマーが移送された内容積540Lの2段目の重合器に、エチレンを2.5kg/時で、水素を20NL/時で連続的に供給しながら、(4)で調製した触媒溶液を、ポリエチレン系樹脂の製造量が32kg/時になるように連続的に供給した。重合温度は85℃に制御した。得られたポリエチレン系樹脂を含むスラリーを重合器から連続的に抜き出し、未反応の水素、エチレンを除去した後、分離、乾燥の工程を経てポリエチレン系樹脂粉末を得た。得られたポリエチレン系樹脂ペレットの密度は950kg/m、MFRは8.0g/10分、160℃で測定した溶融張力は100mNであった。
 製造例5
(1)有機変性粘土の調製
 1Lのフラスコに工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)300mLおよび蒸留水300mLを入れ、濃塩酸15.0gおよびジメチルベヘニルアミン(ライオン株式会社製(商品名)アーミンDM22D)35.3g(100mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mLで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより118gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を15μmとした。
(2)触媒懸濁液の調製
 温度計と還流管が装着された300mLのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108mL入れ、次いでジメチルシリレン(シクロペンタジエニル)(4,7-ジメチル-1-インデニル)ジルコニウムジクロリドを0.4266g、および20%トリイソブチルアルミニウム142mLを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mLのヘキサンにて5回洗浄後、ヘキサンを200ml加えて触媒懸濁液を得た(固形重量分:9.74wt%)。
(3)重合 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を105mg(固形分13.1mg相当)加え、85℃に昇温後、分圧が0.90MPaになるようにエチレンガスを連続的に供給した。90分経過後に脱圧し、スラリーを濾別後、乾燥することで50.2gのポリマー(B1)を得た(活性:3,800g/g触媒)。このポリマーのMFRは9.9g/10分、密度は956kg/m、160℃で測定した溶融張力は90mNであった。
 製造例6
(1)有機変性粘土の調製
 1Lのフラスコに工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)300mLおよび蒸留水300mLを入れ、濃塩酸12.5gおよびジメチルベヘニルアミン(ライオン株式会社製(商品名)アーミンDM22D)42.4g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mLで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより122gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を15μmとした。
(2)触媒懸濁液の調製
 ジメチルシリレン(シクロペンタジエニル)(4,7-ジメチル-1-インデニル)ジルコニウムジクロリド/0.4266gの代わりに、ジメチルシリレン(シクロペンタジエニル)(2,4,7-トリメチルインデニル)ジルコニウムジクロリド/0.4406gを用いた以外は、実施例5と同様に実施した(固形重量分:10.9wt%)。
(3)重合
 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を86mg(固形分9.4mg相当)加え、65℃に昇温後、1-ブテンを17.5g加え、分圧が0.75MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:610ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで17.9gのポリマー(B2)を得た(活性:1,900g/g触媒)。このポリマーのMFRは5.0g/10分、密度は910kg/m、160℃で測定した溶融聴力は95mNであった。
 製造例7
(1)有機変性粘土の調製
 1Lのフラスコに工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)300mLおよび蒸留水300mLを入れ、濃塩酸17.5gおよびジメチルベヘニルアミン(ライオン株式会社製(商品名)アーミンDM22D)49.4g(140mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mLで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより132gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を15μmとした。
