WO2012043685A1 - 感放射線性樹脂組成物、重合体及び化合物 - Google Patents

感放射線性樹脂組成物、重合体及び化合物 Download PDF

Info

Publication number
WO2012043685A1
WO2012043685A1 PCT/JP2011/072298 JP2011072298W WO2012043685A1 WO 2012043685 A1 WO2012043685 A1 WO 2012043685A1 JP 2011072298 W JP2011072298 W JP 2011072298W WO 2012043685 A1 WO2012043685 A1 WO 2012043685A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
carbon atoms
polymer
formula
Prior art date
Application number
PCT/JP2011/072298
Other languages
English (en)
French (fr)
Inventor
憲彦 池田
中村 真一
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201180047387.0A priority Critical patent/CN103140551B/zh
Priority to JP2012536530A priority patent/JP5678963B2/ja
Priority to EP11829238.2A priority patent/EP2623558A4/en
Priority to KR1020137008023A priority patent/KR101875983B1/ko
Publication of WO2012043685A1 publication Critical patent/WO2012043685A1/ja
Priority to US13/853,254 priority patent/US9459532B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/12Esters of phenols or saturated alcohols
    • C08F22/18Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/26Esters of unsaturated alcohols
    • C08F22/28Diallyl maleate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1803C3-(meth)acrylate, e.g. (iso)propyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F224/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Definitions

