WO2012043509A1 - ポリマー微粒子およびその製造方法 - Google Patents

ポリマー微粒子およびその製造方法 Download PDF

Info

Publication number
WO2012043509A1
WO2012043509A1 PCT/JP2011/071954 JP2011071954W WO2012043509A1 WO 2012043509 A1 WO2012043509 A1 WO 2012043509A1 JP 2011071954 W JP2011071954 W JP 2011071954W WO 2012043509 A1 WO2012043509 A1 WO 2012043509A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
acid
fine particles
temperature
polyvinyl alcohol
Prior art date
Application number
PCT/JP2011/071954
Other languages
English (en)
French (fr)
Inventor
越後裕司
浅野到
小林博
竹崎宏
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137009296A priority Critical patent/KR101833577B1/ko
Priority to EP11829062.6A priority patent/EP2623542B1/en
Priority to CN201180046425.0A priority patent/CN103140540B/zh
Priority to US13/876,375 priority patent/US9080048B2/en
Priority to JP2011543028A priority patent/JP5403065B2/ja
Priority to JP2012067571A priority patent/JP5541586B2/ja
Publication of WO2012043509A1 publication Critical patent/WO2012043509A1/ja
Priority to PCT/JP2012/067693 priority patent/WO2013046860A1/ja
Priority to BR112014007130-6A priority patent/BR112014007130A2/pt
Priority to KR1020147003389A priority patent/KR20140080478A/ko
Priority to EP12837041.8A priority patent/EP2743290A4/en
Priority to AU2012313453A priority patent/AU2012313453A1/en
Priority to CN201280041329.1A priority patent/CN103748143B/zh
Priority to US14/345,448 priority patent/US9617395B2/en
Priority to TW101135208A priority patent/TWI527846B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to polymer fine particles and a method for producing the same, and more particularly, a method for producing fine particles of a high heat-resistant polymer such as polyamide and polyester with a narrow particle size distribution, and polymer fine particles produced by the method. About.
  • the polymer fine particles are fine particles made of a polymer, and generally have a wide variety of diameters ranging from several tens of nm to several hundreds of ⁇ m. Unlike polymer molded products such as films, fibers, injection molded products, and extrusion molded products, polymer fine particles are used for modification and improvement of various materials by utilizing a large specific surface area and the structure of fine particles. Yes. Major applications include cosmetic modifiers, toner additives, rheology modifiers such as paints, medical diagnostic inspection agents, additives to molded articles such as automotive materials and building materials. In particular, in recent years, it has come to be used as a raw material for rapid prototyping and rapid manufacturing, which is a technique for making a custom-made molded product in combination with a laser processing technique by utilizing the fine particle structure of polymer fine particles.
  • polymer fine particles having high heat resistance and solvent resistance and a more uniform particle size distribution are required as polymer fine particles.
  • Patent Document a method for producing polymer fine particles, in which two types of polymers are dissolved in a solvent and polymer emulsions are produced by bringing a poor solvent into contact with an emulsion composed of the respective phases.
  • This method has the characteristics that the emulsion diameter can be easily adjusted and the particle size distribution is narrow, and at the same time, it is an effective technique that enables fine particle formation for a wide range of polymer species. This is an effective method for obtaining fine particles.
  • the present invention relates to a method for producing polymer fine particles in which two types of polymers are dissolved in a solvent, and a poor solvent is brought into contact with an emulsion composed of the respective phases to produce polymer fine particles. It is an object of the present invention to provide a method capable of stably producing quality polymer fine particles, and polymer fine particles produced by the method.
  • the present invention "(1) In a system in which when polymer A, polymer B and an organic solvent are dissolved and mixed, they are phase-separated into two phases: a solution phase mainly composed of polymer A and a solution phase mainly composed of polymer B.
  • a poor solvent of polymer A is contacted to precipitate polymer A, and the emulsion is formed at a temperature of 100 ° C. or higher.
  • a method for producing fine polymer particles (2) The method for producing polymer fine particles according to (1), wherein the polymer A is a crystalline thermoplastic resin having a melting point of 100 ° C. or higher, (3) The polymer A is a crystalline thermoplastic resin containing at least one structural unit selected from amide units, ester units, sulfide units, and carbonate ester units in the molecular main chain skeleton thereof, (1) or the method for producing polymer fine particles according to (2), (4) The method for producing polymer fine particles according to any one of (1) to (3), wherein the polymer A is a crystalline thermoplastic resin selected from polyamide, polyester, and polyphenylene sulfide.
  • the polymer B is any one of (1) to (7), characterized in that the polymer B is polyvinyl alcohols, hydroxyalkyl cellulose, polyalkylene glycol, polyvinyl pyrrolidone, water-soluble nylon, or polyacrylic acid.
  • Production method of polymer fine particles (9) The polymer according to any one of (1) to (8), wherein the polymer B is a polyvinyl alcohol, and the sodium acetate content in the polyvinyl alcohol is 0.1% by mass or less.
  • Production method of fine particles (10) The method for producing polymer fine particles according to any one of (1) to (8), wherein the polymer B is a polyvinyl alcohol, and an acid compound is added to the system at the time of forming the emulsion, (11) The polymer fine particle according to (10), wherein the acid compound to be added is an acid having a first dissociation index (pKa1) of 4.5 or less and a decomposition temperature is not less than the boiling point of a poor solvent.
  • pKa1 first dissociation index
  • the acid compound to be added is at least one selected from citric acid, tartaric acid, malonic acid, oxalic acid, adipic acid, maleic acid, malic acid, phthalic acid, succinic acid, and polyacrylic acid.
  • the method for producing polymer fine particles according to any one of (10) and (11), (13) The polymer fine particle according to any one of (1) to (12), wherein the SP value of the organic solvent is 20 (J / cm 3 ) 1/2 or more and the boiling point is 100 ° C. or more.
  • the organic solvent is at least one selected from N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and 1,3-dimethyl-2-imidazolidinone.
  • the polymer fine particle production method of the present invention makes it possible to produce fine particles of various polymers, including high heat resistant polymers, with high quality and stability. High quality fine particles with a small particle size distribution can be obtained by a simple method. Can be obtained stably.
  • the fine particles in the present invention are suitable for forming irregularities on a reflector used in a thin liquid crystal display.
  • FIG. 1 shows a polyamide at 180 ° C. (“TROGAMID (registered trademark)”, CX7233 manufactured by Daicel Evonik) and polyvinyl alcohol (PVA (“Gosenol (registered trademark)” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., GM-14)).
  • 3 is a three-component phase diagram of N-methyl-2-pyrrolidone (NMP).
  • FIG. 2 is a diagram showing an example of evaluation of a display white spot (white spot), and illustrates a case where there is no white spot (A) and a case where there is a white spot (B).
  • a polymer A, a polymer B, and an organic solvent are dissolved and mixed, and a solution phase containing the polymer A as a main component (hereinafter sometimes referred to as a polymer A solution phase) and a polymer B (polyvinyl alcohols) are mainly used.
  • a solution phase containing the polymer A as a main component hereinafter sometimes referred to as a polymer A solution phase
  • a polymer B polyvinyl alcohols
  • a system in which polymer A, polymer B, and an organic solvent are dissolved and mixed and phase-separated into two phases of a solution phase mainly composed of polymer A and a solution phase mainly composed of polymer B means a polymer When A, polymer B, and an organic solvent are mixed, the system is divided into two phases, a solution phase mainly containing polymer A and a solution phase mainly containing polymer B.
  • phase-separating system By using such a phase-separating system, it can be mixed and emulsified under the phase-separating conditions to form an emulsion.
  • This emulsion has a polymer A solution phase as a dispersed phase and a polymer B solution phase as a continuous phase.
  • a polymer A poor solvent By contacting the emulsion with a polymer A poor solvent, the polymer A solution phase from the polymer A solution phase in the emulsion is polymerized. A precipitates, and polymer fine particles composed of the polymer A can be obtained.
  • the combination thereof is not particularly limited as long as the polymer A, polymer B, an organic solvent for dissolving them, and a poor solvent for polymer A are used, and the polymer fine particles of the present invention are obtained.
  • the polymer A refers to a high molecular polymer, preferably a synthetic polymer that does not exist in nature, and more preferably a water-insoluble polymer. Examples thereof include a thermoplastic resin and a thermosetting resin. Is mentioned.
  • thermoplastic resin examples include vinyl polymer, polyester, polyamide, polyarylene ether, polyarylene sulfide, polyethersulfone, polysulfone, polyetherketone, polyetheretherketone, polyurethane, polycarbonate, polyamideimide, Examples thereof include polyimide, polyetherimide, polyacetal, silicone, and copolymers thereof.
  • the vinyl polymer is obtained by homopolymerizing or copolymerizing vinyl monomers.
  • vinyl polymers include vinyl monomers (from aromatic vinyl monomers such as styrene, vinyl cyanide monomers, other vinyl monomers, etc.) in the presence of rubbery polymers.
  • a vinyl-based polymer containing a rubbery polymer such as a rubber-containing graft copolymer obtained by graft-copolymerizing a mixture thereof or a mixture thereof with a vinyl-based polymer. It may be a coalescence.
  • vinyl polymers include polyethylene, polypropylene, polystyrene, poly (acrylonitrile-styrene-butadiene) resin (ABS), polytetrafluoroethylene (PTFE), polyacrylonitrile, polyacrylamide, polyacetic acid.
  • ABS polystyrene
  • PTFE polytetrafluoroethylene
  • polyacrylonitrile polyacrylamide
  • polyacetic acid examples include vinyl, polybutyl acrylate, polymethyl methacrylate, and cyclic polyolefin.
  • the size of the region where it was difficult to obtain particles having a small particle size distribution by the emulsion polymerization method that is, the average particle size is 10 ⁇ m or more.
  • particles having a size of 20 ⁇ m or more and a small particle size distribution can be obtained.
  • the upper limit is usually 1000 ⁇ m or less.
  • the particle size of the particles having a particle dispersion structure in which the graft copolymer (child particles) is dispersed in the matrix of the vinyl polymer is particularly preferable.
  • a specific example of such is a poly (acrylonitrile-styrene-butadiene) resin (ABS resin) in which a rubber-containing graft copolymer is dispersed in a matrix of a poly (acrylonitrile-styrene) resin.
  • Polyesters include polymers having polycarboxylic acids or ester-forming derivatives thereof and polyhydric alcohols or ester-forming derivatives thereof as structural units, polymers having hydroxycarboxylic acids or lactones as structural units, and copolymers of these. Coalescence is mentioned.
  • polyester examples include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polycyclohexanedimethylene terephthalate, polyhexylene terephthalate, polyethylene naphthalate, polypropylene naphthalate, polybutylene naphthalate, polyethylene isophthalate / terephthalate, polypropylene isophthalate / Terephthalate, polybutylene isophthalate / terephthalate, polyethylene terephthalate / naphthalate, polypropylene terephthalate / naphthalate, polybutylene terephthalate / naphthalate, polybutylene terephthalate / decane dicarboxylate, polyethylene terephthalate / cyclohexanedimethylene terephthalate), polyether Esters (polyethylene terephthalate / polyethylene glycol, polypropylene terephthalate
  • polyether esters which are thermoplastic resins having an ether bond
  • polyester elastomers that are commercially available as "Hytrel (registered trademark)" (manufactured by Toray DuPont, DuPont). It is possible to use what is called.
  • polyamides obtained by polycondensation of lactams having three or more members, polymerizable aminocarboxylic acids, dibasic acids and diamines or salts thereof, or mixtures thereof.
  • polyamides examples include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polypentamethylene adipamide (nylon 56), polytetramethylene sebacamide (nylon 410), Polypentamethylene sebacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), polydecamethylene sebacamide (nylon 1010), polyundecamide (nylon 11), polydodecamide (nylon 12), Polypentamethylene terephthalamide (nylon 5T), polyhexamethylene terephthalamide (nylon 6T), polydecamethylene terephthalamide (nylon 10T), copolymer of 4,4'-diaminodicyclohexylmethane and dodecadioic acid (for example 'TRO AMID (registered trademark) 'CX7323 (manufactured by Daicel-Evonik Co., Ltd.) and other amorphous polyamides and amorphous
  • Polyarylene ether is a polymer in which aryl groups are connected by an ether bond, and examples thereof include those having a structure represented by the general formula (1).
  • the aromatic ring may or may not have a substituent R, and the number m of the substituents is 1 or more and 4 or less.
  • Substituents include saturated hydrocarbon groups having 1 to 6 carbon atoms such as methyl, ethyl and propyl groups, unsaturated hydrocarbon groups such as vinyl and allyl groups, halogens such as fluorine, chlorine and bromine atoms.
  • Preferred examples include a group, an amino group, a hydroxyl group, a thiol group, a carboxyl group, and a carboxy aliphatic hydrocarbon ester group.
  • polyarylene ether examples include poly (2,6-dimethylphenylene ether).
  • Polyarylene sulfide is a polymer in which aryl groups are connected by a sulfide bond, and includes those having a structure represented by the general formula (2).
  • the aromatic ring may or may not have a substituent R, and the number m of the substituents is 1 or more and 4 or less.
  • Substituents include saturated hydrocarbon groups such as methyl, ethyl and propyl groups, unsaturated hydrocarbon groups such as vinyl and allyl groups, halogen groups such as fluorine, chlorine and bromine, amino groups and hydroxyl groups. Thiol group, carboxyl group, carboxy aliphatic hydrocarbon ester group and the like.
  • a metaphenylene unit or an orthophenylene unit may be used, or a copolymer thereof may be used.
  • polyarylene sulfide examples include polyphenylene sulfide.
  • Preferred examples of polysulfone include those having a structure represented by the general formula (3).
  • R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms
  • m represents an integer of 0 to 4
  • Polyetherketone is a polymer having an ether bond and a carbonyl group. Specifically, what has a structure represented by General formula (4) is mentioned preferably.
  • R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms
  • m represents an integer of 0 to 4
  • polyether ketones those having a structure represented by the general formula (5) are particularly referred to as polyether ether ketones.
  • R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms
  • m represents an integer of 0 to 4
  • Polycarbonate is a polymer having a carbonate group, and preferred examples include those having a structure represented by the general formula (6).
  • R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and m represents an integer of 0 to 4)
  • Specific examples include a polymer having no Rm substituent, a polymer in which bisphenol A is polycondensed with a carbonate ester bond, a polymer in which naphthalenediol is polycondensed with a carbonate ester bond, and biphenylenediol is polycondensed with a carbonate ester bond. And a polymer obtained by polycondensation of diphenylene sulfide diol with a carbonate ester bond and a polymer obtained by polycondensation of diphenylene disulfide diol with a carbonate ester bond. Moreover, what copolymerized the polycarbonate and the said polyester may be used.
  • Polyamideimide is a polymer having an imide bond and an amide bond.
  • Polyimide is a polymer having an imide bond. Particularly in this system, a thermoplastic polyimide is preferable. Specifically, a polycondensate of 1,2,4,5-benzenetetracarboxylic anhydride and 4,4′-bis (3-aminophenyloxy) biphenyl, 3,3 ′, 4,4′-polycondensate of biphenyltetracarboxylic anhydride and 1,3-bis (4-aminophenyloxy) benzene.
  • Polyetherimide is a polymer having an ether bond and an imide bond in the molecule. Specifically, 4,4 ′-[isopropylidenebis (p-phenyleneoxy)] diphthalic dianhydride And a polymer obtained by the condensation of and metaphenylenediamine.
  • thermosetting resin may be used. Specifically, epoxy resin, benzoxazine resin, vinyl ester resin, unsaturated polyester resin, urethane resin, phenol resin, melamine resin, maleimide resin And cyanate ester resins and urea resins.
  • epoxy resins are preferably used because of their high heat resistance and adhesiveness.
  • the epoxy resin for example, a glycidyl ether type epoxy resin obtained from a compound having a hydroxyl group in the molecule and epichlorohydrin, a glycidylamine type epoxy resin obtained from a compound having an amino group in the molecule and epichlorohydrin, A glycidyl ester type epoxy resin obtained from a compound having a carboxyl group in the molecule and epichlorohydrin, an alicyclic epoxy resin obtained by oxidizing a compound having a double bond in the molecule, or 2 selected from these An epoxy resin or the like in which more than one type of group is mixed in the molecule is used.
  • a curing agent can be used in combination with an epoxy resin.
  • the curing agent used in combination with the epoxy resin include aromatic amines, aliphatic amines, polyamide amines, carboxylic acid anhydrides and Lewis acid complexes, acid-based curing catalysts, base-based curing catalysts, and the like.
  • a preferable resin in the polymer A in the present invention is a polymer having high heat resistance and a glass transition temperature or a melting point exceeding 100 ° C.
  • resins and the like include resins and the like.
  • a crystalline thermoplastic resin having a melting point of 100 ° C. or higher is preferable, and higher crystallinity is more preferable.
  • the resin having high crystallinity those having an amide unit, those having an ester unit, those having a sulfide unit, and crystalline thermoplastic resins having a carbonate ester unit are more preferable. .
  • polyamide, polyester and polyphenylene sulfide Particularly preferred are polyamide, polyester and polyphenylene sulfide, and particularly preferred are polyamide, polyester and polyphenylene sulfide.
  • a crystalline thermoplastic resin is advantageous for particle formation in the present method and is a preferred embodiment for achieving the object of the present invention.
  • the polymer A described above can be used in one or more kinds.
  • These preferred resins are excellent in thermal and / or mechanical properties.
  • the resulting fine particles have a small particle size distribution and excellent handleability, resulting in high-quality polymer fine particles that can be used as conventional fine particles. It is preferable in that it can be applied to applications that have not been used.
  • the molecular weight of the polymer A is preferably 1,000 to 100,000,000, more preferably 1,000 to 10,000,000, and still more preferably 5,000 to 1,000,000 in terms of weight average molecular weight. 000, particularly preferably in the range of 10,000 to 500,000, and most preferably in the range of 10,000 to 100,000.
  • the weight average molecular weight refers to a weight average molecular weight measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent and converted to polystyrene.
  • the polymer A is preferably insoluble in a poor solvent because the present invention is based on the point that the present invention precipitates fine particles when contacting with a poor solvent.
  • a water-insoluble polymer is particularly preferable.
  • the water-insoluble polymer is a polymer having a water solubility of 1% by mass or less, preferably 0.5% by mass or less, and more preferably 0.1% by mass or less.
  • the crystalline thermoplastic resin refers to a crystalline phase and an amorphous phase inside the polymer that have a crystalline portion, and these can be distinguished by a differential scanning calorimetry (DSC method). That is, in DSC measurement, it refers to the one whose heat of fusion is measured.
  • the value of the heat of fusion is 1 J / g or more, preferably 2 J / g or more, more preferably 5 J / g or more, and further preferably a polymer that is 10 J / g or more.
  • the DSC measurement was carried out by heating the temperature range from 30 ° C. to a temperature exceeding 30 ° C.
  • the polymer B in the present invention preferably has an SP value of 20 (J / cm 3 ) 1/2 or more.
  • the SP value of the polymer B is preferably 21 (J / cm 3 ) 1/2 or more, more preferably 23 (J / cm 3 ) 1/2 or more, and further preferably 25 (J / cm 3 ). It is 1/2 or more, particularly preferably 28 (J / cm 3 ) 1/2 or more, and very preferably 30 (J / cm 3 ) 1/2 or more.
  • both polymer A and polymer B can be dissolved in an organic solvent, but the upper limit of the difference in SP value is preferably 20 (J / cm 3 ) 1/2 or less, more preferably 15 ( J / cm 3 ) 1/2 or less, more preferably 10 (J / cm 3 ) 1/2 or less.
  • the SP value is calculated based on the Fedor's estimation method, and is calculated based on the cohesive energy density and the molar molecular volume (hereinafter also referred to as a calculation method).
  • SP Value Basic / Application and Calculation Method
  • the SP value is calculated by an experimental method by determining whether or not the solubility parameter is dissolved in a known solvent (hereinafter also referred to as an experimental method), and it is used instead.
  • the SP value is calculated by an experimental method by determining whether or not the solubility parameter is dissolved in a known solvent (hereinafter also referred to as an experimental method), and is used.
  • Substitute Polymer Handbook Fourth Edition” by J. Brand, published in 1998 by Wiley.
  • the polymer B preferably has a high affinity with a poor solvent described later, and the affinity index can be determined by the solubility in water.
  • the solubility of polymer B in water at 25 ° C. and 1 g dissolved in 100 g of water is defined as 1 g / 100 g, it is preferably 1 g / 100 g or more, more preferably 2 g / 100 g or more. More preferably, it is 5 g / 100 g or more, particularly preferably 10 g / 100 g or more, and particularly preferably 15 g / 100 g or more. If it is this range, it has high affinity with the poor solvent mentioned later, and functions advantageously in this polymer fine particle manufacturing method.
  • polymer type of polymer B a polymer having a hydroxyl group, an ether group, an amide group or a carboxyl group in its molecular skeleton is particularly preferable.
  • polystyrene resin examples include polyvinyl alcohols (fully saponified or partially saponified poly (vinyl alcohol), fully saponified or partially saponified).
  • Poly (vinyl alcohol-ethylene) copolymers such as modified poly (vinyl alcohol-ethylene) copolymers), poly (paravinylphenol), maltose, cellobiose, lactose, sucrose and other disaccharides, cellulose and Derivatives thereof (hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose, etc.), cellulose, methylcellulose, ethylcellulose, carboxymethylethylcellulose, carboxymethylcellulose, carboxymethylcellulose Sodium, cellulose ester, chitosan, etc.), amylose and derivatives thereof, starch and derivatives thereof, polysaccharides or derivatives thereof such as dextrin, cyclodextr
  • Polystyrene sulfonic acid sodium polystyrene sulfonate, polyvinyl pyrrolidinium chloride, poly (styrene-maleic acid) copolymer, polyallylamine , Poly (oxyethyleneamine), poly Examples thereof include synthetic resins such as li (vinyl pyridine), polyaminosulfone, and polyethyleneimine.
  • polyvinyl alcohols (fully saponified or partially saponified poly (vinyl alcohol), poly (vinyl alcohol-ethylene) such as fully saponified or partially saponified poly (vinyl alcohol-ethylene) copolymers, etc. Ethylene) copolymers), cellulose derivatives (carboxymethylcellulose, hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose), methylcellulose, ethylcellulose, carboxymethylethylcellulose, carboxymethylcellulose, carboxymethylcellulose sodium, cellulose ester, etc.
  • Polyalkylene glycol sucrose fatty acid ester, poly (oxyethylene alkylphenyl ether), poly (oxyalkyl ether) ), Polyvinylpyrrolidone, water-soluble nylon, polyacrylic acid, polymethacrylic acid, and more preferably poly (vinyl alcohol) s (fully saponified or partially saponified poly (vinyl alcohol), completely saponified And partially saponified poly (vinyl alcohol-ethylene) copolymers such as poly (vinyl alcohol-ethylene) copolymers), cellulose derivatives (carboxymethylcellulose, hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, ethyl) Hydroxyethylcellulose), methylcellulose, ethylcellulose, carboxymethylethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, cellulose ester, etc.), polyalkylene glycol, poly Vinylpyrrolidone, water-soluble nylon, and polyacrylic acid, particularly preferably, polyvinyl
  • polyvinyl alcohols are particularly preferably used. More specifically, the polyvinyl alcohol refers to a polymer having a structure of the general formula (7) in the molecule.
  • Poly (vinyl alcohol) may be completely saponified or partially saponified poly (vinyl alcohol), sometimes simply referred to as polyvinyl alcohol), poly (vinyl alcohol-ethylene) copolymer (completely Saponified or partially saponified poly (vinyl alcohol-ethylene) copolymer may be used), and polyvinyl alcohol is preferred from the viewpoint of solubility.
  • the molecular weight of the polymer B is preferably 1,000 to 100,000,000, more preferably 1,000 to 10,000,000, still more preferably 5,000 to 1,000,000 in terms of weight average molecular weight. 000, particularly preferably in the range of 10,000 to 500,000, and most preferably in the range of 10,000 to 100,000.
  • the weight average molecular weight refers to a weight average molecular weight measured by gel permeation chromatography (GPC) using water as a solvent and converted into polyethylene glycol.
  • dimethylformamide is used. If it cannot be measured, tetrahydrofuran is used. If it cannot be measured, hexafluoroisopropanol is used.
  • Polyvinyl alcohols are generally polymerized using vinyl acetate as a raw material and then hydrolyzed under alkaline conditions to produce polyvinyl alcohol, in which some sodium acetate remains as an impurity. It is usual to carry out, and it is normal that about 0.2 mass% is contained also in a commercial item.
  • the sodium acetate contained in the polyvinyl alcohol has some influence, and when the emulsion is formed by dissolving and mixing in the polymer A and the organic solvent, the fine particles are colored when the temperature is 100 ° C. or higher. It was found that the polyvinyl alcohol deteriorates and the recyclability deteriorates.
  • the amount of sodium acetate in the polyvinyl alcohol used is 0.1 parts by mass or less, preferably 0.05 parts by mass or less, more preferably 0.01 parts by mass or less with respect to 100 parts by mass of polyvinyl alcohol. It is.
  • a preferable lower limit is 0 part by mass.
  • polyvinyl alcohols having a low sodium acetate content for example, a method of washing with an organic solvent such as methanol or ethanol, or a method of regenerating by dissolving in water or the like and then precipitating in a poor solvent for polyvinyl alcohols.
  • a precipitation method for example, a precipitation method, an ultrafiltration method, a method of removing with an ion exchange resin, an ion exchange carrier, and the like.
  • a method of adding an acid compound to a system for forming an emulsion can be mentioned. Thereby, it can be made the state which does not contain sodium acetate substantially.
  • Examples of the acid compound used in the present invention include formic acid, acetic acid, valeric acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, acrylic acid, methacrylic acid, crotonic acid, oxalic acid, malonic acid, fumaric acid, maleic acid , Glutaric acid, adipic acid, sebacic acid, pyruvic acid, succinic acid, polyacrylic acid and other aliphatic carboxylic acids, lactic acid, glycolic acid, L-ascorbic acid, erythorbic acid, malic acid, shikimic acid, citric acid, hydrosuccinic acid Hydroxyl group-containing carboxylic acid such as tartaric acid, benzoic acid, 2-fluorobenzoic acid and its positional isomer, 2-chlorobenzoic acid and its positional isomer, 2-bromobenzoic acid and its positional isomer, 2-nitrobenzoic
  • These acid compounds may be added at any stage in the production process described below before heating for emulsion formation starts, or may be used in advance in the raw material. .
  • the addition amount of the acid compound is preferably in the range of 0.1 to 10 times the molar ratio of the acid functional group to the sodium acetate contained in the polyvinyl alcohol used, more preferably The range is 0.2 to 8 times mol, and more preferably 0.3 to 5 times mol.
  • the crosslinking of the polyvinyl alcohol proceeds and the micronization process
  • the particle size controllability tends to deteriorate.
  • the particle size controllability after the second time tends to deteriorate.
  • the color change of the fine particles tends to occur due to a change in color tone presumed to be due to oxidation of polyvinyl alcohols.
  • the molar ratio of the acid functional group is too large, there is a tendency that oxidation, decomposition, crosslinking, etc. of polyvinyl alcohols occur due to the influence of the acid.
  • an acid compound having a first dissociation index (pKa1) of 4.5 or less is preferably used.
  • the method according to the present invention is carried out at a high temperature of 100 ° C. or higher, a heat resistant temperature of 100 ° C. or higher is preferable.
  • the heat resistant temperature refers to the decomposition temperature of the acid compound.
  • examples of those having a heat resistant temperature of 100 ° C. or more and pKa1 of 4.5 or less include L-ascorbic acid, erythorbic acid, lactic acid, malic acid, fumaric acid, phthalic acid, tartaric acid, formic acid, Citric acid, glycolic acid, salicylic acid, maleic acid, malonic acid, glutaric acid, oxalic acid, adipic acid, succinic acid, hydrosuccinic acid, polyacrylic acid, glutamic acid, aspartic acid, arginine, ornithine, sarcosine, cysteine, serine, tyrosine, etc.
  • Inorganic acids such as amino acids, hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, pyrophosphoric acid, and tripolyphosphoric acid can be used.
  • citric acid, tartaric acid, malonic acid, oxalic acid, adipic acid, maleic acid, malic acid, phthalic acid, succinic acid, and polyacrylic acid can be preferably used.
  • pKa is an acid dissociation index at 25 ° C., and indicates a logarithmic value of the reciprocal of the dissociation constant of an acid compound in an aqueous solution.
  • the pKa value of acid compounds can be referred to in the chemical handbook (revised 3 edition, chemical handbook, basic edition, edition of the Chemical Society of Japan, published by Maruzen Co., Ltd., published in 1984).
  • the pKa value described in the chemical manual is preferably used from the viewpoint of convenience.
  • the organic solvent for dissolving the polymer A and the polymer B is an organic solvent capable of dissolving the polymer A and the polymer B to be used, and is selected according to the type of each polymer.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, n-decane, n-dodecane, n-tridecane, cyclohexane and cyclopentane, and aromatic carbonization such as benzene, toluene and xylene.
  • Hydrogen solvents such as ethyl acetate and methyl acetate, halogenated hydrocarbons such as chloroform, bromoform, methylene chloride, 1-2-dichloroethane, 1,1,1-trichloroethane, chlorobenzene and 2,6-dichlorotoluene Solvents, acetone solvents such as methyl ethyl ketone, methyl isobutyl ketone and methyl butyl ketone, alcohol solvents such as methanol, ethanol and 1-propanol-2-propanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylform Aprotic polar solvents such as amide, N, N-dimethylacetamide, propylene carbonate, trimethyl phosphoric acid, 1,3-dimethyl-2-imidazolidinone, sulfolane, and carboxyls such as formic acid, acetic solvents such as
  • the SP value is 20 (J / cm 3 ) 1/2 or more.
  • the SP value here is described on pages 688-701 in “Polymer Handbook Fourth Edition” by J. Brand, published by Wiley 1998). It means a certain value.
  • the calculation is based on Fedor's estimation method. This calculation is based on the cohesive energy density and molar molecular volume (hereinafter also referred to as solvent SP value calculation method) ("SP value basics / application and calculation method" by Hideki Yamamoto) , Information Organization Co., Ltd., issued March 31, 2005).
  • solvent SP value calculation method cohesive energy density and molar molecular volume
  • alcohol solvents preferred are alcohol solvents, aprotic polar solvents, and carboxylic acid solvents that are water-soluble solvents, and aprotic polar solvents and carboxylic acid solvents are particularly preferred.
  • these solvents since emulsion formation is carried out at a high temperature of 100 ° C. or higher, these solvents also preferably have heat resistance of 100 ° C. or higher, and in particular, the boiling point at normal pressure (100 kPa) is 100 ° C. or higher. Are preferred.
  • the solvent whose boiling point in a normal pressure is less than 100 degreeC, it can be used by pressurizing within a pressure-resistant container. In consideration of such a situation, it is easy to obtain, and can be dissolved in a wide range of polymers, so that the range of application to the polymer A is wide, and it can be preferably used as a poor solvent to be described later such as water and alcohol solvents.
  • N-methyl-2-pyrrolidone dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone from the standpoint of homogeneous mixing with a solvent It is.