(2)触媒懸濁液の調製
 温度計と還流管が装着された300mLのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108mL入れ、次いでジメチルシリレン(シクロペンタジエニル)(2,4,7-トリメチルインデニル)ジルコニウムジクロリドを0.4406g、および20%トリイソブチルアルミニウム142mLを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mLのヘキサンにて5回洗浄後、ヘキサンを200ml加えて触媒懸濁液を得た(固形重量分:12.4wt%)。
(3)重合
 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を52mg(固形分6.4mg相当)加え、70℃に昇温後、1-ブテンを17.6g加え、分圧が0.80MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:590ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで61.8gのポリマー(B4)を得た(活性:9,700g/g触媒)。このポリマーのMFRは1.6g/10分、密度は930kg/m、160℃で測定した溶融張力は200mNであった。
 製造例8
(1)有機変性粘土の調製
(2)触媒懸濁液の調製
 製造例6と同様に行った。
(3)重合
 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を58mg(固形分7.0mg相当)加え、80℃に昇温後、1-ブテンを8.3g加え、分圧が0.85MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:850ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで49.0gのポリマー(B6)を得た(活性:7,000g/g触媒)。このポリマーのMFRは3.7g/10分、密度は939kg/m、160℃で測定した溶融張力は130mNであった。
 製造例9
(1)有機変性粘土の調製
(2)触媒懸濁液の調製
 製造例6と同様に行った。
(3)重合
 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を70mg(固形分8.4mg相当)加え、80℃に昇温後、1-ブテンを2.4g加え、分圧が0.90MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:750ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで63.0gのポリマー(B7)を得た(活性:7,500g/g触媒)。このポリマーのMFRは15.5g/10分、密度は954kg/m、160℃で測定した溶融張力は40mNであった。
 製造例10
(1)有機変性粘土の調製
(2)触媒懸濁液の調製
 製造例6と同様に行った。
(3)重合
 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を70mg(固形分8.4mg相当)加え、80℃に昇温後、分圧が0.90MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:550ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで58.8gのポリマー(B8)を得た(活性:7,000g/g触媒)。このポリマーのMFRは5.9g/10分、密度は959kg/m、160℃で測定した溶融張力は78mNであった。
 製造例11
(1)有機変性粘土の調製
 1Lのフラスコに工業用アルコール(日本アルコール販売社製(商品名)エキネンF-3)300mLおよび蒸留水300mLを入れ、濃塩酸18.8gおよびジメチルヘキサコシルアミン(MeN(C2653)、常法によって合成)49.1g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mLで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより140gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を14μmとした。
(2)触媒懸濁液の調製
 温度計と還流管が装着された300mLのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108mL入れ、次いでジメチルシリレン(シクロペンタジエニル)(2、4,7-トリメチル-1-インデニル)ジルコニウムジクロリドを0.4406g、および20%トリイソブチルアルミニウム142mLを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mLのヘキサンにて5回洗浄後、ヘキサンを200ml加えて触媒懸濁液を得た(固形重量分:12.0wt%)