  • the present invention relates to a radiation sensitive resin composition, a polymer and a compound.
  • the chemical amplification type radiation sensitive resin composition generates an acid in the exposed area by irradiation of far ultraviolet rays represented by a KrF excimer laser or an ArF excimer laser, or an electron beam, and the exposed area is generated by a chemical reaction using the acid as a catalyst. And the dissolution rate of the unexposed area to the developing solution is different to form a resist pattern on the substrate.
  • a composition containing a polymer having an alicyclic hydrocarbon in the backbone that does not have large absorption in the 193 nm region is used ing.
  • a composition containing a polymer having an alicyclic hydrocarbon in the backbone that does not have large absorption in the 193 nm region is used ing.
  • the above-mentioned polymer one containing a structural unit derived from a monomer having a spirolactone structure has been proposed (see Japanese Patent Application Laid-Open Nos. 2002-82441 and 2002-308937). It is said that the development contrast is improved by the radiation-sensitive resin composition containing a polymer using a monomer having such a spirolactone structure.
  • the performance level required for the resist film is further increased today as the resist pattern is further miniaturized, and better resolution performance (eg, high sensitivity and good pattern shape can be obtained)
  • the conventional radiation sensitive resin composition there is room for improvement.
  • the present invention is made based on the above-mentioned circumstances, and a radiation sensitive resin composition excellent in resolution performance, a polymer suitable as a resin component of the radiation sensitive resin composition, and this polymer It is an object of the present invention to provide a compound capable of forming
  • a polymer having a structural unit (I) derived from a compound represented by the following formula (1) and a structural unit (II) derived from a compound represented by the following formula (2) (hereinafter referred to as “ [A] also referred to as "polymer"), It is a radiation sensitive resin composition containing [B] an acid generator, and [C] an organic solvent.
  • R 1 is a (a + 2) -valent organic group which forms a ring structure of 3 to 8 carbon atoms with a carbon atom constituting a lactone ring.
  • R 2 is a fluorine atom, A hydroxyl group or an organic group having 1 to 20 carbon atoms, a is an integer of 0 to 6.
  • R 2 When a is 2 or more, a plurality of R 2 s may be the same or different and they are bonded to each other to form a ring
  • a structure may be formed, provided that at least one of R 1 and R 2 has a hetero atom or a halogen atom, R 3 is a hydrogen atom or a methyl group, and R 4 is a hydrogen atom R 5 is a hydrogen atom, or a C 3-8 cycloalkane together with the carbon atom to which R 4 is bonded or bonded to R 4 It may form a diyl group.
  • R 6 is a hydrogen atom or a methyl group.
  • R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, and the hydrogen atom of this alkyl group may be substituted. Also, R 7 and R 8 may be combined with each other to form a ring structure with the carbon atom to which they are attached. )
  • the [A] polymer since the [A] polymer has structural unit (I) originating in the compound which has a spiro lactone structure, it has the outstanding resolution performance.
  • this structural unit (I) has a polar character because at least one of R 1 and R 2 constituting another ring structure has a hetero atom or a halogen atom. As a result, it is considered that resolution can be effectively enhanced.
  • At least one group of R 1 and R 2 in the above formula (1) has an oxygen atom.
  • R 1 in the above formula (1) is at least selected from the group consisting of -CO-, -COO-, -OCO-, -O-, -NR-, -S-, -SO-, and -SO 2- It is preferable that it is a chain hydrocarbon group of (a + 2) valence containing one kind (wherein R is a hydrogen atom or an organic group having 1 to 20 carbon atoms) in the backbone chain. The resolution can be further enhanced by the fact that this ring structure containing R 1 has such a polar group.
  • a in the said Formula (1) is 0 or 1.
  • the compound represented by the said Formula (2) is represented by following formula (2a) or Formula (2b).
  • formula (2a) and Formula (2b) the definitions of R 6 and R 9 are the same as those of the above formula (2).
  • B is an integer of 1 to 5)
  • acid [A] polymer has a structural unit derived from the compound represented by said Formula (2a) or Formula (2b) as structural unit (II), Since the releasability is improved, resolution performance such as development contrast can be further enhanced.
  • the polymer of the present invention has a structural unit (I) derived from a compound represented by the following formula (1) and a structural unit (II) derived from a compound represented by the following formula (2).
  • R 1 is a (a + 2) -valent organic group which forms a ring structure of 3 to 8 carbon atoms with a carbon atom constituting a lactone ring.
  • R 2 is a fluorine atom, A hydroxyl group or an organic group having 1 to 20 carbon atoms, a is an integer of 0 to 6.
  • R 2 When a is 2 or more, a plurality of R 2 s may be the same or different and they are bonded to each other to form a ring
  • a structure may be formed, provided that at least one of R 1 and R 2 has a hetero atom or a halogen atom, R 3 is a hydrogen atom or a methyl group, and R 4 is a hydrogen atom R 5 is a hydrogen atom, or a C 3-8 cycloalkane together with the carbon atom to which R 4 is bonded or bonded to R 4 It may form a diyl group.
  • R 6 is a hydrogen atom or a methyl group.
  • R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, and the hydrogen atom of this alkyl group may be substituted. Also, R 7 and R 8 may be combined with each other to form a ring structure with the carbon atom to which they are attached. )
  • the said polymer can be used as a component of a radiation sensitive resin composition, for example as mentioned above, This composition can exhibit the outstanding resolution performance.
  • R 1 in the above formula (1) is at least selected from the group consisting of -CO-, -COO-, -OCO-, -O-, -NR-, -S-, -SO-, and -SO 2- It is preferable that it is a chain hydrocarbon group of (a + 2) valence containing one kind (wherein R is a hydrogen atom or an organic group having 1 to 20 carbon atoms) in the backbone chain. According to the said polymer, when this ring structure part has polarity, it can further contribute to the improvement of the resolution at the time of using as a component of a radiation sensitive resin composition.
  • the compound of the present invention is a compound represented by the following formula (1).
  • R 1 is a (a + 2) -valent organic group which forms a ring structure of 3 to 8 carbon atoms with a carbon atom constituting a lactone ring.
  • R 2 is a fluorine atom, A hydroxyl group or an organic group having 1 to 20 carbon atoms, a is an integer of 0 to 6.
  • a plurality of R 2 s may be the same or different and they are bonded to each other to form a ring
  • a structure may be formed, provided that at least one of R 1 and R 2 has a hetero atom or a halogen atom, R 3 is a hydrogen atom or a methyl group, and R 4 is a hydrogen atom R 5 is a hydrogen atom, or a C 3-8 cycloalkane together with the carbon atom to which R 4 is bonded or bonded to R 4 May form a diyl group)
  • the said compound By using the said compound, it is polar in a specific ring structure part, and can easily manufacture the above-mentioned [A] polymer suitable as a component of a radiation sensitive resin composition.
  • R 1 in the above formula (1) is at least selected from the group consisting of -CO-, -COO-, -OCO-, -O-, -NR-, -S-, -SO-, and -SO 2- It is preferable that it is a chain hydrocarbon group of (a + 2) valence containing one kind (wherein R is a hydrogen atom or an organic group having 1 to 20 carbon atoms) in the backbone chain.
  • R is a hydrogen atom or an organic group having 1 to 20 carbon atoms
  • the resolution performance can be enhanced by giving specific polarity to a specific part. Therefore, the said radiation sensitive resin composition enables the further refinement
  • the polymer of the present invention can be suitably used for the above-mentioned radiation sensitive resin composition, and the above-mentioned polymer can be easily manufactured according to the compound of the present invention.
  • the said radiation sensitive resin composition contains the [A] polymer, the [B] acid generator, and the [C] organic solvent, and may contain other arbitrary components. Hereinafter, each component will be described in order.
  • the polymer has a structural unit (I) derived from the compound represented by the above formula (1) and a structural unit (II) derived from the compound represented by the above formula (2).
  • the polymer has this structural unit (I) derived from a compound having a spirolactone structure, and thus the resist film obtained is excellent in adhesion and development contrast.
  • the structural unit (I) is highly polar because at least one of R 1 and R 2 constituting another ring structure has a hetero atom or a halogen atom in addition to the ester bond of the spirolactone ring. As a result, solubility and resolution can be effectively enhanced.
  • the polymer [A] has a structural unit (I) derived from a compound having a spirolactone structure, the rigidity of the obtained resist film is enhanced, and since R 1 is difficult to be detached, the etching resistance is also improved. Excellent.
  • an oxygen atom As said hetero atom, an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a phosphorus atom can be mentioned.
  • a chlorine atom, a fluorine atom, etc. can be mentioned as said halogen atom.
  • R 1 forms a monocyclic ring structure having 3 to 8 carbon atoms together with carbon atoms constituting the lactone ring.
  • the ring structure include, for example, monocyclic, alicyclic structures having 3 to 8 carbon atoms, heterocyclic structures, aromatic ring structures and the like.
  • R 1 is selected from the group consisting of -CO-, -COO-, -OCO-, -O-, -NR-, -S-, -SO-, and -SO 2-
  • the heterocyclic structure is preferably a (a + 2) -valent chain hydrocarbon group containing at least one type (wherein R is a hydrogen atom or an organic group having 1 to 20 carbon atoms) in the backbone chain.
  • the resolution can be further enhanced by the ring structure containing R 1 having such a polar group.
  • the ring structure containing R 1 is a monocyclic alicyclic structure.
  • Examples of the ring structure in which R 1 is a chain hydrocarbon group containing —CO— in the backbone chain include cyclic ketone structures having 3 to 8 carbon atoms.
  • Examples of the ring structure in which R 1 is a chain hydrocarbon group containing —COO— in the backbone chain include lactone structures having 3 to 8 carbon atoms.
  • Examples of the ring structure in which R 1 is a linear hydrocarbon group containing —O— in the backbone chain include cyclic ether structures having 3 to 8 carbon atoms.
  • Examples of the ring structure in which R 1 is a linear hydrocarbon group containing —NR— in the backbone chain include a cyclic amine structure having 3 to 8 carbon atoms.
  • the organic group having 1 to 20 carbon atoms represented by R includes a linear hydrocarbon group having 1 to 20 carbon atoms, an aliphatic cyclic hydrocarbon group, an aromatic hydrocarbon group, an epoxy group, a cyano group and a carboxyl group. Etc. can be mentioned.
  • Examples of the ring structure in which R 1 is a chain hydrocarbon group containing —S— in the backbone chain include a cyclic thioether structure having 3 to 8 carbon atoms.
  • Examples of the ring structure in which R 1 is a chain hydrocarbon group containing —SO— in the backbone chain include a cyclic sulfoxide structure having 3 to 8 carbon atoms, and the like.
  • Examples of the ring structure in which R 1 is a chain hydrocarbon group containing —SO 2 — in the backbone chain include a cyclic sulfone structure having 3 to 8 carbon atoms, and the like.
  • the ring structure formed by R 1 together with the carbon atom constituting the lactone ring one having a 5- or 6-membered ring structure is preferable from the viewpoint of easiness of synthesis.
  • R 2 is a fluorine atom, a hydroxyl group or an organic group having 1 to 20 carbon atoms.
  • the organic group having 1 to 20 carbon atoms as R 2 is a linear hydrocarbon group having 1 to 20 carbon atoms, an aliphatic cyclic hydrocarbon group having 3 to 20 carbon atoms, and an aromatic hydrocarbon having 6 to 20 carbon atoms.
  • R" is a substituent A monovalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, an alkylsilyl group having 1 to 20 carbon atoms, or a heterocyclic structure, and X is —O—, —CO—, NH— or And the like) and the like.
  • Some or all of the hydrogen atoms of the above chain hydrocarbon group, aliphatic cyclic hydrocarbon group and aromatic hydrocarbon group are substituted with halogen atoms such as fluorine atom, cyano group, carboxyl group, hydroxyl group, thiol group, etc. It may be done.
  • alkylsilyl group represented by R ′ ′ trimethylsilyl group, tert-butyldimethylsilyl group and the like can be mentioned.
  • a monovalent group having a heterocyclic structure represented by R ′ ′ a lactone structure And groups having a cyclic ether structure are preferred.
  • organic groups having 1 to 20 carbon atoms of R 2 linear hydrocarbons having 1 to 5 carbon atoms such as methyl, ethyl and propyl, and alkoxy having 1 to 5 carbon atoms such as methoxy and ethoxy.
  • An alkoxycarbonyl group having 1 to 5 carbon atoms such as methoxycarbonyl group and ethoxycarbonyl group
  • an oxacycloalkyloxy group having 2 to 10 carbon atoms such as oxacyclohexyloxy group; methyl group, methoxy group, ethoxycarbonyl group and Particularly preferred is an oxacycloalkyloxy group.
  • a plurality of R 2 may be bonded to each other to form a ring structure, and in this case, R 2 together with R 1 and the carbon atom forming the lactone ring form a norbornane structure, an adamantane structure Form a multi-ring structure such as a structure or form a spiro ring.
  • a in the above formula (1) may be 0 or 1.
  • R 3 is a hydrogen atom or a methyl group. When R 3 is a methyl group, this R 3 may be linked in the cis position or in the trans position.
  • R 4 is a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group and an n-propyl group.
  • R 5 may be a hydrogen atom, or may combine with R 4 to form a cycloalkanediyl group having a carbon number of 3 to 8 together with the carbon atom to which they are attached. Examples of this cycloalkanediyl group include cyclopentandiyl group, cyclohexanediyl group and the like.
  • the hetero atom or the halogen atom which at least one group of R 1 and R 2 has the formulas (1-1) to (1-9) and (1-12) to (1-22) having an oxygen atom And the like are preferred. It is more preferable that the oxygen atom is contained as an ether structure or a hydroxyl group. In particular, it is more preferable that the hetero atom or the halogen atom which R 1 and R 2 have is only an oxygen atom, and it is still more preferable that only one or two oxygen atoms. In addition, R 1 and R 2 preferably have a structure in which the atoms are linked only by a single bond.
  • the content of the structural unit (I) is preferably such that the total amount of structural units (I) with respect to all structural units constituting the [A] polymer is 5 mol% to 70 mol%, and 5 mol % Or more and 50 mol% or less are more preferable.
  • R 3 , R 4 and R 5 are the same as the above formula (1).
  • R 10 is an organic group having 1 to 20 carbon atoms.
  • R 11 and R 12 are each independently an organic group having from 1 to 20 carbon atoms, and a hetero atom or a halogen atom in at least one of R 11 or R 12. Alternatively, R 11 and R 12 may be bonded to each other to form a ring.
  • an alkyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and 1,1-dimethylethyl group are preferable from the viewpoint of handling and availability.
  • R 11 and R 12 in the above-mentioned scheme an organic group having 1 to 20 carbon atoms is preferable. More preferably, it is preferable that R 11 and R 12 form a ring together with adjacent carbon atoms.
  • the polymer includes the structural unit (II) having an acid dissociable group, and therefore can suitably exhibit the resolution performance as a resist of the radiation sensitive resin composition.
  • Examples of the alkyl group having 1 to 6 carbon atoms of R 7 , R 8 and R 9 in the formula (2) representing a compound giving the structural unit (II) include a methyl group, an ethyl group and an n-propyl group. it can.
  • a group which substitutes the hydrogen atom of these alkyl groups a hydroxyl group, a cyano group, a carboxyl group, a halogen atom etc. can be mentioned.
  • Examples of the ring structure formed by R 7 and R 8 together with the carbon bonded to each other include a cycloalkanediyl group having a carbon number of 3 to 10, a norbornanediyl group, an adamantandiyl group and the like.
  • the content of the structural unit (II) is preferably such that the total amount of structural units (II) is 20 mol% or more and 80 mol% or less, with respect to the total structural units constituting the [A] polymer, 25 mol % Or more and 60 mol% or less is more preferable.
  • the content of the structural unit (II) in the above range, the development contrast can be further enhanced.
  • the polymer may have structural units other than structural unit (I) and structural unit (II).
  • structural unit (III) a structural unit having a lactone structure or a cyclic carbonate structure
  • structural unit (I) is not contained in structural unit (III).
  • the adhesion of the resist film and the like can be further enhanced by providing the structural unit (III) to the polymer.
  • R 11 and R ′ each independently represent a hydrogen atom or a methyl group.
  • Each R ′ ′ is independently a hydrogen atom or methoxy.
  • A is each independently a single bond, a methylene group, * -CH 2 COO-, and * -CH 2 CH 2 O-. However, * represents a bonding site with an oxygen atom.
  • Each B independently is a methylene group or an oxygen atom.
  • a and b are each independently an integer of 0 to 2;
  • the content of the structural unit (III) is preferably such that the total amount of structural units (III) with respect to all structural units constituting the [A] polymer is 10 mol% to 60 mol%, and 15 mol % Or more and 50 mol% or less are more preferable.
  • content of structural unit (III) is 10 mol% to 60 mol%, and 15 mol % Or more and 50 mol% or less are more preferable.
  • the adhesiveness of a resist film can be improved more.
  • the total content of the structural unit (I) and the structural unit (III) is 30 mol% or more and 70 mol% or less with respect to all structural units constituting the [A] polymer. If so, the lithography performance as a resist can be further enhanced, which is preferable.
  • the polymer can be synthesized according to a conventional method such as radical polymerization.
  • a solution containing a monomer and a radical initiator is added dropwise to a reaction solvent or a solution containing a monomer to cause a polymerization reaction;
  • a method of causing a polymerization reaction by dropping a solution containing a monomer and a solution containing a radical initiator separately into a reaction solvent or a solution containing a monomer;
  • a plurality of solutions containing each monomer and a solution containing a radical initiator are separately added to a reaction solvent or a solution containing a monomer for synthesis reaction, etc. Is preferred.
  • the amount of monomers in the monomer solution dripped is 30 mol with respect to the monomer total amount used for superposition
  • the reaction temperature in these methods may be appropriately determined depending on the initiator species. Usually, the temperature is 30 ° C. to 180 ° C., 40 ° C. to 160 ° C. is preferable, and 50 ° C. to 140 ° C. is more preferable.
  • the dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, and more preferably 1 hour to 5 hours .
  • the total reaction time including the dropping time also varies depending on the conditions as in the dropping time, but is usually 30 minutes to 8 hours, preferably 45 minutes to 7 hours, and more preferably 1 hour to 6 hours.
  • azobisisobutyronitrile AIBN
  • 2,2′-azobis 4,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • 2,2′-azobis (2) And -cyclopropylpropionitrile 2,2'-azobis (2,4-dimethylvaleronitrile) and the like.
  • AIBN azobisisobutyronitrile
  • 2,2′-azobis (2) And -cyclopropylpropionitrile 2,2'-azobis (2,4-dimethylvaleronitrile) and the like.
  • These initiators can be used alone or in combination of two or more.
  • the polymerization solvent is not limited as long as it is a solvent other than a solvent which inhibits polymerization (nitrobenzene having a polymerization inhibiting effect, a mercapto compound having a chain transfer effect, etc.) and in which the monomer can be dissolved.
  • the polymerization solvent include alcohol solvents, ketone solvents, amide solvents, ester lactone solvents, nitrile solvents and mixed solvents thereof. These solvents can be used alone or in combination of two or more.
  • the resin obtained by the polymerization reaction is preferably recovered by reprecipitation. That is, after completion of the polymerization reaction, the target resin is recovered as powder by charging the polymerization solution into the reprecipitation solvent.
  • the reprecipitation solvent alcohols and alkanes can be used alone or in combination of two or more.
  • low molecular weight components such as monomers and oligomers can be removed by liquid separation operation, column operation, ultrafiltration operation or the like to recover the resin.
  • the Mw of the polymer according to the GPC method is preferably 1,000 to 100,000, more preferably 2,000 to 50,000, and particularly preferably 3,000 to 20,000.
  • [A] By setting the Mw of the polymer in the above range, the polymer has sufficient solubility in a resist solvent to be used as a resist, and the dry etching resistance and adhesion become better.
  • the ratio (Mw / Mn) of Mw to Mn of the polymer (A) is usually 1 to 3, preferably 1 to 2.