  • organic solvents may be used in a plurality of types, or may be used in combination. However, particles having a relatively small particle size and a small particle size distribution can be obtained, and when used solvents are recycled. From the standpoint of reducing the process load in manufacturing, avoiding the troublesome separation step, it is preferable to use a single organic solvent, and it should be a single organic solvent that dissolves both polymer A and polymer B. Is preferred.
  • the poor solvent for polymer A in the present invention refers to a solvent that does not dissolve polymer A.
  • the solubility of the polymer A in the poor solvent is 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less.
  • a poor solvent for polymer A is used, and the poor solvent is preferably a poor solvent for polymer A and a solvent that dissolves polymer B.
  • the solvent for dissolving the polymer A and the polymer B and the poor solvent for the polymer A are solvents that are uniformly mixed.
  • the poor solvent in the present invention varies depending on the type of polymer A to be used, desirably both types of polymers A and B, but specifically, pentane, hexane, heptane, octane, nonane, n -Aliphatic hydrocarbon solvents such as decane, n-dodecane, n-tridecane, cyclohexane and cyclopentane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, ester solvents such as ethyl acetate and methyl acetate, chloroform Halogenated hydrocarbon solvents such as bromoform, methylene chloride, 1,2-dichloroethane, 1,1,1-trichloroethane, chlorobenzene, 2,6-dichlorotoluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl butyl
  • Ketone solvent methanol, ethanol Alcohol solvents such as 1-propanol-2-propanol, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, trimethyl phosphoric acid, N-methyl-2-pyrrolidone, 1,3-dimethyl-2- Aprotic polar solvents such as imidazolidinone and sulfolane, carboxylic acid solvents such as formic acid, acetic acid, propionic acid, butyric acid and lactic acid, ether solvents such as anisole, diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, diglyme and dimethoxyethane And a solvent selected from at least one of water.
  • ether solvents such as anisole, diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, diglyme and dimethoxyethane
  • an aromatic hydrocarbon solvent an aliphatic hydrocarbon solvent, an alcohol solvent, an ether solvent, and water are preferable, and an alcohol solvent, water is most preferable. Particularly preferred is water.
  • emulsion formation is performed at a temperature of 100 ° C. or higher in the present invention, when the present invention is carried out with a solvent having a boiling point of less than 100 ° C. at normal pressure or a boiling point of 100 ° C. or higher, In the case where the emulsion is formed at a temperature equal to or higher than its boiling point, it can be used under pressure in a pressure vessel.
  • polymer A can be efficiently precipitated and polymer fine particles can be obtained by appropriately selecting and combining polymer A, polymer B, an organic solvent for dissolving them, and a poor solvent for polymer A.
  • the liquid obtained by mixing and dissolving the polymers A and B and the organic solvent for dissolving them needs to be phase-separated into two phases: a solution phase mainly composed of polymer A and a solution phase mainly composed of polymer B. is there.
  • the solution-phase organic solvent containing polymer A as the main component and the organic solvent containing polymer B as the main component may be the same or different, but are preferably substantially the same solvent.
  • Conditions for generating a two-phase separation state vary depending on the types of polymers A and B, the molecular weights of polymers A and B, the types of organic solvents, the concentrations of polymers A and B, the temperature and pressure at which the invention is to be carried out. .
  • the difference between the solubility parameters of the polymer A and the polymer B (hereinafter also referred to as SP values) is separated.
  • the difference in SP value is 1 (J / cm 3 ) 1/2 or more, more preferably 2 (J / cm 3 ) 1/2 or more, and further preferably 3 (J / cm 3 ) 1/2 or more. Particularly preferably, it is 5 (J / cm 3 ) 1/2 or more, and very preferably 8 (J / cm 3 ) 1/2 or more.
  • the SP value is within this range, phase separation is easily performed.
  • both polymer A and polymer B can be dissolved in an organic solvent, but the upper limit of the difference in SP value is preferably 20 (J / cm 3 ) 1/2 or less, more preferably 15 (J / Cm 3 ) 1/2 or less, more preferably 10 (J / cm 3 ) 1/2 or less.
  • the SP value is calculated based on the Fedor's estimation method, and is calculated based on the cohesive energy density and the molar molecular volume (hereinafter also referred to as a calculation method).
  • SP Value Basic / Application and Calculation Method
  • the SP value is calculated by an experimental method by determining whether or not the solubility parameter is dissolved in a known solvent (hereinafter also referred to as an experimental method), and is used.
  • Substitute Polymer Handbook Fourth Edition” by J. Brand, published in 1998 by Wiley.
  • a three-component phase diagram can be prepared by a simple preliminary experiment by observing a state in which the ratio of the three components of the polymer A, the polymer B, and the organic solvent in which they are dissolved is changed. Can be distinguished.
  • the phase diagram is prepared by mixing and dissolving the polymers A and B and the solvent at an arbitrary ratio and determining whether or not an interface is formed when allowed to stand at least 3 points, preferably 5 points or more.
  • the measurement is performed at 10 points or more, and by separating the region that separates into two phases and the region that becomes one phase, the conditions for achieving the phase separation state can be determined.
  • the polymers A and B are adjusted to any ratio of the polymers A and B and the solvent at the temperature and pressure at which the present invention is to be carried out. Then, the polymers A and B are completely dissolved, and after the dissolution, the mixture is sufficiently stirred and left for 3 days to confirm whether or not the phase separation is performed macroscopically. However, in the case of a sufficiently stable emulsion, macroscopic phase separation may not occur even if left for 3 days. In this case, phase separation is determined by using an optical microscope, a phase contrast microscope, or the like based on whether the phase is microscopically separated.
  • FIG. 1 shows polymer A as polyamide (“TROGAMID (registered trademark)” manufactured by Daicel Evonik Co., Ltd., CX7233) and polymer B as polyvinyl alcohol (PVA, “GOHSENOL (registered trademark)” GM— 14) is an example of a three-component phase diagram at 180 ° C. with N-methyl-2-pyrrolidone (NMP) as an organic solvent, black circles indicate that phase separation was not performed, and white circles indicate phase Indicates the point of separation. From this black circle point and white circle point, it is possible to easily estimate the region where phase separation does not occur and the region where phase separation (phase separation into two phases) occurs. From this three component diagram, the present invention is carried out with the component ratio of the region where the phases are separated into two phases.
  • NMP N-methyl-2-pyrrolidone
  • the boundary line between the non-phase-separated region and the phase-separated region is estimated as a solid line, and the present invention is implemented with the component ratio below the boundary line.
  • the phase separation is formed by separating a polymer A solution phase mainly containing polymer A and a polymer B solution phase mainly containing polymer B in an organic solvent.
  • the polymer A solution phase is a phase in which the polymer A is mainly distributed
  • the polymer B solution phase is a phase in which the polymer B is mainly distributed.
  • the polymer A solution phase and the polymer B solution phase seem to have a volume ratio corresponding to the types and amounts of the polymers A and B used.
  • the concentration of the polymers A and B with respect to the organic solvent is premised to be within a possible range that can be dissolved in the organic solvent. Preferably, it is more than 1% by mass to 50% by mass, more preferably more than 1% by mass to 30% by mass, and still more preferably 2% by mass to 20% by mass, respectively.
  • the interfacial tension between the two phases of the polymer A solution phase and the polymer B solution phase is an organic solvent in both phases, the interfacial tension is small, and the resulting emulsion can be stably maintained due to its properties.
  • the particle size distribution seems to be smaller.
  • the organic solvents of the polymer A phase and the polymer B phase are the same, the effect is remarkable.
  • the interfacial tension between the two phases in the present invention cannot be directly measured by the hanging drop method in which a different kind of solution is added to a commonly used solution because the interfacial tension is too small.
  • the interfacial tension can be estimated by estimating from the surface tension.
  • the surface tension of each phase with air is r 1 and r 2
  • a preferable range of r 1/2 is more than 0 to 10 mN / m, more preferably more than 0 to 5 mN / m, still more preferably more than 0 to 3 mN / m, and particularly preferably. , More than 0 to 2 mN / m.
  • phase-separating system Using the phase-separating system thus obtained, the phase-separated liquid phase is mixed and emulsified, and then polymer fine particles are produced by contacting with a poor solvent.
  • a step of forming an emulsion and contacting a poor solvent in a normal reaction vessel (hereinafter, sometimes referred to as a fine particle step) is performed.
  • the present invention is a method for forming a highly heat-resistant polymer into fine particles.
  • the temperature at which the emulsion is formed is 100 ° C. or higher because of the ease of forming the emulsion.
  • the upper limit is the temperature at which the polymers A and B dissolve and undergo phase separation, and is not particularly limited as long as desired fine particles can be obtained, but is usually in the range of 100 ° C. to 300 ° C., preferably 100 ° C. to 280 ° C, more preferably 120 ° C to 260 ° C, still more preferably 120 ° C to 240 ° C, particularly preferably 120 ° C to 220 ° C, and most preferably 120 ° C to 200 ° C. Range.
  • temperature control in the step of contacting the poor solvent (micronization step) following the formation of the emulsion is effective, and the temperature is usually in the range of 100 ° C to 300 ° C. Yes, preferably 100 ° C. to 280 ° C., more preferably 120 ° C. to 260 ° C., still more preferably 120 ° C. to 240 ° C., particularly preferably 120 ° C. to 220 ° C. Preferably, it is in the range of 120 ° C to 200 ° C.
  • the temperature is preferably set to the same temperature as the emulsion formation temperature because of easy management of the production process.
  • polymer fine particles it may be necessary to design the surface shape of the particles according to the situation in which they are used as the material. In particular, it improves the fluidity of the powder, improves the slipperiness of the powder, In order to improve the surface roughness, it is important to control the surface shape, and not only a narrow particle size distribution but also more highly spherical particles may be required.
  • the temperature of the emulsification process and the micronization process is controlled more highly as follows. It can be made into a sphere.
  • the emulsion formation and the contact with a poor solvent are performed at a temperature higher than the temperature-falling crystallization temperature, which is the thermal characteristic of polymer A, and by making the particles finer, the particle size distribution is made narrower and more highly true. Spherical fine particles can be obtained.
  • the cooling crystallization temperature refers to a crystallization temperature measured by differential scanning calorimetry (DSC method), and a temperature range from 30 ° C. to a temperature exceeding 30 ° C. above the melting point of the polymer. Is the peak top of the exothermic peak that is observed when the temperature is raised once at 20 ° C./min, held for 1 minute, and then lowered to 0 ° C. at 20 ° C./min.
  • the pressure suitable for carrying out the present invention is in the range of atmospheric pressure to 100 atm (10.1 MPa), preferably 1 atm (101.3 kPa) to 50 atm (5 0.1 MPa), more preferably 1 atm (101.3 kPa) to 30 atm (3.0 MPa), particularly preferably 1 atm (101.3 kPa) to 20 atm (2.0 MPa). is there.
  • the micronization in the present invention is a high temperature region, and may be under high pressure in some cases. Therefore, since the thermal decomposition of the polymer A, the polymer B and the organic solvent is easily promoted, the oxygen concentration is as low as possible. It is preferable to carry out with.
  • the oxygen concentration in the atmosphere of the reaction tank is preferably 5% by volume or less, more preferably 1% by volume or less, more preferably 0.1% by volume or less, and still more preferably 0.01% by volume or less. Especially preferably, it is 0.001 volume% or less.
  • the oxygen concentration is theoretically calculated from the volume in the reaction vessel, the oxygen volume concentration of the inert gas, the replacement pressure in the vessel, and the number of times. To do.
  • an inert gas for the reaction tank.
  • nitrogen, helium, argon, and carbon dioxide are preferable, and nitrogen and argon are preferable.
  • an antioxidant may be used as an additive from the viewpoint of preventing oxidative deterioration of the raw material used for atomization.
  • Antioxidants are added for the purpose of scavenging radicals, so phenol-based antioxidants, sulfur-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, etc. Can be mentioned.
  • antioxidants include phenol, hydroquinone, p-methoxyphenol, benzoquinone, 1,2-naphthoquinone, cresol soot, catechol, benzoic acid, hydroxybenzoic acid, salicylic acid, hydroxybenzenesulfonic acid, 2,5-di -T-butylhydroquinone, 6-t-butyl -m-cresol, 2,6-di-t-butyl -p-cresol, 4-t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, -T-butylhydroquinone, 2-t-butyl -4-methoxyphenol and the like.
  • the concentration of the antioxidant is not particularly limited, but is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, and most preferably 0.05 to 3% by mass with respect to the mass of the polymer B. preferable.
  • an emulsion is formed by mixing the phase separation system state. That is, an emulsion is formed by applying a shearing force to the phase separation solution obtained above.
  • the microparticles obtained by this production method are microparticles with a very small particle size distribution, because a more uniform emulsion can be obtained by carrying out the emulsion formation at a high temperature as compared with the case where it is not. .
  • This tendency is remarkable when a single solvent that dissolves both of the polymers A and B is used and a high heat-resistant polymer, particularly a crystalline polymer is used as the polymer A.
  • stirring by a conventionally known method, such as a liquid phase stirring method using a stirring blade, a stirring method using a continuous biaxial mixer, or a homogenizer. They can be mixed by a generally known method such as a mixing method or ultrasonic irradiation.
  • the stirring speed is preferably 50 rpm to 1,200 rpm, more preferably 100 rpm to 1,000 rpm, still more preferably 200 rpm to 800 rpm, and particularly preferably. Is 300 to 600 rpm.
  • the stirring blade include a propeller type, a paddle type, a flat paddle type, a turbine type, a double cone type, a single cone type, a single ribbon type, a double ribbon type, a screw type, and a helical ribbon type.
  • a sufficient shearing force can be applied to the system, it is not particularly limited thereto.
  • a stirrer In order to generate an emulsion, not only a stirrer but also a widely known device such as an emulsifier and a disperser may be used.
  • a batch type emulsifier such as a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), TK auto homomixer (manufactured by Koki Kogyo Kogyo Co., Ltd.), Ebara Milder (manufactured by Ebara Seisakusho) , TK Philmix, TK Pipeline Homo Mixer (manufactured by Koki Kogyo Kogyo Co., Ltd.), Colloid Mill (manufactured by Shinko Pantech Co., Ltd.), Thrasher, Trigonal Wet Pulverizer (Mitsui Miike Chemical Co., Ltd.), Ultrasonic Homogenizer, Static For example, a mixer.
  • a homogenizer manufactured by IKA
  • the emulsion thus obtained is subsequently subjected to a step of precipitating fine particles.
  • the poor solvent for polymer A is brought into contact with the emulsion produced in the above-described step, thereby precipitating fine particles with a diameter corresponding to the emulsion diameter.
  • the contact method of the poor solvent and the emulsion may be a method of putting the emulsion in the poor solvent or a method of putting the poor solvent in the emulsion, but a method of putting the poor solvent in the emulsion is preferable.
  • the method for introducing the poor solvent is not particularly limited as long as the polymer fine particles produced in the present invention can be obtained, and any of a continuous dropping method, a divided addition method, and a batch addition method may be used.
  • the continuous dropping method and the divided dropping method are preferable.
  • the continuous dropping method is most preferred.
  • the time for adding the poor solvent is 10 minutes or more and 50 hours or less, more preferably 30 minutes or more and 10 hours or less, and further preferably 1 hour or more and 5 hours or less.
  • the particle size distribution may increase or a lump may be generated due to the aggregation, fusion, and coalescence of the emulsion. Moreover, when it implements in the time longer than this, when industrial implementation is considered, it is unrealistic.
  • the amount of the poor solvent to be added depends on the state of the emulsion, it is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 1 part by mass of the total emulsion. Parts, more preferably 0.2 parts by weight to 3 parts by weight, particularly preferably 0.2 parts by weight to 2 parts by weight, and most preferably 0.2 parts by weight to 1.0 parts by weight. is there.
  • the contact time between the poor solvent and the emulsion may be a time sufficient for the fine particles to precipitate, but in order to cause sufficient precipitation and to obtain efficient productivity, 5 minutes to 50 minutes after completion of the addition of the poor solvent. Time, more preferably 5 minutes or more and 10 hours or less, still more preferably 10 minutes or more and 5 hours or less, particularly preferably 20 minutes or more and 4 hours or less, and most preferably 30 minutes or more and 3 hours or less. Within hours.
  • the fine polymer particle dispersion thus prepared is recovered as a fine particle powder by solid-liquid separation by a generally known method such as filtration, vacuum filtration, pressure filtration, centrifugal separation, centrifugal filtration, spray drying and the like. I can do it.
  • the polymer fine particles that have been separated into solid and liquid are refined by washing with a solvent or the like to remove attached or contained impurities, if necessary.
  • the organic solvent and polymer B separated in the solid-liquid separation step performed when obtaining the fine particle powder can be recycled again.
  • the solvent obtained by solid-liquid separation is a mixture of polymer B, organic solvent and poor solvent.
  • the method for removing the poor solvent is usually performed by a known method, and specific examples include simple distillation, vacuum distillation, precision distillation, thin film distillation, extraction, membrane separation, and the like. This is a method by distillation or precision distillation.
  • the system When performing distillation operations such as simple distillation, vacuum distillation, etc., as in the production of polymer fine particles, the system is heated, and there is a possibility of promoting the thermal decomposition of polymer B and organic solvent. It is preferable to carry out in an inert atmosphere. Specifically, it is preferable to carry out under nitrogen, helium, argon, carbon dioxide conditions. Moreover, you may re-add a phenol type compound as antioxidant.
  • the residual amount of the poor solvent is 10% by mass or less, preferably 5% by mass with respect to the total amount of the organic solvent to be recycled and the polymer B. % Or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • the particle size distribution of the fine particles becomes large or the particles aggregate, which is not preferable.
  • the amount of the poor solvent in the solvent used for recycling can be measured by a generally known method, and can be measured by a gas chromatography method, a Karl Fischer method, or the like.
  • the organic solvent, polymer B and the like may actually be lost, and therefore it is preferable to adjust the initial composition ratio as appropriate.
  • the particle size of the fine particles thus obtained is usually 1000 ⁇ m or less, according to a preferred embodiment, 500 ⁇ m or less, according to a more preferred embodiment, 300 ⁇ m or less, and according to a further preferred embodiment, 100 ⁇ m or less, particularly preferred. According to an aspect, it is possible to manufacture a thing of 50 micrometers or less.
  • the lower limit is usually 50 nm or more, according to a preferred embodiment, 100 nm or more, according to a more preferred embodiment, 500 nm or more, according to a further preferred embodiment, 1 ⁇ m or more, particularly preferred embodiment having a thickness of 10 ⁇ m or more. Can be manufactured.
  • the particle size distribution of the fine particles obtained in the present invention becomes a particle size distribution index smaller than that in the case where the emulsion is formed at less than 100 ° C.
  • the particle size distribution index is 3 or less, according to a preferred embodiment, 2 or less, according to a more preferred embodiment, 1.5 or less, and according to a particularly preferred embodiment, 1.2 or less. And according to the most preferred embodiment, it is possible to produce one that is 1.1 or less.
  • the preferred lower limit is 1.
  • fine particles having a smaller particle size distribution index can be produced by forming the emulsion at 100 ° C. or higher, compared with the case of performing the emulsion formation at less than 100 ° C. Such an effect is particularly remarkable in the case of producing fine particles of a high heat-resistant polymer, particularly crystalline thermoplastic resin. This makes it possible to easily form fine particles having a narrow particle size distribution in crystalline thermoplastic resin fine particles. it can.
  • the average particle diameter of the fine particles can be calculated by specifying an arbitrary 100 particle diameters from a scanning electron micrograph and calculating the arithmetic average thereof.
  • the maximum diameter of the particle is taken as the particle diameter.
  • it is measured at a magnification of at least 1000 times, preferably 5000 times or more.
  • the particle size distribution index is determined based on the following numerical conversion formula for the particle diameter value obtained above.
  • Ri particle diameter of individual particles
  • n number of measurements 100
  • Dn number average particle diameter
  • Dv volume average particle diameter
  • PDI particle diameter distribution index.
  • This method is a method for producing fine particles via an emulsion composed of a polymer A solution phase and a polymer B solution phase, and uses a polymer solution at a high temperature.
  • a polymer having a high glass transition temperature that is, polymer fine particles having a glass transition temperature or a melting point of 100 ° C. or higher.
  • the production method of the present invention is a technique for producing fine particles of polymer A having high heat resistance, but is not necessarily limited to fine particles of polymer A having high heat resistance. That is, even in the case of a resin or the like which is an indicator of heat resistance, the solubility of the polymer A in a solvent at less than 100 ° C. is not sufficient even if the glass transition temperature or melting point is relatively low, and the resin needs to be dissolved at a high temperature. Is preferably used. Therefore, among polymers, those having a glass transition temperature or melting point of 50 ° C. or higher are also applicable, preferably those having a temperature of 100 ° C. or higher, and more preferably those having a glass transition temperature of 150 ° C. or higher. Is suitable for those having a temperature of 400 ° C. or lower from the viewpoint of solubility.
  • polymer fine particles have many uses that require a high heat resistance of the material while reducing the particle size distribution, and vinyl polymers generally use cross-linking or special monomers.
  • the present invention is suitable because the high heat-resistant polymer can be made into fine particles by the polymer design as it is without requiring a special polymer design according to the present invention.
  • the glass transition temperature refers to a temperature increase rate of 20 ° C./min up to a temperature 30 ° C. higher than the glass transition temperature predicted from 30 ° C. using a differential scanning calorimetry (DSC method). Temperature is raised under temperature rise conditions, held for 1 minute, then cooled to 0 ° C. under temperature drop conditions at 20 ° C./minute, held for 1 minute, and then observed when measured again under temperature rise conditions at 20 ° C./minute Refers to the glass transition temperature (Tg). The melting point refers to the temperature at the peak top when the heat of fusion is shown at the second temperature increase.
  • a polymer of a thermoplastic resin such as polyethersulfone, polycarbonate, vinyl polymer, polyamide, polyetherimide, polyphenylene ether, polyphenylene sulfide, polyolefin, polysulfone, polyester, polyetherketone, polyetheretherketone, etc. It is suitable for obtaining fine particles, more preferably fine polymer particles of crystalline thermoplastic resin such as polyamide, polyester, polyphenylene sulfide, and particularly high heat resistant polymer fine particles.
  • the fine particles produced by the method of the present invention can be obtained with a small particle size distribution, and can be stably produced with good quality and fine particles of polymer, especially polymer particles excellent in heat resistance. Industrially, it can be used practically in various applications.
  • the fine particles in the present invention are suitable for a spacer between a light guide plate and a reflection plate used in a liquid crystal display or the like because the particle size distribution is narrow and the selection of the material is easy.
  • the reflector application used in the sidelight type backlight using CCFL or LED when pressing force is applied between the light guide plate and the reflector due to the unevenness of the case, or when static electricity is generated, the light guide plate and the reflector As a result, the unevenness printed on the surface of the light guide plate may be scraped off, or a malfunction may occur due to partial white spots on the liquid crystal display during lighting. For this reason, in some cases, a coating liquid containing particles is applied in order to give unevenness to the surface of a reflector or the like, and the organic particles (plastic beads) of the present invention are suitable as particles at that time.
  • Such organic particles can be produced by the method of the present invention.
  • those composed of a thermoplastic resin containing an ether bond include an ether bond, and thus the affinity between the organic particle and the binder resin. This is very good because it can prevent the dropout.
  • thermoplastic resin containing an ether bond examples include polyether resins and resins formed by copolymerization of polyethers with other resins. Specifically, polyoxymethylene, formal resin, polyphenylene oxide, polyether ketone, polyether ether ketone, polyether ketone ketone, polyether sulfone, polyphenyl sulfone, polyether imide, polyether ester, polyether ester amide, Polyesters containing polyetheramide and spiroglycol can be mentioned, and polyesters containing polyetherester and spiroglycol are preferably used from the viewpoint of transparency and reproducibility. Particularly preferred is a polyether ester whose elastic modulus can be adjusted by the copolymerization ratio.
  • polyether ester examples include various trade names such as “HYTREL” (registered trademark) of DuPont or Toray DuPont, and “RITEFLEX” of Ticona. (Registered trademark) and “ARNITEL” (registered trademark) of DSM, and the like are sold by many companies.
  • the thermoplastic resin which is a material of the organic particles used in this application, has a flexural modulus of more than 500 MPa and 3000 MPa or less.
  • the upper limit of the flexural modulus is 3000 MPa or less, more preferably 2500 MPa or less, and still more preferably 2000 MPa or less.
  • the lower limit of the flexural modulus is a range larger than 500 MPa, more preferably 550 MPa or more, further preferably 600 MPa or more, particularly preferably 800 MPa or more, and extremely preferably, 1000 MPa or more.
  • the flexural modulus in the present invention refers to a value measured by ASTM-D790-98.
  • an injection molding machine Nei Plastic Industrial Co., Ltd. NEX-1000
  • cylinder temperature 240 ° C. mold A 127 ⁇ 12.7 ⁇ 6.4 mm bending test specimen obtained by molding under molding conditions of a temperature of 50 ° C. is used as a sample.
  • the flexural modulus is smaller than the above range, white spots may occur when applied on a white film and incorporated in a liquid crystal display as a reflector. If the flexural modulus is larger than the above range, the light guide plate may be damaged when the light guide plate and the reflection plate rub against each other.
  • the copolymerization amount of the long-chain polyalkylene glycol in the polyether ester resin may be appropriately adjusted.
  • the “HYTREL” series of DuPont or Toray DuPont Hytrel 7247 (Toray DuPont) and Hytrel 8238 (DuPont) are in the above range as thermoplastic resins containing ether bonds. To achieve a flexural modulus of.
  • the number average particle diameter of the organic particles used for the reflector and the like is preferably 3 ⁇ m or more and 60 ⁇ m or less, more preferably 4 ⁇ m or more and 20 ⁇ m or less, and further preferably 5 ⁇ m or more and 15 ⁇ m or less. If it is less than 3 ⁇ m, white spots may occur when it is applied on a reflective film and incorporated in a liquid crystal display, and if it is greater than 60 ⁇ m, particles may fall off. Further, from the viewpoint of imparting irregularities to the surface of the plate and preventing sticking between layers with other plates, the thickness is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. Although the upper limit depends on the use, it is generally preferably 100 ⁇ m or less as a material used in electronic information equipment.
  • the fine particles made of the thermoplastic resin having an ether bond of the present invention preferably have a particle size distribution index of 1 to 3. More preferably, it is 1 to 2, and most preferably 1 to 1.5.
  • the particle size distribution index is within the above range, only a part of the particles having a large particle size are in close contact with the light guide plate and deformed when the reflector is pressed against the light guide plate. It can be prevented from becoming easy.
  • the particle distribution index is larger than the above range (that is, when coarse particles are included), Mayer bar particle clogging may occur in the coating process, and coating stripes may occur, which is not preferable from the viewpoint of coating appearance. is there.
  • the temperature at which the emulsion formation and fine particle formation steps are performed is 100 ° C. or higher. Can be preferably used.
  • the laminated film used for the reflecting plate or the like usually comprises a base film and a coating layer containing a binder resin and organic particles provided on at least one surface thereof.
  • the organic particles are preferably covered with a binder resin in the coating layer.
  • the organic particles are preferably a thermoplastic resin containing an ether bond
  • the binder resin contained in the coating liquid is preferably a water-soluble resin.
  • a resin containing at least one functional group selected from a sulfonic acid group, a carboxylic acid group, a hydroxyl group, and a salt thereof is preferable. More preferably, it is a resin in which a monomer having a carboxylic acid group and / or a carboxylic acid group salt is copolymerized.
  • a coating state it can confirm by SEM or TEM of a particle cross section. At this time, it can be confirmed more clearly by using ruthenium staining or the like.
  • the binder resin When the binder resin is water-soluble, it has good affinity with the base film and organic particles described later, and the balance between the surface unevenness and the coating thickness is in a preferable state, and a coating layer with less dropping of organic particles is formed. can do. Further, since the binder resin is a water-soluble resin, it can be used in a coating state in which the binder resin and organic particles are dissolved and dispersed in water. Of course, a binder resin and organic particles previously dissolved or dispersed separately in water may be arbitrarily mixed and used. By using a coating liquid using water, application is possible in the in-line coating method, which is preferable from the viewpoint of cost saving.
  • the water-soluble resin is preferably formed from at least one selected from the group consisting of a polyester resin, an acrylic resin, and a polyurethane resin, and more preferably a polyester resin or an acrylic resin.
  • the binder resin has good adhesion to the base film and is preferably transparent, and the resin can satisfy these characteristics.
  • the product name Watersol (registered trademark) manufactured by DIC Corporation, pesresin of Takamatsu Yushi Co., Ltd., and the like are available.
  • additives can be added to the binder resin forming the coating layer as long as the effects of the invention are not impaired.
  • an antioxidant for example, an antioxidant, a crosslinking agent, a fluorescent brightening agent, an antistatic agent, a coupling agent and the like can be used.
  • the organic particles of the present invention can be suitably used as a reflector, but the base film of the reflector is not particularly limited, and may be transparent or opaque.
