WO2013046860A1 - ポリアミド1010樹脂粒子およびその製造方法 - Google Patents

ポリアミド1010樹脂粒子およびその製造方法 Download PDF

Info

Publication number
WO2013046860A1
WO2013046860A1 PCT/JP2012/067693 JP2012067693W WO2013046860A1 WO 2013046860 A1 WO2013046860 A1 WO 2013046860A1 JP 2012067693 W JP2012067693 W JP 2012067693W WO 2013046860 A1 WO2013046860 A1 WO 2013046860A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin
acid
polymer
resin particles
Prior art date
Application number
PCT/JP2012/067693
Other languages
English (en)
French (fr)
Inventor
斎藤真希子
竹崎宏
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/071954 external-priority patent/WO2012043509A1/ja
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to BR112014007130-6A priority Critical patent/BR112014007130A2/pt
Priority to AU2012313453A priority patent/AU2012313453A1/en
Priority to EP12837041.8A priority patent/EP2743290A4/en
Priority to US14/345,448 priority patent/US9617395B2/en
Priority to CN201280041329.1A priority patent/CN103748143B/zh
Priority to KR1020147003389A priority patent/KR20140080478A/ko
Publication of WO2013046860A1 publication Critical patent/WO2013046860A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/60Polyamides or polyester-amides
    • C08G18/603Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to polyamide 1010 resin particles and a method for producing the same, and more particularly relates to polyamide 1010 resin particles having excellent surface smoothness, spherical shape, good powder flowability, and excellent rigidity, and a method for producing the same.
  • Resin particles are particles made of resin, and generally have a wide variety of diameters ranging from several tens of nanometers to several hundreds of micrometers. Unlike polymer molded products such as films, fibers, injection-molded products, and extrusion-molded products, resin particles are used to modify and improve various materials by utilizing their large specific surface area and the structure of fine particles. ing.
  • Main applications include cosmetic modifiers, toner additives, rheology modifiers such as paints, medical diagnostic inspection agents, additives for molded products such as automotive materials and building materials.
  • cosmetic modifiers toner additives
  • rheology modifiers such as paints
  • medical diagnostic inspection agents additives for molded products
  • additives for molded products such as automotive materials and building materials.
  • it has come to be used as a raw material for rapid prototyping and rapid manufacturing, which is a technique for making a custom-made molded product in combination with a laser processing technique by utilizing the fine particle structure of resin particles.
  • the resin fine particles have more uniform characteristics such as heat resistance and solvent resistance, and particle size distribution than the present.
  • the resin fine particles have higher functionality and accuracy, such as those in form.
  • polyamide particles have been used for a long time in the cosmetics and paint fields because of their strength and moderate hygroscopic properties.
  • the raw material is biomass.
  • the movement of non-petroleum raw materials, which have been derived, is accelerating.
  • polyamide 1010 resin particles are attracting attention from the viewpoint of the functional characteristics of raw materials and the availability of raw materials.
  • Patent Document 1 proposes a method for producing polyamide resin particles by melt-kneading a polyamide resin and a water-soluble component and kneading and then removing the soluble component with water.
  • spherical particles are obtained, problems remain in powder flowability.
  • Patent Document 2 there has been proposed a method in which a polyamide resin is heated in a solvent such as alcohol and dissolved in the solvent, and the polyamide resin particles are precipitated while lowering the temperature of the solvent. It is disclosed that the obtained particles are porous, and the present situation is that further improvement techniques as functional fine particles are required in terms of powder flowability and the like (Patent Documents 2 and 3). 4).
  • Patent Document 5 has already proposed a method of obtaining resin particles by dissolving two or more kinds of resins and using an emulsion resulting from a phase separation phenomenon of a polymer solution. Further, it was necessary to improve the technology for the formation of particles of the polyamide resin which is a crystalline polymer.
  • the conventional methods for producing polyamide 1010 resin particles have problems in fluidity and slipperiness of polyamide 1010 resin particles, and the methods in which particles become porous further have problems in mechanical strength in addition to powder fluidity. There was a problem in that particle collapse occurred during use.