  • the acid generator (B) generates an acid upon exposure to light, and the acid dissociates the acid dissociable group present in the polymer (A) with the acid to generate an acid.
  • the acid dissociable group in the polymer [A] is dissociated to change the solubility, so that a resist pattern can be formed by development.
  • Examples of the acid generator include onium salt compounds, sulfoneimide compounds, halogen-containing compounds, diazoketone compounds and the like. Of these [B] acid generators, onium salt compounds are preferred.
  • onium salt compounds examples include sulfonium salts (including tetrahydrothiophenium salts), iodonium salts, phosphonium salts, diazonium salts, pyridinium salts and the like.
  • sulfonium salts including tetrahydrothiophenium salts
  • iodonium salts include phosphonium salts, diazonium salts, pyridinium salts and the like.
  • phosphonium salts including tetrahydrothiophenium salts
  • diazonium salts examples of the onium salt compounds
  • pyridinium salts examples include sulfonium salts (including tetrahydrothiophenium salts), iodonium salts, phosphonium salts, diazonium salts, pyridinium salts and the like.
  • [B] acid generator in the present invention those containing a compound represented by the following formula (B-1) are preferable.
  • R 13 represents a hydrogen atom, a fluorine atom, a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 2 to 11 carbon atoms
  • R 14 is an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or an alkanesulfonyl group having 1 to 10 carbon atoms
  • R 15 and R 16 are each independently substituted It may be an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group.
  • R 15 and R 16 may be mutually bonded to form a divalent group having 2 to 10 carbon atoms.
  • k is an integer of 0 to 2
  • r is an integer of 0 to 10
  • X - is an anion represented by the following formulas (b-1) to (b-3).
  • R 17 is a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 20 carbon atoms
  • X is a single bond, an ether bond, an ester bond or an amide bond
  • Y is It is a hydrogen atom or a fluorine atom, and two or more Y may be the same or different.
  • x is an integer of 1 to 10.
  • R 18 to R 22 are each independently a fluorine-substituted alkyl group having 1 to 10 carbon atoms. However, R 18 and R 19 or two of R 20 to R 22 may be bonded to each other to form a divalent fluorine-substituted alkylene group having 2 to 10 carbon atoms.
  • examples of the alkyl group having 1 to 10 carbon atoms represented by R 13 to R 16 include methyl, ethyl, n-propyl, i-propyl, t-butyl and n -Pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, neopentyl group, 2-ethylhexyl group and the like can be mentioned. Of these, methyl, ethyl, n-butyl and t-butyl are preferred.
  • the alkoxy group having 1 to 10 carbon atoms represented by R 13 and R 14 is preferably a methoxy group, an ethoxy group, an n-propoxy group or an n-butoxy group.
  • the alkoxycarbonyl group having 2 to 11 carbon atoms represented by R 13 is preferably a methoxycarbonyl group, an ethoxycarbonyl group or an n-butoxycarbonyl group.
  • a methanesulfonyl group, an ethanesulfonyl group, an n-propanesulfonyl group, an n-butanesulfonyl group, a cyclopentanesulfonyl group and a cyclohexanesulfonyl group are preferable.
  • r is preferably an integer of 0 to 2.
  • the aromatic hydrocarbon groups represented by R 15 and R 16 a phenyl group, o- tolyl group, m- tolyl group, p- tolyl group, 2,3-dimethylphenyl And the like.
  • a group in which a hydrogen atom of these groups is substituted with at least one group selected from the group of hydroxyl group, carboxyl group, cyano group, nitro group, alkoxyl group, alkoxyalkyl group, alkoxycarbonyl group and alkoxycarbonyloxy group May be
  • alkoxyalkyl group examples include a methoxymethyl group, an ethoxymethyl group, a 2-methoxyethyl group, a 2-ethoxyethyl group, a 1-methoxyethyl group, a 1-ethoxyethyl group, and an alkoxyalkyl group having a cycloalkane structure.
  • the carbon number of these groups is preferably 1 to 20.
  • alkoxycarbonyl group examples include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, n-butoxycarbonyl group, i-propoxycarbonyl group, 2-methylpropoxycarbonyl group, 1-methylpropoxycarbonyl group, t-butoxycarbonyl group Groups, cyclopentyloxycarbonyl group, cyclohexyloxycarbonyl and the like.
  • the carbon number of these groups is preferably 2 to 21.
  • alkoxycarbonyloxy group examples include linear alkoxycarbonyloxy groups such as methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, n-butoxycarbonyloxy group and the like; i-propoxycarbonyloxy group, t-butoxy
  • alkoxycarbonyloxy group examples include branched alkoxycarbonyloxy groups such as carbonyloxy group; cyclopentyloxycarbonyl groups; cycloalkyloxycarbonyl groups such as cyclohexyloxycarbonyl group; and the like.
  • the carbon number of these groups is preferably 2 to 21.
  • the formula (B-1 Preferred is a structure in which a 5- or 6-membered ring is formed with the sulfur atom in the above), and in particular, a structure in which a 5-membered ring (tetrahydrothiophene ring) is formed.
  • triphenylsulfonium cation tri-1-naphthylsulfonium cation, tri-tert-butylphenylsulfonium cation, 4-fluorophenyl-diphenylsulfonium cation, di-4-fluorophenyl- Phenylsulfonium cation, tri-4-fluorophenylsulfonium cation, 4-cyclohexylphenyl-diphenylsulfonium cation, 4-methanesulfonylphenyl-diphenylsulfonium cation, 4-cyclohexanesulfonyl-diphenylsulfonium cation, 1-naphthyldimethylsulfonium cation, 1- Naphthyldiethylsulfonium cation, 1- (4-hydroxynaphthy
  • the hydrocarbon group having 1 to 12 carbon atoms represented by R 17 includes bridged alicyclic carbon such as an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an adamantyl group and the like.
  • a hydrogen group is preferred, among which an adamantyl group is preferred.
  • the fluorine-substituted alkyl group of formula (b-2) and (b-3) in, R 18 ⁇ 1 to 10 carbon atoms represented by R 22, a trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl Groups, nonafluorobutyl group, dodecafluoropentyl group, perfluorooctyl group etc. can be mentioned.
  • a tetrafluoroethylene group, hexafluoro group and the like can be mentioned.
  • examples thereof include a propylene group, an octafluorobutylene group, a decafluoropentylene group and an undecafluorohexylene group.
  • These acid generators can be used alone or in combination of two or more.
  • the content of the [B] acid generator is generally 0 with respect to 100 parts by mass of the [A] polymer from the viewpoint of securing the sensitivity as a resist and the developability. 1 to 30 parts by mass, preferably 0.5 to 20 parts by mass. When the content is less than 0.1 parts by mass, the sensitivity and the developability tend to be lowered. On the other hand, if it exceeds 30 parts by mass, the transparency to radiation tends to be lowered, and it tends to be difficult to obtain a rectangular resist pattern.
  • the organic solvent (C) is not particularly limited as long as it can dissolve at least the polymer (A), the acid generator (B), and other optional components added as desired.
  • organic solvent alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, etc. can be used.
  • alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-Pentanol, tert-Pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethyl nonyl alcohol, sec-tetradecyl alcohol, sec-heptan
  • ether solvents examples include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether and the like.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n- Ketone solvents such as hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methyl cyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone .
  • amide solvents include N, N'-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methyl propionamide, N-methyl pyrrolidone and the like can be mentioned.
  • ester solvent for example, diethyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-acetate -Butyl, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethyl butyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl acetate cyclohexyl, n-nonyl acetate, acetoacetic acid Methyl, acetoacetate ethyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol mono
  • hydrocarbon solvents examples include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane and cyclohexane , Aliphatic hydrocarbon solvents such as methylcyclohexane; Aromatics such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
  • organic solvents may be used alone or in combination of two or more.
  • ⁇ Other optional components As other optional components that may be contained in the radiation sensitive resin composition, for example, a polymer containing a fluorine atom other than the [F] [A] polymer (hereinafter also referred to as "[F] polymer”) , Surfactants, acid diffusion control agents, alicyclic skeleton-containing compounds, sensitizers, crosslinking agents and the like.
  • the said radiation sensitive resin composition can further contain the polymer which has a [F] fluorine atom as a suitable component.
  • the radiation sensitive resin composition contains the [F] polymer, the hydrophobicity of the resist film is improved, and even when immersion exposure is performed, the substance elution suppression is excellent, and the resist film and the immersion liquid Since the receding contact angle with it can be sufficiently high, and effects such as no water droplets remain when scanning exposure is performed at high speed, the usefulness of the radiation sensitive resin composition for immersion exposure is enhanced.
  • the structure of the fluorine-containing resin is not particularly limited. (1) A fluorine-containing resin which is itself insoluble in a developer and becomes alkali-soluble by the action of an acid, and (2) itself is soluble in a developer, an acid A fluorine-containing resin whose alkali solubility increases by the action of (3) itself is insoluble in a developer and becomes alkali-soluble by the action of an alkali, (4) itself is soluble in a developer, The fluorine-containing resin etc. which alkali solubility increases by the effect
  • [F] As an embodiment of the polymer having a fluorine atom, for example, a structure in which a fluorinated alkyl group is bonded to the main chain; A structure in which a fluorinated alkyl group is bonded to the side chain; The structure which the fluorinated alkyl group couple
  • Examples of monomers giving a structure in which a fluorinated alkyl group is bonded to the main chain include, for example, ⁇ -trifluoromethyl acrylate compounds, ⁇ -trifluoromethyl acrylate compounds, ⁇ , ⁇ -trifluoromethyl acrylate compounds, one or more of The compound etc. by which hydrogen of a vinyl part was substituted by fluorinated alkyl groups, such as a trifluoromethyl group, etc. are mentioned.
  • a monomer giving a structure in which a fluorinated alkyl group is bonded to a side chain for example, those in which the side chain of an alicyclic olefin compound such as norbornene is a fluorinated alkyl group or a derivative thereof, acrylic acid or methacrylic acid side
  • the chain may be a fluorinated alkyl group or an ester compound of a derivative thereof, or one or more types of olefin side chains (sites containing no double bond) may be a fluorinated alkyl group or a derivative thereof.
  • Examples of the monomer giving a structure in which a fluorinated alkyl group is bonded to the main chain and side chain include, for example, ⁇ -trifluoromethyl acrylic acid, ⁇ -trifluoromethyl acrylic acid, ⁇ , ⁇ -trifluoromethyl acrylic acid, etc.
  • the side chain of the fluorinated alkyl group or an ester compound of a derivative thereof the side chain of a compound in which hydrogen of one or more vinyl sites is substituted by a fluorinated alkyl group such as a trifluoromethyl group, a fluorinated alkyl group or a derivative thereof And hydrogen bonded to the double bond of one or more types of alicyclic olefin compounds are substituted with a fluorinated alkyl group such as a trifluoromethyl group, and the side chain is a fluorinated alkyl group or a derivative thereof And the like.
  • the alicyclic olefin compound is a compound in which a part of the ring is a double bond.
  • the polymer preferably has a structural unit (f1) represented by the following formula (3) and / or a structural unit (f2) represented by the formula (4), and the structural unit (f1) and You may have "other structural units” other than a structural unit (f2).
  • a structural unit represented by the following formula (3) and / or a structural unit (f2) represented by the formula (4), and the structural unit (f1) and You may have "other structural units” other than a structural unit (f2).
  • the structural unit (f1) is a structural unit represented by the following formula (3).
  • R 23 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 24 is a linear or branched alkyl group having 1 to 6 carbon atoms having a fluorine atom or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having a fluorine atom.
  • a part or all of hydrogen atoms in the above-mentioned alkyl group and alicyclic hydrocarbon group may be substituted.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group and a butyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclopentyl group, a cyclopentylpropyl group, a cyclohexyl group, a cyclohexylmethyl group, a cycloheptyl group, a cyclooctyl group and a cyclooctylmethyl group.
  • Examples of the monomer giving the structural unit (f1) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, perfluoroethyl (meth) acrylate, perfluoro n-propyl ( Meta) acrylate, perfluoro i-propyl (meth) acrylate, perfluoro n-butyl (meth) acrylate, perfluoro i-butyl (meth) acrylate, perfluoro t-butyl (meth) acrylate, perfluorocyclohexyl (meth) Acrylate, 2- (1,1,1,3,3,3-hexafluoro) propyl (meth) acrylate, 1- (2,2,3,3,4,4,5,5-octafluoro) pentyl Meta) acrylate, 1- (2,2,3,3,4,4,5,5-octafluoro)- Sil (meth) acrylate, per
  • Examples of the structural unit (f1) include structural units represented by the following formulas (3-1) and (3-2).
  • R 23 has the same meaning as the above formula (3).
  • the content of the structural unit (f1) is preferably 10 mol% to 70 mol%, more preferably 20 mol% to 60 mol%, based on all structural units constituting the [F] polymer. More preferable.
  • the polymer [F] may have one or more structural units (f1).
  • the structural unit (f2) is a structural unit represented by the following formula (4).
  • R 24 is a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 25 is a (k + 1) -valent linking group.
  • X is a divalent linking group having a fluorine atom.
  • R 26 is a hydrogen atom or a monovalent organic group. k is an integer of 1 to 3. However, when k is 2 or 3, a plurality of X and R 26 may be the same or different.
  • the (k + 1) -valent linking group represented by R 25 is, for example, a linear or branched hydrocarbon group having 1 to 30 carbon atoms, or an alicyclic hydrocarbon having 3 to 30 carbon atoms Group, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or at least one group selected from the group consisting of these groups and an oxygen atom, a sulfur atom, an ether group, an ester group, a carbonyl group, an imino group and an amide group And groups in combination with The (k + 1) -valent linking group may have a substituent.
  • the linear or branched hydrocarbon group having a carbon number of 1 to 30 includes, for example, (k + 1) carbon atoms from hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, decane, icosane, triacontane, etc.
  • Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include monocyclic saturated hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, ethylcyclohexane and the like; Monocyclic unsaturated hydrocarbons such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene and the like; Bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2,6] decane, tricyclo [3.3.1.1 3,7] decane,
  • aromatic hydrocarbon group having 6 to 30 carbon atoms examples include aromatic hydrocarbon groups such as benzene, naphthalene, phenanthrene, anthracene, tetracene, pentacene, pyrene, picene, toluene, xylene, ethylbenzene, mesitylene and cumene (m + 1 And groups other than the individual hydrogen atoms.
  • examples of the divalent linking group having a fluorine atom represented by X include a divalent C 1-20 linear hydrocarbon group having a fluorine atom.
  • examples of X include the structures represented by the following formulas (X-1) to (X-6).
  • X a structure represented by the above formulas (X-1) and (X-2) is preferable.
  • the organic group represented by R 26 is, for example, a linear or branched hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, or 6 carbon atoms -30 aromatic hydrocarbon groups, or groups obtained by combining these groups with one or more groups selected from the group consisting of oxygen atoms, sulfur atoms, ether groups, ester groups, carbonyl groups, imino groups and amide groups Can be mentioned.
  • Examples of the structural unit (f2) include structural units represented by the following formula (4-1) and formula (4-2).
  • R 25 is a divalent linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • R ⁇ 24> , X and R ⁇ 26 > are synonymous with said Formula (4).
  • R 24 , X, R 26 and k are as defined in the above formula (4). However, when k is 2 or 3, a plurality of X and R 26 may be the same or different.
  • Examples of structural units represented by the above formulas (4-1) and (4-2) include the following formulas (4-1-1), (4-1-2) and (4-2-1) The structural unit shown by these is mentioned.
  • R 24 has the same meaning as the above formula (4).
  • Examples of the monomer giving the structural unit (f2) include (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-3-propyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-butyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy) -5-Pentyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-pentyl) ester, (meth) acrylic acid 2- ⁇ [5- (5-) 1 ′, 1 ′, 1′-trifluoro-2′-trifluoromethyl-2′-hydroxy) propyl] bicyclo [2.2.1] heptyl ⁇ ester and the like.
  • the content of the structural unit (f2) is preferably 20 mol% to 80 mol%, more preferably 30 mol% to 70 mol%, based on all structural units constituting the [F] polymer. More preferable.
  • the [F] polymer may have one or more structural units (f2).
  • the polymer may further contain, as “another structural unit,” a structural unit containing a lactone structure to enhance solubility in a developer, or one structural unit containing an alicyclic structure to enhance etching resistance. You may have more than.
  • another structural unit a structural unit containing such a lactone structure and a structural unit containing an alicyclic structure
  • the same structural units as the structural unit having a lactone structure of the polymer [A] can be mentioned.
  • the content of other structural units in the [F] polymer is usually 90 mol% or less, preferably 10 mol% to 80 mol%, relative to the total structural units constituting the [F] polymer. More preferably, mol% to 70 mol%.
  • the [F] polymer may have one or more other structural units.
  • the compounding amount of the polymer [F] is preferably 0.1 parts by mass to 20 parts by mass, more preferably 1 part by mass to 10 parts by mass, and 1 part by mass to 100 parts by mass of the polymer [A]. 7.5 parts by weight are particularly preferred. If the amount is less than 0.1 parts by mass, the effect of containing the [F] polymer may not be sufficient. On the other hand, if it exceeds 20 parts by mass, the water repellency of the resist surface may be too high, which may cause development failure.
  • the content ratio of fluorine atoms in the [F] polymer is preferably larger than that of the [A] polymer.
  • the content ratio of fluorine atoms in the polymer [F] is usually 5% by mass or more, preferably 5% by mass to 50% by mass, more preferably 5% by mass, based on 100% by mass of the total amount of the polymer [F]. It is mass% to 45 mass%.
  • the fluorine atom content can be measured by 13 C-NMR.
  • a photoresist formed by the radiation sensitive resin composition containing the [F] polymer and the [A] polymer as the fluorine atom content ratio in the [F] polymer is larger than that of the [A] polymer It is possible to increase the water repellency of the film surface, and it is not necessary to separately form an upper film at the time of immersion exposure.
  • the difference between the content of fluorine atoms in the polymer [A] and the content of fluorine atoms in the polymer [F] is 1% by mass or more Preferably, it is 3% by mass or more.
  • the polymer can be produced, for example, by polymerizing a monomer corresponding to each predetermined structural unit in a suitable solvent using a radical polymerization initiator.
  • Examples of the solvent used for the above polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin and norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene and the like; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate, methyl propionate and the like; Ketones such as acetone, 2-butan
  • the reaction temperature in the above polymerization is preferably 40 ° C. to 150 ° C. and 50 ° C. to 120 ° C. in general.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the Mw of the polymer [F] is preferably 1,000 to 50,000, more preferably 1,000 to 40,000, and particularly preferably 1,000 to 30,000. [M] If the Mw of the polymer is less than 1,000, a sufficient receding contact angle can not be obtained. On the other hand, when Mw exceeds 50,000, the developability at the time of setting it as a resist tends to fall.
  • the ratio (Mw / Mn) of the Mw of the polymer to the polystyrene-reduced number average molecular weight (Mn) by GPC method is preferably 1 to 5, and more preferably 1 to 4.
  • Surfactants have the effect of improving coatability, striation, developability and the like.
  • the surfactant for example, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol di
  • nonionic surfactants such as stearate, KP341 (Shin-Etsu Chemical Co., Ltd.) under the trade name, Polyflow No. 1 75, the same No.
  • the radiation sensitive resin composition of the present invention may further contain an acid diffusion control agent.
  • the acid diffusion control agent controls the diffusion phenomenon in the resist film of the acid generated from the acid generator upon exposure to light, and suppresses the undesirable chemical reaction in the non-exposed area.