  • the transparent film include a polyester film, a polyolefin film, a polystyrene film, and a polyamide film, and a polyester film is preferably used from the viewpoint of ease of molding.
  • the opaque film include white films exemplified in JP-A-4-239540 and JP-A-2004-330727, and polyphenylene sulfide films exemplified in JP-A-6-305019. .
  • the present particles are used as a reflector of a liquid crystal display, it is preferably a laminated film having a laminated structure, and the laminated film contains a base film and a binder resin and organic particles provided on at least one surface thereof. What consists of a coating layer is preferable.
  • the method of stretching the film after applying the coating solution and heat-treating is there.
  • an in-line coating method is preferable.
  • the in-line coating method a method in which a coating liquid is applied to the surface of an unstretched film and then stretched in a biaxial direction, or a direction (for example, uniaxial) that intersects the previous uniaxial stretching direction after a coating liquid is applied to the surface of a uniaxially stretched film.
  • stretching direction etc. is mentioned, the latter is preferable.
  • the reflector obtained in this way is used in a sidelight type backlight using CCFL or LED due to the effect of the particles of the present invention, and a pressing force is applied between the light guide plate and the reflector due to the unevenness of the casing.
  • a pressing force is applied between the light guide plate and the reflector due to the unevenness of the casing.
  • the individual particle size of the fine particles was measured by observing the fine particles at 1000 times with a scanning electron microscope (JEM-6301NF, manufactured by JEOL Ltd.). It was long. When the particles were not perfect circles, the major axis was measured as the particle diameter. The average particle diameter was calculated by measuring an arbitrary 100 particle diameter from a photograph and calculating the arithmetic average thereof.
  • the particle size distribution index indicating the particle size distribution was calculated based on the following numerical conversion formula for the individual particle diameter values obtained above.
  • Ri particle diameter of individual particles
  • n number of measurement 100
  • Dn number average particle diameter
  • Dv volume average particle diameter
  • PDI particle diameter distribution index.
  • Reference Example 5 ⁇ Cleaning of sodium acetate 5 in polyvinyl alcohols>
  • polyvinyl alcohol PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000, SP value 32.8 (J / cm 3 ) 1/2 , sodium acetate content 0.20 mass% 50 g and 500 ml of methanol were added, and the mixture was stirred at room temperature for 1 hour. Then, it was separated by suction filtration (filter paper 5A, ⁇ 90 mm). The same operation was subsequently performed twice, three times in total, and then dried at 80 ° C. for 10 hours to obtain polyvinyl alcohol having a low sodium acetate content. When the amount of sodium acetate in the obtained polyvinyl alcohol was quantified, it was 0.05% by mass.
  • Example 1 Method for Producing Polyamide Fine Particles Using Polyvinyl Alcohol with Low Sodium Acetate Content> 35 g of polyamide (weight average molecular weight 17,000, “TROGAMID (registered trademark)” CX7323) manufactured by Daicel-Evonik Co., Ltd. as polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 287 g of N-methyl-2-pyrrolidone (SP value 23.1 (J / cm 3 ) 1/2 ) as an organic solvent, and 28 g of polyvinyl alcohol having a low sodium acetate content prepared in Reference Example 1 as polymer B were added.
  • the obtained powder was a spherical fine particle shape, and was a polyamide fine particle having an average particle size of 24.0 ⁇ m and a particle size distribution index of 1.11.
  • the melting point of the polyamide used in this example was 250 ° C.
  • the heat of fusion was 23.7 J / g
  • the temperature-falling crystallization temperature was not detected.
  • the SP value was 23.3 (J / cm 3 ) 1/2 according to the calculation method.
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,800, which was almost unchanged from that before use.
  • Example 2 ⁇ Production Method 2 Using Polyvinyl Alcohol with a Low Sodium Acetate Content> 35 g of polyamide (weight average molecular weight 17,000, “TROGAMID (registered trademark)” CX7323) manufactured by Daicel-Evonik Co., Ltd. as polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) Then, 287 g of N-methyl-2-pyrrolidone as an organic solvent and 28 g of polyvinyl alcohol having a low sodium acetate content prepared in Reference Example 2 as polymer B were added and replaced with 99% by volume or more of nitrogen, and then heated to 180 ° C.
  • the mixture was stirred for 2 hours until the polymer was dissolved. At this time, the oxygen concentration is 1% or less in calculation. Thereafter, 350 g of ion-exchanged water as a poor solvent was dropped at a speed of 2.92 g / min via a liquid feed pump. When about 200 g of ion exchange water was added, the system turned white. After the entire amount of water has been added, the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion-exchanged water, reslurried, and filtered, and vacuum-dried at 80 ° C. for 10 hours. This gave 34.0 g of a white solid.
  • the obtained powder was a spherical fine particle shape, and was a polyamide fine particle having an average particle size of 24.8 ⁇ m and a particle size distribution index of 1.23. Moreover, the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was weight average molecular weight 29,100, which was almost unchanged from before use.
  • Example 3 Provide Method of Polyamide Fine Particles by Addition of Acid> 28 g of polyamide (weight average molecular weight 17,000, “TROGAMID (registered trademark)” CX7323) manufactured by Daicel-Evonik Co., Ltd. as polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 301 g of N-methyl-2-pyrrolidone as an organic solvent, 21 g of polyvinyl alcohol as polymer B (“GOHSENOL (registered trademark)” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), GM-14, weight average molecular weight 29,000, SP value 32.
  • polyamide weight average molecular weight 17,000, “TROGAMID (registered trademark)” CX7323
  • Polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 301 g of N-methyl-2-pyrrolidone
  • the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion-exchanged water, reslurried, and filtered, and vacuum-dried at 80 ° C. for 10 hours. 27.0 g of white solid was obtained.
  • the obtained powder was observed with a scanning electron microscope, it was a polyamide fine particle having a true spherical particle shape, an average particle diameter of 77.5 ⁇ m, and a particle diameter distribution index of 2.00.
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,200, which was almost unchanged from that before use.
  • Example 4 ⁇ Method for Producing Amorphous Polyamide Fine Particles>
  • a 1000 ml pressure-resistant glass autoclave pressure-resistant glass industry, Hyper Glaster TEM-V1000N
  • 35 g of polyamide weight average molecular weight 12,300, “Glilamide (registered trademark)” TR55 manufactured by Mzavelke
  • organic 287 g of N-methyl-2-pyrrolidone as a solvent
  • 28 g of polyvinyl alcohol with a low sodium acetate prepared in Reference Example 2 as a polymer B weight average molecular weight 29,000, SP value 32.8 (J / cm 3 ) 1/2
  • the mixture was heated to 180 ° C.
  • the obtained powder was a spherical fine particle shape, and was a polyamide fine particle having an average particle size of 20.6 ⁇ m and a particle size distribution index of 1.19.
  • the polyamide used in this example did not have a melting point and no heat of fusion was observed.
  • the SP value was obtained by a calculation method and was 23.3 (J / cm 3 ) 1/2 .
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 5 ⁇ Method for Producing Nylon 1010 Fine Particles>
  • polyamide 1010 weight average molecular weight 38,000, “Rilsun (registered trademark)” AESNOTL-444 manufactured by Arkema Co., Ltd. was used as polymer A.
  • the melting point of the polyamide used in this example was 207 ° C.
  • the heat capacity of melting was 29.0 J / g
  • the temperature-falling crystallization temperature was 144 ° C.
  • the SP value was calculated by a calculation method and was 22.47 (J / cm 3 ) 1/2 .
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 6 Method for Producing Nylon 610 Fine Particles> 42 g of polyamide 610 (weight average molecular weight 37,000, “Amilan (registered trademark)” CM2001, manufactured by Toray Industries, Inc.) as polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 266 g of N-methyl-2-pyrrolidone as the organic solvent, 42 g of polyvinyl alcohol with a low sodium acetate prepared in Reference Example 3 as the polymer B (weight average molecular weight 11,000, SP value 32.8 (J / cm 3 ) 1 / 2 ) was added, 99% by volume or more of nitrogen was substituted, and then heated to 180 ° C.
  • polyamide 610 weight average molecular weight 37,000, “Amilan (registered trademark)” CM2001, manufactured by Toray Industries, Inc.
  • Polyamide 610 weight average molecular weight 37,000, “Amilan (registered trademark)
  • the obtained powder was a spherical fine particle shape, polyamide fine particles having an average particle size of 5.4 ⁇ m and a particle size distribution index of 5.25.
  • the melting point of the polyamide used in this example was 225 ° C.
  • the heat capacity of fusion was 53.2 J / g
  • the temperature-falling crystallization temperature was 167 ° C.
  • the SP value was determined by a calculation method and was 23.60 (J / cm 3 ) 1/2 .
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 7 Method for Producing Nylon 11 Fine Particle> Polyamide 11 (weight average molecular weight 38,000, “Rilsan (registered trademark)” BMNO) manufactured by Arkema Co., Ltd. as polymer A in a 1000 ml pressure-resistant glass autoclave (Pressure Glass Industry Co., Ltd., Hyperglaster TEM-V1000N) 24.
  • the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion-exchanged water, reslurried, and filtered, and vacuum-dried at 80 ° C. for 10 hours. 24.1 g of white solid was obtained.
  • the obtained powder was observed with a scanning electron microscope, it was a polyamide fine particle having a true spherical fine particle shape, an average particle size of 10.5 ⁇ m, and a particle size distribution index of 1.40.
  • the melting point of the polyamide used in this example was 196 ° C.
  • the heat of fusion was 25.8 J / g
  • the temperature-falling crystallization temperature was 144 ° C.
  • the SP value was determined by a calculation method and was 22.04 (J / cm 3 ) 1/2 . Moreover, the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 8 ⁇ Method for producing nylon 12 fine particles> In a 1000 ml pressure-resistant glass autoclave (Pressure-Glass Industry Co., Ltd., Hyperglaster TEM-V1000N), polyamide 12 (weight average molecular weight 38,000, “Rilsan (registered trademark)” AESNOTL-44) manufactured by Arkema Co., Ltd. was used as polymer A.
  • the melting point of the polyamide used in this example was 183 ° C.
  • the heat of fusion was 27.3 J / g
  • the temperature-falling crystallization temperature was 138 ° C.
  • the SP value was calculated by a calculation method and was 21.70 (J / cm 3 ) 1/2 .
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 9 Provide Method of Polyamide Fine Particles by Addition of Acid>
  • a 1000 ml pressure glass autoclave Pressure Glass Industry Co., Ltd., Hyperglaster TEM-V1000N
  • 21 g of polyamide CX7323 weight average molecular weight 17,000, manufactured by Daicel Evonik
  • polymer A N-methyl as organic solvent -2-pyrrolidone 287 g
  • polymer B 42 g polymer B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • G-type “GOHSENOL (registered trademark)” GM-14 weight average molecular weight 29,000, SP value 32.8 (J / cm 3 ) 1/2 ) and 0.21 g of tartaric acid were added, 99% by volume or more of nitrogen was substituted, heated to 180 ° C., and stirred for 4 hours until the polymer was dissolved. At this time, the oxygen concentration is 1% or less in calculation. Thereafter, 350 g of ion-exchanged water as a poor solvent was dropped at a speed of 2.91 g / min via a liquid feed pump. When about 30 g of ion-exchanged water was added, the system turned white.
  • the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion-exchanged water, reslurried, and filtered, and vacuum-dried at 80 ° C. for 10 hours. 20.0 g of white solid was obtained.
  • the obtained powder was observed with a scanning electron microscope, it was a spherical fine particle shape, polyamide fine particles having an average particle size of 22.4 ⁇ m and a particle size distribution index of 1.15.
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 10 ⁇ Production Method of Polyamide Fine Particles by Addition of Acid>
  • a 1000 ml pressure-resistant glass autoclave Pressure Glass Industry Co., Ltd., Hyperglaster TEM-V1000N
  • 28 g of polyamide CX7323 weight average molecular weight 17,000, manufactured by Daicel Evonik
  • N-methyl as organic solvent -2-pyrrolidone 290.5 g
  • polymer alcohol 31.5 g as polymer B
  • G-type “GOHSENOL (registered trademark)” GM-14 manufactured by Nippon Synthetic Chemical Industry Co., Ltd., weight average molecular weight 29,000, SP value 32.8 ( J / cm 3 ) 1/2
  • 0.16 g of L-tartaric acid were added, and after replacing with 99% by volume or more of nitrogen, the mixture was heated to 180 ° C.
  • the obtained powder When the obtained powder was observed with a scanning electron microscope, it was a polyamide fine particle having a true spherical fine particle shape, an average particle size of 32.6 ⁇ m, and a particle size distribution index of 1.18. Moreover, the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Example 11 Method for Producing Polyamide Fine Particles by Addition of Acid>
  • a 1000 ml pressure-resistant glass autoclave Pressure Glass Industry Co., Ltd., Hyperglaster TEM-V1000N
  • polyamide CX7323 weight average molecular weight 17,000, manufactured by Daicel Evonik
  • N organic solvent -29
  • methyl-2-pyrrolidone 42.0 g
  • polyvinyl alcohol as polymer B
  • G-type “GOHSENOL (registered trademark)” GM-14 manufactured by Nippon Synthetic Chemical Industry Co., Ltd., weight average molecular weight 29,000, SP value 32.
  • the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion-exchanged water, reslurried, and filtered, and vacuum-dried at 80 ° C. for 10 hours. 9.8 g of a white solid was obtained.
  • the obtained powder was observed with a scanning electron microscope, it was a polyamide fine particle having a true spherical particle shape, an average particle diameter of 14.6 ⁇ m, and a particle diameter distribution index of 1.11.
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 12 ⁇ Method for Producing Polyester Elastomer Fine Particles> Polyester elastomer “Hytrel (registered trademark)” 7247 (manufactured by Toray DuPont Co., Ltd., weight average molecular weight 29,000, bending elastic modulus in a 1000 ml pressure glass autoclave (Hyperglaster TEM-V1000N). 600 MPa) 28 g, N-methyl-2-pyrrolidone (Kanto Chemical Co., Ltd.) 304.5 g, polyvinyl alcohol (Wako Pure Chemical Industries, Ltd.
  • PVA-1500 weight average molecular weight 29,000: acetic acid by washing with methanol After adding 17.5 g (reduced sodium content to 0.05% by mass) and replacing with nitrogen, the mixture was heated to 180 ° C. and stirred for 4 hours until the polymer was dissolved. Thereafter, 350 g of ion-exchanged water as a poor solvent was dropped at a speed of 2.92 g / min via a liquid feed pump. After the entire amount of water has been added, the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion exchange water and reslurried, and the filtered product is vacuum dried at 80 ° C. for 10 hours. 26.5 g of a white solid was obtained.
  • the particles (white solid) obtained in this example were analyzed with a laser particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation). As a result, the volume average particle size was 5.5 ⁇ m and the particle size distribution index was 1.22. Met.
  • Example 13 ⁇ Method for Producing Polyester Elastomer Fine Particles>
  • a 1000 ml pressure-resistant glass autoclave pressure-resistant glass industry, Hyper Glaster TEM-V1000N
  • 28 g of polyester elastomer “Hytrel (registered trademark)” 7247 manufactured by Toray DuPont Co., Ltd., weight average molecular weight 29,000
  • N -Methyl-2-pyrrolidone manufactured by Kanto Chemical Co., Ltd.
  • polyvinyl alcohol manufactured by Wako Pure Chemical Industries, Ltd., PVA-1500, weight average molecular weight 29,000: washed with methanol to have a sodium acetate content of 0.05 mass
  • the mixture was heated to 180 ° C.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was weight average molecular weight 29,800, which was almost the same as before use.
  • the particles (white solid) obtained in this example were analyzed by a laser particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation). As a result, the volume average particle size was 8.6 ⁇ m and the particle size distribution index was 1.22. there were.
  • SALD-2100 laser particle size distribution analyzer
  • Example 14 ⁇ Method for Producing Polyester Elastomer Fine Particles>
  • a 1000 ml pressure-resistant glass autoclave pressure-resistant glass industry, Hyper Glaster TEM-V1000N
  • 28 g of polyester elastomer “Hytrel (registered trademark)” 7247 manufactured by Toray DuPont Co., Ltd., weight average molecular weight 29,000
  • N -Methyl-2-pyrrolidone manufactured by Kanto Chemical Co., Inc.
  • polyvinyl alcohol manufactured by Wako Pure Chemical Industries, Ltd.
  • PVA-1500 weight average molecular weight 29,000: washed with methanol to have a sodium acetate content of 0.05 mass 10.5 g) was added and nitrogen substitution was performed, followed by heating to 180 ° C. and stirring for 4 hours until the polymer was dissolved. Thereafter, 350 g of ion-exchanged water as a poor solvent was dropped at a speed of 2.92 g / min via a liquid feed pump. After the entire amount of water has been added, the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion exchange water and reslurried, and the filtered product is vacuum dried at 80 ° C. for 10 hours.
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 27,500, which was almost unchanged from that before use.
  • the particles (white solid) obtained in this example were analyzed with a laser particle size distribution analyzer (SALD-2100, manufactured by Shimadzu Corporation). As a result, the volume average particle size was 12.5 ⁇ m and the particle size distribution index was 1.28. Met.
  • Example 15 ⁇ Method for Producing Polyester Elastomer Fine Particles> Polyester elastomer “Hytrel (registered trademark)” 8238 (manufactured by DuPont, weight average molecular weight 27,000, flexural modulus 1100 MPa) in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 17.5 g, N-methyl-2-pyrrolidone 315 g, polyvinyl alcohol with low sodium acetate prepared in Reference Example 5 (PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000: by washing with methanol, 17.5 g of a sodium acetate content reduced to 0.05% by mass) was replaced with nitrogen, heated to 180 ° C., and stirred for 4 hours until the polymer was dissolved.
  • Hytrel registered trademark
  • the solubility (room temperature) with respect to the water which is a poor solvent of this polyester elastomer was 0.1 mass% or less.
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • Example 16 ⁇ Method for Producing Polyester Elastomer Fine Particles>
  • polyester elastomer “Hytrel (registered trademark)” 8238 manufactured by DuPont, weight average molecular weight 27,000
  • polyvinyl alcohol with low sodium acetate prepared in Reference Example 5 PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000: sodium acetate content by washing with methanol 17.5 g
  • Example 17 ⁇ Method for Producing Polyester Elastomer Fine Particles> 48.0 parts of terephthalic acid, 42.0 parts of 1,4-butanediol and 10.0 parts of polytetramethylene glycol having a weight average molecular weight of about 3000, 0.01 parts of titanium tetrabutoxide and mono-n-butyl-monohydroxy 0.005 part of tin oxide was charged into a reaction vessel equipped with a helical ribbon stirring blade, and heated at 190 to 225 ° C. for 3 hours to carry out an esterification reaction while distilling the reaction water out of the system.
  • polyether ester copolymer (D1) 33.25 g, N-methyl-2-pyrrolidone 299.25 g
  • Reference Example 5 17.5 g of polyvinyl alcohol with a small amount of sodium acetate (PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000: sodium acetate content reduced to 0.05 mass%) was added, and nitrogen substitution was performed. After performing, it heated at 180 degreeC and stirred for 4 hours until the polymer melt
  • the obtained powder was observed with a scanning electron microscope, it was a true spherical fine particle, a polyether ester copolymer having an average particle size of 12.0 ⁇ m, a volume average particle size of 14.7 ⁇ m, and a particle size distribution index of 1.23. It was a polyester elastomer fine particle composed of a coalescence. Observation with a scanning electron microscope revealed true spherical fine particles. The estimated value of the interfacial tension of this system was 2 mN / m or less.
  • Example 18 Method for Producing Polyester Elastomer Fine Particles> 26.7 parts of terephthalic acid, 23.3 parts of 1,4-butanediol and 50.0 parts of polytetramethylene glycol having a weight average molecular weight of about 3000, 0.01 parts of titanium tetrabutoxide and mono-n-butyl-monohydroxy 0.005 part of tin oxide was charged into a reaction vessel equipped with a helical ribbon stirring blade, and heated at 190 to 225 ° C. for 3 hours to carry out an esterification reaction while distilling the reaction water out of the system.
  • polyether ester copolymer (D2) 33.25 g, N-methyl-2-pyrrolidone 299.25 g, Polyvinyl alcohol with a low sodium acetate created in Reference Example 5 (Wako Pure Chemical Industries, Ltd., PVA-1500, weight average molecular weight 29,000: Washing with methanol reduced the sodium acetate content to 0.05% by mass. 1) After adding 17.5 g and carrying out nitrogen substitution, it heated at 180 degreeC and stirred for 4 hours until the polymer melt
  • Example 19 ⁇ Method for Producing Polyester Elastomer Fine Particles> Polyester elastomer (“Hytrel” (registered trademark) 8238, manufactured by DuPont, weight average molecular weight 27,000, flexural elasticity) in a 1000 ml pressure glass autoclave (Hyper Glaster TEM-V1000N, manufactured by Pressure Glass Industry Co., Ltd.) (1100 MPa) 14.6 g, N-methyl-2-pyrrolidone 300 g, polyvinyl alcohol with low sodium acetate prepared in Reference Example 5 (manufactured by Wako Pure Chemical Industries, Ltd., PVA-1500, weight average molecular weight 29,000: methanol) 17.5 g) (sodium acetate content reduced to 0.05% by washing) was replaced with nitrogen, heated to 180 ° C., and stirred for 4 hours until the polymer was dissolved.
  • Hytrel registered trademark
  • 8238 manufactured by DuPont, weight average molecular weight 27,000, flexural
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 27,500, which was almost unchanged from that before use.
  • Example 20 ⁇ Method for Producing Polyester Elastomer Fine Particles> Polyester elastomer (“Hytrel” (registered trademark) 8238, manufactured by DuPont, weight average molecular weight 27,000, flexural elasticity) in a 1000 ml pressure glass autoclave (Hyper Glaster TEM-V1000N, manufactured by Pressure Glass Industry Co., Ltd.) (1100 MPa) 15.2 g, N-methyl-2-pyrrolidone 300 g, polyvinyl alcohol with low sodium acetate prepared in Reference Example 5 (manufactured by Wako Pure Chemical Industries, Ltd., PVA-1500, weight average molecular weight 29,000: methanol) 17.5 g) (sodium acetate content reduced to 0.05% by washing) was replaced with nitrogen, heated to 180 ° C., and stirred for 4 hours until the polymer was dissolved.
  • Hytrel registered trademark
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 26,500, which was almost unchanged from that before use.
  • Example 21 Method for Producing Polyester Elastomer Fine Particles by Addition of Acid>
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,500, which was almost unchanged from that before use.
  • Example 22 Method for Producing Polyester Elastomer Fine Particles Below Temperature of Falling Crystallization> 17.5 g of polyester elastomer “Hytrel®” 7247 (manufactured by Toray DuPont Co., Ltd., weight average molecular weight 29,000) in a 1000 ml pressure glass autoclave (Hyperglaster TEM-V1000N).
  • the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion exchange water and reslurried, and the filtered product is vacuum dried at 80 ° C. for 10 hours.
  • 17.0 g of a white solid was obtained.
  • the obtained powder was observed with a scanning electron microscope, it was a porous fine particle, and was a polyester elastomer fine particle having an average particle size of 9.3 ⁇ m, a volume average particle size of 11.8 ⁇ m, and a particle size distribution index of 1.27. It was.
  • Example 23 ⁇ Method for Producing Polyester Elastomer Fine Particles Below Temperature of Falling Crystallization> 17.5 g of polyester elastomer “Hytrel (registered trademark)” 8238 (manufactured by DuPont, weight average molecular weight 27,000) in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N), N -Methyl-2-pyrrolidone 315.0 g, polyvinyl alcohol with low sodium acetate prepared in Reference Example 5 (PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000: sodium acetate content by washing with methanol 17.5 g) was added and nitrogen substitution was performed, followed by heating to 180 ° C.
  • Hytrel registered trademark
  • Measured molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was a weight average molecular weight of 28,800, which was almost unchanged from that before use.
  • Example 24 Method for Producing Polyamide Fine Particles Using Recycling Solvent> Water was distilled off from the filtrate obtained in Example 1 under a nitrogen atmosphere under reduced pressure conditions of 80 ° C. and 50 kPa, and the water content was measured with a moisture measuring device (moisture measuring device CA-06 manufactured by Mitsubishi Chemical Corporation). Was carried out until 1% by mass or less. The water content at this time was 0.45 mass%, and when the polyvinyl alcohol as the polymer B in the residual liquid was quantified by gel permeation chromatography, the concentration of polyvinyl alcohol was 8.2 mass%.
  • moisture measuring device CA-06 moisture measuring device manufactured by Mitsubishi Chemical Corporation
  • the mixture was heated to 180 ° C. and stirred for 2 hours until the polymer was dissolved. At this time, the oxygen concentration is 1% or less in calculation. Thereafter, 350 g of ion-exchanged water as a poor solvent was dropped at a speed of 2.92 g / min via a liquid feed pump. When about 200 g of ion exchange water was added, the system turned white. After the entire amount of water has been added, the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion-exchanged water, reslurried, and filtered, and vacuum-dried at 80 ° C. for 10 hours. This gave 33.6 g of a white solid.
  • the obtained powder was a spherical fine particle shape, and was a polyamide fine particle having an average particle size of 23.8 ⁇ m and a particle size distribution index of 1.14.
  • a product having an average particle size, particle size distribution and yield was obtained.
  • Example 25 Method for Producing Polyamide Fine Particles Using Normal PVA> 35 g of polyamide (weight average molecular weight 17,000, “TROGAMID (registered trademark)” CX7323) manufactured by Daicel-Evonik Co., Ltd.
  • polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 287 g of N-methyl-2-pyrrolidone as an organic solvent, 28 g of polyvinyl alcohol as polymer B (“GOHSENOL (registered trademark)” GM-14 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), weight average molecular weight 29,000, sodium acetate content 0.23 Mass%, SP value 32.8 (J / cm 3 ) 1/2 ) was added, and after replacing with 99% by volume or more of nitrogen, the mixture was heated to 180 ° C. and stirred for 2 hours until the polymer was dissolved. . At this time, the oxygen concentration is 1% or less in calculation.
  • the obtained powder was a spherical fine particle shape, and was a polyamide fine particle having an average particle size of 15.0 ⁇ m and a particle size distribution index of 1.11.
  • the heat of fusion of the polyamide used in this example was 23.7 J / g, and the SP value was obtained by an experimental method and was 23.3 (J / cm 3 ) 1/2 .
  • Example 26 Provides for producing polyamide fine particles using ordinary PVA> 35 g of polyamide (weight average molecular weight 17,000, “TROGAMID (registered trademark)” CX7323) manufactured by Daicel-Evonik Co., Ltd.
  • polymer A in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 287 g of N-methyl-2-pyrrolidone as the organic solvent, 28 g of polyvinyl alcohol as the polymer B (PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000, SP value 32.8 (J / cm 3 ) 1 / 2 , sodium acetate content 0.2%), in an air atmosphere (oxygen concentration about 20%), shut off from the outside, heated to 180 ° C., and stirred for 2 hours until the polymer dissolved went.
  • pressure-resistant glass industry Hyper Glaster TEM-V1000N
  • polyvinyl alcohol as the polymer B
  • PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000, SP value 32.8 (J / cm 3 ) 1 / 2 , sodium acetate content 0.2%)
  • the obtained powder was observed with a scanning electron microscope, it was a polyamide fine particle having a true spherical particle shape, an average particle size of 15.2 ⁇ m, and a particle size distribution index of 1.30.
  • the heat of fusion of the polyamide used in this example was 23.7 J / g, and the SP value was obtained by an experimental method and was 23.3 (J / cm 3 ) 1/2 .
  • the filtrate after the completion of granulation changed to brown, and when the molecular weight of polyvinyl alcohol was measured, it showed a weight average molecular weight of 80,000.
  • the molecular weight of polyvinyl alcohol is increased, it is difficult to reuse the filtrate, but fine particles having a narrow particle size distribution are obtained.
  • Comparative Example 1 ⁇ Method for Producing Polyester Elastomer Fine Particles Below 100 ° C.> Polyester elastomer “Hytrel (registered trademark)” 7247 (manufactured by Toray DuPont Co., Ltd., weight average molecular weight 29,000) 3.5 g in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) , N-methyl-2-pyrrolidone 343.0 g, polyvinyl alcohol with low sodium acetate prepared in Reference Example 5 (PVA-1500 manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight 29,000: acetic acid by washing with methanol (The sodium content was reduced to 0.05% by mass) 3.5 g was added, and after nitrogen substitution, the mixture was heated to 180 ° C.
  • Hytrel registered trademark
  • polyester elastomer fine particles having a volume average particle size of 55.6 ⁇ m and a particle size distribution index of 20.0 were obtained.
  • the obtained fine particles are aggregates of fine particles of about 10 ⁇ m, and in this method, although the fine particles themselves are obtained, they are not of sufficient quality as compared with those obtained in Examples 12 and 13. It was.
  • Example 27 (Reflector using polymer fine particles made of thermoplastic resin containing ether bond) (1) Preparation of coating liquid The raw materials of the coating liquid were prepared in the order of [1] to [4] for the following materials and stirred for 10 minutes with a universal stirrer to prepare a coating layer forming coating liquid.
  • Purified water [2] Material A: ⁇ Polyester binder resin> Pesresin A-215E (manufactured by Takamatsu Yushi Co., Ltd., 30 wt% solution: containing a carboxylic acid group and a hydroxyl group) was diluted with purified water to prepare a 25 wt% solution.
  • Techpolymer MBX-8 crosslinked PMMA particles, number average particle size 8 ⁇ m, volume average particle size 11.7 ⁇ m, particle size distribution index 1.46) (manufactured by Sekisui Plastics Co., Ltd.) was mixed with purified water 40 An aqueous dispersion of a weight percent solution. There is no ether bond in the particles.
  • a melt-laminated sheet is formed by extrusion into a sheet form from the inside of the T die die, and the melt-laminated sheet is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C.
  • a film was obtained.
  • the film surface in contact with the drum was defined as the back surface, and the surface in contact with the air was defined as the “front” surface.
  • the unstretched laminated film is preheated with a roll (preheated roll) group heated to a temperature of 80 ° C., and then stretched 3.5 times using the difference in peripheral speed of the roll in the longitudinal direction, and 25 ° C.
  • a uniaxially stretched film was obtained by cooling with a roll group at a temperature of 5 ° C.
  • the “front” surface of the uniaxially stretched film is subjected to a corona discharge treatment in the air, and the coating layer forming coating solution is applied to the treated surface by a bar coating method using a wire bar to a coating thickness of 15 ⁇ m. It was applied as follows.
  • a laminated film is installed in the backlight unit of an LED display (T240HW01) manufactured by AUO, and the screen is placed horizontally to light up.
  • a white spot occurs without weight when the center of the screen is pressed with a predetermined weight.
  • E when white spots occur with a weight of 0.5 kg
  • D when white spots occur with a weight of 1.0 kg
  • C when white spots occur with a weight of 1.5 kg
  • B when white spots occur with a weight of 2.0 kg
  • the used backlight is a side light type backlight, has a light guide plate and a light source (LED), and a light source is located in the edge part of a light guide plate.
  • a white point (white spot) does not occur (FIG. 2A) and a white point (white spot) occurs ( FIG. 2 (B)) can be clearly distinguished.
  • Table 2 shows the evaluation results of the film properties (3.1) to (3.4).
  • the fine particles prepared by the method of the present invention can obtain particles having a small particle size distribution, can produce fine particles with a polymer, particularly polymer fine particles having excellent heat resistance, and are stable. Since it is a production method, it is easy to realize industrial production. Specific applications of these heat-resistant fine particles include flash molding materials, rapid prototyping and rapid manufacturing materials, plastic sol paste resins, powder blocking materials, powder flowability improvers, lubricants, and rubbers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリマーAとポリビニルアルコール類と有機溶媒とを溶解混合したときに、ポリマーAを主成分とする溶液相と、ポリビニルアルコール類を主成分とする溶液相の2相に相分離する系において、100℃以上でエマルションを形成させた後に、ポリマーAの貧溶媒を接触させることにより、ポリマーAを析出させることを特徴とするポリマー微粒子の製造方法、およびその方法により製造されたポリマー微粒子。高耐熱なポリマーを含め、種々のポリマーの微粒子を、高品質かつ安定的に製造することが可能となり、簡便な手法で粒子径分布の小さい微粒子を安定的に得ることができる。特に本発明の微粒子は、薄型液晶ディスプレイに用いられる反射板の凹凸形成に好適な材料となる。