  • An object of the present invention is to provide polyamide 1010 resin particles having a high sphericity and a high crystallinity and excellent mechanical properties such as powder flowability and rigidity.
  • the present invention “(1) Polyamide 1010 resin particles having an average particle diameter of 1 to 100 ⁇ m, a sphericity of 80 or more, and a peak at 24 degrees at a diffraction angle 2 ⁇ by wide-angle X-ray scattering measurement, (2) The polyamide 1010 resin particles according to (1), which have peaks at 20 degrees and 24 degrees at a diffraction angle 2 ⁇ by wide-angle X-ray scattering measurement, (3) Polyamide 1010 resin particles according to (1) or (2), wherein the angle of repose of the powder is 30 ° or less, (4) The polyamide 1010 resin particles according to any one of (1) to (3), wherein the compression elastic modulus of the particles by a micro compression tester is 1.6 GPa or more, (5) The polyamide 1010 resin particles according to any one of (1) to (4), wherein the L value, which is brightness when measured with a spectroscopic colorimeter, is
  • a method for producing polyamide 1010 resin particles characterized by being carried out at the above temperature, (7)
  • the SP value of the polymer B other than the polyamide 1010 resin is 20 (J / cm 3 ) 1/2 or more, The method for producing polyamide 1010 resin particles according to (6), (8) The method for producing polyamide 1010 resin particles according to (6) or (7), wherein the polymer B other than polyamide 1010 resin has a solubility in water at 25 ° C.
  • the polymer B other than the polyamide 1010 resin has at least one of a hydroxyl group, an ether group, an amide group, and a carboxyl group in the molecular skeleton thereof, according to any one of (6) to (8)
  • a process for producing the polyamide 1010 resin particles according to claim 1, (10)
  • the polymer B other than the polyamide 1010 resin is any one of polyvinyl alcohols, hydroxyalkyl cellulose, polyalkylene glycol, polyvinyl pyrrolidone, water-soluble nylon, and polyacrylic acid, (6) to ( 9)
  • the polymer B other than the polyamide 1010 resin is a polyvinyl alcohol, and the sodium acetate content in the polyvinyl alcohol is 0.1% by mass or less, wherein any of (6) to (10) A process for producing the polyamide 1010 resin particles according to claim 1, (12)
  • Production method of resin particles (13) The polyamide 1010 according to (12), wherein the acid compound to be added is an acid having a first dissociation index (pKa1) of 4.5 or less and a decomposition temperature is not less than the boiling point of a poor solvent.
  • the acid compound to be added is at least one selected from citric acid, tartaric acid, malonic acid, oxalic acid, adipic acid, maleic acid, malic acid, phthalic acid, succinic acid, and polyacrylic acid.
  • Particle manufacturing method (16) The organic solvent is at least one selected from N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and 1,3-dimethyl-2-imidazolidinone.
  • the polyamide 1010 resin is added again to form a system that separates into two phases of a solution phase mainly composed of the polyamide 1010 resin and a solution phase mainly composed of the polymer B other than the polyamide 1010 resin. And the method for producing polyamide 1010 resin particles according to any one of (6) to (17), wherein the polymer B other than the polyamide 1010 resin is reused. Is.
  • the polyamide 1010 resin particles of the present invention have a spherical shape and high crystallinity, they have excellent powder flowability and rigidity. For example, in the fields of cosmetics and paints, smooth touch and long-term quality stability are achieved. Excellent, and because of its high chemical resistance, it can be used as a lubricant additive for sliding members of engines, etc., and can maintain sliding properties for a long period of time while suppressing damage to the sliding members. It becomes an industrially useful material.
  • FIG. 1 is an X-ray measurement chart of polyamide 1010 resin particles produced in Example 1.
  • FIG. FIG. 2 is an X-ray measurement chart of polyamide 1010 resin particles produced in Example 2.
  • FIG. 3 is an X-ray measurement chart of polyamide 1010 resin particles produced in Example 3.
  • FIG. 4 is an X-ray measurement chart of the polyamide 1010 resin particles produced in Comparative Example 1.
  • FIG. 5 is an X-ray measurement chart of the polyamide 1010 resin particles produced in Comparative Example 2.