  • the storage stability of the resulting radiation sensitive resin composition is improved, and the resolution as a resist is further improved, and a pull from exposure to heat treatment after exposure is performed.
  • the line width change of the resist pattern due to the change of the placement time (PED) can be suppressed, and a composition extremely excellent in process stability can be obtained.
  • a nitrogen-containing compound having an Nt-alkoxycarbonyl group is preferably used.
  • nitrogen-containing compounds such as a tertiary amine compound, a quaternary ammonium hydroxide compound, and other nitrogen-containing heterocyclic compounds other than the said compound, are used, for example.
  • tertiary amine compounds include triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octyl Tri (cyclo) alkylamines such as amines, cyclohexyldimethylamine, dicyclohexylmethylamine, tricyclohexylamine and the like; Fragrances such as aniline, N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline, 2,6-dimethylaniline, 2,6-diisopropylaniline Family amines; Alkanolamines such as triethanolamine and N, N-di (hydroxyethyl) aniline; N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-te
  • quaternary ammonium hydroxide compounds include tetra-n-propylammonium hydroxide and tetra-n-butylammonium hydroxide.
  • an onium salt compound which is decomposed by exposure to lose basicity as acid diffusion controllability.
  • onium salt compounds include sulfonium salt compounds represented by the following formula (5-1) and iodonium salt compounds represented by the following formula (5-2).
  • R 27 to R 31 in the above formulas (5-1) and (5-2) are each independently a hydrogen atom, an alkyl group, an alkoxyl group, a hydroxyl group or a halogen atom.
  • ANB - are, OH -, R 32 -COO - , R 32 -SO 3 - (.
  • R 32 are each independently an alkyl group, an aryl group, or an alkanol group), or the following formula It represents an anion represented by (6).
  • sulfonium salt compounds and iodonium salt compounds include triphenylsulfonium hydroxide, triphenylsulfonium acetate, triphenylsulfonium salicylate, diphenyl-4-hydroxyphenylsulfonium hydroxide, diphenyl-4-hydroxyphenylsulfonium acetate Diphenyl-4-hydroxyphenylsulfonium salicylate, bis (4-t-butylphenyl) iodonium hydroxide, bis (4-t-butylphenyl) iodonium acetate, bis (4-t-butylphenyl) iodonium hydroxide, Bis (4-t-butylphenyl) iodonium acetate, bis (4-t-butylphenyl) iodonium salicylate, 4-t Butylphenyl-4-hydroxyphenyliodonium hydroxide, 4-t-butylphenyl-4-
  • An acid diffusion control agent can be used individually by 1 type or in mixture of 2 or more types.
  • a content rate of an acid diffusion controlling agent 10 mass parts or less are preferred to 100 mass parts of [A] polymer, and 0.1 mass part or more and 8 mass parts or less are more preferred.
  • the amount used exceeds 10 parts by mass, the sensitivity as a resist tends to decrease.
  • the total amount used exceeds 10 parts by mass, the sensitivity as a resist tends to be significantly reduced.
  • the alicyclic skeleton-containing compound has an effect of improving dry etching resistance, pattern shape, adhesion to a substrate, and the like.
  • Examples of alicyclic skeleton-containing compounds include adamantane derivatives such as 1-adamantane carboxylic acid, 2-adamantanone, and t-butyl 1-adamantane carboxylic acid; Deoxycholates such as t-butyl deoxycholate, t-butoxycarbonylmethyl deoxycholate, 2-ethoxyethyl deoxycholate; Lithocholic acid esters such as t-butyl lithocholic acid, t-butoxycarbonyl methyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 .
  • adamantane derivatives such as 1-adamantane carboxylic acid, 2-adamantanone, and t-butyl 1-adamantane carboxylic acid
  • Deoxycholates such as t-butyl deoxycholate, t-
  • a sensitizer represents the effect
  • sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like. These sensitizers may be used alone or in combination of two or more.
  • the said radiation sensitive resin composition can be prepared by, for example, mixing the [A] polymer, the [B] acid generator and other components in a predetermined ratio in a [C] organic solvent.
  • the composition may be prepared and used in a state of being dissolved or dispersed in an appropriate organic solvent.
  • the radiation sensitive resin composition of the present invention is useful as a chemically amplified resist.
  • the acid dissociable group in the resin component mainly the [A] polymer
  • the carboxyl group mainly the [A] polymer
  • Produces polar groups As a result, the solubility of the exposed portion of the resist in the alkali developer is increased, and the exposed portion is dissolved and removed by the alkali developer to obtain a positive photoresist pattern.
  • the crosslinking reaction between the alkali-soluble resin component and the crosslinking agent easily occurs by the action of the acid generated from the acid generator upon exposure.
  • the solubility of the exposed portion of the resist in the alkali developer decreases, and the unexposed portion is dissolved and removed by the alkali developer to obtain a resist pattern.
  • a negative type photoresist pattern can be obtained by using an organic solvent as a developing solution.
  • the photoresist pattern formation method is generally performed, for example, according to the following procedure. (1) After a photoresist film is formed on a substrate using a radiation sensitive resin composition (step (1)), (2) the formed photoresist film (through an immersion medium as required) Radiation is irradiated through a mask having a predetermined pattern for exposure (step (2)), the substrate (exposed photoresist film) is heated (step (3)), and then (4) developed ( Step (4)): A photoresist pattern can be formed.
  • the radiation sensitive resin composition is applied onto a substrate (silicon wafer, silicon dioxide, wafer coated with an antireflective film, etc.) by appropriate coating means such as spin coating, cast coating, roll coating, etc. Is applied to form a photoresist film.
  • a resin composition solution so that the resist film to be obtained has a predetermined thickness
  • the solvent in the coating film is vaporized by prebaking (PB) to form a resist film.
  • the photoresist film formed in the step (1) is exposed to radiation by irradiation (possibly through an immersion medium such as water).
  • radiation is irradiated through a mask having a predetermined pattern.
  • the radiation is appropriately selected from visible light, ultraviolet light, far ultraviolet light, X-ray, charged particle beam, and the like depending on the line width of the target pattern.
  • far ultraviolet rays represented by an ArF excimer laser (wavelength 193 nm) and a KrF excimer laser (wavelength 248 nm) are preferable, and in particular, an ArF excimer laser is preferable.
  • Step (3) is a step called post exposure bake (PEB) in which the acid generated from the acid generator deprotects the polymer in the exposed part of the photoresist film in step (2). There is a difference in the solubility of the exposed portion (exposed portion) and the non-exposed portion (unexposed portion) in the alkali developer.
  • PEB is normally selected and implemented in the range of 50 ° C. to 180 ° C.
  • the exposed photoresist film is developed with a developer to form a predetermined photoresist pattern.
  • washing with water and drying are common.
  • a developing solution for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia water, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine Ethyldimethylamine, triethanolamine, tetramethyl ammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3. 0]
  • An aqueous alkaline solution in which at least one alkaline compound such as 5-nonene is dissolved is preferable.
  • an immersion liquid-insoluble protective film for immersion is applied onto the resist film.
  • a solvent peelable protective film see, for example, JP-A-2006-227632
  • Any of the liquid peelable protective films see, for example, WO 2005-069076 and WO 2006-035790 may be used.
  • a developer peeling type liquid immersion protective film it is preferable to use.
  • the resist pattern obtained in this manner has a high resolution and is suitable for fine processing to which a lithography technique is applied.
  • the polymer of the present invention is a polymer having a structural unit (I) derived from the compound represented by the above formula (1) and a structural unit (II) derived from the compound represented by the above formula (2) It is.
  • the said polymer is the same as that of the [A] polymer contained in the radiation sensitive resin composition of this invention.
  • the said polymer can be used as a component of a radiation sensitive resin composition, as mentioned above, for example, and at this time, the resolution performance etc. of this composition can be raised.
  • R 1 in the above formula (1) is at least selected from the group consisting of -CO-, -COO-, -OCO-, -O-, -NR-, -S-, -SO-, and -SO 2- It is preferable that it is a chain hydrocarbon group of (a + 2) valence containing one kind (wherein R is a hydrogen atom or an organic group having 1 to 20 carbon atoms) in the backbone chain. According to the said polymer, it can further contribute to the improvement of the resolution at the time of using as a component of a radiation sensitive resin composition, etc. by using polarity for this ring structure part.
  • the compound of the present invention is a compound represented by the above formula (1).
  • the said compound is also the same as that mentioned above as a monomer which gives the structural unit of a [A] polymer.
  • it is polar in a specific ring structure part, and can easily manufacture the above-mentioned [A] polymer suitable as a component of a radiation sensitive resin composition.
  • R 1 in the above formula (1) is a group consisting of —CO—, —COO—, —OCO—, —O—, —NR—, —S—, —SO—, and —SO 2 — It is preferable that the (a + 2) -valent chain hydrocarbon group contains in the backbone chain at least one selected from (wherein R is a hydrogen atom or an organic group having 1 to 20 carbon atoms).
  • R is a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • ⁇ Measurement method> [Weight average molecular weight (Mw) and number average molecular weight (Mn)] Using a Tosoh GPC column (trade name “G2000HXL” 2 pieces, trade name “G3000 HXL” 1 piece, trade name “G4000 HXL” 1 piece), flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, column temperature : Measured by gel permeation chromatography (GPC) using monodispersed polystyrene as a standard under analysis conditions of 40.degree. Moreover, dispersion degree (Mw / Mn) was computed from the measurement result of Mw and Mn.
  • GPC gel permeation chromatography
  • Example 2 Synthesis of Compound (1-9)
  • a 100 mL three-necked reactor equipped with a dropping funnel and a condenser and dried 1.31 g (20 mmol) of zinc powder (Wako Pure Chemical Industries, Wako Special Grade) was added Under argon atmosphere, 20 mL of THF was added, 0.2 mL (1.6 mmol) of chlorotrimethylsilane was added while stirring with a magnetic stirrer, and the mixture was stirred at 20-25 ° C. for 30 minutes. Thereto was added a solution of 2.34 g (15 mmol) of ethyl cyclopentanone-2-carboxylate dissolved in 4 mL of THF.
  • Example 3 Synthesis of Compound (1-12) 13.4 g (220 mmol) of zinc powder (Wako Pure Chemical Industries, Wako Special Grade) was added to a 1 L three-necked reactor equipped with a dropping funnel and a condenser and dried. Under nitrogen atmosphere, 200 mL of THF was added, 1.9 mL (15 mmol) of chlorotrimethylsilane was added while stirring with a magnetic stirrer, and the mixture was stirred at 20-25 ° C. for 30 minutes. Thereto, a solution of 25.0 g (195 mmol) of 2-methoxycyclohexanone in 30 mL of THF was added.
  • Example 4 Synthesis of Compound (1-14) 5.0 g (22 mmol) of 2-hydroxycyclohexanone dimer was added to a 300 mL two-necked reactor, and 80 ml of methylene chloride was added thereto to give magne Stir with a tick stirrer to dissolve. Thereto, 6.0 g (88 mmol) of imidazole and 0.5 g (4.4 mmol) of dimethylaminopyridine were added. Thereto, 9.9 g (66 mmol) of tert-butyldimethylsilyl chloride was added and allowed to react at room temperature for 6 hours. Next, an aqueous ammonium chloride solution was added to separate the layers.
  • the obtained organic layer was washed successively with water and saturated brine, and then the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. Then, purification was performed using a short column to obtain 9.5 g of a crude product.
  • 2.0 g (30 mmol) of zinc powder (Wako Pure Chemical Industries, Wako Special Grade) was added to a dried 200 mL three-necked reactor equipped with a dropping funnel, and made into a nitrogen atmosphere, and then 30 mL of tetrahydrofuran (THF)
  • THF tetrahydrofuran
  • 0.6 mL (5 mmol) of chlorotrimethylsilane was added and stirred at 20 to 25 ° C. for 10 minutes.
  • Example 5 Synthesis of Compound (1-13) To a dried 300 mL three-necked reactor, 4.0 g (13.5 mmol) of Compound (1-14) was added, and 100 mL of tetrahydrofuran (THF) was added. While stirring with a magnetic stirrer, 10.6 g (40.5 mmol) of tetrabutylammonium fluoride was added and stirred at room temperature for 2 hours. Next, 100 mL of ethyl acetate was added, and the organic layer was washed successively with 1 M aqueous hydrochloric acid, water and saturated brine. The organic layer was then dried over magnesium sulfate.
  • THF tetrahydrofuran
  • Example 6 Synthesis of Compound (1-15) 11.1 g (170 mmol) of zinc powder (Wako Pure Chemical Industries, Wako Special Grade) was added to a 1 L three-necked reactor equipped with a dropping funnel and a condenser and dried. Under nitrogen atmosphere, 100 mL of tetrahydrofuran (THF) was added, and 1.3 mL (10 mmol) of chlorotrimethylsilane was added while stirring with a magnetic stirrer, and the mixture was stirred at 20 to 25 ° C. for 30 minutes. Thereto was added a solution of 23.4 g (150 mmol) of 1,4-cyclohexanedione monoethylene ketal in 100 mL of THF.
  • THF tetrahydrofuran
  • the reactor was cooled to 0 ° C., and a solution in which 1913 g of 7% aqueous sodium hypochlorite solution and 450 mL of saturated aqueous sodium hydrogen carbonate solution were mixed was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was stirred at 0 ° C. for 30 minutes, then 100 mL of saturated aqueous sodium thiosulfate solution was added to stop the reaction, and the layers were separated. The obtained organic layer was washed with saturated brine, dried over magnesium sulfate and concentrated under reduced pressure to obtain 214 g (1.07 mol, 71% yield) of (Fr-B).
  • 1 H-NMR data is shown below.
  • Example 8 Synthesis of (1-17) 200 g (751 mol) of the compound (1-71) obtained above was added to a 1 L reactor, and while stirring with a magnetic stirrer, concentrated hydrochloric acid 1.0 g The reaction mixture was added with hydrochloric acid-methanol solution diluted with 200 ml of methanol and stirred at 20-25 ° C. for 30 minutes. After confirming the disappearance of the raw materials by gas chromatography, sodium hydrogen carbonate powder was gradually added to neutralize the solution until the pH of the solution reached 7. After filtering out the salt precipitated upon neutralization, 500 ml of ethyl acetate is added, the organic solvent is removed by an evaporator, and the product is concentrated. This concentration operation was repeated twice, and then purified by column chromatography to obtain 117 g (yield 85.5%, purity 99%) of a compound (1-17) represented by the formula (1-17) .
  • 1 H-NMR data is shown below.
  • Example 9 Synthesis of Polymer (A-1) 20.0 g (50 mol%) of Compound (M-1) and 20.0 g (50 mol%) of Compound (1-1) were dissolved in 80 g of 2-butanone Then, 1.95 g of AIBN was added to prepare a monomer solution. A 200 mL three-necked flask containing 40 g of 2-butanone was purged with nitrogen for 30 minutes, heated to 80 ° C. with stirring, and the prepared monomer solution was added dropwise over 3 hours using a dropping funnel. The start of dropwise addition was taken as the start time of the polymerization reaction, and the polymerization reaction was performed for 6 hours.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or less.
  • the cooled polymerization solution was charged into 800 g of methanol, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 160 g of methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (resin (A-1)) (20.8 g, 52% yield).
  • Mw of the obtained polymer (A-1) was 5,730, and Mw / Mn was 1.58.
  • Example 10 to 30 and Comparative Synthesis Example 1 Synthesis of Polymers (A-2) to (A-22) and Polymer (a-1) Except for the use of monomers of the types and amounts shown in Table 1 The same as in Example 9 to obtain each of the polymers (A-2) to (A-22) of Examples 10 to 30 and the polymer (a-1) of Comparative Synthesis Example 1. The yield, Mw and Mw / Mn of each of the obtained polymers are shown in Table 1.
  • Example 31 Synthesis of Polymer (A-23) 15.5 g (50 mol%) of Compound (M-1) and 24.5 g (50 mol%) of Compound (1-71) were dissolved in 80 g of 2-butanone Then, 1.51 g of AIBN was added to prepare a monomer solution. A 200 mL three-necked flask containing 40 g of 2-butanone was purged with nitrogen for 30 minutes, heated to 80 ° C. with stirring, and the prepared monomer solution was added dropwise over 3 hours using a dropping funnel. The start of dropwise addition was taken as the start time of the polymerization reaction, and the polymerization reaction was performed for 6 hours.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or less.
  • the cooled polymerization solution was charged into 800 g of methanol, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 160 g of methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (resin (A-23)) (27.2 g, Yield 68%).
  • Mw of the obtained polymer (A-23) was 5,870, and Mw / Mn was 1.53.
  • Example 32 to 34 Synthesis of polymers (A-24) to (A-26) Example 32 to Example 31 in the same manner as Example 31 except that the types and amounts of monomers shown in Table 2 were used. 34 polymers (A-24) to (A-26) were obtained.
  • Example 35 Synthesis of polymer (A-27) 19.1 g (50 mol%) of compound (M-3), 3.6 g (10 mol%) of compound (1-17) and compound (M-16) 17. 3 g (40 mol%) was dissolved in 80 g of 2-butanone, and 1.60 g of AIBN was added to prepare a monomer solution. A 300 mL three-necked flask containing 40 g of 2-butanone was purged with nitrogen for 30 minutes, heated to 80 ° C. with stirring, and the prepared monomer solution was added dropwise over 3 hours using a dropping funnel. The start of dropwise addition was taken as the start time of the polymerization reaction, and the polymerization reaction was performed for 6 hours.
  • the polymerization solution was water-cooled and cooled to 30 ° C. or less.
  • the filtered white powder was washed twice with 160 g of methanol, filtered and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (resin (A-23)) (29.6 g, Yield 74%).
  • Mw of the obtained polymer (A-27) was 6,210, and Mw / Mn was 1.57.
  • Example 36 Synthesis of Polymer (A-28) Each polymer (A-28) of Example 36 in the same manner as in Example 35 except that the type and amount of monomer shown in Table 2 were used. I got
  • This polymer had Mw of 5,800, Mw / Mn of 1.41, and a fluorine atom content of 9.6% by mass.
  • This polymer had Mw of 5,700, Mw / Mn of 1.42, and a fluorine atom content of 9.5% by mass.
  • This polymer had Mw of 5,900, Mw / Mn of 1.40, and a fluorine atom content of 9.5% by mass.
  • Example 37 100 parts by mass of the polymer (A-1) obtained in Synthesis Example 1, 10 parts by mass of the acid generator (B-1), 1,820 parts by mass of the organic solvent (C-1), 780 parts by mass (C-2) And 30 parts by mass of (C-3) and 1.2 parts by mass of acid diffusion control agent (D-1), and the resulting mixed solution is filtered through a filter with a pore diameter of 0.20 ⁇ m to obtain a radiation sensitive resin composition A substance (J-1) was prepared.
  • Example 38 to 70 and Comparative Example 1 The sensitivities of the radiation sensitive resin compositions (J-2) to (J-34) of each of Examples 38 to 70 and Comparative Example 1 were the same as in Example 37 except that the formulation was changed to that shown in Table 3. A radioactive resin composition (j-1) was prepared.
  • PEB post-baking
  • the resist was developed with a 2.38% aqueous solution of TMAH, washed with water and dried to form a positive resist pattern.
  • the minimum exposure amount at which the pattern of 45 nm Line 90 nm Pitch resolves was defined as the sensitivity (mJ / cm 2 ).
  • a scanning electron microscope (CG-4000, Hitachi High-Technologies Corporation) was used for measurement. This pattern formation method is referred to as (P-3).
  • Example 71 The radiation-sensitive resin composition (J-1) was used to form a pattern by the pattern forming method (P-1). When the exposed coating film was observed with a scanning electron microscope, it was confirmed that 90 nm Line 180 nm Pitch could be formed at an exposure amount of 53 mJ.
  • Comparative Example 2 When the coating film exposed by the pattern formation method (P-1) is observed with a scanning electron microscope using the radiation sensitive resin composition (j-1), the upper part of the pattern is reached before the exposure dose at which the 90 nm Line is formed is reached. The contrast at the bottom of the pattern was lost, and no pattern could be formed.
  • Comparative Example 3 When the coating film exposed by the pattern formation method (P-2) is observed with a scanning electron microscope using the radiation sensitive resin composition (j-1), the upper portion of the pattern is reached before reaching the exposure dose at which 45 nm Line is formed. And the lower part of the contrast was lost and no pattern could be formed.
  • the radiation sensitive resin composition of the present invention is excellent in sensitivity and resolution performance, and can be suitably used as a photoresist material. Further, the composition can also be suitably used in the immersion exposure method and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Furan Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、[A]下記式(1)で表される化合物に由来する構造単位(I)と、下記式(2)で表される化合物に由来する構造単位(II)とを有する重合体、[B]酸発生体、及び[C]有機溶媒を含む感放射線性樹脂組成物である。式(1)中、Rはラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する。Rはフッ素原子、水酸基又は炭素数1~20の有機基である。aは0~6の整数である。aが2以上の場合、複数のRは同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。