Description

ポリマー微粒子およびその製造方法
 本発明は、ポリマー微粒子およびその製造方法に関し、更に詳しくは、ポリアミド、ポリエステルなどの高耐熱のポリマーの微粒子を、粒子径分布が狭くかつ簡便に製造する方法、およびその方法により製造されたポリマー微粒子に関する。
 ポリマー微粒子とは、ポリマーからなる微粒子のことであり、一般的にその直径は、数十nmから、数百μmの大きさまでの多岐にわたる微粒子のことである。ポリマー微粒子は、フィルム、繊維、射出成形品、押出成形品などのポリマー成形品とは異なり、比表面積が大きい点や、微粒子の構造を利用することで各種材料の改質、改良に用いられている。主要用途としては、化粧品の改質剤、トナー用添加剤、塗料などのレオロジー改質剤、医療用診断検査剤、自動車材料、建築材料などの成形品への添加剤などが挙げられる。特に、近年では、ポリマー微粒子の微粒子構造を活かし、レーザー加工技術と組み合わせてオーダーメードの成形品を作る手法であるラピッドプロトタイピング、ラピッドマニュファクチャリングの原料として用いられるようになってきている。
 さらに近年では、液晶ディスプレイを始めとする電子情報材料などの分野において、ポリマー微粒子として、耐熱性、耐溶剤性が高く、粒子径分布がより均一なポリマー微粒子が求められている。
 本発明者らは、2種のポリマーを溶媒に溶解し、それぞれの相からなるエマルションに貧溶媒を接触させることで、ポリマー微粒子を生成させる、ポリマー微粒子の製造方法を先に見出した(特許文献1)。
 本方法は、エマルション径の調節が容易であり、またその粒子径分布は狭いという特徴を有するのと同時に、広範なポリマー種に対して微粒子化が可能である有効な手法であり、高耐熱ポリマーの微粒子を得るのに対して有効な手法である。
国際特許WO2009-142231号
 これまでの方法では、異種のポリマーを溶媒に溶解し、エマルションを形成させた後に貧溶媒を接触させることにより微粒子を形成させることが開示されているが、高耐熱ポリマー、特に結晶性ポリマーを微粒子化する場合、エマルションを形成する段階において系の粘度が高くなり、粒度分布が広くなる傾向があるなどの課題があった。
 本発明は、2種のポリマーを溶媒に溶解し、それぞれの相からなるエマルションに貧溶媒を接触させることで、ポリマー微粒子を生成させる、ポリマー微粒子の製造方法において、より粒子径分布の小さい、高品質のポリマー微粒子を安定に製造し得る方法、およびその方法により製造されたポリマー微粒子を提供することを課題とする。
 上記課題を達成するために、本発明者らが鋭意検討した結果、下記発明に到達した。
即ち、本発明は、
「(1)ポリマーAとポリマーBと有機溶媒とを溶解混合した際に、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系において、エマルションを形成させた後、ポリマーAの貧溶媒を接触させて、ポリマーAを析出させることを特徴とするポリマー微粒子の製造方法において、エマルションの形成を100℃以上の温度で実施することを特徴とするポリマー微粒子の製造方法、
(2)ポリマーAが100℃以上の融点を有する結晶性熱可塑性樹脂であることを特徴とする、(1)に記載のポリマー微粒子の製造方法、
(3)ポリマーAがその分子主鎖骨格中にアミド単位、エステル単位、スルフィド単位、炭酸エステル単位の中から選ばれる構造単位を少なくとも一つ含む結晶性熱可塑性樹脂であることを特徴とする、(1)または(2)に記載のポリマー微粒子の製造方法、
(4)ポリマーAが、ポリアミド、ポリエステル、ポリフェニレンスルフィドから選択される結晶性熱可塑性樹脂である、(1)から(3)のいずれかに記載のポリマー微粒子の製造方法、
(5)ポリマーBのSP値が20(J/cm1/2以上であることを特徴とする、(1)から(4)のいずれかに記載のポリマー微粒子の製造方法、
(6)ポリマーBの25℃における水への溶解度が1g/100g以上であることを特徴とする、(1)から(5)のいずれかに記載のポリマー微粒子の製造方法、
(7)ポリマーBが、その分子骨格中に水酸基、エーテル基、アミド基、カルボキシル基を有することを特徴とする、(1)から(6)のいずれかに記載のポリマー微粒子の製造方法、
(8)ポリマーBが、ポリビニルアルコール類、ヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸であることを特徴とする、(1)から(7)のいずれかに記載のポリマー微粒子の製造方法、
(9)ポリマーBが、ポリビニルアルコール類であり、ポリビニルアルコール中の酢酸ナトリウム含量が、0.1質量%以下であることを特徴とする、(1)から(8)のいずれかに記載のポリマー微粒子の製造方法、
(10)ポリマーBが、ポリビニルアルコール類であり、エマルション形成時に系中に酸化合物を添加することを特徴とする、(1)から(8)のいずれかに記載のポリマー微粒子の製造方法、
(11)添加する酸化合物が、第1解離指数(pKa1)が4.5以下の酸であり、分解温度が貧溶媒の沸点以上であることを特徴とする、(10)記載のポリマー微粒子の製造方法、
(12)添加する酸化合物が、クエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸から選ばれる1種以上であることを特徴とする、(10)または(11)のいずれかに記載のポリマー微粒子の製造方法、
(13)有機溶媒のSP値が20(J/cm1/2以上で沸点が100℃以上であることを特徴とする、(1)から(12)のいずれかに記載のポリマー微粒子の製造方法、
(14)有機溶媒が、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノンから選ばれる1種以上であることを特徴とする、(1)から(13)のいずれかに記載のポリマー微粒子の製造方法、
(15)エマルション形成後、ポリマーを析出させるため、貧溶媒を接触させる温度がポリマーAの降温結晶化温度以上の温度であることを特徴とする、(1)から(14)のいずれかに記載のポリマー微粒子の製造方法、
(16)ポリマーAを析出させた後に、固液分離をし、ポリマーA微粒子を除いた、ポリマーB成分を含む溶液から、貧溶媒を除去し、得られた溶液に、再度、ポリマーAを加えて、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系を形成させ、有機溶媒およびポリマーBを再利用することを特徴とする、(1)から(15)のいずれかに記載のポリマー微粒子の製造方法、
(17)(1)から(16)のいずれかの方法により製造されたポリマー微粒子、
(18)曲げ弾性率が500MPaよりも大きく3000MPa以下であるエーテル結合を含む熱可塑性樹脂であることを特徴とするポリマー微粒子、
(19)平均粒子径が1μm~100μmであることを特徴とする(18)記載のポリマー微粒子」である。
 本発明のポリマー微粒子の製造方法により、高耐熱なポリマーを含め、種々のポリマーの微粒子を、高品質かつ安定的に製造することが可能となり、簡便な手法で粒子径分布の小さい微粒子を高品質で安定的に得ることができるようになる。特に本発明における微粒子は、薄型液晶ディスプレイに用いられる反射板の凹凸形成に好適な材料となる。
図1は、180℃におけるポリアミド(ダイセル・エボニック社製 ‘TROGAMID(登録商標)’、CX7323)とポリビニルアルコール(PVA(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’、GM-14))とN-メチル-2-ピロリドン(NMP)の3成分相図である。 図2は、ディスプレイ白点(ホワイトスポット)評価例を示す図で、白点がない場合(A)と白点がある場合(B)を例示したものである。
 以下、本発明について、詳細に説明する。
 本発明は、ポリマーAとポリマーBと有機溶媒を溶解混合させ、ポリマーAを主成分とする溶液相(以下、ポリマーA溶液相と称することもある)と、ポリマーB(ポリビニルアルコール類)を主成分とする溶液相(以下、ポリマーB溶液相と称することもある)の2相に相分離する系において、100℃以上でエマルションを形成させた後、ポリマーAの貧溶媒を接触させることにより、ポリマーAを析出させることを特徴とするポリマー微粒子の製造方法である。
 上記において、「ポリマーAとポリマーBと有機溶媒を溶解混合させ、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系」とは、ポリマーAとポリマーBと有機溶媒を混合したときに、ポリマーAを主として含む溶液相と、ポリマーBを主として含む溶液相の2相に分かれる系をいう。
 このような相分離をする系を用いることにより、相分離する条件下で混合して、乳化させ、エマルションを形成させることができる。
 なお、上記において、ポリマーが溶解するかどうかについては、本発明を実施する温度、即ちポリマーAとポリマーBを溶解混合して、2相分離させる際の温度において、有機溶媒に対し1質量%超溶解するかどうかで判別する。
 このエマルションは、ポリマーA溶液相が分散相に、ポリマーB溶液相が連続相になり、そしてこのエマルションに対し、ポリマーAの貧溶媒を接触させることにより、エマルション中のポリマーA溶液相から、ポリマーAが析出し、ポリマーAで構成されるポリマー微粒子を得ることが出来る。
 本発明の製造方法においては、ポリマーA、ポリマーB、これらを溶解する有機溶媒およびポリマーAの貧溶媒を用い、本発明のポリマー微粒子が得られる限り、その組合せに特に制限はないが、本発明において、ポリマーAとは、高分子重合体のことを指し、好ましくは、天然には存在しない合成ポリマーであり、さらに好ましくは非水溶性ポリマーであり、その例として熱可塑性樹脂、熱硬化性樹脂が挙げられる。
 熱可塑性樹脂としては、具体的には、ビニル系重合体、ポリエステル、ポリアミド、ポリアリーレンエーテル、ポリアリーレンスルフィド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリウレタン、ポリカーボネート、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリアセタール、シリコーンおよびこれらの共重合体などが挙げられる。
 ビニル系重合体とは、ビニル系単量体を単独重合または共重合して得られるものである。かかるビニル系重合体としては、ゴム質重合体の存在下、ビニル系単量体(スチレン等の芳香族ビニル系単量体、シアン化ビニル系単量体、その他のビニル系単量体等から選択されるものであってよい)またはその混合物をグラフト共重合せしめてなるゴム含有グラフト共重合体あるいは、これとビニル系重合体との組成物のような、ゴム質重合体を含むビニル系重合体であってもよい。
 これらビニル系重合体を、具体的に例示するならば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ(アクリロニトリル-スチレン-ブタジエン)樹脂(ABS)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル、ポリアクリルアミド、ポリ酢酸ビニル、ポリアクリル酸ブチル、ポリメタクリル酸メチル、環状ポリオレフィンなどが挙げられる。
 本発明の方法をビニル系重合体に適用する場合には、乳化重合法による粒子化では、粒子径分布の小さい粒子を得ることが困難であった領域のサイズ、即ち、平均粒子径が10μm以上、好ましい態様では、20μm以上であるサイズで、粒子径分布の小さい粒子を得ることが可能となる。また、このとき上限としては、通常1000μm以下となる。
 特に上記ゴム質重合体を含むビニル系重合体において本発明の方法を適用すると、ビニル系重合体のマトリックス中にグラフト共重合体(子粒子)が分散する、子粒子分散構造の粒子で粒子径分布の小さいポリマー微粒子が得られ、特に好ましい。このようなものの具体例として、ポリ(アクリロニトリル-スチレン)樹脂のマトリックス中にゴム含有グラフト共重合体が分散した、ポリ(アクリロニトリル-スチレン-ブタジエン)樹脂(ABS樹脂)が挙げられる。
 ポリエステルとしては、多価カルボン酸またはそのエステル形成性誘導体と多価アルコールまたはそのエステル形成性誘導体を構造単位とする重合体、ヒドロキシカルボン酸またはラクトンを構造単位とする重合体、およびこれらの共重合体が挙げられる。
 ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリへキシレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート/テレフタレート、ポリプロピレンイソフタレート/テレフタレート、ポリブチレンイソフタレート/テレフタレート、ポリエチレンテレフタレート/ナフタレート、ポリプロピレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリエチレンテレフタレート/シクロヘキサンジメチレンテレフタレート)、ポリエーテルエステル(ポリエチレンテレフタレート/ポリエチレングリコール、ポリプロピレンテレフタレート/ポリエチレングリコール、ポリブチレンテレフタレート/ポリエチレングリコール、ポリエチレンテレフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/ポリテトラメチレングリコール、ポリエチレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/イソフタレート/ポリテトラメチレングリコールなど)、ポリエチレンテレフタレート/サクシネート、ポリプロピレンテレフタレート/サクシネート、ポリブチレンテレフタレート/サクシネート、ポリエチレンテレフタレート/アジペート、ポリプロピレンテレフタレート/アジペート、ポリブチレンテレフタレート/アジペート、ポリエチレンテレフタレート/セバケート、ポリプロピレンテレフタレート/セバケート、ポリブチレンテレフタレート/セバケート、ポリエチレンテレフタレート/イソフタレート/アジペート、ポリプロピレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/サクシネート、ポリブチレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/セバケート、ビスフェノールA/テレフタル酸、ビスフェノールA/イソフタル酸、ビスフェノールA/テレフタル酸/イソフタル酸、ポリグリコール酸、ポリ乳酸、ポリ(3-ヒドロキシブタン酸)、ポリ(3-ヒドロキシバレリック酸)、ポリブチロラクトン、ポリカプロラクトンなどが挙げられる。
 上記の中でもエーテル結合を有する熱可塑性樹脂であるポリエーテルエステルは好ましく用いられ、これらは“ハイトレル(登録商標)”(東レ・デュポン社製、デュポン社製)等として市販されている、いわゆるポリエステルエラストマーと称されるものを使用することが可能である。
 ポリアミドとしては、3員環以上のラクタム、重合可能なアミノカルボン酸、二塩基酸とジアミンまたはそれらの塩、あるいはこれらの混合物の重縮合によって得られるポリアミドが挙げられる。
 このようなポリアミドの例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリペンタメチレンアジパミド(ナイロン56)、ポリテトラメチレンセバカミド(ナイロン410)、ポリペンタメチレンセバカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリデカメチレンセバカミド(ナイロン1010)、ポリウンデカアミド(ナイロン11)、ポリドデカアミド(ナイロン12)、ポリペンタメチレンテレフタルアミド(ナイロン5T)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(例示するならば、‘TROGAMID(登録商標)’CX7323 、ダイセル・エボニック社製)などの結晶性ポリアミド、非晶性のポリアミドとしては、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と12-アミノドデカン酸の共重合体(例示するならば、‘グリルアミド(登録商標)’ TR55、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(例示するならば、‘グリルアミド(登録商標)’ TR90、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と12-アミノドデカン酸の共重合体と3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体との混合物(例示するならば、‘グリルアミド(登録商標)’ TR70LX、エムザベルケ社製)などが挙げられる。
 ポリアリーレンエーテルとは、アリール基がエーテル結合でつながったポリマーであり、一般式(1)で代表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 この際、芳香環上には、置換基Rを有していてもいなくても良く、その置換基数mは1以上4以下である。置換基としては、メチル基、エチル基、プロピル基等の炭素数1~6の飽和炭化水素基、ビニル基、アリル基等の不飽和炭化水素基、フッ素原子、塩素原子、臭素原子などのハロゲン基、アミノ基、水酸基、チオール基、カルボキシル基、カルボキシ脂肪族炭化水素エステル基などが好ましく挙げられる。
 ポリアリーレンエーテルの具体的な例としては、ポリ(2,6-ジメチルフェニレンエーテル)が挙げられる。
 ポリアリーレンスルフィドとは、アリール基がスルフィド結合でつながったポリマーであり、一般式(2)で代表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 この際、芳香環上には、置換基Rを有していてもなくても良く、その置換基数であるmは、1以上4以下である。置換基としては、メチル基、エチル基、プロピル基等の飽和炭化水素基、ビニル基、アリル基等の不飽和炭化水素基、フッ素原子、塩素原子、臭素原子などのハロゲン基、アミノ基、水酸基、チオール基、カルボキシル基、カルボキシ脂肪族炭化水素エステル基などが挙げられる。また、上記一般式(2)のパラフェニレンスルフィド単位の代わりにメタフェニレン単位、オルソフェニレン単位とすることや、これらの共重合体とすることも可能である。
 ポリアリーレンスルフィドの具体的な例としては、ポリフェニレンスルフィドが挙げられる。
 ポリスルホンとしては、一般式(3)で代表される構造を有するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中のRは、炭素数1~6のアルキル基または炭素数6~8のアリール基を表し、mは0~4の整数を表すものである。)
 ポリエーテルケトンとは、エーテル結合とカルボニル基を有するポリマーである。具体的には、一般式(4)で代表される構造を有するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000004
 (式中のRは、炭素数1~6のアルキル基または炭素数6~8のアリール基を表し、mは0~4の整数を表すものである。)
 ポリエーテルケトンの中でも、一般式(5)で表わされる構造を有するものは、特にポリエーテルエーテルケトンと称する。
Figure JPOXMLDOC01-appb-C000005
 (式中のRは、炭素数1~6のアルキル基または炭素数6~8のアリール基を表し、mは0~4の整数を表すものである。)
 ポリカーボネートとは、カーボネート基を有したポリマーであり、一般式(6)で代表される構造を有するものを好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 (式中のRは、炭素数1~6のアルキル基または炭素数6~12のアリール基を表し、mは0~4の整数を表すものである。)
 具体的な例としては、Rmの置換基を有しない、ビスフェノールAが炭酸エステル結合で重縮合されたポリマー、ナフタレンジオールが炭酸エステル結合で重縮合されたポリマー、ビフェニレンジオールが炭酸エステル結合で重縮合されたポリマー、ジフェニレンスルフィドジオールが炭酸エステル結合で重縮合されたポリマー、ジフェニレンジスルフィドジオールが炭酸エステル結合で重縮合されたポリマーなどが挙げられる。また、ポリカーボネートと前記ポリエステルとを共重合したものでもよい。
 ポリアミドイミドとは、イミド結合と、アミド結合を有したポリマーである。
 ポリイミドとは、イミド結合を有したポリマーである。特に本系においては、熱可塑性ポリイミドが好ましく、具体的には1,2,4,5-ベンゼンテトラカルボン酸無水物と4,4’-ビス(3-アミノフェニルオキシ)ビフェニル の重縮合物や3,3’,4,4’- ビフェニルテトラカルボン酸無水物と1,3-ビス(4-アミノフェニルオキシ)ベンゼンの重縮合物が挙げられる。
 ポリエーテルイミドとは、分子内にエーテル結合とイミド結合を有したポリマーであり、具体的に例示するならば、4,4’-[イソプロピリデンビス(p-フェニレンオキシ)]ジフタル酸二無水物とメタフェニレンジアミンとの縮合により得られるポリマーなどが挙げられる。
 本発明におけるポリマーAとしては、熱硬化性樹脂を用いてもよく、具体的には、エポキシ樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、マレイミド樹脂、シアン酸エステル樹脂および尿素樹脂などが挙げられる。
 これらの中で、エポキシ樹脂が耐熱性、接着性が高いことから好ましく用いられる。エポキシ樹脂としては、例えば、分子内に水酸基を有する化合物とエピクロロヒドリンから得られるグリシジルエーテル型エポキシ樹脂、分子内にアミノ基を有する化合物とエピクロロヒドリンから得られるグリシジルアミン型エポキシ樹脂、分子内にカルボキシル基を有する化合物とエピクロロヒドリンから得られるグリシジルエステル型エポキシ樹脂、分子内に二重結合を有する化合物を酸化することから得られる脂環式エポキシ樹脂、あるいはこれらから選ばれる2種類以上のタイプの基が分子内に混在するエポキシ樹脂などが用いられる。
 また、エポキシ樹脂と組み合わせて硬化剤を用いることができる。エポキシ樹脂と組み合わせて用いられる硬化剤としては、例えば、芳香族アミン、脂肪族アミン、ポリアミドアミン、カルボン酸無水物およびルイス酸錯体、酸系硬化触媒、塩基系硬化触媒などが挙げられる。
 本発明におけるポリマーAにおける好ましい樹脂としては、耐熱性の高いポリマーであり、ガラス転移温度または融点が100℃を超える樹脂である。
 具体的に例示するならば、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリフェニレンエーテル、ポリエーテルイミド、ポリフェニレンスルフィド、ポリオレフィン、ポリスルホン、ポリエステル、非晶ポリアリレート、ポリアミドイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、エポキシ樹脂などが挙げられ、中でも100℃以上の融点を有する結晶性熱可塑性樹脂が好ましく、結晶性が高い方がより好ましい。結晶性が高い樹脂としては、その分子主鎖骨格の中に、アミド単位を持つもの、エステル単位を持つもの、スルフィド単位を持つもの、炭酸エステル単位を持つ結晶性熱可塑性樹脂がより好ましく挙げられる。特にポリアミド、ポリエステル、ポリフェニレンスルフィドが好ましく挙げられ、特にポリアミド、ポリエステル、ポリフェニレンスルフィドが好ましく挙げられる。結晶性の熱可塑性樹脂は、本方法においての粒子形成にとって有利であり、本発明の目的を達成するに好適な態様である。
 上述したポリマーAは1種以上で用いることができる。
 これら好ましい樹脂は、熱的および/または機械的な性質に優れる。これらを原料として、本方法にて粒子化をした場合、得られる微粒子は、粒子径分布が小さく、取り扱い性に優れることから、高品質のポリマー微粒子が得られ、従来の微粒子で用いることができなかった用途への適用も可能となる点で好ましい。
 ポリマーAの分子量は、好ましくは、重量平均分子量で、1,000~100,000,000、より好ましくは、1,000~10,000,000、さらに好ましくは、5,000~1,000,000であり、特に好ましくは、10,000~500,000の範囲であり、最も好ましい範囲は、10,000~100,000の範囲である。
 ここでいう重量平均分子量とは、溶媒としてジメチルホルムアミドを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリスチレンで換算した重量平均分子量を指す。
 ジメチルホルムアミドで測定できない場合については、テトラヒドロフランを用い、さらに測定できない場合は、ヘキサフルオロイソプロパノールを用い、ヘキサフルオロイソプロパノールでも測定できない場合は、2-クロロナフタレンを用いて測定を行う。
 本発明において、ポリマーAとしては、本発明が、貧溶媒と接触する際に微粒子を析出させることを要点とすることから、貧溶媒に溶けないものが好ましく、後述する貧溶媒に溶解しないポリマーが好ましく、特に非水溶性ポリマーが好ましい。
 ここで、非水溶性ポリマーとしては、水に対する溶解度が1質量%以下、好ましくは、0.5質量%以下、さらに好ましくは、0.1質量%以下のポリマーを示す。
 結晶性熱可塑性樹脂とは、ポリマー内部の結晶相と非晶相のうち、結晶部分を有するものをいい、これらは示差走査熱量測定法(DSC法)により判別することが出来る。即ち、DSC測定において、融解熱量が測定されるものを指す。融解熱量の値としては、1J/g以上、好ましくは、2J/g以上、より好ましくは5J/g以上、さらには、10J/g以上であるポリマーであることが好ましい。この際、DSC測定は、30℃から、当該ポリマーの融点よりも30℃超える温度までの温度範囲を、20℃/分の昇温速度で1回昇温させた後に、1分間保持した後、20℃/分で0℃まで降温させ、1分間保持した後、再度20℃/分で昇温させた時に測定される融解熱量のことを指す。
 本発明におけるポリマーBとしては、そのSP値が20(J/cm1/2以上であることが良い。
 上記ポリマーBであると、ポリマーB相とポリマーA相との相分離状態を形成しやすく、なおかつ後述する貧溶媒による析出時において、ポリマーBの析出が発生しにくいため、粒子形成に悪影響を与えない。
 この際、ポリマーBのSP値としては、好ましくは21(J/cm1/2以上、より好ましくは23(J/cm1/2以上、さらに好ましくは25(J/cm1/2以上、特に好ましくは28(J/cm1/2以上、極めて好ましくは30(J/cm1/2以上である。
 ポリマーAとポリマーBの両者が有機溶媒にとけるのであれば、特に制限はないが、SP値の差の上限として、好ましくは20(J/cm1/2以下、より好ましくは、15(J/cm1/2以下であり、さらに好ましくは10(J/cm1/2以下である。
 ここでいう、SP値とは、Fedorの推算法に基づき計算されるものであり、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
 本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
 本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による、実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
 中でも、ポリマーBは、後述する貧溶媒との親和性が高いものが好ましく、その親和性の指標としては、水への溶解度をもって判断することができる。ポリマーBの水への溶解度は25℃で、水100gに対し1g溶解するものを、1g/100gと表記すると定義した場合、好ましくは、1g/100g以上であり、より好ましくは、2g/100g以上であり、さらに好ましくは、5g/100g以上であり、特に好ましくは、10g/100g以上であり、著しく好ましくは、15g/100g以上である。この範囲であれば、後述する貧溶媒との親和性が高く、本ポリマー微粒子製造法において、有利に機能する。
 ポリマーBの高分子の種類として、具体的に好ましいものとしては、その分子骨格中に、水酸基、エーテル基、アミド基、カルボキシル基を有するものがよい。
 ポリマーBを具体的に例示するならば、その分子骨格中に水酸基を持つものとしては、ポリビニルアルコール類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体などのポリ(ビニルアルコール-エチレン)共重合体類など)、ポリ(パラビニルフェノール)、マルトース、セルビオース、ラクトース、スクロースなどの二糖類、セルロースおよびその誘導体(ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロースなど)、セルロース、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル、キトサン等)、アミロースおよびその誘導体、デンプンおよびその誘導体、デキストリン、シクロデキストリン、アルギン酸ナトリウムおよびその誘導体等の多糖類またはその誘導体、ゼラチン、カゼイン、コラーゲン、アルブミン、フィブロイン、ケラチン、フィブリン、カラギーナン、コンドロイチン硫酸、アラビアゴム、寒天、たんぱく質等が挙げられ、その分子骨格中にエーテル基を持つものとしては、ポリアルキレングリコール、ショ糖脂肪酸エステル、ポリ(オキシエチレン脂肪酸エステル)、ポリ(オキシエチレンラウリン脂肪酸エステル)、ポリ(オキシエチレングリコールモノ脂肪酸エステル)、ポリ(オキシエチレンアルキルフェニルエーテル)、ポリ(オキシアルキルエーテル)、ポリビニルエーテル、ポリビニルホルマール等が挙げられ、その分子骨格中にアミド基を持つものとしては、ポリビニルピロリドン、アミノポリ(アクリルアミド)、ポリ(アクリルアミド)、ポリ(メタクリルアミド)、“AQナイロン(登録商標)”(A-90、P-70、P-95、T-70;東レ株式会社製)などの水溶性ナイロン等が挙げられ、その分子骨格中にカルボキシル基を持つものとしては、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム等が挙げられ、その他にも、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルピロリジニウムクロライド、ポリ(スチレン-マレイン酸)共重合体、ポリアリルアミン、ポリ(オキシエチレンアミン)、ポリ(ビニルピリジン)、ポリアミノスルホン、ポリエチレンイミン等の合成樹脂が挙げられる。
 好ましくは、ポリビニルアルコール類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体などのポリ(ビニルアルコール-エチレン)共重合体類)、セルロース誘導体(カルボキシメチルセルロース、ヒロドキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース)、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル等)、ポリアルキレングリコール、ショ糖脂肪酸エステル、ポリ(オキシエチレンアルキルフェニルエーテル)、ポリ(オキシアルキルエーテル)、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸、ポリメタクリル酸であり、より好ましくは、ポリ(ビニルアルコール)類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体などのポリ(ビニルアルコール-エチレン)共重合体類)、セルロース誘導体(カルボキシメチルセルロース、ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース)、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル等)、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸であり、特に好ましくは、完全ケン化型や部分ケン化型のポリ(ビニルアルコール)などのポリビニルアルコール類、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸である。