(3)重合
 2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を75mg(固形分9.0mg相当)加え、80℃に昇温後、1-ブテンを8.3g加え、分圧が0.85MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:850ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで58.5gのポリマー(B9)を得た(活性:6,500g/g触媒)。このポリマーのMFRは4.0g/10分、密度は941kg/m、160℃で測定した溶融張力は120mNであった。
 さらに、比較目的のため、下記のエチレン-α-オレフィン共重合体を用いた。 商品名 ペトロセン203:東ソー株式会社製、密度=919kg/m、MFR=8.0g/10分、MS160=50mN
商品名 ユメリット4540:宇部丸善ポリエチレン株式会社製、密度=944kg/m、MFR=3.9g/10分、MS160=12mN
(iv)オレフィン重合体樹脂(III)
(iv)-1 高圧ラジカル重合により製造された低密度ポリエチレンとして、以下のものを用いた。
 商品名 ペトロセン209:(東ソー株式会社製、密度=924kg/m、MFR=45g/10分、MS160=3mN)
 商品名 ペトロセン248:(東ソー株式会社製、密度=917kg/m、MFR=58g/10分、MS160=2mN)
 商品名 ペトロセン249:(東ソー株式会社製、密度=916kg/m、MFR=70g/10分、MS160=1mN)
 商品名 ペトロセン353:(東ソー株式会社製、密度=915kg/m、MFR=145g/10分、MS160=測定不可、1mN未満)
(iv)-2 アルケニル芳香族化合物単位含有ゴムおよびエチレン-α-オレフィン系共重合体として、以下のものを用いた。
 TP-1:エチレン-1-オクテン共重合体(ダウケミカル日本製、商品名エンゲージ8401(密度=885kg/m、MFR(190℃)=30g/10分、MS160=3mN))
 TP-2:エチレン-1-オクテン共重合体(ダウケミカル日本製、商品名エンゲージ8402(密度=902kg/m、MFR(190℃)=30g/10分、MS160=3mN))
 TP-3:スチレン-エチレン-ブテン-スチレン系ゴム(SEBS)(旭化成ケミカルズ製、商品名タフテックH1052(密度=890kg/m、MFR(230℃)=13g/10分、MS160=5mN、スチレン含量18重量%))
 TP-4:エチレン-α-オレフィン共重合体、(三井化学株式会社製、商品名タフマーP0680(エチレン-プロピレン共重合体、MFR(190℃)=0.4g/10分、密度=0.870g/cm、MS160=30mN))
上記エチレン-α-オレフィン共重合体(II)および上記プロピレン重合体樹脂(III)の特性を表1に示す。
 実施例1
 プロピレン重合体樹脂(I)(商品名:住友ノーブレン#AX674、プロピレン-エチレンブロック共重合体、MFR=65g/10分、住友化学製)、エチレン-α-オレフィン共重合体(II)(製造例1で調製したポリエチレン系樹脂)、オレフィン重合体樹脂(III)(高圧法低密度ポリエチレン:商品名:ペトロセン248)を80:10:10(重量部)の比率でドライブレンドを行い、これをプラコー社製50mm径単軸押出機にて溶融混合した。バレルの温度はC1;180℃、C2;200℃、C3;220℃、ダイヘッド;220℃とした。得られたポリプロピレン系樹脂組成物を、樹脂温度220℃、射出圧1000kg/cm 、金型温度40℃の条件下で射出成形した。得られた射出成形品の外観を評価した。結果を表2に示す。
 実施例2~19
 プロピレン重合体樹脂(I)、エチレン-α-オレフィン共重合体(II)およびオレフィン重合体樹脂(III)を表1に記載のものに変えた他は実施例1と同様にポリプロピレン系樹脂組成物を調製し、射出成形を行った。評価結果を表2に示す。
 比較例1~6
 プロピレン重合体樹脂(I)、エチレン-α-オレフィン共重合体(II)およびオレフィン重合体樹脂(III)を表1に記載のものに変えた他は実施例1と同様にポリプロピレン系樹脂組成物を調製し、射出成形を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-I000003
本発明の射出成形用樹脂組成物は、低温での衝撃強度に優れ、フローマークのない射出成型品、特に射出発泡成形品を製造するのに好適である。
本発明の樹脂組成物は、種々の射出成形品、特に射出発砲成形品の製造に用いることができる。射出成形品としては、例えば、インパネ、コラムカバーなどの自動車内装用途、フェンダー、バンパー、サイドモール、マッドガード、ミラーカバーなどの自動車外装用途、家電製品の筐体、一般雑貨用途などが挙げられる。上記のうちでも、剛性、耐熱性および耐衝撃性のいずれにも優れ、外観にも優れている特性を有効に活用できる用途、例えばフェンダー、バンパー、サイドモール、マッドガード、ミラーカバーなどの自動車内外装部品として好適に用いることができる。