  • FIG. 6 is an X-ray measurement chart of the polyamide 1010 resin particles produced in Comparative Example 3.
  • FIG. 7 is a view showing a result of observing the polyamide 1010 resin particles produced in Example 1 with a scanning electron microscope at a magnification of 1000 times.
  • FIG. 8 is a diagram showing the results of observing the polyamide 1010 resin particles produced in Example 2 with a scanning electron microscope at a magnification of 1000 times.
  • FIG. 9 is a diagram showing the results of observing the polyamide 1010 resin particles produced in Example 3 with a scanning electron microscope at a magnification of 1000 times.
  • FIG. 10 is a view showing a result of observing the polyamide 1010 resin particles produced in Comparative Example 1 with a scanning electron microscope at a magnification of 1000 times.
  • FIG. 11 is a diagram showing the results of observing the polyamide 1010 resin particles produced in Comparative Example 2 with a scanning electron microscope at a magnification of 100 times.
  • FIG. 12 is a view showing a result of observing the polyamide 1010 resin particles produced in Comparative Example 3 with a scanning electron microscope at a magnification of 30 times.
  • the polyamide 1010 resin particles of the present invention are polyamide 1010 resin particles characterized by having an average particle diameter of 1 to 100 ⁇ m and a peak at 24 degrees at a diffraction angle 2 ⁇ by wide-angle X-ray scattering.
  • the polyamide 1010 resin particles of the present invention are particles made of polyamide 1010 resin.
  • the polyamide 1010 resin is polydecamethylene sebacamide, which is obtained by polymerizing 1,10-decanediamine, an aliphatic diamine, and sebacic acid, an aliphatic dicarboxylic acid.
  • the polyamide 1010 resin can be obtained by a conventionally known method. For example, melt polymerization, solution polymerization using a salt of the diamine and dicarboxylic acid as a raw material, and solid phase polymerization using a low molecular weight polyamide 1010 as a raw material. Can be obtained.
  • the raw materials decanediamine and sebacic acid are obtained by chemical conversion from petroleum-derived raw materials and biomass-derived raw materials, but in the present invention, there is no particular limitation, and it is a biomass-derived raw material from the viewpoint of protecting the global environment. preferable.
  • the degree of polymerization of the polyamide 1010 resin is not particularly limited, but from the viewpoint of the rigidity of the resin particles obtained, the lower limit of the weight average molecular weight is 1,000 or more, preferably 5,000 or more. Preferably, it is 10,000 or more, more preferably 12,000 or more, and particularly preferably 15,000 or more. Further, the upper limit is 1,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less, still more preferably 50,000 or less, particularly preferably. 30,000 or less.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent and converted to polymethyl methacrylate.
  • the average particle diameter of the polyamide 1010 resin particles in the present invention is in the range of 1 ⁇ m to 100 ⁇ m, and the preferable upper limit is 80 ⁇ m or less, more preferably 60 ⁇ m or less, and still more preferably 50 ⁇ m or less. And particularly preferably 30 ⁇ m or less. Further, the lower limit is 1.0 ⁇ m or more, preferably more than 1.0 ⁇ m, more preferably more than 5 ⁇ m, still more preferably more than 5 ⁇ m, particularly preferably more than 10 ⁇ m, and extremely preferably. Is greater than 10 ⁇ m.
  • the average particle diameter of the polyamide 1010 resin particles of the present invention is calculated by specifying an arbitrary 100 particle diameters from a scanning electron micrograph and calculating the arithmetic average thereof.
  • the maximum particle diameter is defined as the particle diameter.
  • the particle size is measured at a magnification of at least 500 times or more, preferably 1000 times or more.
  • the polyamide 1010 resin particles of the present invention preferably have a narrow particle size distribution.
  • the particle size distribution can be represented by a particle size distribution index in Equation (2) described later.
  • the particle size distribution index of the polyamide 1010 resin particles of the present invention is 3 or less, preferably 2.5 or less, more preferably 2.0 or less, still more preferably 1.8 or less, Particularly preferably, it is 1.5 or less, and particularly preferably 1.3 or less. There is no particular lower limit, but theoretically the lower limit is 1 or more.