 本発明におけるポリマーBとしては、著しく好ましくは、ポリビニルアルコール類を用いる。さらに詳しくは、ポリビニルアルコール類とは、分子内に一般式(7)の構造を有するポリマーのことを指す。
Figure JPOXMLDOC01-appb-C000007
 ポリ(ビニルアルコール)(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)であってもよい。単にポリビニルアルコールと称する場合もある。)、ポリ(ビニルアルコール-エチレン)共重合体(完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体であってもよい)などが挙げられるが、溶解性の点からポリビニルアルコールが好ましい。
 ポリマーBの分子量は、好ましくは、重量平均分子量で、1,000~100,000,000、より好ましくは、1,000~10,000,000、さらに好ましくは、5,000~1,000,000であり、特に好ましくは、10,000~500,000の範囲であり、最も好ましい範囲は、10,000~100,000の範囲である。
 ここでいう重量平均分子量とは、溶媒として水を用いたゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリエチレングリコールで換算した重量平均分子量を指す。
 水で測定できない場合においては、ジメチルホルムアミドを用い、それでも測定できない場合においては、テトラヒドロフランを用い、さらに測定できない場合においては、ヘキサフルオロイソプロパノールを用いる。
 ポリビニルアルコール類は、酢酸ビニルを原料として重合した後に、アルカリ条件下にて加水分解することにより、ポリビニルアルコールを生成させることが一般的であり、その中には、一部酢酸ナトリウムが不純物として残留することが通常であり、市販品においても0.2質量%前後含まれているのが通常である。
 本発明においては、上記ポリビニルアルコールに含まれる酢酸ナトリウムが、何らかの形で影響し、ポリマーAと有機溶媒に溶解混合してエマルションを形成させる際、その温度が100℃以上であると微粒子が着色したり、ポリビニルアルコールが劣化してリサイクル性が悪化したりすることを見出した。
 すなわち、ポリマーBであるポリビニルアルコール類が、100℃以上での微粒子化条件下でも安定化するようにするためには、エマルションを形成させる系中に存在させる酢酸ナトリウム量を低減させることが好ましい。そのための方法としては、ポリビニルアルコール類を酢酸ナトリウム含量の少ないポリビニルアルコールを使用することが好ましい。
 この場合使用するポリビニルアルコール中の酢酸ナトリウムの量は、ポリビニルアルコール100質量部に対して、0.1質量部以下、好ましくは、0.05質量部以下、さらに好ましくは、0.01質量部以下である。
 この範囲に制御することにより、高温下でポリマーの微粒子化を行っても、ポリビニルアルコール類が、分解、架橋することなどに起因する変質を抑制することができ、高温下でのポリマー微粒子化を安定化することができる。
 また、好ましい下限は、0質量部である。
 酢酸ナトリウム含量の少ないポリビニルアルコール類を得るためには、例えば、メタノール、エタノールなどの有機溶媒での洗浄する方法や、水等に溶解した後に、ポリビニルアルコール類の貧溶媒に沈殿させて生成させる再沈殿法、限外ろ過法、イオン交換樹脂やイオン交換担体等により除去する方法などが挙げられる。
 また、エマルション形成の際、酢酸ナトリウムの影響を抑制する別の方法としては、エマルションを形成させる系に酸化合物を添加する方法が挙げられる。これにより、実質上酢酸ナトリウムが含まれない状態にすることができる。
 本発明に用いる酸化合物としては、ギ酸、酢酸、吉草酸、酪酸、バレリック酸、ヘキサン酸、ヘプタン酸、オクタン酸、アクリル酸、メタクリル酸、クロトン酸、シュウ酸、マロン酸、フマル酸、マレイン酸、グルタル酸、アジピン酸、セバシン酸、ピルビン酸、コハク酸、ポリアクリル酸などの脂肪族カルボン酸、乳酸、グリコール酸、L-アスコルビン酸、エリソルビン酸、リンゴ酸、シキミ酸、クエン酸、ヒドロコハク酸、酒石酸などのヒドロキシル基含有カルボン酸、安息香酸、2-フロロ安息香酸およびその位置異性体、2-クロロ安息香酸およびその位置異性体、2-ブロモ安息香酸およびその位置異性体、2-ニトロ安息香酸およびその位置異性体、2-トルイル酸およびその位置異性体、フェノキシ酢酸、桂皮酸、フェニルマロン酸、フタル酸、テレフタル酸、サリチル酸などの芳香族カルボン酸、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、プロリン、リジン、アスパラギン酸、グルタミン酸、システイン、メチオニン、フェニルアラニン、チロシン、ヒスチジン、アスパラギン、グルタミン、アルギニン、トリプトファン、オルニチン、サルコシン等などのアミノ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸およびその位置異性体、p-ヒドロキシベンゼンスルホン酸およびその位置異性体などの有機スルホン酸類、フェニルホスホン酸、ジフェニルホスフィン酸、ジフェニルホスフェート、1-ナフチルホスフェートなどの有機リン酸類、硫酸マグネシウム、塩化マグネシウム、塩化アンモニウム、硫酸アンモニウム等の強酸と弱塩基からなる塩、塩酸、硫酸、燐酸、硝酸、ピロリン酸、トリポリ燐酸等の無機酸などが具体的に挙げられる。これらは1種または2種以上で用いることができる。
 これら酸化合物は、後述する製造工程のうち、エマルション形成のための加熱が始まる前であれば、いずれの段階で加えてもよく、また、原料の中にあらかじめ入れて使用しておいても良い。
 この際、酸化合物の添加量としては、使用するポリビニルアルコール類に含有している酢酸ナトリウムに対して、酸官能基のモル比として、0.1~10倍モルの範囲が好ましく、より好ましくは、0.2~8倍モルの範囲であり、さらに好ましくは、0.3~5倍モルの範囲である。
 酸化合物の添加量が使用するポリビニルアルコール類中に含有している酢酸ナトリウムの量に対して、酸官能基のモル比が少な過ぎる場合は、ポリビニルアルコール類の架橋が進行し、微粒子化工程での粒径制御性が悪化する傾向にある。また、ポリビニルアルコール類の再利用を行う際、2回目以降の粒子径制御性が悪化する傾向にある。さらには、ポリビニルアルコール類の酸化によると推定される色調変化により、微粒子の変色が起きる傾向にある。また、酸官能基のモル比が多過ぎる場合は、酸による影響により、ポリビニルアルコール類の酸化・分解・架橋などが起こる傾向にある。
 本発明に係る方法に用いる酸化合物としては、酸化合物の第1解離指数(pKa1)が4.5以下のものを用いるのが好ましい。
 本発明に係る方法は、100℃以上の高温下で実施されることから、耐熱温度が100℃以上のものが好ましい。この際、耐熱温度とは、その酸化合物の分解温度のことを指す。
 なかでも、100℃以上の耐熱温度を有し、pKa1が、4.5以下であるものの例としては、L-アスコルビン酸、エリソルビン酸、乳酸、リンゴ酸、フマル酸、フタル酸、酒石酸、ギ酸、クエン酸、グリコール酸、サリチル酸、マレイン酸、マロン酸、グルタル酸、シュウ酸、アジピン酸、コハク酸、ヒドロコハク酸、ポリアクリル酸、グルタミン酸、アスパラギン酸、アルギニン、オルニチン、サルコシン、システイン、セリン、チロシン等のアミノ酸、塩酸、硫酸、燐酸、硝酸、ピロリン酸、トリポリ燐酸等の無機酸が使用可能である。中でもクエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸を好ましく用いることができる。
 ここでpKaとは、25℃での酸解離指数であり、水溶液中での酸化合物の解離定数の逆数の対数値のことを指す。酸化合物のpKa値については、化学便覧(改訂3版 化学便覧 基礎編 日本化学会編 丸善株式会社出版 昭和59年 発刊)などで参照できる。
 pKa値は、利便性の点から化学便覧記載のものを好ましく用いる。
 ポリマーAとポリマーBを溶解させる有機溶媒としては、用いるポリマーA、ポリマーBを溶解し得る有機溶媒であり、各ポリマーの種類に応じて選択される。
 具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、n-デカン、n-ドデカン、n-トリデカン、シクロヘキサン、シクロペンタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1-2-ジクロロエタン、1,1,1-トリクロロエタン、クロロベンゼン、2,6-ジクロロトルエン等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン等のケトン系溶媒、メタノール、エタノール、1-プロパノール-2-プロパノール等のアルコール系溶媒、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、プロピレンカーボネート、トリメチルリン酸、1,3-ジメチル-2-イミダゾリジノン、スルホラン等の非プロトン性極性溶媒、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等のカルボン酸溶媒、アニソール、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジグライム、ジメトキシエタン等のエーテル系溶媒、あるいはこれらの混合物が挙げられる。好ましくは、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、非プロトン性極性溶媒、カルボン酸溶媒である。
 さらに好ましいものとしては、SP値が20(J/cm1/2以上のものである。ここでいう、SP値とは、「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)に688-701ページに記載されている値のことをいう。
 これに記載のないものは、Fedorの推算法に基づき計算を行う。この計算は、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、溶媒SP値の計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
 中でも好ましいものとしては、水溶性溶媒であるアルコール系溶媒、非プロトン性極性溶媒、カルボン酸溶媒であり、著しく好ましいのは、非プロトン性極性溶媒、カルボン酸溶媒である。
 本発明においては、100℃以上の高温下でエマルション形成が実施されることから、これら溶媒についても、耐熱性が100℃以上のものがよく、中でも常圧(100kPa)での沸点が100℃以上のものが好ましい。また常圧での沸点が100℃未満の溶媒を使用する場合は、耐圧容器内で、加圧することにより使用することが可能である。このような状況の考慮と、入手が容易で、かつ広範な範囲のポリマーを溶解し得る点でポリマーAへの適用範囲が広く、かつ水やアルコール系溶媒等など後述する貧溶媒として好ましく用い得る溶媒と均一に混合し得る点から、最も好ましくは、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノンである。
 これらの有機溶媒は、複数種用いてもよいし、混合して用いても良いが、粒子径が比較的小さく、かつ、粒子径分布の小さい粒子が得られる点、使用済みの溶媒のリサイクル時の分離の工程のわずらわしさを避け、製造上のプロセス負荷低減という観点で、単一の有機溶媒であるほうが好ましく、さらにポリマーA、およびポリマーBの両方を溶解する単一の有機溶媒であることが好ましい。
 本発明におけるポリマーAの貧溶媒とは、ポリマーAを溶解させない溶媒のことをいう。溶媒を溶解させないとは、ポリマーAの貧溶媒に対する溶解度が1質量%以下のものであり、より好ましくは、0.5質量%以下であり、さらに好ましくは、0.1質量%以下である。
 本発明の製造方法において、ポリマーAの貧溶媒を用いるが、かかる貧溶媒としてはポリマーAの貧溶媒でありかつ、ポリマーBを溶解する溶媒であることが好ましい。これにより、ポリマーAで構成されるポリマー微粒子を効率よく析出させることができる。また、ポリマーAおよびポリマーBを溶解させる溶媒とポリマーAの貧溶媒とは均一に混合する溶媒であることが好ましい。
 本発明における貧溶媒としては、用いるポリマーAの種類、望ましくは用いるポリマーA、B両方の種類によって、様々に変わるが、具体的に例示するならば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、n-デカン、n-ドデカン、n-トリデカン、シクロヘキサン、シクロペンタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1、2-ジクロロエタン、1,1,1-トリクロロエタン、クロロベンゼン、2,6-ジクロロトルエン等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン等のケトン系溶媒、メタノール、エタノール、1-プロパノール-2-プロパノール等のアルコール系溶媒、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、トリメチルリン酸、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、スルホラン等の非プロトン性極性溶媒、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等のカルボン酸溶媒、アニソール、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジグライム、ジメトキシエタン等のエーテル系溶媒、水の中から少なくとも1種類から選ばれる溶媒などが挙げられる。
 ポリマーAを効率的に粒子化させる観点から好ましくは、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、水であり、最も好ましいのは、アルコール系溶媒、水であり、特に好ましくは、水である。
 なお、本発明は、100℃以上の温度でエマルション形成が実施されることから、常圧での沸点が100℃未満などの溶媒で、本発明を実施する場合や沸点が100℃以上であってもエマルション形成をその沸点以上の温度で実施する場合は、耐圧容器内で、加圧条件で使用することができる。
 本発明において、ポリマーA、ポリマーB、これらを溶解する有機溶媒およびポリマーAの貧溶媒を適切に選択して組み合わせることにより、効率的にポリマーAを析出させてポリマー微粒子を得ることが出来る。
 ポリマーA、B、これらを溶解する有機溶媒を混合溶解させた液は、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離することが必要である。この際、ポリマーAを主成分とする溶液相の有機溶媒と、ポリマーBを主成分とする有機溶媒とは、同一でも異なっていても良いが、実質的に同じ溶媒であることが好ましい。
 2相分離の状態を生成する条件は、ポリマーA、Bの種類、ポリマーA、Bの分子量、有機溶媒の種類、ポリマーA、Bの濃度、発明を実施しようとする温度、圧力によって異なってくる。
 相分離状態になりやすい条件を得るためには、ポリマーAとポリマーBの溶解度パラメーター(以下、SP値と称することもある)の差が離れていた方が好ましい。
 この際、SP値の差としては1(J/cm1/2以上、より好ましくは2(J/cm1/2以上、さらに好ましくは3(J/cm1/2以上、特に好ましくは5(J/cm1/2以上、極めて好ましくは8(J/cm1/2以上である。SP値がこの範囲であれば、容易に相分離しやすくなる。
 ポリマーAとポリマーBの両者が有機溶媒にとけるのであれば、特に制限はないが、SP値の差の上限として好ましくは20(J/cm1/2以下、より好ましくは、15(J/cm1/2以下であり、さらに好ましくは10(J/cm1/2以下である。
 ここでいう、SP値とは、Fedorの推算法に基づき計算されるものであり、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
 本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による、実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
 相分離状態になる条件を選択するためには、ポリマーA、ポリマーBおよびこれらを溶解する有機溶媒の3成分の比率を変化させた状態の観察による簡単な予備実験で作成できる、3成分相図で判別が出来る。
 相図の作成は、ポリマーA、Bおよび溶媒を任意の割合で混合溶解させ、静置を行った際に、界面が生じるか否かの判定を少なくとも3点以上、好ましくは5点以上、より好ましくは10点以上の点で実施し、2相に分離する領域および1相になる領域を峻別することで、相分離状態になる条件を見極めることが出来るようになる。
 この際、相分離状態であるかどうかを判定するためには、ポリマーA、Bを、本発明を実施しようとする温度、圧力にて、任意のポリマーA、Bおよび溶媒の比に調整した後に、ポリマーA、Bを、完全に溶解させ、溶解させた後に、十分な攪拌を行い、3日放置し、巨視的に相分離をするかどうかを確認する。しかし、十分に安定なエマルションになる場合においては、3日放置しても巨視的な相分離をしない場合がある。その場合は、光学顕微鏡・位相差顕微鏡などを用い、微視的に相分離しているかどうかで、相分離を判別する。
 図1は、ポリマーAとして、ポリアミド(ダイセル・エボニック社製 ‘TROGAMID(登録商標)’、CX7323)、ポリマーBとしてポリビニルアルコール(PVA、日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’GM―14)、有機溶媒として、N-メチル-2-ピロリドン(NMP)による180℃における、3成分相図の例であり、黒丸は、相分離をしなかった点を示し、白抜き丸は、相分離をした点を示す。この黒丸の点と白抜き丸の点から、相分離しない領域と相分離(2相に相分離)する領域を推定することが容易に出来る。この3成分図から、2相に相分離する領域の成分比率で本発明を実施する。
 具体的には、図1に示した3成分相図から、相分離しない領域と相分離する領域の境界線が実線のように推定され、境界線の下方の成分比率で本発明を実施する。
 相分離は、有機溶媒中でポリマーAを主とするポリマーA溶液相と、ポリマーBを主とするポリマーB溶液相に分離することによって形成される。この際、ポリマーA溶液相は、ポリマーAが主として分配された相であり、ポリマーB溶液相はポリマーBが主として分配された相である。この際、ポリマーA溶液相とポリマーB溶液相は、ポリマーA、Bの種類と使用量に応じた体積比を有するようである。
 相分離の状態が得られ、且つ工業的に実施可能な濃度として、有機溶媒に対するポリマーA、Bの濃度は、有機溶媒に溶解する可能な限りの範囲内であることが前提であるが、全質量に対して好ましくは、それぞれ1質量%超~50質量%、より好ましくは、それぞれ1質量%超~30質量%、さらに好ましくは、それぞれ2質量%~20質量%である。
 本発明における、ポリマーA溶液相とポリマーB溶液相の2相間の界面張力は、両相とも有機溶媒であることから、その界面張力が小さく、その性質により、生成するエマルションが安定に維持できることから、粒子径分布が小さくなるようである。特に、ポリマーA相とポリマーB相の有機溶媒が同一である時は、その効果が顕著である。
 本発明における2相間の界面張力は、界面張力が小さすぎることから、通常用いられる溶液に異種の溶液を加えて測定する懸滴法などでは直接測定することは出来ないが、各相の空気との表面張力から推算することにより、界面張力を見積もることが出来る。各相の空気との表面張力をr、rとした際、その界面張力r1/2は、r1/2=r-rの絶対値で推算することができる。この際、このr1/2の好ましい範囲は、0超~10mN/mであり、より好ましくは0超~5mN/mであり、さらに好ましくは、0超~3mN/mであり、特に好ましくは、0超~2mN/mである。
 このようにして得られた相分離する系を用い、相分離した液相を混合させ、エマルション化させた後、貧溶媒を接触させることによりポリマー微粒子を製造する。
 微粒子化を行うには、通常の反応槽でエマルション形成および貧溶媒を接触させる工程(以下、微粒子化工程と称することもある。)が実施される。
 本発明は、高耐熱ポリマーを微粒子化する方法であり、その工業的な操作の面で、エマルションの形成のしやすさから、エマルションを形成する温度は100℃以上である。上限としてはポリマーA、Bが溶解し、相分離する温度であって、所望の微粒子が得られるならば特に制限はないが、通常100℃~300℃の範囲であり、好ましくは、100℃~280℃であり、より好ましくは、120℃~260℃であり、さらに好ましくは、120℃~240℃であり、特に好ましくは、120℃~220℃であり、最も好ましくは、120℃~200℃の範囲である。
 ポリマー微粒子が、材料として使用される場合、使用する環境により、よりいっそう粒度分布が狭いものが求められる場合がある。
 このような要求に対しては、エマルションを形成させた後に続く、貧溶媒を接触させる工程(微粒子化工程)における温度制御が有効であり、その温度としては、通常100℃~300℃の範囲であり、好ましくは、100℃~280℃であり、より好ましくは、120℃~260℃であり、さらに好ましくは、120℃~240℃であり、特に好ましくは、120℃~220℃であり、最も好ましくは、120℃~200℃の範囲である。中でも製造工程の管理の容易さから、エマルション形成温度と同じ温度にするのが好ましい。
 ポリマー微粒子は、材料として使用される状況に応じて粒子の表面形状を設計することが必要な場合があり、特に粉体の流動性を向上させたり、粉体のすべり性を向上させたり、触感を向上させたりするためには、表面形状の制御が重要であり、粒度分布が狭いだけでなく、より高度に真球状化した微粒子が求められることがある。
 このような要望に向けて、本発明における微粒子化法では、その粒子形状を真球化させるためには、エマルション化工程および微粒子化工程の温度を、以下のように制御することでより高度に真球化させることができる。
 即ち、ポリマーAの熱特性である降温結晶化温度よりも高い温度でエマルション形成および貧溶媒を接触させる工程を行い、微粒子化を行うことで、よりいっそう粒度分布を狭くし、かつより高度に真球状化した微粒子を得ることができる。
 ここで、降温結晶化温度とは、示差走査熱量測定法(DSC法)により、測定される結晶化温度のことを指し、30℃から、当該ポリマーの融点よりも30℃超える温度までの温度範囲を、20℃/分の昇温速度で1回昇温させた後に、1分間保持した後、20℃/分で0℃まで降温させたときに、観測させる発熱ピークのピークトップのことを指す。
 本発明を実施するにふさわしい圧力は、工業的な実現性の観点から、常圧状態から100気圧(10.1MPa)の範囲であり、好ましくは、1気圧(101.3kPa)~50気圧(5.1MPa)の範囲であり、さらに好ましくは、1気圧(101.3kPa)~30気圧(3.0MPa)であり、特に好ましくは、1気圧(101.3kPa)~20気圧(2.0MPa)である。
 本発明における微粒子化は、高い温度領域であり、場合によっては高圧下もあり得るため、ポリマーA、ポリマーBや有機溶媒の熱分解を促進しやすい状態にあることから、極力酸素濃度が低い状態で行うことが好ましい。この際、反応槽の雰囲気の酸素濃度は、5体積%以下が好ましく、より好ましくは、1体積%以下、より好ましくは、0.1体積%以下、さらに好ましくは、0.01体積%以下、特に好ましくは、0.001体積%以下である。
 なお、微量酸素濃度の測定は、実質的には難しいため、酸素濃度は、反応容器内の容積、不活性ガスの酸素体積濃度、容器内の置換圧力及びその回数から理論的に算出するものとする。
 また、反応槽は不活性ガスを使用することが好ましい。具体的には、窒素、ヘリウム、アルゴン、二酸化炭素であり、好ましくは、窒素、アルゴンである。
 また、微粒子化に使用する原料の酸化劣化を防止する観点から、酸化防止剤を添加剤として使用しても良い。
 酸化防止剤としては、ラジカルを補足する目的で添加することから、フェノール系酸化防止剤、硫黄系酸化防止剤、芳香族アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などが挙げられる。
 これら酸化防止剤の具体例としては、フェノール、ハイドロキノン、p-メトキシフェノール、ベンゾキノン、1,2-ナフトキノン、クレゾール 、カテコール、安息香酸、ヒドロキシ安息香酸、サリチル酸、ヒドロキシベンゼンスルホン酸、2,5-ジ-t-ブチルハイドロキノン、6-t-ブチル -m-クレゾール 、2,6-ジ-t-ブチル -p-クレゾール 、4-t-ブチルカテコール、2,4-ジメチル-6-t-ブチルフェノール、2-t-ブチルハイドロキノン、2-t-ブチル -4-メトキシフェノール等が挙げられる。
 酸化防止剤の濃度については、特に限定されないが、ポリマーBの質量に対して0.001~10質量%が好ましく、0.01~5質量%がさらに好ましく、0.05~3質量%が最も好ましい。
 このような条件下にて、相分離系状態を混合することにより、エマルションを形成させる。すなわち上記で得られた相分離溶液に、剪断力を加えることにより、エマルションを生成させる。
 本製造法で得られる微粒子は、粒子径分布が極めて小さい微粒子になるが、これは、エマルション形成を高温で行うことにより、そうでない場合に比較してよりいっそう均一なエマルションが得られるからである。この傾向はポリマーA、Bの両方を溶解する単一溶媒を用い、ポリマーAとして高耐熱性のポリマー、特に結晶性のポリマーを使用する際に顕著である。このため、エマルションを形成させるに十分な剪断力を得るためには、従前公知の方法による攪拌を用いれば十分であり、攪拌羽による液相攪拌法、連続2軸混合機による攪拌法、ホモジナイザーによる混合法、超音波照射等通常公知の方法で混合することが出来る。
 特に、攪拌羽による攪拌の場合、攪拌羽の形状にもよるが、攪拌速度は、好ましくは50rpm~1,200rpm、より好ましくは、100rpm~1,000rpm、さらに好ましくは、200rpm~800rpm、特に好ましくは、300~600rpmである。
 攪拌羽としては、具体的には、プロペラ型、パドル型、フラットパドル型、タービン型、ダブルコーン型、シングルコーン型、シングルリボン型、ダブルリボン型、スクリュー型、ヘリカルリボン型などが挙げられるが、系に対して十分に剪断力をかけられるものであれば、これらに特に限定されるものではない。また、効率的な攪拌を行うために、槽内に邪魔板等を設置してもよい。
 また、エマルションを発生させるためには、攪拌機だけでなく、乳化機、分散機など広く一般に知られている装置を用いてもよい。具体的に例示するならば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機、エバラマイルダー(荏原製作所社製)、TKフィルミックス、TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、超音波ホモジナイザー、スタティックミキサーなどが挙げられる。
 このようにして得られたエマルションは、引き続き微粒子を析出させる工程に供する。
 ポリマーAの微粒子を得るためには、ポリマーAに対する貧溶媒を、前記工程で製造したエマルションに接触させることでエマルション径に応じた径で、微粒子を析出させる。
 貧溶媒とエマルションの接触方法は、貧溶媒にエマルションを入れる方法でも良いし、エマルションに貧溶媒を入れる方法でも良いが、エマルションに貧溶媒を入れる方法が好ましい。
 この際、貧溶媒を投入する方法としては、本発明で製造するポリマー微粒子が得られる限り特に制限はなく、連続滴下法、分割添加法、一括添加法のいずれでも良いが、貧溶媒添加時にエマルションが凝集・融着・合一し、粒子径分布が大きくなったり、1000μmを超える塊状物が生成しやすくならないようにするために、好ましくは連続滴下法、分割滴下法であり、工業的に効率的に実施するためには、最も好ましいのは、連続滴下法である。
 また、貧溶媒を加える時間としては、10分以上50時間以内であり、より好ましくは、30分以上10時間以内であり、さらに好ましくは1時間以上5時間以内である。
 この範囲よりも短い時間で実施すると、エマルションの凝集・融着・合一に伴い、粒子径分布が大きくなったり、塊状物が生成したりする場合がある。また、これ以上長い時間で実施する場合は、工業的な実施を考えた場合、非現実的である。
 この時間の範囲内で行うことにより、エマルションからポリマー微粒子に転換する際に、粒子間の凝集を抑制することができ、粒子径分布の小さいポリマー微粒子を得ることができる。
 加える貧溶媒の量は、エマルションの状態にもよるが、好ましくは、エマルション総重量1質量部に対して、0.1質量部から10質量部、より好ましくは、0.1質量部から5質量部、さらに好ましくは、0.2質量部から3質量部であり、特に好ましくは、0.2質量部から2質量部であり、最も好ましくは、0.2質量部から1.0質量部である。
 貧溶媒とエマルションとの接触時間は、微粒子が析出するのに十分な時間であればよいが、十分な析出を引き起こしかつ効率的な生産性を得るためには、貧溶媒添加終了後5分から50時間であり、より好ましくは、5分以上10時間以内であり、さらに好ましくは10分以上5時間以内であり、特に好ましくは、20分以上4時間以内であり、最も好ましくは、30分以上3時間以内である。
 このようにして作られたポリマー微粒子分散液は、ろ過、減圧濾過、加圧ろ過、遠心分離、遠心ろ過、スプレードライ等の通常公知の方法で固液分離することにより、微粒子粉体を回収することが出来る。
 固液分離したポリマー微粒子は、必要に応じて、溶媒等で洗浄を行うことにより、付着または含有している不純物等の除去を行い、精製を行う。
 本発明の方法においては、微粒子粉体を得る際に行った固液分離工程で分離された有機溶媒及びポリマーBを再度活用するリサイクル化を行うことが可能であることが有利な点である。
 この際、リサイクルする上では、有機溶媒及びポリマーBが一連の微粒子製造工程において、物質の変化が抑制されていることが安定な製造を継続する要件になる。本発明の方法を用いれば、これまで課題であったポリマーBの変化を抑えることができるため、有機溶剤及びポリマーBのリサイクルをしても、製造バッチごとに品質が変化することなく、安定的に製造できるという利点を有する。
 固液分離で得た溶媒は、ポリマーB、有機溶媒および貧溶媒の混合物である。この溶媒から、貧溶媒を除去することにより、エマルション形成用の溶媒として再利用することが出来る。貧溶媒を除去する方法としては、通常公知の方法で行われ、具体的には、単蒸留、減圧蒸留、精密蒸留、薄膜蒸留、抽出、膜分離などが挙げられるが、好ましくは単蒸留、減圧蒸留、精密蒸留による方法である。