Claims (13)

  1.  ASTM D-1238に準拠して温度230℃で測定したMFRが30g/10分以上200g/10分未満のプロピレン重合体樹脂樹脂(I)70~90重量部、160℃で測定した溶融張力(MS160)が50mNを超え300mN以下であるエチレン-α-オレフィン共重合体(II)5~25重量部、およびJIS K6760に準拠した密度が850kg/m以上930kg/m以下で、160℃で測定した溶融張力(MS160)が30mN未満であるオレフィン重合体樹脂(III)5~25重量部(ただし、(I)+(II)+(III)=100重量部)を含んでなることを特徴とする射出成形用樹脂組成物。
  2.  ASTM D-1238に準拠して温度230℃で測定したMFRが30g/10分以上200g/10分未満である請求項1に記載の射出成形用樹脂組成物。
  3.  温度190℃、巻取り速度10m/分で測定した溶融張力(MS190)が2~30mNの範囲内である請求項1または2に記載の射出成形用樹脂組成物。
  4.  プロピレン重合体樹脂(I)が、プロピレン単独重合体またはプロピレン-エチレンブロック重合体である請求項1~3のいずれかに記載の射出成形用樹脂組成物。
  5.  エチレン-α-オレフィン共重合体(II)が下記(A)~(C)を満足する請求項1~4のいずれかに記載の射出成形用樹脂組成物。
    (A)JIS K6760に準拠して密度勾配管法により測定した密度(d)が920kg/m以上960kg/m以下である。
    (B)190℃、2.16kg荷重で測定したメルトフローレート(MFR)が1g/10分以上30g/10分以下である。
    (C)160℃で測定した溶融張力(MS160(mN))と、190℃、2.16kg荷重で測定したMFRの関係が、下記式(1)を満足する。 
        MS160>230-200×log(MFR)     (1)
  6.  オレフィン重合体樹脂(III)が、高圧ラジカル重合により製造されたポリオレフィン樹脂、アルケニル芳香族化合物単位含有ゴム、およびエチレン-α-オレフィン系共重合体からなる群から選ばれる少なくとも1種である請求項1~5のいずれかに記載の射出成形用樹脂組成物。
  7.  請求項1~6のいずれかに記載の射出成形用樹脂組成物からなることを特徴とする射出発泡成形体。
  8.  発泡倍率が1.8倍以上10倍以下であり、表面に非発泡層を有し、かつ発泡層の平均気泡径が200μm以下である請求項7に記載の射出成形発泡体。
  9.  請求項1~6のいずれかに記載の射出成形用樹脂組成物、さらに二酸化炭素および/または二酸化炭素発生化学発泡剤を射出成形機に供給し、次いで、該射出成形機に付随する金型内にて射出することにより発泡成形を行うことを特徴とする射出発泡成形体の製造方法。
  10.  二酸化炭素が、二酸化炭素ガスおよび/または超臨界二酸化炭素である請求項9に記載の射出発泡成形体の製造方法。
  11.  二酸化炭素発生化学発泡剤が、重炭酸ナトリウム、炭酸水素ナトリウムおよび炭酸アンモニウムからなる群より選択される発泡剤である請求項9に記載の射出発泡成形体の製造方法。
  12.  射出成形機として、可動型金型を付随する射出成形機を用いる請求項9~11のいずれかに記載の射出成形発泡体の製造方法。
  13.  射出成形機が、カウンタープレッシャー法を併用する射出成形機である請求項9~12のいずれかに記載の射出発泡成形体の製造方法。
PCT/JP2011/072647 2010-09-30 2011-09-30 射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法 WO2012043824A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20137010231A KR20130140680A (ko) 2010-09-30 2011-09-30 사출 성형용 수지 조성물, 사출 발포 성형체 및 사출 발포 성형체의 제조 방법
EP11829377.8A EP2623560A4 (en) 2010-09-30 2011-09-30 RESIN COMPOSITION FOR INJECTION MOLDING METHOD, INJECTION MOLDED FOAM MATERIAL AND METHOD FOR PRODUCING THE SPRAYED FOAMSTUFF ITEM
CN2011800576449A CN103228726A (zh) 2010-09-30 2011-09-30 注射成形用树脂组合物、注射发泡成形体及注射发泡成形体的制造方法
US13/877,095 US20130189512A1 (en) 2010-09-30 2011-09-30 Resin composition for injection molding, injection molded foam article, and method for producing injection molded foam article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222650 2010-09-30
JP2010-222650 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043824A1 true WO2012043824A1 (ja) 2012-04-05