  • the polyamide 1010 resin particles of the present invention are characterized by a high sphericity, and since the sphericity is high, it is considered that good fluidity is expressed.
  • the sphericity in the present invention can be expressed by a value calculated by measuring the short diameter and long diameter of any 30 particles from a scanning electron micrograph and following the following mathematical formula (1), and is close to 100 It can be said that the sphericity is high.
  • n 30 measurements.
  • the sphericity of the polyamide 1010 resin particles of the present invention is 80 or more, preferably 85 or more, more preferably 90 or more, and still more preferably 95 or more.
  • the preferable upper limit is 100 or less, but even if it is usually 90 or less, sufficient effects such as improvement of slipperiness and smooth texture can be obtained.
  • the sphericity is less than 80, the sphere becomes nearly elliptical and a smooth tactile sensation cannot be obtained.
  • the polyamide 1010 resin particles in the present invention are characterized by extremely high crystallinity, and from this characteristic, the elastic modulus of the resin particles is higher than that of the conventional one.
  • the degree of crystallinity can be determined by performing powder X-ray measurement, and the polyamide 1010 resin particles of the present invention are used in wide-angle X-ray scattering measurement using K ⁇ rays of copper atoms (Cu). At the diffraction angle 2 ⁇ , there are peaks at characteristic 20 degrees and 24 degrees.
  • the peak at 24 degrees at the diffraction angle 2 ⁇ by wide-angle X-ray scattering is a peculiar peak observed when the crystal structure of the polyamide 1010 resin is developed, and the polyamide 1010 resin particles have the peak. Yes.
  • the polyamide 1010 resin particles of the present invention have a high sphericity as a shape in spite of a developed crystal structure, so that the fluidity is good and the angle of repose of the powder is low. It has both characteristics.
  • the angle of repose of the powder formed from the polyamide 1010 resin particles of the present invention is 30 ° or less, preferably 25 ° or less, more preferably 20 ° or less, and further preferably 15 ° or less. It is. Although there is no particular lower limit of the angle of repose, it is over 0 °.
  • the polyamide 1010 resin particles of the present invention are characterized by high mechanical strength and high elastic modulus because of their high crystallinity.
  • the elastic modulus of the polyamide 1010 resin particles in the present invention is 1.6 GPa or more, preferably 1.7 GPa or more, more preferably 1.8 GPa or more, and further preferably 1.9 GPa or more. Especially preferably, it is 2.0 GPa or more.
  • the elastic modulus of the particulate matter can be calculated by using Hertz's theory of elasticity using a micro compression tester manufactured by Shimadzu Corporation.
  • Such a high elastic modulus expands the range of application to sliding members and the like, making it a useful material as resin fine particles.
  • the reflection of light also occurs due to the crystal structure inside the particles in addition to the reflection at the particle interface. It is characterized in that the L value representing the lightness when measured increases.
  • the L value representing lightness is preferably 70 or more, more preferably 80 or more, and particularly preferably 85 or more.
  • a preferable upper limit of the L value is 100.
  • the polyamide 1010 resin particles of the present invention are characterized by having a smooth spherical shape.
  • the surface smoothness as used herein can be quantified by measuring the number of irregularities that can be visually judged from a photograph of the surface of the particles obtained by morphological observation using a scanning electron micrograph.
  • the number is preferably 20 or less per particle, and more preferably 10 or less.
  • the surface smoothness is determined by an average value of 30 irregularities observed in an arbitrary particle in an area observed at a magnification of 1000 to 5000 times in a scanning electron micrograph.
  • polyamide 1010 resin solution a solution phase containing polyamide 1010 resin as a main component
  • polyamide 1010 resin solution a solution phase mainly composed of polymer B other than polyamide 1010 resin
  • polymer B solution phase a solution phase mainly composed of polymer B other than polyamide 1010 resin
  • Examples of the polymer B other than the polyamide 1010 resin in the present invention include a thermoplastic resin and a thermosetting resin, but are thermoplastic from the viewpoint that they can be dissolved to form a solution phase and can easily be separated into two phases. Since the resin is preferable and it is easy to obtain a state of being separated into two phases, the polymer B other than the polyamide 1010 resin in the present invention preferably has an SP value of 20 (J / cm 3 ) 1/2 or more.