 単蒸留、減圧蒸留等の蒸留操作を行う際は、ポリマー微粒子製造時と同様、系に熱がかかり、ポリマーBや有機溶媒の熱分解を促進する可能性があることから、極力酸素のない状態で行うことが好ましく、より好ましくは、不活性雰囲気下で行う。具体的には、窒素、ヘリウム、アルゴン、二酸化炭素条件下で実施することが好ましい。また、酸化防止剤としてフェノール系化合物を再添加しても良い。
 リサイクルする際、貧溶媒は、極力除くことが好ましいが、具体的には、貧溶媒の残存量が、リサイクルする有機溶媒及びポリマーBの合計量に対して、10質量%以下、好ましくは5質量%以下、より好ましくは、3質量%以下、特に好ましくは、1質量%以下である。この範囲よりも超える場合には、微粒子の粒子径分布が大きくなったり、粒子が凝集したりするので、好ましくない。
 リサイクルで使用する溶媒中の貧溶媒の量は、通常公知の方法で測定でき、ガスクロマトグラフィー法、カールフィッシャー法などで測定できる。
 貧溶媒を除去する操作において、現実的には、有機溶媒、ポリマーBなどをロスすることもあるので、適宜、初期の組成比に調整し直すのが好ましい。
 このようにして得られた微粒子の粒径は、通常1000μm以下、好ましい態様によれば、500μm以下であり、より好ましい態様によれば、300μm以下、さらに好ましい態様によれば、100μm以下、特に好ましい態様によれば、50μm以下のものを製造することが可能である。下限としては、通常50nm以上、好ましい態様によれば、100nm以上であり、より好ましい態様によれば、500nm以上、さらに好ましい態様によれば、1μm以上、特に好ましい態様によれば、10μm以上のものを製造することが可能である。
 また、本発明において得られる微粒子の粒子径分布は、エマルション形成を100℃未満で行う場合に比較して小さい粒子径分布指数となる。多くの場合、粒子径分布指数として3以下であり、好ましい態様によれば、2以下であり、より好ましい態様によれば、1.5以下であり、特に好ましい態様によれば、1.2以下であり、最も好ましい態様によれば、1.1以下であるものを製造することが可能である。また、好ましい下限は1である。本発明において特記すべきはエマルション形成を100℃以上で行うことにより、100℃未満で行った場合に比較して、より小さい粒子径分布指数を有する微粒子を製造できる点である。かかる効果は、高耐熱性のポリマー、特に結晶性熱可塑性樹脂の微粒子を製造する場合に特に顕著であり、これにより結晶性熱可塑性樹脂微粒子において、粒度分布の狭い微粒子を簡便に形成させることができる。
 微粒子の平均粒子径は、走査型電子顕微鏡写真から任意の100個の粒子直径を特定し、その算術平均を求めることにより算出することが出来る。上記写真において、真円状でない場合、即ち楕円状のような場合は、粒子の最大径をその粒子径とする。粒子径を正確に測定するためには、少なくとも1000倍以上、好ましくは、5000倍以上の倍率で測定する。
 粒子径分布指数は、上記で得られた粒子直径の値を、下記数値変換式に基づき、決定される。
Figure JPOXMLDOC01-appb-M000008
 尚、Ri:粒子個々の粒子径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
 本方法は、ポリマーA溶液相とポリマーB溶液相からなるエマルションを経由した微粒子の製造法であり、高温下でのポリマー溶液を利用することから、特にこれまで製造が困難であった、耐熱性の高いポリマー、即ちガラス転移温度あるいは融点が100℃以上を有するポリマー微粒子を製造するのに好適である。
 しかし、本発明の製造法は、高耐熱のポリマーAの微粒子を製造するための技術であるが、必ずしも高耐熱のポリマーAの微粒子に限定されるものではない。すなわち耐熱性の指標となる、ガラス転移温度や融点が比較的低くても100℃未満におけるポリマーAの溶媒に対する溶解性が十分でなく、高温下での溶解が必要な樹脂などにおいても、本方法は好適に用いられる。よってポリマーの中でも、ガラス転移温度または融点が50℃以上のものについても適用可能であり、好ましくは、100℃以上のもの、さらに好ましくは、150℃以上のものに対して好適であり、その上限は、溶解性の観点から、400℃以下のものについて、好適である。
 特に、近年ポリマー微粒子には、粒子径分布を小さくすることと同時に、材質の高耐熱化が要求される用途が多数あり、ビニル系ポリマーでは、一般的に架橋を行ったり、特殊なモノマーを用いたりすることによりかかる課題の解決がなされているが、本発明によりかかる特別なポリマー設計を要せずとも、高耐熱性のポリマーをそのままのポリマー設計で微粒子化するができるので、好適である。
 ここでいう、ガラス転移温度とは、示差走査熱量測定法(DSC法)を用いて、30℃から予測されるガラス転移温度よりも30℃高い温度以上まで、昇温速度、20℃/分の昇温条件で昇温し、1分間保持した後、20℃/分の降温条件で0℃まで一旦冷却し、1分間保持した後、再度20℃/分の昇温条件で測定した際に観察されるガラス転移温度(Tg)を指す。また、融点は、二度目の昇温時に融解熱量を示した際のピークトップの温度のことを指す。
 また本発明では、ポリエーテルスルホン、ポリカーボネート、ビニル系ポリマー、ポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリオレフィン、ポリスルホン、ポリエステル、ポリエーテルケトン、ポリエーテルエーテルケトンなどのような熱可塑性樹脂のポリマー微粒子、より好ましくはポリアミド、ポリエステル、ポリフェニレンスルフィドのような結晶性熱可塑性樹脂のポリマー微粒子で、特に耐熱性の高いポリマー微粒子を得るのに好適である。
 このように本発明の方法で作成された微粒子は、粒子径分布の小さい粒子が得られることや、ポリマーでの微粒子化、特に耐熱性に優れるポリマーの微粒子を品質よく、安定的に製造できることから、産業上、各種用途で、極めて実用的に利用することが可能である。
 特に本発明における微粒子は、その粒度分布が狭く、材質の選択が容易であることから、液晶ディスプレイなどに使われる導光板と反射板とのスペーサーに好適である。中でも、CCFLまたはLEDを用いたサイドライト方バックライトで用いられる反射板用途で、筐体の凹凸によって導光板と反射板の間に押圧力がかかる場合や静電気が生じる場合に、導光板と反射板との間に貼り付きが生じ、その結果、導光板表面に印刷された凹凸が削られたり、点灯時の液晶ディスプレイに部分的な白点の発生による不具合を生じる場合がああり、これを防止するため反射板等の表面に凹凸を付与するために粒子を含む塗液を塗布することが行われることがあるが、その際の粒子として本発明の有機粒子(プラスティックビーズ)に好適である。
 このような有機粒子は、本発明の方法で製造することができ、その中でも特に、エーテル結合を含む熱可塑性樹脂からなるものは、エーテル結合を含むことによって、有機粒子とバインダー樹脂との親和性を増し脱落を防ぐことができるため、非常に優れている。
 エーテル結合を含む熱可塑性樹脂としては、ポリエーテル樹脂やポリエーテルと他の樹脂との共重合により形成される樹脂などが挙げられる。具体的には、ポリオキシメチレン、ホルマール樹脂、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルスルホン、ポリフェニルスルホン、ポリエーテルイミド、ポリエーテルエステル、ポリエーテルエステルアミド、ポリエーテルアミド、スピログリコールを含有するポリエステル等が挙げられるが、透明性、再生性の観点から、ポリエーテルエステル、スピログリコールを含有するポリエステルが好ましく用いられる。特に好ましくは、弾性率を共重合比率で調整可能なポリエーテルエステルである。ポリエーテルエステルの具体例としては、種々の商品名、例えば、デュポン社、もしくは東レ・デュポン株式会社の「ハイトレル(HYTREL)」(登録商標)、チコナ(Ticona)社の「リテフレックス(RITEFLEX)」(登録商標)およびDSM社の「アーニテル(ARNITEL)」(登録商標)などがあり、多くの会社から販売されている。
 本用途において用いられる有機粒子の素材である熱可塑性樹脂は、その曲げ弾性率が500MPaよりも大きく3000MPa以下であることが好ましい。曲げ弾性率の上限としては、3000MPa以下であるが、より好ましくは、2500MPa以下であり、さらに好ましくは、2000MPa以下である。また、曲げ弾性率の下限としては、500MPaよりも大きい範囲であるが、より好ましくは、550MPa以上であり、さらに好ましくは、600MPa以上であり、特に好ましくは、800MPa以上であり、著しく好ましくは、1000MPa以上である。本発明での曲げ弾性率とはASTM-D790-98で測定された値をいう。このときの測定には有機粒子を構成する熱可塑性樹脂を90℃で3時間以上熱風乾燥したペレットを、射出成形機(日精樹脂工業製 NEX-1000)を用いて、シリンダー温度240℃、金型温度50℃の成形条件で成形して得られる、127×12.7×6.4mmの曲げ試験片をサンプルとして使用するものとする。曲げ弾性率が上記範囲よりも小さいと、白色フィルム上に塗布し反射板として液晶ディスプレイに組み込んだ時に白点が生じる場合がある。曲げ弾性率が上記範囲より大きいと導光板と反射板がこすれ合った時に導光板に傷が生じる場合がある。熱可塑性樹脂の曲げ弾性率を上記範囲内に調整するためには、例えば上記ポリエーテルエステル樹脂中の長鎖のポリアルキレングリコールの共重合量を適宜調節すればよい。また、デュポン社もしくは東レ・デュポン株式会社の「ハイトレル(HYTREL)」シリーズではハイトレル7247(東レ・デュポン株式会社製)やハイトレル8238(デュポン社製)がエーテル結合を含有する熱可塑性樹脂として上記範囲内の曲げ弾性率を達成する。
 上記反射板等の用途に用いられる有機粒子の数平均粒子径は3μm以上60μm以下であることが好ましく、4μm以上20μm以下であることがより好ましく、5μm以上15μm以下であることがさらに好ましい。3μm未満であると、反射フィルム上に塗布し液晶ディスプレイに組み込んだ時に白点が生じる場合があり、また60μmより大きいと粒子が脱落する場合がある。また、板の表面に凹凸を付与し、他の板との層間の貼り付きを防止する観点からは、1μm以上であることが好ましく、2μm以上であることがより好ましい。上限としては用途にもよるが電子情報機器に使われる材料としてでは一般に100μm以下が好ましい。
 本発明のエーテル結合を有する熱可塑性樹脂からなる微粒子はその粒子径分布指数が1~3であることが好ましい。より好ましくは1~2であり、最も好ましくは1~1.5である。粒子径分布指数が上記範囲にあることによって、導光板に反射板が押し付けられる状況下において、一部の粒径が大きな粒子のみが導光板に密着および粒子が変形することによって、白点が生じやすくなることを防ぐことが出来る。また、粒子分布指数が上記範囲より大きい場合(つまり、粗大粒子を含む場合)、塗布工程においてメイヤーバーの粒子詰まりが起こり、塗布スジが発生する場合があり、塗布外観の観点から好ましくない場合がある。粒子径分布指数を上記範囲にする方法としては、前記したエマルションを形成させ、貧溶媒を添加することで微粒子を得る方法において、エマルジョン形成および微粒子化工程を実施する温度が100℃以上であることが好ましく用いることができる。
 上記反射板等に用いられる積層フィルムは、通常基材フィルムと少なくともその一方の表面に設けられたバインダー樹脂および有機粒子を含有する塗布層とからなる。
 有機粒子は塗布層中でバインダー樹脂によって被覆されていることが好ましい。有機粒子がバインダー樹脂によって被覆されることで、脱落しにくくすることができる。有機粒子をバインダー樹脂によって被覆させるためには、有機粒子がエーテル結合を含む熱可塑性樹脂であり、塗液に含まれるバインダー樹脂が水溶性樹脂であることが好ましい。なかでもスルホン酸基、カルボン酸基、水酸基およびそれらの塩から選ばれた少なくとも1種の官能基を含有する樹脂であることが好ましい。さらに好ましくはカルボン酸基および/またはカルボン酸基塩を有するモノマーが共重合された樹脂である。また、被覆状態については、粒子断面のSEMもしくはTEMにより確認することができる。このときルテニウム染色などを用いることによってより明確に確認することができる。
 上記バインダー樹脂が水溶性であると、後述する基材フィルムおよび有機粒子との親和性がよく、表面の凹凸の状態と塗布厚みのバランスを好ましい状態とし、有機粒子の脱落が少ない塗布層を形成することができる。また、バインダー樹脂が水溶性樹脂であることにより、バインダー樹脂および有機粒子を水に溶解および分散させた塗液状態にして使用することができる。もちろん、バインダー樹脂と有機粒子を予め別々に水に溶解または分散させたものを任意に混合して使用してもよい。水を用いた塗液を用いることによって、インラインコーティング法において塗布が可能となるため省コストの観点からも好ましい。バインダー樹脂に上記の官能基を有するモノマーを共重合する方法は公知の方法をとることができる。水溶性樹脂はポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂からなる群より選ばれる少なくとも一種から形成されることが好ましく、ポリエステル樹脂またはアクリル樹脂であることがより好ましい。バインダー樹脂は、基材フィルムとの密着性がよく、また透明であることが好ましく、上記樹脂はこれらの特性を満たすことができる。これら水溶性樹脂としては、DIC(株)製の製品名ウォーターゾール(登録商標)や高松油脂(株)のペスレジン等が入手可能である。
 また塗布層を形成するバインダー樹脂には、発明の効果を阻害しない範囲内で各種の添加剤を添加することが出来る。添加剤としては、例えば、酸化防止剤、架橋剤、蛍光増白剤、帯電防止剤、カップリング剤などを用いることができる。
 本発明の有機粒子は、反射板として好適に使用できるが、その際この反射板の基材フィルムは、特に限定されず、透明であっても不透明であっても良い。透明なフィルムとしてはポリエステルフィルム、ポリオレフィンフィルム、ポリスチレンフィルム、ポリアミドフィルムなどが挙げられるが、成形のしやすさの観点からポリエステルフィルムが好ましく用いられる。また、不透明なフィルムとしては特開平4-239540号公報、特開2004-330727号公報などに例示される白色フィルムや、特開平6-305019号公報などに例示されるポリフェニレンスルフィドフィルムなどが挙げられる。
 本粒子を液晶ディスプレイの反射板として用いる場合は、積層構造をもつ積層フィルムであることが好ましく、積層フィルムは、基材フィルムと少なくともその一方の表面に設けられたバインダー樹脂および有機粒子を含有する塗布層とからなるものが好ましい。
 塗布層の形成方法としては、二軸延伸後の基材フィルムに塗液を塗布する方法(オフラインコーティング法)のほか、塗液の塗布後にフィルムを延伸して熱処理する方法(インラインコーティング法)がある。塗布層と基材フィルムとの密着性および省コストの観点からは、インラインコーティング法が好ましい。インラインコーティング法としては、未延伸フィルム表面に塗液を塗布した後に二軸方向に延伸する方法、または、一軸延伸フィルム表面に塗液を塗布した後に先の一軸延伸方向と交差する方向(例えば一軸延伸方向と直交する方向)にさらに延伸する方法などが挙げられるが、後者が好ましい。
 このようにして得られる反射板は、本発明の粒子の効果により、CCFLまたはLEDを用いたサイドライト方式バックライトで用いる用途で、筐体の凹凸によって導光板と反射板の間に押圧力がかかる場合や静電気が生じる場合に、導光板と反射板との間に貼り付きによる導光板表面に印刷された凹凸が削られや、点灯時の液晶ディスプレイに部分的な白点の発生による不具合を防止することができる。
 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されるものではない。
 (1)平均粒子径および粒子径分布測定方法
 微粒子の個々の粒子径は、走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、微粒子を1000倍で観察し、測長した。尚、粒子が真円でない場合は、長径をその粒子径として測定した。平均粒子径は、写真から任意の100個の粒子直径を測長し、その算術平均を求めることにより算出した。
 粒子径分布を示す粒子径分布指数は、上記で得られた個々の粒子直径の値を、下記数値変換式に基づき算出した。
Figure JPOXMLDOC01-appb-M000009
 尚、Ri:粒子個々の粒子直径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
 (2)界面張力の測定法
 協和界面科学株式会社 自動接触角計 DM-501を装置として用い、ホットプレート上で、ポリマーA溶液相、ポリマーB溶液相について、各相と空気との表面張力との関係から、各相の表面張力の結果をr、rとし、その差である(r-r)の絶対値から界面張力を算出した。
 (3)ポリビニルアルコール類の分子量測定
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて分子量を算出した。
 装置:株式会社島津製作所製 LC-10Aシリーズ
 カラム:昭和電工株式会社製 GF-7MHQ ×2本
 移動相:10mmol/L 臭化リチウム水溶液
 流速:1.0ml/min
 検出:示差屈折率計
 カラム温度:40℃。
 (4)示差走査熱量測定
 示差走査熱量計(セイコーインスツル株式会社製 ロボットDSC RDC220)を用い、窒素雰囲気下、前述の方法で測定した。
 (5)溶媒中の水分測定
 リサイクル溶媒中の水分を測定するにあたり、カールフィッシャー法(機種名:水分測定機 CA-06 三菱化学社製)を用い測定した。
 (6)ポリビニルアルコール類に含まれる酢酸ナトリウムの定量方法
日本工業規格「ポリビニルアルコール試験方法」(K6726-1994年度)に記載の酢酸ナトリウム溶解滴定法によって測定を行った。
 参考例1<ポリビニルアルコール類中の酢酸ナトリウムの洗浄1>
 ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GM-14 重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)をソックスレー抽出装置中の円筒ろ紙(直径26cm×高さ13cm)に、12gを加え、メタノール150mlにより、加熱還流を8時間行った。得られたポリビニルアルコールを加熱真空乾燥機にて、80℃10時間乾燥することにより、酢酸ナトリウムの含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.01質量%であった。
 参考例2<ポリビニルアルコール類中の酢酸ナトリウムの洗浄2>
 1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GM-14 重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
 参考例3<ポリビニルアルコール類中の酢酸ナトリウムの洗浄3>
 1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 A型‘ゴーセノール(登録商標)’ AL-06R 重量平均分子量 11,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.04質量%であった。
 参考例4<ポリビニルアルコール類中の酢酸ナトリウムの洗浄4>
 1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GL-05 重量平均分子量 11,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
 参考例5<ポリビニルアルコール類中の酢酸ナトリウムの洗浄5>
 1Lのナスフラスコ中に、ポリビニルアルコール(和光純薬学工業株式会社製 PVA-1500 重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.20質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
 実施例1<酢酸ナトリウム含量の少ないポリビニルアルコールを使用したポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN-メチル-2-ピロリドン(SP値23.1(J/cm1/2) 287g、ポリマーBとして参考例1で作成した酢酸ナトリウム含量の少ないポリビニルアルコール 28gを加え、99体積%以上の窒素にて、置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 24.0μm、粒子径分布指数 1.11のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、250℃、融解熱量は、23.7J/gであり、降温結晶化温度は検出されなかった。SP値は、計算法により、23.3(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,800であり、使用前とほとんど変化は無かった。
 実施例2<酢酸ナトリウム含量の少ないポリビニルアルコールを使用した製造方法2>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN-メチル-2-ピロリドン 287g、ポリマーBとして参考例2で作成した酢酸ナトリウム含量の少ないポリビニルアルコール 28gを加え、99体積%以上の窒素で置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 24.8μm、粒子径分布指数 1.23のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,100であり、使用前とほとんど変化は無かった。
 実施例3<酸の添加によるポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を28g、有機溶媒としてN-メチル-2-ピロリドン 301g、ポリマーBとしてポリビニルアルコール 21g(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’、GM-14、重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)を加え、酸として酒石酸(pKa1=2.82、熱分解温度275℃)0.21g(酸官能基量が、酢酸ナトリウムに対して4.74倍モル)を添加し、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gの水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を27.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 77.5μm、粒子径分布指数 2.00のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,200であり、使用前とほとんど変化は無かった。
 実施例4<非晶ポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 12,300、エムザベルケ社製 ‘グリルアミド(登録商標)’ TR55)を35g、有機溶媒としてN-メチル-2-ピロリドン 287g、ポリマーBとして参考例2で作成した酢酸ナトリウムの少ないポリビニルアルコール 28g(重量平均分子量 29,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を33.8g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 20.6μm、粒子径分布指数1.19のポリアミド微粒子であった。なお、本実施例で用いたポリアミドは、融点を有さず、融解熱量は観測されなかった。SP値は、計算法により求め、23.3(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例5<ナイロン1010微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド1010(重量平均分子量 38,000、アルケマ社製 ‘リルサン(登録商標)’ AESNOTL-44)を35g、有機溶媒としてN-メチル-2-ピロリドン 273g、ポリマーBとして参考例2で作成した酢酸ナトリウムの少ないポリビニルアルコール 42g(重量平均分子量 29,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約110gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 11.8μm、粒子径分布指数1.21のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、207℃、融解熱容量は、29.0J/g、降温結晶化温度は、144℃であった。SP値は、計算法により求め、22.47(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例6<ナイロン610微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド610(重量平均分子量 37、000、東レ株式会社製‘アミラン(登録商標)’CM2001)を42g、有機溶媒としてN-メチル-2-ピロリドン 266g、ポリマーBとして参考例3で作成した酢酸ナトリウムの少ないポリビニルアルコール 42g(重量平均分子量 11,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約50gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を41.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 5.4μm、粒子径分布指数5.25のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、225℃、融解熱容量は、53.2J/g、降温結晶化温度は、167℃であった。SP値は、計算法により求め、23.60(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例7<ナイロン11微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド11(重量平均分子量 38、000、アルケマ社製 ‘リルサン(登録商標)’ BMNO)を24.5g、有機溶媒としてN-メチル-2-ピロリドン 301g、ポリマーBとして参考例2で作成した酢酸ナトリウムの少ないポリビニルアルコール 24.5g(重量平均分子量 11,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約50gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を24.1g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 10.5μm、粒子径分布指数1.40のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は、196℃、融解熱容量は 25.8J/g、降温結晶化温度は、144℃であった。SP値は、計算法により求め、22.04(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例8<ナイロン12微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド12(重量平均分子量 38、000、アルケマ社製 ‘リルサン(登録商標)’ AESNOTL-44)を17.5g、有機溶媒としてN-メチル-2-ピロリドン 315g、ポリマーBとして参考例4で作成した酢酸ナトリウムの少ないポリビニルアルコール 17.5g(重量平均分子量 11,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約50gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を17.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 3.8μm、粒子径分布指数2.98のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融点は183℃、融解熱容量は27.3J/g、降温結晶化温度は、138℃であった。SP値は、計算法により求め、21.70(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例9<酸の添加によるポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミドCX7323(重量平均分子量 17,000、ダイセル・エボニック社製)を21g、有機溶媒としてN-メチル-2-ピロリドン 287g、ポリマーBとしてポリビニルアルコール 42g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GM-14、重量平均分子量 29,000、SP値32.8(J/cm1/2)および酒石酸 0.21gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約30gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を20.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 22.4μm、粒子径分布指数1.15のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例10<酸の添加によるポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミドCX7323(重量平均分子量 17,000、ダイセル・エボニック社製)を28g、有機溶媒としてN-メチル-2-ピロリドン290.5g、ポリマーBとしてポリビニルアルコール 31.5g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GM-14、重量平均分子量 29,000、SP値32.8(J/cm1/2)およびL-酒石酸 0.16gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約30gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を27.5g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 32.6μm、粒子径分布指数1.18のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