Description

感放射線性樹脂組成物、重合体及び化合物
 本発明は、感放射線性樹脂組成物、重合体及び化合物に関する。
 化学増幅型の感放射線性樹脂組成物は、KrFエキシマレーザーやArFエキシマレーザーに代表される遠紫外線や電子線の照射により露光部に酸を生成させ、この酸を触媒とする化学反応により露光部及び未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる。
 より短波長で微細加工が可能になるArFエキシマレーザーを光源とするリソグラフィー材料としては、例えば193nm領域に大きな吸収を有しない脂環式炭化水素を骨格中に有する重合体を含む組成物が用いられている。上記重合体としては、スピロラクトン構造を有するモノマーに由来する構造単位を含むものが提案されている(特開2002-82441号公報、特開2002-308937号公報参照)。感放射線性樹脂組成物がこのようなスピロラクトン構造を有するモノマーを用いた重合体を含むことで、現像コントラストが向上するとされている。
 このような中、レジストパターンの更なる微細化が進む今日において、レジスト被膜に要求される性能レベルは更に高まり、より優れた解像性能(例えば、感度が高く、良好なパターン形状が得られること)が求められており、従来の感放射線性樹脂組成物においては、改善の余地がある。
特開2002-82441号公報 特開2002-308937号公報
 本発明は、上述のような事情に基づいてなされたものであり、解像性能に優れた感放射線性樹脂組成物、この感放射線性樹脂組成物の樹脂成分として好適な重合体及びこの重合体を形成することができる化合物を提供することを目的とする。
 上記課題を解決するためになされた発明は、
 [A]下記式(1)で表される化合物に由来する構造単位(I)と、下記式(2)で表される化合物に由来する構造単位(II)とを有する重合体(以下、「[A]重合体」ともいう。)、
 [B]酸発生剤、及び
 [C]有機溶媒
を含む感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する(a+2)価の有機基である。Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。aは、0~6の整数である。aが2以上の場合、複数のRは、同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。Rは、水素原子又はメチル基である。Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。
 式(2)中、Rは、水素原子又はメチル基である。R、R及びRは、それぞれ独立して、炭素数1~6のアルキル基であり、このアルキル基の水素原子が置換されていてもよい。また、R及びRは、互いに結合してそれらが結合している炭素原子と共に環構造を形成してもよい。)
 当該感放射線性樹脂組成物によれば、[A]重合体がスピロラクトン構造を有する化合物に由来する構造単位(I)を有するため、優れた解像性能を有している。特に、この構造単位(I)は、スピロラクトン環の有するエステル結合に加え、他の環構造を構成するR及びRの少なくとも1つの基がヘテロ原子又はハロゲン原子を有することで、極性が高く、その結果、解像性を効果的に高めることができると考えられる。
 上記式(1)におけるR及びRの少なくとも1つの基が、酸素原子を有するとよい。このようにすることで、構造単位(I)の極性が適度に制御されると考えられ、その結果、解像性能をより高めることができる。
 上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基であるとよい。Rを含むこの環構造がこのような極性基を有することで、解像性をより高めることができる。
 上記式(1)におけるaが、0又は1であるとよい。aを0又は1とすることでRを含むこの環構造の嵩高さを抑え、解像性能をより高めることができる。
 上記式(2)で表される化合物が、下記式(2a)又は式(2b)で表されるとよい。
Figure JPOXMLDOC01-appb-C000006
(式(2a)及び式(2b)中、R及びRの定義は、上記式(2)と同様である。bは、1~5の整数である。)
 当該感放射線性樹脂組成物によれば、[A]重合体が構造単位(II)として、上記式(2a)又は式(2b)で表される化合物に由来する構造単位を有することで、酸解離性が向上するので、現像コントラスト等の解像性能をより高めることができる。
 本発明の重合体は、下記式(1)で表される化合物に由来する構造単位(I)と、下記式(2)で表される化合物に由来する構造単位(II)とを有する。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する(a+2)価の有機基である。Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。aは、0~6の整数である。aが2以上の場合、複数のRは、同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。Rは、水素原子又はメチル基である。Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。
 式(2)中、Rは、水素原子又はメチル基である。R、R及びRは、それぞれ独立して、炭素数1~6のアルキル基であり、このアルキル基の水素原子が置換されていてもよい。また、R及びRは、互いに結合してそれらが結合している炭素原子と共に環構造を形成してもよい。)
 当該重合体は、例えば上述のように感放射線性樹脂組成物の成分として用いることができ、この組成物は優れた解像性能を発揮することができる。
 上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基であるとよい。当該重合体によれば、この環構造部分が極性を有することで、感放射線性樹脂組成物の成分として用いた際の解像性の向上等にさらに寄与することができる。
 本発明の化合物は下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する(a+2)価の有機基である。Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。aは、0~6の整数である。aが2以上の場合、複数のRは、同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。Rは、水素原子又はメチル基である。Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。)
 当該化合物を用いることで、特定の環構造部分に極性を有し、感放射線性樹脂組成物の成分として好適な上述の[A]重合体を容易に製造することができる。
 上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基であるとよい。当該化合物を用いることで、特定の環構造部分に極性を有する上述の[A]重合体を、より容易に製造することができる。
 以上説明したように、本発明の感放射線性樹脂組成物によれば、特定部分に適度な極性を持たせることで解像性能を高めることができる。従って、当該感放射線性樹脂組成物はレジストパターンの更なる微細化を可能とする。また、本発明の重合体は上記感放射線性樹脂組成物に好適に用いることができ、本発明の化合物によれば上記重合体を容易に製造することができる。
 以下、本発明の感放射線性樹脂組成物、重合体及び化合物の実施の形態について詳説する。
 <感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体、[B]酸発生体及び[C]有機溶媒を含み、その他の任意成分を含んでいてもよい。以下、各成分について順に説明する。
 <[A]重合体>
 [A]重合体は、上記式(1)で表される化合物に由来する構造単位(I)と、上記式(2)で表される化合物に由来する構造単位(II)とを有する。
 (構造単位(I))
 [A]重合体は、スピロラクトン構造を有する化合物に由来するこの構造単位(I)を有するため、得られるレジスト被膜は密着性及び現像コントラストに優れている。特に、この構造単位(I)は、スピロラクトン環の有するエステル結合に加え、他の環構造を構成するR及びRの少なくとも1つの基がヘテロ原子又はハロゲン原子を有するため、極性が高く、その結果、溶解性及び解像性を効果的に高めることができる。さらに、[A]重合体がスピロラクトン構造を有する化合物に由来する構造単位(I)を有することで、得られるレジスト被膜の剛直性が高まり、また、Rが脱離しにくいためエッチング耐性にも優れる。
 上記ヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ケイ素原子、リン原子を挙げることができる。
 上記ハロゲン原子としては、塩素原子、フッ素原子等を挙げることができる。
 Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の単環の環構造を形成している。この環構造としては、例えば、それぞれ単環の炭素数3~8の脂環式構造、複素環式構造、芳香環式構造等を挙げることができる。これらの環構造の中でも、Rが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基である複素環式構造が好ましい。Rを含むこの環構造がこのような極性基を有することで、解像性をさらに高めることができる。また、Rの選択によっては、Rを含むこの環構造が単環の脂環式構造であることも好ましい。
 Rが-CO-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8の環状ケトン構造等を挙げることができる。
 Rが-COO-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8のラクトン構造等を挙げることができる。
 Rが-O-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8の環状エーテル構造等を挙げることができる。
 Rが-NR-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8の環状アミン構造等を挙げることができる。Rで表される炭素数1~20の有機基としては、それぞれ炭素数1~20の鎖状炭化水素基、脂肪族環状炭化水素基、芳香族炭化水素基、エポキシ基、シアノ基、カルボキシル基等を挙げることができる。
 Rが-S-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8の環状チオエーテル構造等をあげることができる。
 Rが-SO-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8の環状スルホキシド構造等をあげることができる。
 Rが-SO-を骨格鎖中に含む鎖状炭化水素基である環構造としては、炭素数3~8の環状スルホン構造等をあげることができる。
 また、Rがラクトン環を構成している炭素原子と共に形成するこの環構造としては、5員環又は6員環構造のものが、合成の容易性の点から好ましい。
 Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。
 Rの炭素数1~20の有機基としては、それぞれ炭素数1~20の鎖状炭化水素基、炭素数3~20の脂肪族環状炭化水素基、炭素数6~20の芳香族炭化水素基、エポキシ基、シアノ基、カルボキシル基、及び-R’-X-R”で表される基(但し、R’は単結合又は炭素数1~10の炭化水素基である。R”は置換されていてもよい炭素数1~20の炭化水素基、炭素数1~20のアルキルシリル基又は複素環構造を有する1価の基である。Xは-O-、-CO-、NH-又はこれらの組み合わせである。)等を挙げることができる。上記鎖状炭化水素基、脂肪族環状炭化水素基及び芳香族炭化水素基が有する水素原子の一部又は全部は、フッ素原子等のハロゲン原子、シアノ基、カルボキシル基、水酸基、チオール基等で置換されていてもよい。また、R”で表されるアルキルシリル基としては、トリメチルシリル基、tert-ブチルジメチルシリル基等を挙げることができる。R”で表される複素環構造を有する1価の基としては、ラクトン構造及び環状エーテル構造を有する基が好ましい。
 Rの炭素数1~20の有機基の中でも、メチル基、エチル基、プロピル基等の炭素数1~5の鎖状炭化水素、メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基、メトキシカルボニル基、エトキシカルボニル基等の炭素数1~5のアルコキシカルボニル基、オキサシクロヘキシルオキシ基等の炭素数2~10のオキサシクロアルキルオキシ基が好ましく、メチル基、メトキシ基、エトキシカルボニル基及びオキサシクロアルキルオキシ基が特に好ましい。
 また、aが2以上の場合、複数のRは互いに結合して環構造を形成してもよく、この場合、Rは、R及びラクトン環を形成する炭素原子と共に、ノルボルナン構造、アダマンタン構造等の多環構造を形成するか、スピロ環を形成する。
 なお、上記式(1)におけるaは、0又は1であるとよい。aを0又は1とすることでRを含むこの環構造の嵩高さを抑え、解像性能をより高めることができる。
 Rは、水素原子又はメチル基である。なお、Rがメチル基である場合、このRはシス位に結合していてもトランス位に結合していてもよい。
 Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。この炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基等を挙げることができる。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。このシクロアルカンジイル基としては、シクロペンタンジイル基、シクロヘキサンジイル基等を挙げることができる。
 この構造単位(I)を与える上記式(1)で表される化合物としては、具体的に下記式(1-1)~(1-73)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 これらの中でも、R及びRの少なくとも1つの基が有するヘテロ原子又はハロゲン原子として、酸素原子を有する式(1-1)~(1-9)、(1-12)~(1-22)等で表される化合物が好ましい。上記酸素原子は、エーテル構造又は水酸基として含まれていることがより好ましい。特に、R及びRが有するヘテロ原子又はハロゲン原子が、酸素原子のみであることがさらに好ましく、1又は2つの酸素原子のみであることがよりさらに好ましい。また、R及びRは、原子間が単結合によってのみ連結されている構造であることが好ましい。R及びRがこのような構造であることで、構造単位(I)の極性が適度に制御されると考えられ、その結果、解像性能をより高めることができる。また、環状エーテル構造を有する式(1-1)~(1-6)及び(1-15)等で表される化合物もさらに好ましく、式(1-1)で表される化合物も特に好ましい。
 [A]重合体において、構造単位(I)の含有率は、[A]重合体を構成する全構造単位に対する構造単位(I)の総量が5モル%以上70モル%以下が好ましく、5モル%以上50モル%以下がさらに好ましい。構造単位(I)の含有量を上記範囲とすることで、他の性能を維持しつつ、優れた解像性を発揮することができる。
 <上記式(1)で表される化合物の製造方法>
 上記式(1)で表される化合物の製造方法としては、下記式で表される合成スキームを挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 上記スキーム中、R、R及びRは、上記式(1)と同様である。R10は、炭素数1~20の有機基である。R11及びR12は、それぞれ独立して、炭素数1から20の有機基であり、R11またはR12の少なくともいずれかにヘテロ原子又はハロゲン原子を有している。または、R11とR12が互いに結合して、環を形成していても良い。
 上記スキーム中のR10としては、アルキル基であることが好ましく、炭素数1~6のアルキル基がより好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基、n-ペンチル基、1-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、n-ヘキシル基等が上げられる。この中でも、取り扱い、入手の容易さから、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1,1-ジメチルエチル基が好ましい。
 上記スキーム中のR11及びR12としては、炭素数1~20の有機基が好ましい。さらに好ましくは、R11及びR12が隣り合う炭素原子とともに環を形成していることが好ましい。
 具体的には、例えば上記式(1-1)の化合物の例として以下の方法を挙げることができる。
 触媒として亜鉛粉末が添加されたテトラヒドロフラン(THF)溶媒中に、それぞれTHFに溶解させた2-メチルテトラヒドロフラン-3-オン(化合物a)と、エチル(2-ブロモメチル)アクリレート(化合物b)とを滴下し、室温で撹拌させることで、化合物aと化合物bとが反応し、6-メチル-3-メチレン-1,7-ジオキサスピロ[4,4]ノナン-2-オン(上記式(1-1)で表される化合物)が合成される。なお、亜鉛粉末が添加されたTHF溶媒中に、化合物a及びbの添加前にクロロトリメチルシラン等の活性化剤を入れるとよい。また、式(1-1)で表される化合物以外の化合物においては、適宜化合物aを替えること等によって同様に合成することができる。
 (構造単位(II))
 [A]重合体は、酸解離性基を有するこの構造単位(II)を備えるため、当該感放射線性樹脂組成物のレジストとしての解像性能を好適に発揮することができる。
 構造単位(II)を与える化合物を表す式(2)におけるR、R及びRの炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基等を挙げることができる。これらのアルキル基の水素原子を置換する基としては、水酸基、シアノ基、カルボキシル基、ハロゲン原子等を挙げることができる。
 R及びRが互いに結合してそれらが結合している炭素と共に形成する環構造としては、炭素数3~10のシクロアルカンジイル基、ノルボルナンジイル基、アダマンタンジイル基等を挙げることができる。
 式(2)で表される化合物の具体例としては、下記式(2-1)~(2-11)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 上記式中、Rの定義は、式(2)と同様である。
 これらの中でも、式(2-2)~(2-7)等上記式(2a)で表される化合物や、式(2-8)及び(2-9)等上記式(2b)で表される化合物が、酸による現像液に対する可溶性が高まり、現像コントラストをより高めることができる点で好ましい。
 [A]重合体において、構造単位(II)の含有率は、[A]重合体を構成する全構造単位に対する構造単位(II)の総量が20モル%以上80モル%以下が好ましく、25モル%以上60モル%以下がさらに好ましい。構造単位(II)の含有量を上記範囲とすることで、現像コントラストをより高めることができる。
 (その他の構造単位)
 また、重合体は、構造単位(I)及び構造単位(II)以外の構造単位を有していてもよい。このような構造単位としては、ラクトン構造又は環状カーボネート構造を有する構造単位(以下、「構造単位(III)」ともいう。)を挙げることができる。但し、構造単位(III)には、構造単位(I)は含まれない。[A]重合体が構造単位(III)を備えることで、レジスト被膜の密着性等をより高めることができる。
 構造単位(III)を与えることができる化合物としては、例えば下記式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 上記式中、R11及びR’は、それぞれ独立して、水素原子又はメチル基である。R’’は、それぞれ独立して、水素原子又はメトキシである。Aは、それぞれ独立して、単結合、メチレン基、*-CHCOO-、及び*-CHCHO-である。但し、*は、酸素原子との結合箇所を表す。Bは、それぞれ独立して、メチレン基又は酸素原子である。a及びbは、それぞれ独立して、0~2の整数である。
 [A]重合体において、構造単位(III)の含有率は、[A]重合体を構成する全構造単位に対する構造単位(III)の総量が10モル%以上60モル%以下が好ましく、15モル%以上50モル%以下がさらに好ましい。構造単位(III)の含有量を上記範囲とすることで、現像コントラストをより高めることができると共に、レジスト被膜の密着性をより高めることができる。なお、[A]重合体において、構造単位(I)と構造単位(III)との合計含有率が、[A]重合体を構成する全構造単位に対して30モル%以上70モル%以下であると、レジストとしてのリソグラフィー性能をさらに高めることができ、好ましい。
 <[A]重合体の製造方法>
 [A]重合体は、ラジカル重合等の常法に従って合成できる。例えば、
 単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;
 単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;
 各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等の方法で合成することが好ましい。なお、単量体溶液に対して、単量体溶液を滴下して反応させる場合、滴下される単量体溶液中の単量体量は、重合に用いられる単量体総量に対して30モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が特に好ましい。
 これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常30℃~180℃であり、40℃~160℃が好ましく、50℃~140℃がさらに好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常、30分~8時間であり、45分~6時間が好ましく、1時間~5時間がより好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常、30分~8時間であり、45分~7時間が好ましく、1時間~6時間がより好ましい。
 上記重合に使用されるラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。これらの開始剤は単独で又は2種以上を混合して使用できる。
 重合溶媒としては、重合を阻害する溶媒(重合禁止効果を有するニトロベンゼン、連鎖移動効果を有するメルカプト化合物等)以外の溶媒であって、その単量体を溶解可能な溶媒であれば限定されない。重合溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル・ラクトン系溶媒、ニトリル系溶媒及びその混合溶媒等を挙げることができる。これらの溶媒は、単独又は2種以上を併用できる。
 重合反応により得られた樹脂は、再沈殿法により回収することが好ましい。すなわち、重合反応終了後、重合液を再沈溶媒に投入することにより、目的の樹脂を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、樹脂を回収することもできる。
 [A]重合体のGPC法によるMwとしては、1,000~100,000が好ましく、2,000~50,000がより好ましく、3,000~20,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、レジストとして用いるのに充分なレジスト溶剤への溶解性があり、かつ耐ドライエッチング性や密着性がより良好となる。
 [A]重合体のMwとMnとの比(Mw/Mn)としては、通常1~3であり、好ましくは1~2である。
 <[B]酸発生剤>
 [B]酸発生剤は、露光により酸を発生し、その酸により[A]重合体中に存在する酸解離性基を解離させ酸を発生させる。その結果、[A]重合体中の酸解離性基が解離し、溶解性が変化するため、現像によりレジストパターンを形成することができる。
 [B]酸発生剤としては、例えばオニウム塩化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。これらの[B]酸発生剤のうち、オニウム塩化合物が好ましい。
 オニウム塩化合物としては、例えばスルホニウム塩(テトラヒドロチオフェニウム塩を含む)、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 本発明における[B]酸発生剤としては、下記式(B-1)で表される化合物を含むものが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(B-1)中、R13は水素原子、フッ素原子、水酸基、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、又は炭素数2~11のアルコキシカルボニル基であり、R14は炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、又は炭素数1~10のアルカンスルホニル基であり、R15及びR16は、それぞれ独立して、置換されていてもよい炭素数1~10のアルキル基又は芳香族炭化水素基である。但し、R15とR16とが相互に結合して炭素数2~10の2価の基を形成していてもよい。kは0~2の整数であり、rは0~10の整数であり、Xは下記式(b-1)~(b-3)で表されるアニオンである。
 R17-X-C2xSO  :(b-1)
 上記式(b-1)中、R17は、水素原子、フッ素原子、又は炭素数1~20の炭化水素基であり、Xは単結合、エーテル結合、エステル結合又はアミド結合であり、Yは水素原子又はフッ素原子であり、複数存在するYは同一でも異なっていてもよい。xは1~10の整数である。
Figure JPOXMLDOC01-appb-C000017
 上記式(b-2)及び(b-3)中、R18~R22は、それぞれ独立して、炭素数1~10のフッ素置換アルキル基である。但し、R18とR19とが、又はR20~R22のうちの2つが相互に結合して炭素数2~10の2価のフッ素置換アルキレン基を形成していてもよい。
 上記式(B-1)中、R13~R16で表される炭素数1~10のアルキル基としてはメチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、ネオペンチル基、2-エチルヘキシル基等を挙げることができる。これらの中では、メチル基、エチル基、n-ブチル基及びt-ブチル基が好ましい。
 また、R13及びR14で表される炭素数1~10のアルコキシル基としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基が好ましい。
 また、R13で表される炭素数2~11のアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基が好ましい。
 また、R14で表される炭素数1~10のアルカンスルホニル基としては、メタンスルホニル基、エタンスルホニル基、n-プロパンスルホニル基、n-ブタンスルホニル基、シクロペンタンスルホニル基、シクロヘキサンスルホニル基が好ましい。
 また、上記式(B-1)においては、rが0~2の整数であることが好ましい。
 上記式(B-1)中、R15及びR16で表される芳香族炭化水素基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-ジメチルフェニル基等が挙げられる。これらの基の水素原子をヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニル基及びアルコキシカルボニルオキシ基の群から選択される少なくとも一種の基で置換した基であってもよい。
 アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、2-メトキシエチル基、2-エトキシエチル基、1-メトキシエチル基、1-エトキシエチル基、シクロアルカン構造を有するアルコキシアルキル基等を挙げることができる。これらの基の炭素数は1~20であることが好ましい。
 アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基、i-プロポキシカルボニル基、2-メチルプロポキシカルボニル基、1-メチルプロポキシカルボニル基、t-ブトキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等を挙げることができる。これらの基の炭素数は2~21であることが好ましい。
 アルコキシカルボニルオキシ基としては、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n-プロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基等の直鎖状アルコキシカルボニルオキシ基;i-プロポキシカルボニルオキシ基、t-ブトキシカルボニルオキシ基等の分岐状アルコキシカルボニルオキシ基;シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等のシクロアルキルオキシカルボニル基;等を挙げることができる。これらの基の炭素数は2~21であることが好ましい。
 また、R15とR16とが相互に結合して形成される「炭素数2~10の2価の基」としては、R15とR16とが相互に結合し、上記式(B-1)中の硫黄原子と共に5員または6員の環を形成した構造、中でも、5員の環(テトラヒドロチオフェン環)を形成した構造が好ましい。
 上記式(B-1)のカチオンとしては、トリフェニルスルホニウムカチオン、トリ-1-ナフチルスルホニウムカチオン、トリ-tert-ブチルフェニルスルホニウムカチオン、4-フルオロフェニル-ジフェニルスルホニウムカチオン、ジ-4-フルオロフェニル-フェニルスルホニウムカチオン、トリ-4-フルオロフェニルスルホニウムカチオン、4-シクロヘキシルフェニル-ジフェニルスルホニウムカチオン、4-メタンスルホニルフェニル-ジフェニルスルホニウムカチオン、4-シクロヘキサンスルホニル-ジフェニルスルホニウムカチオン、1-ナフチルジメチルスルホニウムカチオン、1-ナフチルジエチルスルホニウムカチオン、1-(4-ヒドロキシナフチル)ジメチルスルホニウムカチオン、1-(4-メチルナフチル)ジメチルスルホニウムカチオン、1-(4-メチルナフチル)ジエチルスルホニウムカチオン、1-(4-シアノナフチル)ジメチルスルホニウムカチオン、1-(4-シアノナフチル)ジエチルスルホニウムカチオン、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムカチオン、1-(4-メトキシナフチル)テトラヒドロチオフェニウムカチオン、1-(4-エトキシナフチル)テトラヒドロチオフェニウムカチオン、1-(4-n-プロポキシナフチル)テトラヒドロチオフェニウムカチオン、1-(4-n-ブトキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-メトキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-エトキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-n-プロポキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-n-ブトキシナフチル)テトラヒドロチオフェニウムカチオン等が好ましい。
 上記式(b-1)中、R17で表される炭素数1~12の炭化水素基としては、炭素数1~12のアルキル基、シクロアルキル基、アダマンチル基等の有橋脂環式炭化水素基が好ましく、中でもアダマンチル基が好ましい。