  • the SP value of the polymer B other than the polyamide 1010 resin is preferably 21 (J / cm 3 ) 1/2 or more, more preferably 23 (J / cm 3 ) 1/2 or more, and further preferably 25 ( J / cm 3 ) 1/2 or more, particularly preferably 28 (J / cm 3 ) 1/2 or more, and very preferably 30 (J / cm 3 ) 1/2 or more.
  • the upper limit of the difference in SP value is preferably 20 (J / cm 3 ) 1/2 or less. More preferably, it is 15 (J / cm 3 ) 1/2 or less, and further preferably 10 (J / cm 3 ) 1/2 or less.
  • the SP value is calculated based on the Fedor's estimation method, and is calculated based on the cohesive energy density and the molar molecular volume (hereinafter also referred to as a calculation method).
  • SP Value Basic / Application and Calculation Method
  • the SP value is calculated by an experimental method by determining whether or not the solubility parameter is dissolved in a known solvent (hereinafter also referred to as an experimental method), and is used instead.
  • the polymer B other than the polyamide 1010 resin preferably has a high affinity with a poor solvent described later, and the affinity index can be determined by the solubility in water.
  • the solubility of polymer B other than polyamide 1010 resin in water at 25 ° C. is defined as 1 g / 100 g when 1 g is dissolved in 100 g of water, it is preferably 1 g / 100 g or more, more preferably It is 2g / 100g or more, More preferably, it is 5g / 100g or more, Especially preferably, it is 10g / 100g or more, Most preferably, it is 15g / 100g or more. If it is this range, affinity with the poor solvent mentioned later is high, and it functions advantageously in this polyamide 1010 resin particle manufacturing method.
  • polymer B polymer other than the polyamide 1010 resin examples include those having at least one of a hydroxyl group, an ether group, an amide group, and a carboxyl group in the molecular skeleton.
  • those having a hydroxyl group in the molecular skeleton include polyvinyl alcohols (fully saponified and partially saponified poly (vinyl alcohol), completely saponified).
  • Poly (vinyl alcohol-ethylene) copolymers such as poly (vinyl alcohol-ethylene) copolymers, poly (vinyl alcohol-ethylene) copolymers, poly (paravinylphenol), maltose, cellobiose, lactose, sucrose, etc.
  • Disaccharides, cellulose and derivatives thereof (hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose, etc.), cellulose, methylcellulose, ethylcellulose, carboxymethylethylcellulose, carboxymethylcellulose , Sodium carboxymethylcellulose, cellulose ester, chitosan, etc.), amylose and derivatives thereof, starch and derivatives thereof, polysaccharides or derivatives thereof such as dextrin, cyclodextrin, sodium alginate and derivatives thereof, gelatin, casein, collagen, albumin, fibroin , Keratin, fibrin, carrageenan, chondroitin sulfate, gum arabic, agar, protein, etc., and those having an ether group in the molecular skeleton include polyalkylene glycol, sucrose fatty acid ester, poly (oxyethylene fatty acid ester) , Poly (oxyethylene laurin fatty acid ester), poly (
  • polystyrene sulfonic acid sodium polystyrene sulfonate
  • polyvinyl pyrrolidinium chloride poly (styrene-maleic acid) Copolymer
  • polyallylamine poly Synthetic resins such as (oxyethyleneamine), poly (vinylpyridine), polyaminosulfone, and polyethyleneimine
  • Synthetic resins such as (oxyethyleneamine), poly (vinylpyridine), polyaminosulfone, and polyethyleneimine
  • polyvinyl alcohols (fully saponified or partially saponified poly (vinyl alcohol), poly (vinyl alcohol-ethylene) such as fully saponified or partially saponified poly (vinyl alcohol-ethylene) copolymers, etc. Ethylene) copolymers), cellulose derivatives (carboxymethylcellulose, hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose), methylcellulose, ethylcellulose, carboxymethylethylcellulose, carboxymethylcellulose, carboxymethylcellulose sodium, cellulose ester, etc.