 実施例11<酸の添加によるポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミドCX7323(重量平均分子量 17,000、ダイセル・エボニック社製)を10.5g、有機溶媒としてN-メチル-2-ピロリドン297.5g、ポリマーBとしてポリビニルアルコール 42.0g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GM-14、重量平均分子量 29,000、SP値32.8(J/cm1/2)およびL-酒石酸 0.21gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約30gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を9.8g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 14.6μm、粒子径分布指数1.11のポリアミド微粒子であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例12<ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000、曲げ弾性率600MPa)28g、N-メチル-2-ピロリドン(関東化学株式会社製)304.5g、ポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体26.5gを得た。この固体を走査型電子顕微鏡により観察を行ったところ、真球状微粒子であり、平均粒子径5.5μm、粒子径分布指数1.12であった。また、この白色固体をレーザー粒度分布計(島津製作所社製  SALD-2100)にて分析した結果、体積平均粒子径が5.5μm、粒子径分布指数が1.12であった。このポリエステルエラストマーの融点は、218℃、融解熱容量は、24.3J/g、降温結晶化温度は、157℃であった。SP値は計算法により、19.5(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
 なお、本実施例で得られた粒子(白色固体)をレーザー粒度分布計(株式会社島津製作所製 SALD-2100)にて分析した結果、体積平均粒子径5.5μm、粒子径分布指数1.22であった。
 実施例13<ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)28g、N-メチル-2-ピロリドン(関東化学株式会社製)308g、ポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)14gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体25.5gを得た。この固体を走査型電子顕微鏡により観察を行ったところ、真球状微粒子であり、平均粒子径8.6μm、粒子径分布指数1.22であった。また、本系の界面張力の推算値は、2mN/m以下であった。本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,800であり、使用前とほとんど変化は無かった。
 なお、本実施例で得られた粒子(白色固体)をレーザー粒度分布計(株式会社島津製作所製 SALD-2100)で分析した結果、体積平均粒子径8.6μm、粒子径分布指数1.22であった。
 実施例14<ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)28g、N-メチル-2-ピロリドン(関東化学株式会社製)301g、ポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)10.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体26.0gを得た。この固体を走査型電子顕微鏡により観察を行ったところ、真球状微粒子であり、平均粒子径12.6μm、粒子径分布指数1.22であった。また、本系の界面張力の推算値は、2mN/m以下であった。本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 27,500であり、使用前とほとんど変化は無かった。
 なお、本実施例で得られた粒子(白色固体)をレーザー粒度分布計(株式会社島津製作所製 SALD-2100)にて分析した結果、体積平均粒子径12.5μm、粒子径分布指数1.28であった。
 実施例15<ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000、曲げ弾性率1100MPa)17.5g、N-メチル-2-ピロリドン 315g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体14.9gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径4.3μm、体積平均粒子径 5.4μm、粒子径分布指数 1.25のポリエステルエラストマー微粒子であった。
 走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。このポリエステルエラストマーの融点は、224℃、融解熱容量は、25.8J/g、このポリエステルエラストマーの降温結晶化温度は、161℃であった。SP値は計算法により、19.8(J/cm1/2であった。
 本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。本系の界面張力の推算値は、2mN/m以下であった。
粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例16<ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000)33.25g、N-メチル-2-ピロリドン299.25g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径12.0μm、体積平均粒子径 14.7μm、粒子径分布指数 1.23のポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
 実施例17<ポリエステルエラストマー微粒子の製造方法>
 テレフタル酸48.0部、1,4-ブタンジオール42.0部および重量平均分子量約3000のポリテトラメチレングリコール10.0部を、チタンテトラブトキシド0.01部とモノ-n-ブチル-モノヒドロキシスズオキサイド0.005部を、ヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190~225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物にテトラ-n-ブチルチタネート0.06部を追添加し、“イルガノックス”1098(チバ・ジャパン(株)製ヒンダードフェノール系酸化防止剤)0.02部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を30Paの減圧とし、その条件下で2時間50分重合を行わせて、脂肪族ポリエーテルエステル共重合体(D1)を得た。融点は、226℃であり、重量平均分子量は、28,000、曲げ弾性率は1800MPaであった。
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエーテルエステル共重合体(D1)33.25g、N-メチル-2-ピロリドン299.25g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径12.0μm、体積平均粒子径14.7μm、粒子径分布指数 1.23のポリエーテルエステル共重合体からなるポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
 実施例18<ポリエステルエラストマー微粒子の製造方法>
 テレフタル酸26.7部、1,4-ブタンジオール23.3部および重量平均分子量約3000のポリテトラメチレングリコール50.0部を、チタンテトラブトキシド0.01部とモノ-n-ブチル-モノヒドロキシスズオキサイド0.005部をヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190~225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物にテトラ-n-ブチルチタネート0.06部を追添加し、“イルガノックス”1098(チバ・ジャパン(株)製、ヒンダードフェノール系酸化防止剤)0.02部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を30Paの減圧とし、その条件下で2時間50分重合を行わせて、脂肪族ポリエーテルエステル共重合体(D2)を得た。融点は、210℃であり、重量平均分子量は、28,000、曲げ弾性率は450MPaであった。
 次いで、1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM-V1000N)の中に、ポリエーテルエステル共重合体(D2)33.25g、N-メチル-2-ピロリドン299.25g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径12.0μm、粒子径分布指数 1.23のポリエーテルエステル共重合体からなるポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,500であり、使用前とほとんど変化は無かった。
 実施例19 <ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー(“ハイトレル”(登録商標)8238、デュポン株式会社製、重量平均分子量27,000、曲げ弾性率1100MPa)14.6g、N-メチル-2-ピロリドン300g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体12.4gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径 1.5μm、粒子径分布指数 1.21のポリエステルエラストマー微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 27,500であり、使用前とほとんど変化は無かった。
 実施例20<ポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー(“ハイトレル”(登録商標)8238、デュポン株式会社製、重量平均分子量27,000、曲げ弾性率1100MPa)15.2g、N-メチル-2-ピロリドン300g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体12.9gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径 2.2μm、粒子径分布指数 1.22のポリエステルエラストマー微粒子であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 26,500であり、使用前とほとんど変化は無かった。
 実施例21<酸の添加によるポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000)24.5g、N-メチル-2-ピロリドン 308g、ポリマーBとしてポリビニルアルコール 17.5g(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’、GM-14、重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)を加え、酸として酒石酸(pKa1=2.82、熱分解温度275℃)0.21g(酸官能基量が、酢酸ナトリウムに対して4.74倍モル)を加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体23.9gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、平均粒子径 23.4μm、粒子径分布指数 1.25のポリエステルエラストマー微粒子であった。
 走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。
 本ポリエステルエラストマーの貧溶媒である水に対する溶解度(室温)は、0.1質量%以下であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,500であり、使用前とほとんど変化は無かった。
 実施例22<降温結晶化温度以下でのポリエステルエラストマー微粒子の製造方法>
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)17.5g、N-メチル-2-ピロリドン315.0g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、140℃まで降温し、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体17.0gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ多孔質の微粒子であり、平均粒子径9.3μm、体積平均粒子径 11.8μm、粒子径分布指数 1.27のポリエステルエラストマー微粒子であった。
 走査型電子顕微鏡により観察を行ったところ、多孔質状微粒子であった。このポリエステルエラストマーの融点は、224℃であり、このポリエステルエラストマーの降温結晶化温度は、161℃であった。本系の界面張力の推算値は、2mN/m以下であった。粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,800であり、使用前とほとんど変化は無かった。
 実施例23<降温結晶化温度以下でのポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”8238(デュポン株式会社製、重量平均分子量 27,000)17.5g、N-メチル-2-ピロリドン315.0g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、140℃まで降温し、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体17.2gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ多孔質の微粒子であり、平均粒子径16.4μm、体積平均粒子径 19.3μm、粒子径分布指数 1.28のポリエステルエラストマー微粒子であった。走査型電子顕微鏡により観察を行ったところ、多孔質微粒子であった。このポリエステルエラストマーの融点は、224℃であり、このポリエステルエラストマーの降温結晶化温度は、161℃であった。本系の界面張力の推算値は、2mN/m以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 28,800であり、使用前とほとんど変化は無かった。
 実施例24<リサイクル溶媒によるポリアミド微粒子の製造方法>
 実施例1で得た濾液を窒素雰囲気下、80℃、50kPaの減圧条件下にて水を留去していき、水分測定機(三菱化学株式会社製 水分測定機 CA-06)にて含水率が1質量%以下になるまで行った。この際の水分量は0.45質量%であり、残液中のポリマーBであるポリビニルアルコールをゲルパーミエンデーションクロマトグラフィーで定量したところ、ポリビニルアルコールの濃度は8.2質量%であった。残った残液のうち、305g(内 N-メチル-2-ピロリドン 280g、ポリビニルアルコール25gを含む。)を1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスター TEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35.0g、ポリマーBとしてポリビニルアルコール 3.0g(和光純薬工業株式会社製 PVA-1500、重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含有率 0.2%、)(リサイクルしたポリビニルアルコール中の酢酸ナトリウムを添加前と同じと仮定するとリサイクル分と新たに添加した分を合計したポリビニルアルコール中に含まれる酢酸ナトリウムの含有率は0.03%程度と計算される)を加え、有機溶媒としてN-メチル-2-ピロリドン 7.0gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、白色固体を33.6g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 23.8μm、粒子径分布指数 1.14のポリアミド微粒子であり、実施例1とほぼ同等の平均粒子径、粒子径分布および収率を持つものが得られた。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 29,400であり、リサイクル使用ができることがわかった。即ち、リサイクル使用をしても安定的に製造できるといえる。
 実施例25<通常のPVAを使用したポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN-メチル-2-ピロリドン 287g、ポリマーBとしてポリビニルアルコール 28g(日本合成化学工業株式会社製 ‘ゴーセノール(登録商標)’ GM-14 重量平均分子量 29,000、酢酸ナトリウム含量0.23質量%、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、灰色に着色した固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 15.0μm、粒子径分布指数 1.11のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融解熱量は、23.7J/gであり、SP値は、実験法により求め、23.3(J/cm1/2だった。
 また、本有機溶媒とポリマーA、ポリマーBを別途180℃下にて溶解させ、静置観察したところ、本系では、体積比 3/7(ポリマーA溶液相/ポリマーB溶液相(体積比))で2相分離することが分かり、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量 41,800であり、分子量が増加した。得られたろ液は、褐色に変色していた。実施例1と比較し、ポリビニルアルコールの分子量が増加しているため、濾液の再利用は難しいものの、粒度分布の狭い微粒子が得られている。
 実施例26<通常のPVAを使用したポリアミド微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量 17,000、ダイセル・エボニック社製 ‘TROGAMID(登録商標)’ CX7323)を35g、有機溶媒としてN-メチル-2-ピロリドン 287g、ポリマーBとしてポリビニルアルコール 28g(和光純薬工業株式会社製 PVA-1500、重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含有率 0.2%)を加え、空気雰囲気下(酸素濃度 約20%)の状態で、外部と遮断をし、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、褐色の固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 15.2μm、粒子径分布指数 1.30のポリアミド微粒子であった。なお、本実施例で用いたポリアミドの融解熱量は、23.7J/gであり、SP値は、実験法により求め、23.3(J/cm1/2だった。
 また、本有機溶媒とポリマーA、ポリマーBを別途180℃下にて溶解させ、静置観察したところ、本系では、体積比 3/7(ポリマーA溶液相/ポリマーB溶液相(体積比))で2相分離することが分かり、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 粒子化終了後のろ液は、褐色に変化しており、ポリビニルアルコールの分子量を測定したところ、重量平均分子量 80,000を示した。
実施例1と比較し、ポリビニルアルコールの分子量が増加しているため、濾液の再利用は難しいものの、粒度分布の狭い微粒子が得られている。
 比較例1<100℃未満でのポリエステルエラストマー微粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリエステルエラストマー“ハイトレル(登録商標)”7247(東レ・デュポン株式会社製、重量平均分子量 29,000)3.5g、N-メチル-2-ピロリドン343.0g、参考例5で作成した酢酸ナトリウムの少ないポリビニルアルコール(和光純薬工業株式会社製 PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)3.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、80℃まで降温し、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体3.30gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ多孔質の微粒子であった。走査型電子顕微鏡により平均粒子径を算出したところ、体積平均粒子径 55.6μm、粒子径分布指数 20.0のポリエステルエラストマー微粒子を得た。得られた微粒子は、約10μm程度の微粒子の凝集体であり、本手法では、微粒子それ自体は得られるものの、実施例12、13などで得られるものに比較し、十分な品質なものではなかった。
 実施例27(エーテル結合を含む熱可塑性樹脂からなるポリマー微粒子を用いた反射板)
(1)塗液の調製
 下記材料を、[1]から[4]の順番にて塗液の原料を調合し、万能攪拌機にて10分間攪拌して塗布層形成塗液を調製した。
[1]精製水
[2]材料A:<ポリエステル系バインダー樹脂>
 ペスレジン A-215E(高松油脂(株)製、30重量%溶液:カルボン酸基および水酸基を含有する。)を精製水で希釈し、25重量%溶液を調製した。
[3]材料B:<界面活性剤>
 「ノベック」(登録商標)FC-4430(菱江化学(株)製、5重量%溶液)を用いた。
[4]有機粒子分散液
 有機粒子に精製水を加え、有機粒子が40質量%になるように調整したものを、有機粒子分散液とした。
 なお、使用した有機粒子は、以下のものである。
(i)実施例14
(ii)実施例15
(iii)実施例16
(iv)実施例17
(v)対比用粒子○1 :弾性率の低い粒子を以下の方法で製造し、用いた。
 100mlの4口フラスコの中に、(“ハイトレル”(登録商標)3046、東レ・デュポン株式会社製、重量平均分子量23,000、曲げ弾性率20MPa)3.5g、有機溶媒としてN-メチル-2-ピロリドン43g、ポリビニルアルコール(日本合成化学工業株式会社‘ゴーセノール(登録商標)’ GL-05)3.5gを加え、90℃に加熱し、ポリマーが溶解するまで攪拌を行った。系の温度を80℃に戻した後に、450rpmで攪拌しながら、貧溶媒として50gのイオン交換水を、送液ポンプを経由し、0.41g/分のスピードで滴下を行った。全量の水を入れ終わった後に、30分間攪拌し、得られた懸濁液を、ろ過し、イオン交換水 100gで洗浄し、80℃ 10時間真空乾燥を行い、白色固体3.1gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、数平均粒子径13.2μm、体積平均粒子径 15.4μm、粒子径分布指数 1.17のポリエーテルエステル共重合体微粒子であった。走査型電子顕微鏡により観察を行ったところ、真球状微粒子であった。
(vi)対比用粒子○2 :エーテル結合を含まない以下のものを用いた。
 テクポリマーMBX-8(架橋PMMA粒子、数平均粒子径8μm、体積平均粒子径11.7μm、粒子径分布指数1.46)(積水化成品工業(株)社製)を精製水に混合した40重量%溶液の水分散体。粒子内にエーテル結合を含まない。
 なお、[1]~[4]の配合比率は、表1のとおりである。
Figure JPOXMLDOC01-appb-T000010
(2)製膜
 PET80重量部と環状オレフィン共重合体樹脂20重量部との混合物を180℃の温度で3時間真空乾燥した後に押出機Aに供給し、280℃の温度で溶融押出した。また、PET100重量部を180℃の温度で3時間真空乾燥した後に押出機Bに供給し280℃の温度で溶融押出した。それぞれの押出機A、Bからの樹脂を厚み方向にB/A/Bの順に積層するように合流させた後、Tダイ口金に導入した。
 次いで、Tダイ口金内より、シート状に押出して溶融積層シートを形成し、該溶融積層シートを、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸積層フィルムを得た。このとき、ドラムに接しているフィルム面を裏面、空気に接している面を「おもて」面とした。続いて、該未延伸積層フィルムを80℃の温度に加熱したロール(予熱ロール)群で予熱した後、長手方向にロールの周速差を利用して、3.5倍延伸を行い、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。
 さらに続いて一軸延伸フィルムの「おもて」面に空気中でコロナ放電処理を施し、その処理面に上記塗布層形成塗液を、ワイヤーバーを用いたバーコート方式にて塗布厚み15μmになるように塗布した。
 上記の塗布層形成塗液が塗布された一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の予熱ゾーンに導き乾燥後、引き続き連続的に100℃の加熱ゾーンで長手方向に垂直な方向(横方向)に3.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで190℃ の熱処理を施し、さらに190℃で6%横方向に弛緩処理を行った後、次いで均一に徐冷後に巻き取って、厚み188μmのフィルム上に、厚み200nmの塗布層が設けられた白色の積層フィルムを得た。B層の膜厚は10μmであった。
(3)フィルム特性評価
 フィルムの特性評価は、以下の方法で行った。
(3.1)有機粒子の塗膜内被覆状態の確認
 積層フィルムを断面方向にミクロトームにて70~100nmの厚みの切片を切り出し、四酸化ルテニウムで染色した。染色した切片を透過型電子顕微鏡”TEM2010”(日本電子(株)製)を用いて500~10,000倍に拡大観察して撮影した断面写真より、有機粒子の塗膜内被覆状態を確認し、以下のように判定した。
 粒子の全部を塗膜が被覆している場合:A
 粒子の8割以上塗膜が被覆している場合:B
 粒子の塗膜による被覆が4割以上の場合:C
 粒子の塗膜による被覆が4割未満の場合:D
(3.2)ディスプレイ白点評価
 AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯する。所定の重さの重りで画面中央を押さえた時に
 重りなしで白点が発生する場合をF
 0.5kgの重りで白点が発生する場合をE
 1.0kgの重りで白点が発生する場合をD
 1.5kgの重りで白点が発生する場合をC
 2.0kgの重りで白点が発生する場合をB
 2.0kgの重りで白点が発生しない場合をA
 とした。なお、用いたバックライトは、サイドライト型バックライトであり、導光板および光源(LED)を有し、光源が導光板のエッジ部に位置するものである。この白点評価においては、例えば図2に白点の評価例を示すように、白点(ホワイトスポット)が発生しない場合(図2(A))と白点(ホワイトスポット)が発生する場合(図2(B))とを明確に区別できる。
(3.3)塗布外観
 評価例あるいは比較評価例にて得られた積層フィルムについて、蛍光灯反射光にて外観観察を行った。評価基準は、
 A:塗布ムラ、塗布抜けが観察されない。
 B:塗布ムラ、塗布抜けが一部観察されるが、AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯したときに、ムラが観察されない。
 C:塗布ムラ、塗布抜けが観察され、AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯したときに、ムラがわずかに観察される。
 D:塗布ムラ、塗布抜けにより外観が著しく損なわれている。
 であり、A~Bを良好、Dを不可とした。   
(3.4)粒子の密着性評価
 底面4cm×4cmのSUSブロック(重さ300g)の底面に市販のトレシーMKクロス(登録商標、東レ(株)製)を両面テープで貼り付けた。積層フィルムの塗布面上を、上記SUSブロックを10回滑らせ、削れテストとした。
 削れテスト前後の光沢度を比較した。光沢度はデジタル変角光沢度計UGV-5B(スガ試験機(株)製)を用いて、白色積層フィルムのコーティング層側よりJIS Z-8741(1997)に準じて測定した。なお、測定条件は入射角=60゜、受光角=60゜とした。サンプル数はn=5とし、それぞれの光沢度を測定して、その平均値を算出した。また、表面SEM写真を撮影し脱落痕を観察し、(粒子数+脱落痕)の合計で100点観察し、
 脱落痕のない場合をA
 5点以下の脱落痕がある場合をB
 10点以下の脱落痕がある場合をC
 30以下の脱落痕がある場合をD
 30点より多い脱落痕がある場合E
とした。
 (3.1)~(3.4)のフィルム特性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000011
 実施例14,15,16,17で作成した粒子は、いずれも反射板に用いた際、良好な性能を示すことがわかった。この結果から、曲げ弾性率が500MPaよりも大きく3000MPa以下であるエーテル結合を含む熱可塑性樹脂であることを特徴とするポリマー微粒子が効果の高いことがわかる。
 このように本発明の方法で作成された微粒子は、粒子径分布の小さい粒子が得られることや、ポリマーでの微粒子化、特に耐熱性に優れるポリマー微粒子を生産することができ、また安定的な生産方法であることから、工業生産の実現が容易である。これらの耐熱性微粒子の具体的用途としては、フラッシュ成形用材料、ラピッドプロトタイピング・ラピッドマニュファクチャリング用材料、プラスティックゾル用ペーストレジン、粉ブロッキング材、粉体の流動性改良材、潤滑剤、ゴム配合剤、研磨剤、増粘剤、濾剤および濾過助剤、ゲル化剤、凝集剤、塗料用添加剤、吸油剤、離型剤、プラスティックフィルム・シートの滑り性向上剤、ブロッキング防止剤、光沢調節剤、つや消し仕上げ剤、光拡散剤、表面高硬度向上剤、靭性向上材等の各種改質剤、液晶表示装置用スペーサー、クロマトグラフィー用充填材、化粧品ファンデーション用基材・添加剤、マイクロカプセル用助剤、ドラッグデリバリーシステム・診断薬などの医療用材料、香料・農薬の保持剤、化学反応用触媒およびその担持体、ガス吸着剤、セラミック加工用焼結材、測定・分析用の標準粒子、食品工業分野用の粒子、粉体塗料用材料、電子写真現像用トナーに用いることができる。本方法は、これら有望材料を製造する技術として、高い利用可能性を有する。