 上記式(b-2)及び(b-3)中、R18~R22で表される炭素数1~10のフッ素置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ドデカフルオロペンチル基、パーフルオロオクチル基等を挙げることができる。
 R18とR19とが、又はR20~R22のうちの2つが相互に結合して形成される炭素数2~10の2価のフッ素置換アルキレン基としては、テトラフルオロエチレン基、ヘキサフルオロプロピレン基、オクタフルオロブチレン基、デカフルオロペンチレン基、ウンデカフルオロヘキシレン基等を挙げることができる。
 上記式(B-1)のアニオン部位としては、トリフルオロメタンスルホネートアニオン、パーフルオロ-n-ブタンスルホネートアニオン、パーフルオロ-n-オクタンスルホネートアニオン、2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1,2,2-テトラフルオロエタンスルホネートアニオン、2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1-ジフルオロエタンスルホネートアニオン、1-アダマンチルスルホネートアニオンの他、下記式(b-3a)~(b-3g)で表されるアニオンが好ましい。
Figure JPOXMLDOC01-appb-C000018
 これらの酸発生剤は、1種を単独でまたは2種以上を混合して使用することができる。
 本発明の感放射線性樹脂組成物において、[B]酸発生剤の含有量は、レジストとしての感度および現像性を確保する観点から、[A]重合体100質量部に対して、通常、0.1~30質量部であり、0.5~20質量部であることが好ましい。この含有量が0.1質量部未満では、感度および現像性が低下する傾向がある。一方、30質量部を超えると、放射線に対する透明性が低下して、矩形のレジストパターンが得られ難くなる傾向がある。
 <[C]有機溶媒>
 [C]有機溶媒としては、少なくとも[A]重合体、[B]酸発生剤及び所望により添加されるその他の任意成分を溶解可能な溶媒であれば特に限定されない。[C]有機溶媒としては、アルコール系溶媒、エーテル系溶媒、ケトン系有機溶媒、アミド系溶媒、エステル系有機溶媒、炭化水素系溶媒等を用いることができる。
 アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。
 エーテル系溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等が挙げられる。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等のケトン系溶媒が挙げられる。
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等が挙げられる。
 エステル系溶媒としては、例えばジエチルカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、i-プロピルベンゼン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
 これらの有機溶媒は、単独で使用してもよく2種以上を併用してもよい。
 <その他の任意成分>
 当該感放射線性樹脂組成物に含有されてもよいその他の任意成分としては、例えば、[F][A]重合体以外のフッ素原子を含有する重合体(以下、「[F]重合体」ともいう。)、界面活性剤、酸拡散制御剤、脂環式骨格含有化合物、増感剤、架橋剤等を挙げることができる。
 <[F]重合体>
 当該感放射線性樹脂組成物は、好適成分として[F]フッ素原子を有する重合体をさらに含有できる。当該感放射線性樹脂組成物が[F]重合体を含有することで、レジスト膜の疎水性が向上し液浸露光を行った場合においても物質溶出抑制に優れ、また、レジスト膜と液浸液との後退接触角を十分に高くでき、高速でスキャン露光した場合に水滴が残らない等の効果を奏する為、当該感放射線性樹脂組成物の液浸露光用としての有用性が高まる。
 フッ素含有樹脂の構造は特に限定されず、(1)それ自体は現像液に不溶で、酸の作用によりアルカリ可溶性となるフッ素含有樹脂、(2)それ自体が現像液に可溶であり、酸の作用によりアルカリ可溶性が増大するフッ素含有樹脂、(3)それ自体は現像液に不溶で、アルカリの作用によりアルカリ可溶性となるフッ素含有樹脂、(4)それ自体が現像液に可溶であり、アルカリの作用によりアルカリ可溶性が増大するフッ素含有樹脂等を挙げることができる。
 [F]フッ素原子を有する重合体の態様としては、例えば
 主鎖にフッ素化アルキル基が結合した構造;
 側鎖にフッ素化アルキル基が結合した構造;
 主鎖と側鎖とにフッ素化アルキル基が結合した構造が挙げられる。
 主鎖にフッ素化アルキル基が結合した構造を与える単量体としては、例えばα-トリフルオロメチルアクリレート化合物、β-トリフルオロメチルアクリレート化合物、α,β-トリフルオロメチルアクリレート化合物、1種類以上のビニル部位の水素がトリフルオロメチル基等のフッ素化アルキル基で置換された化合物等が挙げられる。
 側鎖にフッ素化アルキル基が結合した構造を与える単量体としては、例えばノルボルネン等の脂環式オレフィン化合物の側鎖がフッ素化アルキル基やその誘導体であるもの、アクリル酸又はメタクリル酸の側鎖がフッ素化アルキル基やその誘導体のエステル化合物、1種類以上のオレフィンの側鎖(二重結合を含まない部位)がフッ素化アルキル基やその誘導体であるもの等が挙げられる。
 主鎖と側鎖とにフッ素化アルキル基が結合した構造を与える単量体としては、例えばα-トリフルオロメチルアクリル酸、β-トリフルオロメチルアクリル酸、α,β-トリフルオロメチルアクリル酸等の側鎖がフッ素化アルキル基やその誘導体のエステル化合物、1種類以上のビニル部位の水素がトリフルオロメチル基等のフッ素化アルキル基で置換された化合物の側鎖をフッ素化アルキル基やその誘導体で置換したもの、1種類以上の脂環式オレフィン化合物の二重結合に結合している水素をトリフルオロメチル基等のフッ素化アルキル基で置換し、かつ側鎖がフッ素化アルキル基やその誘導体であるもの等が挙げられる。なお、脂環式オレフィン化合物とは、環の一部が二重結合である化合物を示す。
 [F]重合体は、下記式(3)で表される構造単位(f1)及び/又は式(4)で表される構造単位(f2)を有することが好ましく、また構造単位(f1)及び構造単位(f2)以外の「他の構造単位」を有してもよい。以下、各構造単位を詳述する。
 [構造単位(f1)]
 構造単位(f1)は下記式(3)で示される構造単位である。
Figure JPOXMLDOC01-appb-C000019
 上記式(3)中、R23は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R24はフッ素原子を有する炭素数1~6の直鎖状若しくは分岐状のアルキル基又はフッ素原子を有する炭素数4~20の1価の脂環式炭化水素基である。但し、上記アルキル基及び脂環式炭化水素基は、水素原子の一部又は全部が置換されていてもよい。
 上記炭素数1~6の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等が挙げられる。
 炭素数4~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロペンチルプロピル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロオクチルメチル基等が挙げられる。
 構造単位(f1)を与える単量体としては、例えばトリフルオロメチル(メタ)アクレート、2,2,2-トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロn-プロピル(メタ)アクリレート、パーフルオロi-プロピル(メタ)アクリレート、パーフルオロn-ブチル(メタ)アクリレート、パーフルオロi-ブチル(メタ)アクリレート、パーフルオロt-ブチル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート、2-(1,1,1,3,3,3-ヘキサフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ペンチル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ヘキシル(メタ)アクリレート、パーフルオロシクロヘキシルメチル(メタ)アクリレート、1-(2,2,3,3,3-ペンタフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,4-ヘプタフルオロ)ペンタ(メタ)アクリレート、1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ)デシル(メタ)アクリレート、1-(5-トリフルオロメチル-3,3,4,4,5,6,6,6-オクタフルオロ)ヘキシル(メタ)アクリレート等が挙げられる。
 構造単位(f1)としては、例えば下記式(3-1)及び(3-2)で示される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 上記式(3-1)及び(3-2)中、R23は上記式(3)と同義である。
 [F]重合体において、構造単位(f1)の含有率としては[F]重合体を構成する全構造単位に対して、10モル%~70モル%が好ましく、20モル%~60モル%がより好ましい。なお[F]重合体は、構造単位(f1)を1種又は2種以上を有してもよい。
 [構造単位(f2)]
 構造単位(f2)は、下記式(4)で示される構造単位である。
Figure JPOXMLDOC01-appb-C000021
 上記式(4)中、R24は水素原子、メチル基又はトリフルオロメチル基である。R25は(k+1)価の連結基である。Xはフッ素原子を有する2価の連結基である。R26は水素原子又は1価の有機基である。kは1~3の整数である。但し、kが2又は3の場合、複数のX及びR26はそれぞれ同一であっても異なっていてもよい。
 上記式(4)中、R25が表す(k+1)価の連結基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基、イミノ基及びアミド基からなる群より選ばれる1種以上の基とを組み合わせた基が挙げられる。また、上記(k+1)価の連結基は置換基を有していてもよい。
 炭素数1~30の直鎖状又は分岐状の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(k+1)個の水素原子を除いた基が挙げられる。
 炭素数3~30の脂環式炭化水素基としては、例えば
 シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等の単環式飽和炭化水素;
 シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等の単環式不飽和炭化水素;
 ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等の多環式飽和炭化水素;
 ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等の多環式炭化水素基から(m+1)個の水素原子を除いた基が挙げられる。
 炭素数6~30の芳香族炭化水素基としては、例えばベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素基から(m+1)個の水素原子を除いた基が挙げられる。
 上記式(4)中、Xが示すフッ素原子を有する2価の連結基としては、フッ素原子を有する炭素数1~20の2価の直鎖状炭化水素基が挙げられる。Xとしては、例えば下記式(X-1)~(X-6)で示される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 Xとしては、上記式(X-1)及び(X-2)で示される構造が好ましい。
 上記式(4)中、R26が表す有機基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基、イミノ基及びアミド基からなる群より選ばれる1種以上の基とを組み合わせた基が挙げられる。
 上記構造単位(f2)としては、例えば下記式(4-1)及び式(4-2)で示される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 上記式(4-1)中、R25は、炭素数1~20の2価の直鎖状、分岐状又は環状の飽和若しくは不飽和の炭化水素基である。R24、X及びR26は上記式(4)と同義である。
 上記式(4-2)中、R24、X、R26及びkは上記式(4)と同義である。但し、kが2又は3の場合、複数のX及びR26は、それぞれ同一であっても異なっていてもよい。
 上記式(4-1)及び式(4-2)で示される構造単位としては、例えば下記式(4-1-1)、式(4-1-2)及び式(4-2-1)で示される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 上記式(4-1-1)、(4-1-2)及び(4-2-1)中、R24は上記式(4)と同義である。
 構造単位(f2)を与える単量体としては、例えば(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-3-プロピル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ブチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル)エステル、(メタ)アクリル酸2-{[5-(1’,1’,1’-トリフルオロ-2’-トリフルオロメチル-2’-ヒドロキシ)プロピル]ビシクロ[2.2.1]ヘプチル}エステル等が挙げられる。
 [F]重合体において、構造単位(f2)の含有率としては[F]重合体を構成する全構造単位に対して、20モル%~80モル%が好ましく、30モル%~70モル%がより好ましい。なお、[F]重合体は、構造単位(f2)を1種、又は2種以上を有してもよい。
 [他の構造単位]
 [F]重合体は、さらに「他の構造単位」として、現像液への可溶性を高めるためにラクトン構造を含む構造単位、エッチング耐性を高めるために脂環式構造を含む構造単位等を1種以上有してもよい。かかるラクトン構造を含む構造単位及び脂環式構造を含む構造単位としては、[A]重合体のラクトン構造を有する構造単位と同様の構造単位が挙げられる。
 [F]重合体において、他の構造単位の含有率としては[F]重合体を構成する全構造単位に対して、通常90モル%以下であり、10モル%~80モル%が好ましく、20モル%~70モル%がより好ましい。なお、[F]重合体は、他の構造単位を1種、又は2種以上を有してもよい。
 [F]重合体の配合量としては、[A]重合体100質量部に対して、0.1質量部~20質量部が好ましく、1質量部~10質量部がより好ましく、1質量部~7.5質量部が特に好ましい。0.1質量部未満であると、[F]重合体を含有させる効果が十分ではない場合がある。一方、20質量部を超えると、レジスト表面の撥水性が高くなりすぎて現像不良が起こる場合がある。
 [F]重合体におけるフッ素原子の含有割合としては、[A]重合体よりも大きいことが好ましい。[F]重合体におけるフッ素原子の含有割合としては、[F]重合体全量を100質量%として、通常5質量%以上であり、好ましくは5質量%~50質量%であり、より好ましくは5質量%~45質量%である。なお、このフッ素原子含有割合は13C-NMRにより測定することができる。[F]重合体におけるフッ素原子含有割合が[A]重合体よりも大きいものであると、[F]重合体及び[A]重合体を含有する感放射線性樹脂組成物によって形成されたフォトレジスト膜表面の撥水性を高めることができ、液浸露光時に上層膜を別途形成する必要がなくなる。上記の効果を十分に発揮するためには、上記[A]重合体におけるフッ素原子の含有割合と、上記[F]重合体におけるフッ素原子の含有割合との差が1質量%以上であることが好ましく、3質量%以上であることがより好ましい。
 <[F]重合体の合成方法>
 [F]重合体は、例えば所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより製造できる。
 上記重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。
 上記重合における反応温度としては、通常40℃~150℃、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間、1時間~24時間が好ましい。
 [F]重合体のMwとしては、1,000~50,000が好ましく、1,000~40,000がより好ましく、1,000~30,000が特に好ましい。[F]重合体のMwが1,000未満の場合、十分な後退接触角を得ることができない。一方、Mwが50,000を超えると、レジストとした際の現像性が低下する傾向にある。
 [F]重合体のMwとGPC法によるポリスチレン換算数平均分子量(Mn)との比(Mw/Mn)としては、1~5が好ましく、1~4がより好ましい。
 <界面活性剤>
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名でKP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、大日本インキ化学工業社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業社)等が挙げられる。これらの界面活性剤は、単独で使用してもよく2種以上を併用してもよい。
 <酸拡散制御剤>
 本発明の感放射線性樹脂組成物は、酸拡散制御剤を更に含有してもよい。この酸拡散制御剤は、露光により酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制するものである。このような酸拡散制御剤を配合することにより、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度が更に向上するとともに、露光から露光後の加熱処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
 酸拡散制御剤としては、例えば、N-t-アルコキシカルボニル基を有する窒素含有化合物が好ましく用いられる。具体的には、N-t-ブトキシカルボニルジ-n-オクチルアミン、N-t-アミロキシカルボニルジ-n-オクチルアミン、N-t-ブトキシカルボニルジ-n-ノニルアミン、N-t-アミロキシカルボニルジ-n-ノニルアミン、N-t-ブトキシカルボニルジ-n-デシルアミン、N-t-アミロキシカルボニルジ-n-デシルアミン、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-アミロキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、N-t-アミロキシカルボニル-2-アダマンチルアミン、N-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-アミロキシカルボニル-N-メチル-1-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(S)-(-)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニルピロリジン、N-t-アミロキシカルボニルピロリジン、N,N’-ジ-t-ブトキシカルボニルピペラジン、N,N’-ジ-t-アミロキシカルボニルピペラジン、N,N-ジ-t-ブトキシカルボニル-1-アダマンチルアミン、N,N-ジ-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-アミロキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-アミロキシカルボニルヘキサメチレンジアミン、N,N,N’,N’-テトラ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N,N’,N’-テトラ-t-アミロキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-ブトキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-アミロキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-ブトキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-アミロキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-ブトキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-アミロキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-ブトキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-アミロキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-ブトキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-アミロキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-アミロキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-アミロキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-t-アミロキシカルボニル-2-フェニルベンズイミダゾール等の化合物が挙げられる。
 また、酸拡散制御剤としては、上記化合物以外にも、例えば、3級アミン化合物、4級アンモニウムヒドロキシド化合物、その他含窒素複素環化合物等の含窒素化合物が用いられる。 
 3級アミン化合物としては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;
 アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、2,6-ジメチルアニリン、2,6-ジイソプロピルアニリン等の芳香族アミン類;
 トリエタノールアミン、N,N-ジ(ヒドロキシエチル)アニリン等のアルカノールアミン類;
 N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼンテトラメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル等が挙げられる。
 4級アンモニウムヒドロキシド化合物としては、例えばテトラ-n-プロピルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド等が挙げられる。
 さらに、酸拡散制御剤としては、露光により分解して酸拡散制御性としての塩基性を失うオニウム塩化合物を用いることもできる。このようなオニウム塩化合物の具体例としては、下記式(5-1)で表されるスルホニウム塩化合物、および下記式(5-2)で表されるヨードニウム塩化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000025
 上記式(5-1)及び式(5-2)におけるR27~R31は、それぞれ独立して、水素原子、アルキル基、アルコキシル基、ヒドロキシル基、又はハロゲン原子である。
 また、Anbは、OH、R32-COO、R32-SO (但し、R32は、それぞれ独立して、アルキル基、アリール基、又はアルカノール基である。)、又は下記式(6)で表されるアニオンを表す。
Figure JPOXMLDOC01-appb-C000026
 上記スルホニウム塩化合物およびヨードニウム塩化合物の具体例としては、トリフェニルスルホニウムハイドロオキサイド、トリフェニルスルホニウムアセテート、トリフェニルスルホニウムサリチレート、ジフェニル-4-ヒドロキシフェニルスルホニウムハイドロオキサイド、ジフェニル-4-ヒドロキシフェニルスルホニウムアセテート、ジフェニル-4-ヒドロキシフェニルスルホニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムサリチレート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムハイドロオキサイド、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムアセテート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ジフェニルヨードニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、4-t-ブトキシフェニル・ジフェニルスルホニウム10-カンファースルホネート等を挙げることができる。
 酸拡散制御剤は、1種を単独で又は2種以上を混合して使用することができる。酸拡散制御剤の含有割合としては、[A]重合体100質量部に対して、10質量部以下が好ましく、0.1質量部以上8質量部以下がより好ましい。使用量が10質量部を超えると、レジストとしての感度が低下する傾向にある。合計使用量が10質量部を超えると、レジストとしての感度が著しく低下する傾向にある。
 <脂環式骨格含有化合物>
 脂環式骨格含有化合物は、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏する。
 脂環式骨格含有化合物としては、例えば
 1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;
 デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;
 リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;
 3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等が挙げられる。これらの脂環式骨格含有化合物は単独で使用してもよく2種以上を併用してもよい。
 <増感剤>
 増感剤は、[B]酸発生剤の生成量を増加する作用を表すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏する。
 増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。これらの増感剤は、単独で使用してもよく2種以上を併用してもよい。
 <感放射線性樹脂組成物の調製>
 当該感放射線性樹脂組成物は、例えば[C]有機溶媒中で[A]重合体、[B]酸発生剤及びその他の成分を所定の割合で混合することにより調製できる。また、当該組成物は、適当な有機溶媒に溶解又は分散させた状態に調製され使用され得る。
 <フォトレジストパターンの形成方法>
 本発明の感放射線性樹脂組成物は、化学増幅型レジストとして有用である。ポジ型の化学増幅型レジストにおいては、露光により酸発生体から発生した酸の作用によって、樹脂成分、主に、[A]重合体中の酸解離性基が解離してカルボキシル基に代表される極性基を生じる。その結果、レジストの露光部のアルカリ現像液に対する溶解性が高くなり、この露光部がアルカリ現像液によって溶解、除去され、ポジ型のフォトレジストパターンが得られる。
 ネガ型の場合、架橋剤等を含有させることで、露光により酸発生体から発生した酸の作用によって、アルカリ溶解性の樹脂成分と架橋剤の架橋反応が容易に起こる。その結果、レジストの露光部のアルカリ現像液に対する溶解性が低くなり、未露後部がアルカリ現像液によって溶解、除去されレジストパターンが得られる。また、ネガ型とする場合は、現像液として有機溶媒を用いることなどにより、ネガ型のフォトレジストパターンを得ることができる。
 以下、ポジ型の感放射線性樹脂組成物を用いたフォトレジストパターンの形成方法について詳述する。
 フォトレジストパターン形成方法は、例えば、以下に示すような手順に従って行うことが一般的である。(1)感放射線性樹脂組成物を用いて、基板上にフォトレジスト膜を形成した後(工程(1))、(2)形成されたフォトレジスト膜に(必要に応じて液浸媒体を介し)、所定のパターンを有するマスクを通して放射線を照射して露光し(工程(2))、基板(露光されたフォトレジスト膜)を加熱し(工程(3))、次いで(4)現像すれば(工程(4))、フォトレジストパターンを形成することができる。
 工程(1)では、感放射線性樹脂組成物を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、基板(シリコンウエハー、二酸化シリコン、反射防止膜で被覆されたウエハー等)上に塗布することにより、フォトレジスト膜を形成する。具体的には、得られるレジスト膜が所定の膜厚となるように樹脂組成物溶液を塗布した後、プレベーク(PB)することにより塗膜中の溶剤を気化させ、レジスト膜を形成する。
 工程(2)では、工程(1)で形成されたフォトレジスト膜に(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光させる。なお、この際には、所定のパターンを有するマスクを通して放射線を照射する。放射線としては、目的とするパターンの線幅に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等から適宜選択して照射する。これらの中でも、ArFエキシマレーザー(波長193nm)、KrFエキシマレーザー(波長248nm)に代表される遠紫外線が好ましく、特にArFエキシマレーザーが好ましい。
 工程(3)は、ポストエクスポージャーベーク(PEB)と呼ばれ、工程(2)でフォトレジスト膜の露光された部分において、酸発生体から発生した酸が重合体を脱保護する工程である。露光された部分(露光部)と露光されていない部分(未露光部)のアルカリ現像液に対する溶解性に差が生じる。PEBは、通常50℃から180℃の範囲で適宜選択して実施される。
 工程(4)では、露光されたフォトレジスト膜を、現像液で現像することにより、所定のフォトレジストパターンを形成する。現像後は、水で洗浄し、乾燥することが一般的である。現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液が好ましい。
 また、液浸露光を行う場合は、工程(2)の前に、液浸液とレジスト膜との直接の接触を保護するために、液浸液不溶性の液浸用保護膜をレジスト膜上に設けてもよい。液浸用保護膜としては、工程(4)の前に溶剤により剥離する、溶剤剥離型保護膜(例えば、特開2006-227632号公報参照)、工程(4)の現像と同時に剥離する、現像液剥離型保護膜(例えば、WO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。但し、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 このようにして得られるレジストパターンは、解像度が高く、リソグラフィー技術を応用した微細加工に好適である。
 <重合体>
 本発明の重合体は、上記式(1)で表される化合物に由来する構造単位(I)と、上記式(2)で表される化合物に由来する構造単位(II)とを有する重合体である。当該重合体は、本発明の感放射線性樹脂組成物に含まれる[A]重合体と同様である。当該重合体は、例えば上述のように感放射線性樹脂組成物の成分として用いることができ、この際、この組成物の解像性能等を高めることができる。
 上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基であるとよい。当該重合体によれば、この環構造部分に極性を用いることで、感放射線性樹脂組成物の成分として用いた際の解像性の向上等にさらに寄与することができる。