Family

ID=45893261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072647 WO2012043824A1 (ja) 2010-09-30 2011-09-30 射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法

Country Status (6)

Country Link
US (1) US20130189512A1 (ja)
EP (1) EP2623560A4 (ja)
JP (1) JP2012092332A (ja)
KR (1) KR20130140680A (ja)
CN (1) CN103228726A (ja)
WO (1) WO2012043824A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042701A1 (ja) * 2021-09-14 2023-03-23 株式会社プライムポリマー プロピレン系樹脂組成物およびその用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384019B2 (ja) * 2014-07-22 2018-09-05 サンアロマー株式会社 ポリプロピレン系樹脂組成物及びその製造方法
KR101669933B1 (ko) * 2015-03-06 2016-10-28 새한프라텍 주식회사 저온에서의 충격강도를 개선한 용기 및 그 제조방법
JP6855710B2 (ja) * 2016-09-01 2021-04-07 Mcppイノベーション合同会社 熱可塑性エラストマー組成物
CN111019247B (zh) * 2019-12-19 2022-09-13 宁波长阳科技股份有限公司 发泡材料及其制备方法、发泡制品

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762131A (ja) * 1993-08-30 1995-03-07 Polyplastics Co 発泡性樹脂組成物及びポリプロピレン系樹脂発泡体の製造方法
JP2001226514A (ja) * 2000-02-18 2001-08-21 Chisso Corp 発泡成形用ポリプロピレン系樹脂組成物、発泡シートおよびそれを用いた発泡成形体
JP2001515114A (ja) 1997-08-15 2001-09-18 ザ ダウ ケミカル カンパニー 実質的に線状の均一なオレフィン重合体組成物から製造されるフィルム
JP2002120252A (ja) * 2000-02-29 2002-04-23 Grand Polymer Co Ltd 発泡成形品および製造方法
JP2002283382A (ja) * 2001-03-23 2002-10-03 Grand Polymer Co Ltd ポリプロピレン発泡成形体の製造方法および発泡成形体
JP2003528190A (ja) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド 音響的用途のための高い作業温度を有する高分子ポリオレフィン発泡体
JP2004149688A (ja) * 2002-10-31 2004-05-27 Mitsui Chemicals Inc ポリプロピレン樹脂発泡成形体の製造方法および発泡成形体
JP2004300260A (ja) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd ポリプロピレン樹脂発泡成形体の製造方法および発泡成形体
JP2005240025A (ja) * 2004-01-28 2005-09-08 Jsp Corp 肉厚発泡成形体およびその製造方法
JP2006124520A (ja) 2004-10-29 2006-05-18 Prime Polymer:Kk ウエルド外観及びフローマーク外観に優れる射出成形体を与えるポリプロピレン樹脂組成物
JP2007169339A (ja) * 2005-12-19 2007-07-05 Tosoh Corp エチレン系重合体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266392A (en) * 1991-09-16 1993-11-30 Exxon Chemical Patents Inc. Plastomer compatibilized polyethylene/polypropylene blends