Claims (19)

  1.  ポリマーAとポリマーBと有機溶媒とを溶解混合した際に、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系において、エマルションを形成させた後、ポリマーAの貧溶媒を接触させて、ポリマーAを析出させるポリマー微粒子の製造方法において、エマルションの形成を100℃以上の温度で実施することを特徴とするポリマー微粒子の製造方法。
  2.  ポリマーAが100℃以上の融点を有する結晶性熱可塑性樹脂であることを特徴とする、請求項1に記載のポリマー微粒子の製造方法。
  3.  ポリマーAがその分子主鎖骨格中にアミド単位、エステル単位、スルフィド単位、炭酸エステル単位の中から選ばれる構造単位を少なくとも一つ含む結晶性熱可塑性樹脂であることを特徴とする、請求項1または2に記載のポリマー微粒子の製造方法。
  4.  ポリマーAが、ポリアミド類、ポリエステル類、ポリフェニレンスルフィド類から選択される結晶性熱可塑性樹脂である、請求項1から3のいずれかに記載のポリマー微粒子の製造方法。
  5.  ポリマーBのSP値が20(J/cm1/2以上であることを特徴とする、請求項1から4のいずれかに記載のポリマー微粒子の製造方法。
  6.  ポリマーBの25℃における水への溶解度が1g/100g以上であることを特徴とする、請求項1から5のいずれかに記載のポリマー微粒子の製造方法。
  7.  ポリマーBが、その分子骨格中に水酸基、エーテル基、アミド基、カルボキシル基を有することを特徴とする、請求項1から6のいずれかに記載のポリマー微粒子の製造方法。
  8.  ポリマーBが、ポリビニルアルコール類、ヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸のいずれかであることを特徴とする、請求項1から7のいずれかに記載のポリマー微粒子の製造方法。
  9.  ポリマーBが、ポリビニルアルコール類であり、ポリビニルアルコール中の酢酸ナトリウム含量が、0.1質量%以下であることを特徴とする、請求項1から8のいずれかに記載のポリマー微粒子の製造方法。
  10.  ポリマーBが、ポリビニルアルコール類であり、エマルション形成時に系中に酸化合物を添加することを特徴とする、請求項1から8のいずれかに記載のポリマー微粒子の製造方法。
  11.  添加する酸化合物が、第1解離指数(pKa1)が4.5以下の酸であり、分解温度が貧溶媒の沸点以上であることを特徴とする、請求項10記載のポリマー微粒子の製造方法。
  12.  添加する酸化合物が、クエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸から選ばれる1種以上であることを特徴とする、請求項10または11に記載のポリマー微粒子の製造方法。
  13.  有機溶媒のSP値が20(J/cm1/2以上で沸点が100℃以上であることを特徴とする、請求項1から12のいずれかに記載のポリマー微粒子の製造方法。
  14.  有機溶媒が、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノンから選ばれる1種以上であることを特徴とする、請求項1から13のいずれかに記載のポリマー微粒子の製造方法。
  15.  エマルション形成後、ポリマーを析出させるため、貧溶媒を接触させる温度がポリマーAの降温結晶化温度以上の温度であることを特徴とする、請求項1から14のいずれかに記載のポリマー微粒子の製造方法。
  16.  ポリマーAを析出させた後に、固液分離をし、ポリマーA微粒子を除いた、ポリマーB成分を含む溶液から、貧溶媒を除去し、得られた溶液に、再度、ポリマーAを加えて、ポリマーAを主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系を形成させ、有機溶媒およびポリマーBを再利用することを特徴とする、請求項1から15のいずれかに記載のポリマー微粒子の製造方法。
  17.  請求項1から16のいずれかの方法により製造されたポリマー微粒子。
  18.  曲げ弾性率が500MPaよりも大きく3000MPa以下であるエーテル結合を含む熱可塑性樹脂であることを特徴とするポリマー微粒子。
  19.  平均粒子径が1μm~100μmであることを特徴とする請求項18記載のポリマー微粒子。
PCT/JP2011/071954 2010-09-28 2011-09-27 ポリマー微粒子およびその製造方法 WO2012043509A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
KR1020137009296A KR101833577B1 (ko) 2010-09-28 2011-09-27 중합체 미립자의 제조 방법
EP11829062.6A EP2623542B1 (en) 2010-09-28 2011-09-27 Polymer microparticles and process for production thereof
CN201180046425.0A CN103140540B (zh) 2010-09-28 2011-09-27 聚合物微粒的制造方法
US13/876,375 US9080048B2 (en) 2010-09-28 2011-09-27 Polymer microparticles and process for production thereof
JP2011543028A JP5403065B2 (ja) 2010-09-28 2011-09-27 ポリマー微粒子の製造方法
JP2012067571A JP5541586B2 (ja) 2011-09-27 2012-03-23 ポリアミド1010樹脂粒子およびその製造方法
US14/345,448 US9617395B2 (en) 2011-09-27 2012-07-11 Polyamide 1010 polymer particles and method for producing same
PCT/JP2012/067693 WO2013046860A1 (ja) 2011-09-27 2012-07-11 ポリアミド1010樹脂粒子およびその製造方法
BR112014007130-6A BR112014007130A2 (pt) 2011-09-27 2012-07-11 partículas de polímero e método para produção
KR1020147003389A KR20140080478A (ko) 2011-09-27 2012-07-11 폴리아미드 1010 수지입자 및 그 제조 방법
EP12837041.8A EP2743290A4 (en) 2011-09-27 2012-07-11 POLYAMIDE RESIN PARTICLES 1010 AND METHOD FOR PRODUCING THE SAME
AU2012313453A AU2012313453A1 (en) 2011-09-27 2012-07-11 Polyamide 1010 resin particles and method for producing same
CN201280041329.1A CN103748143B (zh) 2011-09-27 2012-07-11 聚酰胺1010树脂粒子及其制造方法
TW101135208A TWI527846B (zh) 2011-09-27 2012-09-26 聚醯胺1010樹脂粒子及其製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010217158 2010-09-28
JP2010-217158 2010-09-28
JP2011060298 2011-03-18
JP2011-060298 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012043509A1 true WO2012043509A1 (ja) 2012-04-05

Family

ID=45892950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071954 WO2012043509A1 (ja) 2010-09-28 2011-09-27 ポリマー微粒子およびその製造方法

Country Status (7)

Country Link
US (1) US9080048B2 (ja)
EP (1) EP2623542B1 (ja)
JP (2) JP5403065B2 (ja)
KR (1) KR101833577B1 (ja)
CN (2) CN103140540B (ja)
TW (1) TWI472560B (ja)
WO (1) WO2012043509A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131146A (zh) * 2013-03-29 2013-06-05 威海联桥新材料科技股份有限公司 增强阻燃聚对苯二甲酸丁二醇酯/聚对苯二甲酰己二胺合金材料及其生产方法
JP2014043566A (ja) * 2012-07-31 2014-03-13 Toray Ind Inc ポリ乳酸系樹脂微粒子およびそれを用いてなる分散液、ならびにポリ乳酸系樹脂微粒子の製造方法
WO2014112475A1 (ja) 2013-01-21 2014-07-24 東レ株式会社 導電性微粒子
WO2015019965A1 (ja) 2013-08-07 2015-02-12 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2015110756A (ja) * 2013-10-28 2015-06-18 Dic株式会社 ポリアリーレンスルフィド樹脂微多孔質微粒子およびその製造方法
WO2015098654A1 (ja) * 2013-12-25 2015-07-02 東レ株式会社 ポリフェニレンサルファイド微粒子
JP2015531813A (ja) * 2012-09-12 2015-11-05 ヴァルレック オイル アンド ガスフランス 発がん性、突然変異性、または生殖毒性物質を含まない、ポリアミド−イミドの安定な水性分散液を調製するプロセスと、塗膜への応用
JP2015199875A (ja) * 2014-04-09 2015-11-12 旭化成イーマテリアルズ株式会社 ポリフェニレンスルフィド微粒子、ポリフェニレンスルフィド微粒子分散液及びポリフェニレンスルフィド微粒子の製造方法
JP5904209B2 (ja) * 2012-08-30 2016-04-13 東レ株式会社 フッ化ビニリデン樹脂微粒子の製造方法、およびフッ化ビニリデン樹脂微粒子
WO2016104140A1 (ja) * 2014-12-24 2016-06-30 東レ株式会社 ポリアミド微粒子
CN105790144A (zh) * 2016-05-19 2016-07-20 国家电网公司 一种便携式安全带专用固定装置
CN105921464A (zh) * 2016-05-19 2016-09-07 国家电网公司 变电站屏柜清扫工具
JPWO2014192607A1 (ja) * 2013-05-31 2017-02-23 東レ株式会社 エチレン−ビニルアルコール系共重合体微粒子およびそれを含有する分散液と樹脂組成物並びにその微粒子の製造方法
WO2021132091A1 (ja) 2019-12-23 2021-07-01 東レ株式会社 熱硬化性樹脂組成物、熱硬化性樹脂硬化物、プリプレグ及び繊維強化複合材料
WO2022181634A1 (ja) 2021-02-25 2022-09-01 東レ株式会社 樹脂粉粒体を用いた3次元造形物の製造方法、3次元造形物、並びに樹脂粉粒体

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017812B2 (en) 2011-01-31 2015-04-28 Toray Industries, Inc. Process of producing polylactic acid-based resin microparticles, polylactic acid-based resin microparticles and cosmetics
WO2012128136A1 (ja) * 2011-03-18 2012-09-27 東レ株式会社 積層フィルムおよびその製造方法
JP5541586B2 (ja) * 2011-09-27 2014-07-09 東レ株式会社 ポリアミド1010樹脂粒子およびその製造方法
US9567443B2 (en) * 2012-01-30 2017-02-14 Toray Industries, Inc. Method of producing polycarbonate-based polymer microparticles comprising contacting an emulsion with a poor solvent, and polycarbonate-based polymer microparticles
JP6369156B2 (ja) * 2013-08-09 2018-08-08 三菱ケミカル株式会社 リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
AU2014256431A1 (en) 2013-11-05 2015-05-21 Evonik Fibres Gmbh Process for preparing polymer powder
CN103932989B (zh) * 2014-02-24 2016-08-17 北京化工大学常州先进材料研究院 一种制备药用辅料Eudragit RL100聚合物微粒的方法
US9988501B2 (en) * 2014-06-09 2018-06-05 Toray Industries, Inc. Method of producing polymer microparticles
KR20180108575A (ko) * 2016-01-26 2018-10-04 도레이 카부시키가이샤 에지 라이트형 백라이트용 반사 필름 및 그것을 사용한 액정 디스플레이용 백라이트
CN105801885A (zh) * 2016-04-12 2016-07-27 四川理工学院 一种聚苯硫醚树脂微粒的制造方法
US11078338B2 (en) 2016-07-22 2021-08-03 Sekisui Plastics Co., Ltd. Generally spherical resin particles formed of thermoplastic resin, method for producing same and use of same
CN110461912B (zh) * 2017-03-31 2022-11-01 积水化成品工业株式会社 球状聚酯类树脂粒子及其制造方法
JP7005967B2 (ja) * 2017-07-03 2022-01-24 大日本印刷株式会社 Ledモジュール
JP6977338B2 (ja) * 2017-07-03 2021-12-08 大日本印刷株式会社 Ledモジュール
EP3878893A4 (en) * 2018-11-09 2022-09-07 Toray Industries, Inc. MANUFACTURING PROCESSES FOR POLYAMIDE FINE PARTICLES AND POLYAMIDE FINE PARTICLES
CN109822428B (zh) * 2019-03-29 2024-05-14 湖南科技大学 主动控制剪切作用与温度诱导梯度增稠抛光加工装置
CN112098408B (zh) * 2020-09-14 2022-12-09 湖北亿纬动力有限公司 一种羧甲基纤维素钠溶解效果的检测方法及应用
KR20230112617A (ko) * 2020-11-30 2023-07-27 도레이 카부시키가이샤 폴리아미드 미립자, 및 그 제조 방법
CN116003669A (zh) * 2021-10-21 2023-04-25 中国石油化工股份有限公司 抗凝胶性优异的聚乙烯醇
CN117229788A (zh) * 2023-09-15 2023-12-15 深圳市荣强科技有限公司 一种低温条件下稳定性优良的乳化表面活性剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239540A (ja) 1991-01-22 1992-08-27 Toray Ind Inc 液晶ディスプレイ反射板用白色ポリエステルフイルム
JPH06305019A (ja) 1993-04-22 1994-11-01 Toray Ind Inc 二軸配向ポリフェニレンスルフィドフイルム
JPH09165457A (ja) * 1995-12-13 1997-06-24 Nippon Synthetic Chem Ind Co Ltd:The 樹脂微粒子の製造法
JPH10504045A (ja) * 1992-09-03 1998-04-14 インディゴ ナムローゼ フェンノートシャップ 球状粒子の製造方法
JP2004330727A (ja) 2003-05-12 2004-11-25 Teijin Dupont Films Japan Ltd 積層ポリエステルフィルム
WO2009142231A1 (ja) * 2008-05-21 2009-11-26 東レ株式会社 ポリマー微粒子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574669A (en) 1968-07-22 1971-04-13 American Can Co Nonblocking coated sheet material
EP0309527B1 (en) 1987-04-16 1993-01-20 Christian Bindschaedler Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase and process for preparing a dispersion of the powdered polymer
JPH11302568A (ja) * 1998-04-16 1999-11-02 Nippon Paint Co Ltd 球形熱硬化性粉体塗料粒子の製造方法、球形熱硬化性粉体塗料粒子、複層塗膜形成方法及びそれから得られる複層塗膜
JP2001081130A (ja) * 1999-09-20 2001-03-27 Unitika Ltd ポリビニルアルコール系重合体の製造方法
JP2007260863A (ja) * 2006-03-29 2007-10-11 Toray Monofilament Co Ltd ガラス研磨ブラシ用毛材およびガラス研磨ブラシ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239540A (ja) 1991-01-22 1992-08-27 Toray Ind Inc 液晶ディスプレイ反射板用白色ポリエステルフイルム
JPH10504045A (ja) * 1992-09-03 1998-04-14 インディゴ ナムローゼ フェンノートシャップ 球状粒子の製造方法
JPH06305019A (ja) 1993-04-22 1994-11-01 Toray Ind Inc 二軸配向ポリフェニレンスルフィドフイルム
JPH09165457A (ja) * 1995-12-13 1997-06-24 Nippon Synthetic Chem Ind Co Ltd:The 樹脂微粒子の製造法
JP2004330727A (ja) 2003-05-12 2004-11-25 Teijin Dupont Films Japan Ltd 積層ポリエステルフィルム
WO2009142231A1 (ja) * 2008-05-21 2009-11-26 東レ株式会社 ポリマー微粒子の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Chemical Handbook", 1984, MARUZEN CO., LTD.
HIDEKI YAMAMOTO: "SP value, base, application and calculation method", 31 March 2005, JOHOKIKO CO., LTD.
J. BRAND: "Polymer Handbook", 1998, WILEY
J. BRAND: "Polymer Handbook", 1998, WILEY, pages: 688 - 701
See also references of EP2623542A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043566A (ja) * 2012-07-31 2014-03-13 Toray Ind Inc ポリ乳酸系樹脂微粒子およびそれを用いてなる分散液、ならびにポリ乳酸系樹脂微粒子の製造方法
JP5904209B2 (ja) * 2012-08-30 2016-04-13 東レ株式会社 フッ化ビニリデン樹脂微粒子の製造方法、およびフッ化ビニリデン樹脂微粒子
JPWO2014034581A1 (ja) * 2012-08-30 2016-08-08 東レ株式会社 フッ化ビニリデン樹脂微粒子の製造方法、およびフッ化ビニリデン樹脂微粒子
US9920193B2 (en) 2012-08-30 2018-03-20 Toray Industries, Inc. Method for producing polyvinylidene difluoride particles, and polyvinylidene difluoride particles
JP2015531813A (ja) * 2012-09-12 2015-11-05 ヴァルレック オイル アンド ガスフランス 発がん性、突然変異性、または生殖毒性物質を含まない、ポリアミド−イミドの安定な水性分散液を調製するプロセスと、塗膜への応用
WO2014112475A1 (ja) 2013-01-21 2014-07-24 東レ株式会社 導電性微粒子
CN103131146B (zh) * 2013-03-29 2015-05-13 威海联桥新材料科技股份有限公司 增强阻燃聚对苯二甲酸丁二醇酯/聚对苯二甲酰己二胺合金材料及其生产方法
CN103131146A (zh) * 2013-03-29 2013-06-05 威海联桥新材料科技股份有限公司 增强阻燃聚对苯二甲酸丁二醇酯/聚对苯二甲酰己二胺合金材料及其生产方法
US10125252B2 (en) 2013-05-31 2018-11-13 Toray Industries, Inc. Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition containing same, and method of producing said microparticles
EP3006488A4 (en) * 2013-05-31 2017-03-15 Toray Industries, Inc. Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition including same, and method for producing said microparticles
JPWO2014192607A1 (ja) * 2013-05-31 2017-02-23 東レ株式会社 エチレン−ビニルアルコール系共重合体微粒子およびそれを含有する分散液と樹脂組成物並びにその微粒子の製造方法
US20160122528A1 (en) * 2013-08-07 2016-05-05 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2015019965A1 (ja) 2013-08-07 2015-02-12 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US9676937B2 (en) * 2013-08-07 2017-06-13 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2015110756A (ja) * 2013-10-28 2015-06-18 Dic株式会社 ポリアリーレンスルフィド樹脂微多孔質微粒子およびその製造方法
JP2017110222A (ja) * 2013-10-28 2017-06-22 Dic株式会社 ポリアリーレンスルフィド樹脂微多孔質微粒子およびその製造方法
WO2015098654A1 (ja) * 2013-12-25 2015-07-02 東レ株式会社 ポリフェニレンサルファイド微粒子
JPWO2015098654A1 (ja) * 2013-12-25 2017-03-23 東レ株式会社 ポリフェニレンサルファイド微粒子
US9777130B2 (en) 2013-12-25 2017-10-03 Toray Industries, Inc. Polyphenylene sulfide microparticles
JP2015199875A (ja) * 2014-04-09 2015-11-12 旭化成イーマテリアルズ株式会社 ポリフェニレンスルフィド微粒子、ポリフェニレンスルフィド微粒子分散液及びポリフェニレンスルフィド微粒子の製造方法
WO2016104140A1 (ja) * 2014-12-24 2016-06-30 東レ株式会社 ポリアミド微粒子
CN105921464A (zh) * 2016-05-19 2016-09-07 国家电网公司 变电站屏柜清扫工具
CN105790144A (zh) * 2016-05-19 2016-07-20 国家电网公司 一种便携式安全带专用固定装置
WO2021132091A1 (ja) 2019-12-23 2021-07-01 東レ株式会社 熱硬化性樹脂組成物、熱硬化性樹脂硬化物、プリプレグ及び繊維強化複合材料
WO2022181634A1 (ja) 2021-02-25 2022-09-01 東レ株式会社 樹脂粉粒体を用いた3次元造形物の製造方法、3次元造形物、並びに樹脂粉粒体

Also Published As

Publication number Publication date
US9080048B2 (en) 2015-07-14
JPWO2012043509A1 (ja) 2014-02-24
EP2623542A4 (en) 2014-08-20
CN104059236A (zh) 2014-09-24
TW201219459A (en) 2012-05-16
CN103140540B (zh) 2014-07-23
TWI472560B (zh) 2015-02-11
JP2014001403A (ja) 2014-01-09
EP2623542B1 (en) 2017-05-24
JP5403065B2 (ja) 2014-01-29
EP2623542A1 (en) 2013-08-07
US20130183528A1 (en) 2013-07-18
KR101833577B1 (ko) 2018-04-13
CN104059236B (zh) 2016-11-16
KR20130124306A (ko) 2013-11-13
CN103140540A (zh) 2013-06-05
JP5777675B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5777675B2 (ja) 積層フィルムおよびそれを用いてなる液晶ディスプレイ用反射板
JP5099135B2 (ja) ポリマー微粒子の製造方法
JP5648740B2 (ja) 複合ポリアミド微粒子およびその製造方法
JP5541586B2 (ja) ポリアミド1010樹脂粒子およびその製造方法
JP2013209617A (ja) ポリマー微粒子の製造方法
JP2013177532A (ja) ポリマー微粒子の製造方法
WO2015190342A1 (ja) ポリマー微粒子の製造方法
JP2013209616A (ja) ポリマー微粒子の製造方法
JP2013177533A (ja) ポリマー微粒子の製造方法
JP2016033178A (ja) ポリマー微粒子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046425.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011543028

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829062

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011829062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13876375

Country of ref document: US

Ref document number: 2011829062

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137009296

Country of ref document: KR

Kind code of ref document: A