 <化合物>
 本発明の化合物は、上記式(1)で表される化合物である。当該化合物についても、[A]重合体の構造単位を与える単量体として上述したものと同様である。当該化合物を用いることで、特定の環構造部分に極性を有し、感放射線性樹脂組成物の成分として好適な上述の[A]重合体を容易に製造することができる。
 当該化合物において、上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基であるとよい。当該化合物を用いることで、特定の環構造部分に極性を有する上述の[A]重合体をより容易に製造することができる。
 以下、合成例及び実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例における各測定は以下の要領で行った。
 <測定方法>
 [重量平均分子量(Mw)及び数平均分子量(Mn)]
 東ソー社製のGPCカラム(商品名「G2000HXL」2本、商品名「G3000HXL」1本、商品名「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
 [13C-NMR分析]
 日本電子社製の商品名「JNM-EX400」を使用し、測定溶媒として重クロロホルムを使用して分析を行った。
 <化合物の合成>
 [実施例1]化合物(1-1)の合成
 滴下漏斗及びコンデンサーを備え乾燥させた1Lの三つ口反応器に、亜鉛粉末(Aldrich社製 粒子径150μm以下)13.1g(200mmol)を添加し、アルゴン雰囲気にした後、テトラヒドロフラン(THF)240mLを加えマグネチックスターラーで攪拌しながら、クロロトリメチルシラン1.9mL(15mmol)を加え、20~25℃で30分間撹拌した。そこへ、2-メチルテトラヒドロフラン-3-オン20.0g(200mmol)をTHF40mLに溶解させた溶液を添加した。次に、エチル(2-ブロモメチル)アクリレート34.8g(180mmol)のTHF50mL溶液を滴下した。滴下後、室温で2時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、塩化アンモニウム水溶液及び酢酸エチルを加え分液した。得られた有機層を水、飽和食塩水で順次洗浄した。その後、有機層を乾燥後減圧濃縮した。その後減圧蒸留を行い、透明油状物として6-メチル-3-メチレン-1,7-ジオキサスピロ[4.4]ノナン-2-オン(式(1-1)で表される化合物(1-1))20.4g(収率67%、純度99%)を得た。
Figure JPOXMLDOC01-appb-C000027
 [化合物(1-1)の物性]
 H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.27(s,1H),5.67(s,1H),4.05-4.25(m,1H),3.90-4.05(m,1H),3.80-3.90(m,1H),2.80-3.20(m,2H),2.00-2.45(m,2H),1.10-1.25(m,3H).
 [実施例2]化合物(1-9)の合成
 滴下漏斗及びコンデンサーを備え乾燥させた100mLの三つ口反応器に、亜鉛粉末(和光純薬製 和光特級)1.31g(20mmol)を添加し、アルゴン雰囲気にした後、THF20mLを加えマグネチックスターラーで攪拌しながら、クロロトリメチルシラン0.2mL(1.6mmol)を加え、20~25℃で30分間撹拌した。そこへ、シクロペンタノン-2-カルボン酸エチル2.34g(15mmol)をTHF4mLに溶解させた溶液を添加した。次に、エチル(2-ブロモメチル)アクリレート3.86g(20mmol)のTHF5mL溶液を滴下した。滴下後、室温で2時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、塩化アンモニウム水溶液及び酢酸エチルを加え分液した。得られた有機層を水、飽和食塩水で順次洗浄した。その後、有機層を乾燥後減圧濃縮した。その後カラムクロマトグラフィーによる精製を行い、透明油状物として3-メチレン-2-オキソ-1-オキサスピロ[4.4]ノナン-6-カルボン酸エチル(式(1-9)で表される化合物(1-9))1.5g(収率44.6%、純度99%)を得た。
Figure JPOXMLDOC01-appb-C000028
 [化合物(1-9)の物性]
 H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.20(s,1H),5.61(s,1H),4.05-4.30(m,2H),3.35-3.45(dt,1H),2.94-3.08(dt,1H),2.80-2.94(t,1H),2.24-2.38(m,1H),1.70-2.20(m,5H),1.15-1.38(t,3H).
 [実施例3]化合物(1-12)の合成
 滴下漏斗及びコンデンサーを備え乾燥させた1Lの三つ口反応器に、亜鉛粉末(和光純薬製 和光特級)13.4g(220mmol)を添加し、窒素雰囲気にした後、THF200mLを加えマグネチックスターラーで攪拌しながら、クロロトリメチルシラン1.9mL(15mmol)を加え、20~25℃で30分間撹拌した。そこへ、2-メトキシシクロヘキサノン25.0g(195mmol)をTHF30mLに溶解させた溶液を添加した。次に、エチル(2-ブロモメチル)アクリレート38.6g(200mmol)のTHF30mL溶液を滴下した。滴下後、室温で2時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、塩化アンモニウム水溶液及び酢酸エチルを加え分液した。得られた有機層を水、飽和食塩水で順次洗浄した。その後、有機層を乾燥後減圧濃縮した。その後減圧蒸留を行い、透明油状物として6-メトキシ-3-メチレン-1-オキサスピロ[4.5]デカン-2-オン(式(1-12)で表される化合物(1-12))24.1g(収率63.0%、純度99%)を得た。
Figure JPOXMLDOC01-appb-C000029
 [化合物(1-12)の物性]
 H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.15(s,1H),5.53(s,1H),3.00-3.50(m,5H),2.46-2.58(m,1H),1.90-2.10(m,2H),1.76-1.86(m,1H),1.58-1.76(m,2H),1.42-1.58(m,2H),1.22-1.38(m,1H).
 [実施例4]化合物(1-14)の合成
 300mLの二つ口反応器に、2-ヒドロキシシクロヘキサノン・2量体5.0g(22mmol)を添加し、そこへ塩化メチレン80mlを添加し、マグネチックスターラーで攪拌し溶解させた。そこへ、イミダゾール6.0g(88mmol)、ジメチルアミノピリジン0.5g(4.4mmol)を添加した。そこへtert-ブチルジメチルシリルクロリド9.9g(66mmol)を加え、室温で6時間反応させた。次に塩化アンモニウム水溶液を加え分液した。得られた有機層を水、飽和食塩水で順次洗浄し、その後、有機層を硫酸マグネシウムで乾燥後、減圧濃縮した。その後ショートカラムにて精製を行い、粗生成物を9.5g得た。
 次に滴下漏斗を備え乾燥させた200mLの三つ口反応器に、亜鉛粉末(和光純薬製 和光特級)2.0g(30mmol)を添加し、窒素雰囲気にした後、テトラヒドロフラン(THF)30mLを加えマグネチックスターラーで攪拌しながら、クロロトリメチルシラン0.6mL(5mmol)を加え、20~25℃で10分間撹拌した。そこへ、上記粗生成物5.7g(25mmol)をTHF5mLに溶解させた溶液を添加した。次に、エチル(2-ブロモメチル)アクリレート5.4g(28mmol)のTHF10mL溶液を滴下した。滴下後、室温で2時間攪拌した。次に、塩化アンモニウム水溶液、酢酸エチルを加え分液した。得られた有機層を水、飽和食塩水で順次洗浄した。その後、有機層を硫酸マグネシウムで乾燥後、減圧濃縮した。その後カラムクロマトグラフィーによる精製により、黄色油状物として6-(tert-ブチルジメチルシリルオキシ)-3-メチレン-1-オキサスピロ[4.5]デカン-2-オン(式(1-14)で表される化合物(1-14))5.0g(収率67.0%、純度99%)を得た。
Figure JPOXMLDOC01-appb-C000030
 [化合物(1-14)の物性]
 H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.1-6.2(m,1H),5.45-5.58(m,1H),3.44-3.74(m,1H),2.86-3.17(m,1H),2.42-2.58(m,1H),1.22-2.00(m,8H),0.76-1.00(m,9H),0.02-0.09(m,6H).
 [実施例5]化合物(1-13)の合成
 乾燥させた300mLの三つ口反応器に、化合物(1-14)4.0g(13.5mmol)を添加し、テトラヒドロフラン(THF)100mLを加え、マグネチックスターラーで攪拌しながら、テトラブチルアンモニウムフロライド10.6g(40.5mmol)を加え、室温で2時間撹拌した。次に、酢酸エチル100mLを加え、有機層を1M塩酸水溶液、水、飽和食塩水で順次洗浄した。その後、有機層を硫酸マグネシウムで乾燥した。減圧濃縮後、得られた粗生成物をカラムクロマトグラフィーによる精製により、黄色油状物として6-ヒドロキシ-3-メチレン-1-オキサスピロ[4.5]デカン-2-オン(式(1-13)で表される化合物(1-13))1.7g(収率69.1%、純度99%)を得た。
Figure JPOXMLDOC01-appb-C000031
 [化合物(1-13)の物性]
 H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.22(t,1H),5.62(dt,1H),3.44-3.86(m,1H),3.08-3.20(m,1H),2.52-2.62(m,1H),1.30-2.02(m,8H).
 [実施例6]化合物(1-15)の合成
 滴下漏斗及びコンデンサーを備え乾燥させた1Lの三つ口反応器に、亜鉛粉末(和光純薬製 和光特級)11.1g(170mmol)を添加し、窒素雰囲気にした後、テトラヒドロフラン(THF)100mLを加えマグネチックスターラーで攪拌しながら、クロロトリメチルシラン1.3mL(10mmol)を加え、20~25℃で30分間撹拌した。そこへ1,4-シクロヘキサンジオンモノエチレンケタール23.4g(150mmol)をTHF100mLに溶解させた溶液を添加した。次に、エチル(2-ブロモメチル)アクリレート30.9g(160mmol)のTHF50mL溶液を滴下した。滴下後、室温で2時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、純水に滴下しそのまま1時間攪拌し、塩を析出させた。生じた塩を減圧濾過にて除去し、得られた溶液に酢酸エチルを加え分液した。得られた有機層を水で洗浄した。その後、有機層を乾燥後減圧濃縮し、固体を生じさせた。この固体を酢酸エチルを溶媒として再結晶し、透明固体として3-メチレン-1,9,12-トリオキサジスピロ[4.2.4.2]テトラデカン-2-オン(式(1-15)で表される化合物(1-15))15.1g(収率44.9%、純度98%)を得た。
Figure JPOXMLDOC01-appb-C000032
 [化合物(1-15)の物性]
 H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.24(s,1H),5.63(s,1H),3.90-4.10(m,4H),2.76(S,2H),1.75-2.10(m,6H),1.60-1.75(m,2H).
 [実施例7]化合物(1-71)の合成
 (Fr-A)の合成
 20Lの反応器に、1,4-シクロヘキサンジオール1004g(8.64mol)を添加し、そこへTHFを4320mLを加え、メカニカルスターラーで攪拌した。反応器にp-トルエンスルホン酸ピリジニウム21.71g(86.39mmol)、続いて3,4-ジヒドロ‐2H-ピラン726.73g(8.64mol)を加え室温にて12時間反応させた。その後、トリエチルアミン17.28g(170.77mmol)を加えて反応を停止させ、濃縮した。濃縮液をヘキサンと水で分液し、得られた水層にNaClを飽和するまで加えた後、塩化メチレンにて抽出した。得られた有機層を硫酸マグネシウムで乾燥後、減圧濃縮することにより、(Fr-A)を737g(3.68mol、収率43%)得た。
 得られた(Fr-A)のH-NMRデータを以下に示す。
H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン)δ:1.24-1.91(m、13H)、1.94-2.05(m、2H)、3.45-3.53(m、1H)、3.59-3.70(m、1H)、3.71-3.78(m、1H)、3.87-3.95(m、1H)、4.67-4.71(m、1H)
Figure JPOXMLDOC01-appb-C000033
 (Fr-B)の合成
 5Lの三つ口反応器に、上記で得られた(Fr-A)300g(1.5mol)を添加し、そこへ塩化メチレン1200mL、1-メチル‐2-アザアダマンタン‐N-オキシル0.228g(1.5mmol)、臭化カリウム17.85g(150mmol)、飽和炭酸水素ナトリウム水溶液450mLを順次添加し、メカニカルスターラーで攪拌した。反応器を0℃に冷却し、7%次亜塩素酸ナトリウム水溶液1913gと飽和炭酸水素ナトリウム水溶液450mLを混合した溶液を3時間かけて滴下した。滴下終了後0℃にて30分攪拌後、飽和チオ硫酸ナトリウム水溶液100mL加えて反応を停止させ分液した。得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後減圧濃縮することにより、(Fr-B)を214g(1.07mol、収率71%)得た。
 得られた(Fr-B)のH-NMRデータを以下に示す。
H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン)δ:1.51-2.16(m、10H)、2.22-2.35(m、2H)、2.50-2.69(m、2H)、3.49-3.56(m、1H)、3.88-3.95(m、1H)、4.05-4.11(m、1H)、4.74-4.78(m、1H)
Figure JPOXMLDOC01-appb-C000034
 (1-71)の合成
 滴下漏斗及びコンデンサーを備え乾燥させた3Lの三つ口反応器に、亜鉛粉末(和光純薬製 和光特級)94.1g(1.44mol)を添加し、窒素雰囲気にした後、テトラヒドロフラン(THF)1.3Lを加えマグネチックスターラーで攪拌しながら、クロロトリメチルシラン6.3mL(50mmol)を加え、20~25℃で10分間撹拌した。そこへ、上記で得られたFr-B199.3g(1.0mol)をTHF100mLに溶解させた溶液を添加した。次に、エチル(2-ブロモメチル)アクリレート231.7g(1.2mol)のTHF100mL溶液を25℃で滴下漏斗に加え滴下を開始した。3分滴下後、反応液の温度が、40℃まで上昇した為、水浴により反応器を冷却した。続いて反応温度が、30-40℃の範囲を保つように滴下を行った。滴下終了まで2時間を要した。その後30分攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、25℃まで反応液を冷却した。続いて飽和塩化アンモニウム水溶液1Lを加えて混合し、そのまま1時間攪拌し反応を停止した。生じた塩と反応に使われなかった過剰の亜鉛をセライト濾過にて除去し、得られた溶液をエバポレーターを用いて、有機溶剤を濃縮した。濃縮液に酢酸エチル、飽和炭酸水素ナトリウム水溶液を攪拌しながら加えたところ、白色沈殿が生じた。そこで、白色沈殿をろ過により除去した後、分液漏斗にて、有機層を分取した。得られた有機層を乾燥後減圧濃縮した。この固体を酢酸エチルを溶媒として再結晶し、透明液体として式(1-71)で表される化合物(1-71)254g(収率95.4%、純度98%)を得た。
Figure JPOXMLDOC01-appb-C000035
 H-NMRデータを以下に示す。
H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン)δ:1.51-2.17(m、14H)、2.72(dt、J=8.8、2.8Hz、2H)、3.52-3.47(m、1H)、3.67-3.75(m、1H)、3.85-3.95(m、1H)、4.65(t、J=3.6Hz、0.5H)、4.73(t、J=3.6Hz、0.5H)、5.60-5.64(m、1H)、6.22-6.26(m、1H)
 [実施例8](1-17)の合成
 1Lの反応器に、上記で得られた化合物(1-71)200g(751mol)を添加し、マグネチックスターラーで攪拌しながら、濃塩酸1.0gをメタノール200mlで希釈した塩酸-メタノール溶液を加え、20~25℃で30分間撹拌した。ガスクロマトグラフィーで原料消失を確認後、炭酸水素ナトリウム粉末を徐々に加え、溶液のpHが7になるまで中和した。中和に伴って析出してきた塩をろ過した後、酢酸エチル500mlを加え、エバポレーターで有機溶剤を除去、生成物を濃縮する。この濃縮操作を2回繰り返した後、カラムクロマトグラフィーで精製し、式(1-17)で表される化合物(1-17)を117g(収率85.5%、純度99%)を得た。
Figure JPOXMLDOC01-appb-C000036
 H-NMRデータを以下に示す。
H-NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン)δ:1.51-2.09(m、8H)、2.72(t、J=2.8Hz,1H)、2.76(t、J=2.8Hz,1H)、3.67-3.77(m、0.5H)、3.96-4.04(m、0.5H)、5.62-5.68(m、1H)、6.22-6.28(m、1H)
 <[A]重合体の合成>
 以下の各実施例の重合体の合成で用いた単量体(化合物(M-1)~化合物(M-21)、化合物(1-1)、化合物(1-12)、化合物(1-13)、化合物(1-15)、化合物(1-17)及び化合物(1-71)は以下の通りである。
Figure JPOXMLDOC01-appb-C000037
 [実施例9]重合体(A-1)の合成
 化合物(M-1)20.0g(50mol%)、化合物(1-1)20.0g(50mol%)を80gの2-ブタノンに溶解し、AIBN1.95gを添加して単量体溶液を調製した。40gの2-ブタノンを入れた200mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。800gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を160gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(樹脂(A-1))を得た(20.8g、収率52%)。得られた重合体(A-1)のMwは5,730であり、Mw/Mnは1.58であった。
 [実施例10~30及び比較合成例1]重合体(A-2)~(A-22)及び重合体(a-1)の合成
 表1に示す種類及び量の単量体を用いた以外は実施例9と同様にして、実施例10~30の各重合体(A-2)~(A-22)及び比較合成例1の重合体(a-1)を得た。得られた各重合体の収率、Mw及びMw/Mnを表1に示す。
Figure JPOXMLDOC01-appb-T000038
 [実施例31]重合体(A-23)の合成
 化合物(M-1)15.5g(50mol%)及び化合物(1-71)24.5g(50mol%)を80gの2-ブタノンに溶解し、AIBN1.51gを添加して単量体溶液を調製した。40gの2-ブタノンを入れた200mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。800gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を160gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(樹脂(A-23))を得た(27.2g、収率68%)。得られた重合体(A-23)のMwは5,870であり、Mw/Mnは1.53であった。
 [実施例32~34]重合体(A-24)~(A-26)の合成
 表2に示す種類及び量の単量体を用いた以外は実施例31と同様にして、実施例32~34の各重合体(A-24)~(A-26)を得た。
 [実施例35]重合体(A-27)の合成
 化合物(M-3)19.1g(50mol%)、化合物(1-17)3.6g(10mol%)及び化合物(M-16)17.3g(40mol%)を80gの2-ブタノンに溶解し、AIBN1.60gを添加して単量体溶液を調製した。40gの2-ブタノンを入れた300mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。800gのメタノール/純水=8/2の比率の混合溶液中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を160gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(樹脂(A-23))を得た(29.6g、収率74%)。得られた重合体(A-27)のMwは6,210であり、Mw/Mnは1.57であった。
 [実施例36]重合体(A-28)の合成
 表2に示す種類及び量の単量体を用いた以外は実施例35と同様にして、実施例36の各重合体(A-28)を得た。
 得られた各重合体の収率、Mw及びMw/Mnを表2に示す。
Figure JPOXMLDOC01-appb-T000039
 <[B]酸発生剤>
 実施例及び比較例で用いた[B]酸発生剤を以下に示す。
Figure JPOXMLDOC01-appb-C000040
 <[C]有機溶媒>
 実施例及び比較例で用いた有機溶媒を以下に示す。
 (C-1):酢酸プロピレングリコールモノメチルエーテル
 (C-2):シクロヘキサノン
 (C-3):γ-ブチロラクトン
 <酸拡散制御剤>
 実施例及び比較例で用いた[D]酸拡散制御剤を以下に示す。
Figure JPOXMLDOC01-appb-C000041
 <[F]重合体の合成>
 [合成例1]
 化合物(M-2)21.50g(70モル%)、化合物(M-17)8.50g(30モル%)を、2-ブタノン60gに溶解し、更にアゾビスイソブチロニトリル1.38gを投入した単量体溶液を準備した。30gの2-ブタノンを投入した300mLの三口フラスコを30分窒素パージした後、反応器を攪拌しながら80℃に加熱し、上述のように準備した単量体溶液を、滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。
 重合終了後、重合溶液を水冷することにより30℃以下に冷却し、600gのメタノール:水=8:2の溶液へ投入して樹脂を沈殿させた。上澄みの溶液を除いた後、沈殿した樹脂にメタノール120gを加え、樹脂を洗浄した。上澄み液を除いた後に、50℃にて17時間乾燥して、上記化合物(M-2)、及び(M-17)の重合体(F-1)を得た(収量18g、収率60%)。この重合体は、Mwが5,800であり、Mw/Mnが1.41、フッ素原子含有率が9.6質量%であった。
 [合成例2]
 化合物(M-8)11.22g(40モル%)、化合物(M-18)18.78g(60モル%)を、2-ブタノン60gに溶解し、更にアゾビスイソブチロニトリル1.03gを投入した単量体溶液を準備した。30gの2-ブタノンを投入した300mLの三口フラスコを30分窒素パージした後、反応器を攪拌しながら80℃に加熱し、上述のように準備した単量体溶液を、滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。
 重合終了後、重合溶液を水冷することにより30℃以下に冷却し、600gのメタノール:水=8:2の溶液へ投入して樹脂を沈殿させた。上澄みの溶液を除いた後、沈殿した樹脂にメタノール120gを加え、樹脂を洗浄した。上澄み液を除いた後に、50℃にて17時間乾燥して、上記化合物(M-8)、及び(M-18)の重合体(F-2)を得た(収量19g、収率62%)。この重合体は、Mwが5,700であり、Mw/Mnが1.42、フッ素原子含有率が9.5質量%であった。
 [合成例3]
 化合物(M-9)12.24g(40モル%)、化合物(M-19)17.76g(60モル%)を、2-ブタノン60gに溶解し、更にアゾビスイソブチロニトリル1.03gを投入した単量体溶液を準備した。30gの2-ブタノンを投入した300mLの三口フラスコを30分窒素パージした後、反応器を攪拌しながら80℃に加熱し、上述のように準備した単量体溶液を、滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。
 重合終了後、重合溶液を水冷することにより30℃以下に冷却し、600gのメタノール:水=8:2の溶液へ投入して樹脂を沈殿させた。上澄みの溶液を除いた後、沈殿した樹脂にメタノール120gを加え、樹脂を洗浄した。上澄み液を除いた後に、50℃にて17時間乾燥して、上記化合物(M-9)、及び(M-19)の重合体(F-3)を得た(収量20g、収率67%)。この重合体は、Mwが5,900であり、Mw/Mnが1.40、フッ素原子含有率が9.5質量%であった。
 <感放射線性樹脂組成物の調製>
 [実施例37]
 合成例1で得られた重合体(A-1)100質量部、酸発生剤(B-1)10質量部、有機溶媒(C-1)1,820質量部、(C-2)780質量部及び(C-3)30質量部並びに酸拡散制御剤(D-1)1.2質量部を混合し、得られた混合溶液を孔径0.20μmのフィルターでろ過して感放射線性樹脂組成物(J-1)を調製した。
 [実施例38~実施例70及び比較例1]
 表3に示す配合処方に変更したこと以外は、実施例37と同様にして実施例38~70の各感放射線性樹脂組成物(J-2)~(J-34)並びに比較例1の感放射線性樹脂組成物(j-1)を調製した。
Figure JPOXMLDOC01-appb-T000042
 [評価]
 得られた感放射線性樹脂組成物(J-1)~(J-34)及び感放射線性樹脂組成物(j-1)について、ArFエキシマレーザーを光源として、以下の各パターン形成方法を用いてパターンを形成し、評価した。
 [パターン形成方法(P-1)]
 下層反射防止膜(「ARC29A」、日産化学社製)を形成した8インチシリコンウェハ上に、スピンコーター(クリーントラックACT8、東京エレクトロン社製)を用いて上記感放射線性樹脂組成物を塗布した後、表3に示す温度で60秒間ソフトベーク(SB)を行い、膜厚100nmの上記感放射線性樹脂組成物の被膜を形成した。
 このレジスト被膜をフルフィールド縮小投影露光装置(商品名:NSR S306C、ニコン社製)を用い、NA=0.78、照明NA=0.70、Ratio=0.66、Annularの照明条件により、360nmLine720nmPitchのハーフトーンマスクパターンを介して1/4縮小投影露光した。その後、表3に示す温度で60秒間ポストベーク(PEB)を行った後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(以下、「TMAH水溶液」と記す。)により現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。
 このとき、90nmLine180nmPitchのパターンが解像する最小の露光量を感度(mJ/cm)とした。なお、レジストパターンの測定には走査型電子顕微鏡(「S-9380」、日立ハイテクノロジーズ社製)を用いた。このパターン形成方法を(P-1)とする。
 [パターン形成方法(P-2)]
 下層反射防止膜(「ARC66」、日産化学社製)を形成した12インチシリコンウェハ上に、スピンコーター(クリーントラックACT12、東京エレクトロン社製)を用いて上記感放射線性樹脂組成物を塗布した後、表3に示す温度で60秒間ソフトベーク(SB)を行い、膜厚100nmの上記感放射線性樹脂組成物の被膜を形成した。
 さらにコーターデベロッパー(クリーントラックLithius、東京エレクトロン社製)を用い、上記感放射線性樹脂組成物被膜上に液浸上層膜(「TCX112」、JSR製)を塗布し90℃で60秒間ベーク(TC Bake)を行い、評価被膜とした。次に、この評価被膜を、ArFエキシマレーザー液浸露光装置(「NSR S610C」、NIKON社製)を用い、NA=1.30、照明NA=1.27、Ratio=0.80のDipole照明条件により、180nmLine 360nmPitchのハーフトーンマスクパターンを介して1/4縮小投影露光した。この際、評価被膜と液浸露光機レンズとの間には液浸溶媒として純水を配置した。露光後、各評価被膜についてコーターデベロッパー(クリーントラックLithius、東京エレクトロン社製)を用い表3に示す温度で60秒間ポストベーク(PEB)を行い、その後、2.38質量%のTMAH水溶液により現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。
 このとき、45nmLine90nmPitchのパターンが解像する最小の露光量を感度(mJ/cm)とした。した。なお、レジストパターンの測定には走査型電子顕微鏡(「CG-4000」、日立ハイテクノロジーズ社製)を用いた。このパターン形成方法を(P-2)とする。
 [パターン形成方法(P-3)]
 下層反射防止膜(「ARC66」、日産化学社製)を形成した12インチシリコンウェハ上に、感放射線性樹脂組成物によって、膜厚100nmのフォトレジスト膜を形成し、表3に示す温度で60秒間ソフトベーク(SB)を行った。次に、このフォトレジスト膜を、上記ArFエキシマレーザー液浸露光装置を用い、NA=1.3、照明NA=1.27、ratio=0.80、Annularの条件により、マスクパターンを介して露光した。露光後、表3に示す温度で60秒間ポストベーク(PEB)を行った。その後、2.38%のTMAH水溶液により現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。
 このとき、45nmLine90nmPitchのパターンが解像する最小の露光量を感度(mJ/cm)とした。なお、測長には走査型電子顕微鏡(CG-4000、日立ハイテクノロジーズ社)を用いた。このパターン形成方法を(P-3)とする。
 [パターン形状]
 パターン形状として、これらのパターン形成方法(P-1)~(P-3)で、目的のサイズのパターンが解像した場合は、「良好」、解像しなかった場合は、「不良」とした。結果を感度とともに表4に示す。
 <実施例71>
 感放射線性樹脂組成物(J-1)を用い、パターン形成方法(P-1)でパターンを形成した。露光した塗膜を走査型電子顕微鏡で観察した所、露光量53mJで、90nmLine180nmPitchが形成できたことを確認した。
 <実施例72~105>
 各感放射線性樹脂組成物を用いて、表4に示すSB温度、PEB温度及びパターン形成方法により、パターンを形成した。結果を表4に示す。
 <比較例2>
 感放射線性樹脂組成物(j-1)を用い、パターン形成方法(P-1)で露光した塗膜を走査型電子顕微鏡で観察したところ、90nmLineが形成される露光量に達する前にパターン上部とパターン下部のコントラストが無くなりパターンが形成できなかった。
 <比較例3>
 感放射線性樹脂組成物(j-1)を用い、パターン形成方法(P-2)で露光した塗膜を走査型電子顕微鏡で観察したところ、45nmLineが形成される露光量に達する前にパターン上部と下部のコントラストが無くなりパターンが形成できなかった。
Figure JPOXMLDOC01-appb-T000043
 表4に示されるように、本発明の感放射線性樹脂組成物によれば、解像性能に優れ、微細なパターン形状を形成することができることがわかる。
 本発明の感放射線性樹脂組成物は、感度及び解像性能に優れ、フォトレジスト材料として好適に用いることができる。また、当該組成物は液浸露光法等においても好適に使用できる。