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762131A (ja) * 1993-08-30 1995-03-07 Polyplastics Co 発泡性樹脂組成物及びポリプロピレン系樹脂発泡体の製造方法
JP2001515114A (ja) 1997-08-15 2001-09-18 ザ ダウ ケミカル カンパニー 実質的に線状の均一なオレフィン重合体組成物から製造されるフィルム
JP2001226514A (ja) * 2000-02-18 2001-08-21 Chisso Corp 発泡成形用ポリプロピレン系樹脂組成物、発泡シートおよびそれを用いた発泡成形体
JP2002120252A (ja) * 2000-02-29 2002-04-23 Grand Polymer Co Ltd 発泡成形品および製造方法
JP2003528190A (ja) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド 音響的用途のための高い作業温度を有する高分子ポリオレフィン発泡体
JP2002283382A (ja) * 2001-03-23 2002-10-03 Grand Polymer Co Ltd ポリプロピレン発泡成形体の製造方法および発泡成形体
JP2004149688A (ja) * 2002-10-31 2004-05-27 Mitsui Chemicals Inc ポリプロピレン樹脂発泡成形体の製造方法および発泡成形体
JP2004300260A (ja) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd ポリプロピレン樹脂発泡成形体の製造方法および発泡成形体
JP2005240025A (ja) * 2004-01-28 2005-09-08 Jsp Corp 肉厚発泡成形体およびその製造方法
JP2006124520A (ja) 2004-10-29 2006-05-18 Prime Polymer:Kk ウエルド外観及びフローマーク外観に優れる射出成形体を与えるポリプロピレン樹脂組成物
JP2007169339A (ja) * 2005-12-19 2007-07-05 Tosoh Corp エチレン系重合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623560A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042701A1 (ja) * 2021-09-14 2023-03-23 株式会社プライムポリマー プロピレン系樹脂組成物およびその用途

Also Published As

Publication number Publication date
US20130189512A1 (en) 2013-07-25
KR20130140680A (ko) 2013-12-24
JP2012092332A (ja) 2012-05-17
EP2623560A1 (en) 2013-08-07
EP2623560A4 (en) 2014-03-26
CN103228726A (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
WO1999028374A1 (fr) Perles de resine de propylene expansibles et pieces obtenues par expansion dans le moule
WO2012043824A1 (ja) 射出成形用樹脂組成物、射出発泡成形体および射出発泡成形体の製造方法
JP2013001826A (ja) 射出発泡用樹脂組成物、射出発泡成形体及び射出発泡成形体の製造方法
JP2009197046A (ja) 未架橋ポリエチレン押出発泡体
WO2010119883A1 (ja) プロピレン重合体樹脂組成物
JP2013142146A (ja) 発泡剤マスターバッチ、およびそれを使用した発泡成形体
JP2014083770A (ja) 発泡ブロー成形用エチレン系重合体および樹脂組成物
JP2003253084A (ja) ポリプロピレン樹脂組成物およびその発泡成形体
JP2013209552A (ja) ポリプロピレン系樹脂組成物およびその発泡ブロー成形体
JP2013100418A (ja) ポリエチレン系樹脂組成物、ポリエチレン押出発泡シート及びそれからなる容器
JP2012001655A (ja) ポリプロピレン系樹脂組成物、射出発泡成形体およびその製造方法
MX2011006470A (es) Composicion de pliolefina espumada.
JP5261639B2 (ja) 直鎖状ポリプロピレン系樹脂組成物、射出発泡成形体およびその製造方法
JP2009242509A (ja) プロピレン系樹脂組成物およびその成形体
JP2010275499A (ja) ポリプロピレン系樹脂組成物からなる予備発泡粒子、その製造方法及び型内発泡成形体
JP2009299016A (ja) ポリプロピレン系中空発泡成形体
JP5162322B2 (ja) ポリプロピレン系中空発泡成形体
JP2013116973A (ja) 耐湿性射出成形用樹脂組成物並びに耐湿性射出発泡成形体およびその製造方法
JP2013001827A (ja) ポリプロピレン系樹脂組成物および射出発泡成形体の製造方法
JP5443904B2 (ja) エチレン系樹脂射出発泡成形体
JP5765219B2 (ja) 多層ブロー成形品及びそれよりなる自動車内装品
JP3990236B2 (ja) 樹脂発泡体の製造方法および樹脂発泡体
JP2012136598A (ja) 発泡シートおよび容器
JP2009275153A (ja) 未架橋ポリエチレン押出発泡体
JP2003089735A (ja) ポリプロピレン系樹脂組成物および容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13877095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010231

Country of ref document: KR

Kind code of ref document: A