Claims (9)

  1.  [A]下記式(1)で表される化合物に由来する構造単位(I)と、下記式(2)で表される化合物に由来する構造単位(II)とを有する重合体、
     [B]酸発生剤、及び
     [C]有機溶媒
    を含む感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する(a+2)価の有機基である。Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。aは、0~6の整数である。aが2以上の場合、複数のRは、同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。Rは、水素原子又はメチル基である。Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。
     式(2)中、Rは、水素原子又はメチル基である。R、R及びRは、それぞれ独立して、炭素数1~6のアルキル基であり、このアルキル基の水素原子が置換されていてもよい。また、R及びRは、互いに結合してそれらが結合している炭素原子と共に環構造を形成してもよい。)
  2.  上記式(1)におけるR及びRの少なくとも1つの基が、酸素原子を有する請求項1に記載の感放射線性樹脂組成物。
  3.  上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基である請求項1に記載の感放射線性樹脂組成物。
  4.  上記式(1)におけるaが、0又は1である請求項1に記載の感放射線性樹脂組成物。
  5.  上記式(2)で表される化合物が、下記式(2a)又は式(2b)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2a)及び式(2b)中、R及びRの定義は、上記式(2)と同様である。bは、1~5の整数である。)
  6.  下記式(1)で表される化合物に由来する構造単位(I)と、下記式(2)で表される化合物に由来する構造単位(II)とを有する重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する(a+2)価の有機基である。Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。aは、0~6の整数である。aが2以上の場合、複数のRは、同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。Rは、水素原子又はメチル基である。Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。
     式(2)中、Rは、水素原子又はメチル基である。R、R及びRは、それぞれ独立して、炭素数1~6のアルキル基であり、このアルキル基の水素原子が置換されていてもよい。また、R及びRは、互いに結合してそれらが結合している炭素原子と共に環構造を形成してもよい。)
  7.  上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基である請求項6に記載の重合体。
  8.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは、ラクトン環を構成している炭素原子と共に、炭素数3~8の環構造を形成する(a+2)価の有機基である。Rは、フッ素原子、水酸基又は炭素数1~20の有機基である。aは、0~6の整数である。aが2以上の場合、複数のRは、同一又は異なっていてもよく、互いに結合して環構造を形成してもよい。但し、R及びRの少なくとも1つの基は、ヘテロ原子又はハロゲン原子を有している。Rは、水素原子又はメチル基である。Rは、水素原子、フッ素原子、又は炭素数1~6のアルキル基である。Rは、水素原子であるか、Rと結合してこれらが結合している炭素原子と共に炭素数3~8のシクロアルカンジイル基を形成してもよい。)
  9.  上記式(1)におけるRが、-CO-、-COO-、-OCO-、-O-、-NR-、-S-、-SO-、及び-SO-からなる群より選ばれる少なくとも1種(但し、Rは水素原子又は炭素数1~20の有機基である。)を骨格鎖中に含む(a+2)価の鎖状炭化水素基である請求項7に記載の化合物。
PCT/JP2011/072298 2010-09-30 2011-09-28 感放射線性樹脂組成物、重合体及び化合物 WO2012043685A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180047387.0A CN103140551B (zh) 2010-09-30 2011-09-28 放射线敏感性树脂组合物、聚合物及化合物
JP2012536530A JP5678963B2 (ja) 2010-09-30 2011-09-28 感放射線性樹脂組成物、重合体及び化合物
EP11829238.2A EP2623558A4 (en) 2010-09-30 2011-09-28 RADIATION-SENSITIVE RESIN COMPOSITION, POLYMER AND COMPOUND THEREWITH
KR1020137008023A KR101875983B1 (ko) 2010-09-30 2011-09-28 감방사선성 수지 조성물, 중합체 및 화합물
US13/853,254 US9459532B2 (en) 2010-09-30 2013-03-29 Radiation-sensitive resin composition, polymer and compound

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010220482 2010-09-30
JP2010-220482 2010-09-30
JP2010227871 2010-10-07
JP2010-227871 2010-10-07
JP2011007348 2011-01-17
JP2011-007348 2011-01-17
JPPCT/JP2011/071400 2011-09-20
JP2011071400 2011-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/853,254 Continuation US9459532B2 (en) 2010-09-30 2013-03-29 Radiation-sensitive resin composition, polymer and compound

Publications (1)

Publication Number Publication Date
WO2012043685A1 true WO2012043685A1 (ja) 2012-04-05

Family

ID=45893124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072298 WO2012043685A1 (ja) 2010-09-30 2011-09-28 感放射線性樹脂組成物、重合体及び化合物

Country Status (6)

Country Link
US (1) US9459532B2 (ja)
EP (1) EP2623558A4 (ja)
JP (2) JP5678963B2 (ja)
KR (1) KR101875983B1 (ja)
CN (1) CN103140551B (ja)
WO (1) WO2012043685A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157352A1 (ja) * 2011-05-19 2012-11-22 Jsr株式会社 フォトレジスト組成物
WO2013047528A1 (ja) * 2011-09-30 2013-04-04 Jsr株式会社 フォトレジスト組成物及びレジストパターン形成方法
JP2013061624A (ja) * 2011-03-28 2013-04-04 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、並びに、この組成物を用いた感活性光線性又は感放射線性膜及びパターン形成方法
WO2013047536A1 (ja) * 2011-09-30 2013-04-04 Jsr株式会社 フォトレジスト組成物及びレジストパターン形成方法
JP2013254084A (ja) * 2012-06-06 2013-12-19 Jsr Corp フォトレジスト組成物、レジストパターン形成方法、重合体、化合物及び化合物の製造方法
JP2016090868A (ja) * 2014-11-06 2016-05-23 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2016181722A1 (ja) * 2015-05-14 2016-11-17 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、及び、感活性光線性又は感放射線性樹脂組成物
JP2017151448A (ja) * 2012-05-17 2017-08-31 Jsr株式会社 酸拡散制御剤、感放射線性樹脂組成物、レジストパターン形成方法、化合物及び化合物の製造方法
WO2019167725A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂
JPWO2020049963A1 (ja) * 2018-09-07 2021-08-26 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151403A1 (ja) * 2018-01-31 2019-08-08 三菱瓦斯化学株式会社 組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082441A (ja) 2000-07-11 2002-03-22 Samsung Electronics Co Ltd バックボーンにラクトンが含まれた感光性ポリマーよりなるレジスト組成物
JP2002308937A (ja) 2001-02-22 2002-10-23 Samsung Electronics Co Ltd 酸により分解可能な保護基を有するラクトン基を含む感光性モノマー、感光性ポリマー及び化学増幅型レジスト組成物
JP2004149743A (ja) * 2002-11-01 2004-05-27 Mitsubishi Rayon Co Ltd 共重合体
WO2005069076A1 (ja) 2004-01-15 2005-07-28 Jsr Corporation 液浸用上層膜形成組成物およびフォトレジストパターン形成方法
WO2006035790A1 (ja) 2004-09-30 2006-04-06 Jsr Corporation 共重合体および上層膜形成組成物
JP2006227632A (ja) 2003-02-20 2006-08-31 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
JP2007131546A (ja) * 2005-11-08 2007-05-31 Mitsubishi Rayon Co Ltd α−メチレン−γ−ブチロラクトン化合物の製造方法
WO2010138820A2 (en) * 2009-05-28 2010-12-02 President And Fellows Of Harvard College N,n-diarylurea compounds and n,n'-diarylthiourea compounds as inhibitors of translation initiation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141262A (en) * 1977-05-17 1978-12-08 Nippon Kayaku Co Ltd Coriolin derivative and process for their preparation
JPH11199410A (ja) * 1998-01-13 1999-07-27 Nippon Nohyaku Co Ltd 農園芸用殺虫剤
TW527363B (en) * 1999-09-08 2003-04-11 Shinetsu Chemical Co Polymers, chemical amplification resist compositions and patterning process
US6406828B1 (en) * 2000-02-24 2002-06-18 Shipley Company, L.L.C. Polymer and photoresist compositions
US6927011B2 (en) * 2000-07-12 2005-08-09 Mitsubishi Rayon Co., Ltd. Resins for resists and chemically amplifiable resist compositions
TWI291953B (ja) * 2001-10-23 2008-01-01 Mitsubishi Rayon Co
EP1600437A4 (en) * 2003-03-05 2006-07-26 Jsr Corp ACID GENERATORS, SULFONIC ACIDS, SULPHONYLHALOGENIDES, AND RADIATION COMPOUND SENSITIVE COMPOSITIONS
JP4401840B2 (ja) * 2003-07-07 2010-01-20 東京応化工業株式会社 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
KR101202402B1 (ko) * 2004-09-15 2012-11-16 주식회사 동진쎄미켐 스피로 환형 케탈기를 가지는 포토레지스트용 모노머, 폴리머 및 이를 포함하는 포토레지스트 조성물
WO2006070824A1 (ja) * 2004-12-27 2006-07-06 Mitsubishi Rayon Co., Ltd. 重合体組成物、プラスチック光ファイバー、プラスチック光ファイバーケーブル及びプラスチック光ファイバーの製造方法
JPWO2006075646A1 (ja) * 2005-01-12 2008-06-12 三菱レイヨン株式会社 化合物、重合体および光学部品
TW200904330A (en) * 2007-06-15 2009-02-01 Bayer Cropscience Sa Pesticidal composition comprising a strigolactone derivative and a fungicide compound
KR101606010B1 (ko) * 2008-04-21 2016-03-24 스미또모 가가꾸 가부시키가이샤 중합체 및 이를 포함하는 화학 증폭형 레지스트 조성물
JP5967082B2 (ja) * 2011-05-19 2016-08-10 Jsr株式会社 フォトレジスト組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082441A (ja) 2000-07-11 2002-03-22 Samsung Electronics Co Ltd バックボーンにラクトンが含まれた感光性ポリマーよりなるレジスト組成物
JP2002308937A (ja) 2001-02-22 2002-10-23 Samsung Electronics Co Ltd 酸により分解可能な保護基を有するラクトン基を含む感光性モノマー、感光性ポリマー及び化学増幅型レジスト組成物
JP2004149743A (ja) * 2002-11-01 2004-05-27 Mitsubishi Rayon Co Ltd 共重合体
JP2006227632A (ja) 2003-02-20 2006-08-31 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
WO2005069076A1 (ja) 2004-01-15 2005-07-28 Jsr Corporation 液浸用上層膜形成組成物およびフォトレジストパターン形成方法
WO2006035790A1 (ja) 2004-09-30 2006-04-06 Jsr Corporation 共重合体および上層膜形成組成物
JP2007131546A (ja) * 2005-11-08 2007-05-31 Mitsubishi Rayon Co Ltd α−メチレン−γ−ブチロラクトン化合物の製造方法
WO2010138820A2 (en) * 2009-05-28 2010-12-02 President And Fellows Of Harvard College N,n-diarylurea compounds and n,n'-diarylthiourea compounds as inhibitors of translation initiation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALVAREZ M. ET AL.: "Using the National Cancer Institute Anticancer Drug Screen to assess the effect of MRP expression on drug sensitivity profiles", MOLECULAR PHARMACOLOGY, vol. 54, no. 5, 1998, pages 802 - 814, XP055085165 *
See also references of EP2623558A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061624A (ja) * 2011-03-28 2013-04-04 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、並びに、この組成物を用いた感活性光線性又は感放射線性膜及びパターン形成方法
WO2012157352A1 (ja) * 2011-05-19 2012-11-22 Jsr株式会社 フォトレジスト組成物
WO2013047528A1 (ja) * 2011-09-30 2013-04-04 Jsr株式会社 フォトレジスト組成物及びレジストパターン形成方法
WO2013047536A1 (ja) * 2011-09-30 2013-04-04 Jsr株式会社 フォトレジスト組成物及びレジストパターン形成方法
JP2017151448A (ja) * 2012-05-17 2017-08-31 Jsr株式会社 酸拡散制御剤、感放射線性樹脂組成物、レジストパターン形成方法、化合物及び化合物の製造方法
JP2013254084A (ja) * 2012-06-06 2013-12-19 Jsr Corp フォトレジスト組成物、レジストパターン形成方法、重合体、化合物及び化合物の製造方法
JP2016090868A (ja) * 2014-11-06 2016-05-23 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2016181722A1 (ja) * 2015-05-14 2016-11-17 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、及び、感活性光線性又は感放射線性樹脂組成物
JPWO2016181722A1 (ja) * 2015-05-14 2018-02-01 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、及び、感活性光線性又は感放射線性樹脂組成物
WO2019167725A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂
JPWO2019167725A1 (ja) * 2018-02-28 2021-02-12 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂
JP7053789B2 (ja) 2018-02-28 2022-04-12 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂
JPWO2020049963A1 (ja) * 2018-09-07 2021-08-26 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP7039715B2 (ja) 2018-09-07 2022-03-22 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法

Also Published As

Publication number Publication date
KR20130115233A (ko) 2013-10-21
US9459532B2 (en) 2016-10-04
JP5678963B2 (ja) 2015-03-04
JP5920435B2 (ja) 2016-05-18
JPWO2012043685A1 (ja) 2014-02-24
KR101875983B1 (ko) 2018-07-06
EP2623558A4 (en) 2014-02-26
US20130216951A1 (en) 2013-08-22
JP2015062065A (ja) 2015-04-02
CN103140551A (zh) 2013-06-05
CN103140551B (zh) 2016-06-29
EP2623558A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5920435B2 (ja) 化合物
JP6052283B2 (ja) フォトレジスト組成物
JP5862657B2 (ja) フォトレジスト組成物
JP6304246B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6019677B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP5967082B2 (ja) フォトレジスト組成物
WO2014034190A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
WO2012074025A1 (ja) 感放射線性樹脂組成物、これを用いたパターン形成方法、重合体及び化合物
JP6052280B2 (ja) フォトレジスト組成物、レジストパターン形成方法、化合物、酸発生剤及び光崩壊性塩基
JP5737114B2 (ja) 化合物、重合体及びフォトレジスト組成物
JP6007913B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP5783111B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP5857522B2 (ja) 化合物及びフォトレジスト組成物
WO2014141979A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP5790382B2 (ja) フォトレジスト組成物
JP5673038B2 (ja) 感放射線性樹脂組成物及びこれを用いたパターン形成方法
JP5783118B2 (ja) フォトレジスト組成物、レジストパターン形成方法及び重合体
JP5790549B2 (ja) フォトレジスト組成物、レジストパターン形成方法
TWI516505B (zh) Sensitive radiation linear resin compositions, polymers and compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047387.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536530

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137008023

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829238

Country of ref document: EP