  • Polyalkylene glycol sucrose fatty acid ester, poly (oxyethylene alkylphenyl ether), poly (oxyalkyl ether) ), Polyvinylpyrrolidone, water-soluble nylon, polyacrylic acid, polymethacrylic acid, and more preferably poly (vinyl alcohol) s (fully saponified or partially saponified poly (vinyl alcohol), completely saponified And partially saponified poly (vinyl alcohol-ethylene) copolymers such as poly (vinyl alcohol-ethylene) copolymers), cellulose derivatives (carboxymethylcellulose, hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, ethyl) Hydroxyethylcellulose), methylcellulose, ethylcellulose, carboxymethylethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, cellulose ester, etc.), polyalkylene glycol, poly Vinylpyrrolidone, water-soluble nylon, and polyacrylic acid, particularly preferably, polyvinyl
  • polyvinyl alcohols are most preferably used. More specifically, polyvinyl alcohols refer to polymers having the structure of the following general formula (1) in the molecule.
  • Poly (vinyl alcohol) may be completely saponified or partially saponified poly (vinyl alcohol), sometimes simply referred to as polyvinyl alcohol), poly (vinyl alcohol-ethylene) copolymer (completely Saponified or partially saponified poly (vinyl alcohol-ethylene) copolymer may be used), and polyvinyl alcohol is preferred from the viewpoint of solubility.
  • the molecular weight of the polymer B other than the polyamide 1010 resin is preferably 1,000 to 100,000,000, more preferably 1,000 to 10,000,000, and still more preferably 5,000 in terms of weight average molecular weight. To 1,000,000, particularly preferably in the range of 10,000 to 500,000, and most preferably in the range of 10,000 to 100,000.
  • the weight average molecular weight refers to a weight average molecular weight measured by gel permeation chromatography (GPC) using water as a solvent and converted into polyethylene glycol.
  • dimethylformamide is used. If it cannot be measured, tetrahydrofuran is used. If it cannot be measured, hexafluoroisopropanol is used.
  • Polyvinyl alcohols are generally polymerized using vinyl acetate as a raw material and then hydrolyzed under alkaline conditions to produce polyvinyl alcohol, in which some sodium acetate remains as an impurity. It is usual to carry out, and it is normal that about 0.2 mass% is contained also in a commercial item.
  • sodium acetate contained in the polyvinyl alcohol has some influence, and when the emulsion is formed by dissolving and mixing in the polyamide 1010 resin and an organic solvent to form an emulsion, fine particles are colored when the temperature is 100 ° C. or higher. Or the polyvinyl alcohol deteriorates and the recyclability deteriorates.
  • the amount of sodium acetate present in the system for forming the emulsion is reduced. It is preferable to make it. As a method for this purpose, it is preferable to use polyvinyl alcohol having a low sodium acetate content.
  • the amount of sodium acetate in the polyvinyl alcohol used is 0.1 parts by mass or less, preferably 0.05 parts by mass or less, more preferably 0.01 parts by mass or less with respect to 100 parts by mass of polyvinyl alcohol. It is.
  • a preferable minimum is 0 mass part.
  • polyvinyl alcohols having a low sodium acetate content for example, a method of washing with an organic solvent such as methanol or ethanol, or a method of regenerating by dissolving in water or the like and then precipitating in a poor solvent for polyvinyl alcohols.
  • a precipitation method for example, a precipitation method, an ultrafiltration method, a method of removing with an ion exchange resin, an ion exchange carrier, and the like.
  • a method of adding an acid compound to a system for forming an emulsion can be mentioned. Thereby, it can be made the state which does not contain sodium acetate substantially.
  • Examples of the acid compound used in the present invention include formic acid, acetic acid, valeric acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, acrylic acid, methacrylic acid, crotonic acid, oxalic acid, malonic acid, fumaric acid, maleic acid , Glutaric acid, adipic acid, sebacic acid, pyruvic acid, succinic acid, polyacrylic acid and other aliphatic carboxylic acids, lactic acid, glycolic acid, L-ascorbic acid, erythorbic acid, malic acid, shikimic acid, citric acid, hydrosuccinic acid Hydroxyl group-containing carboxylic acid such as tartaric acid, benzoic acid, 2-fluorobenzoic acid and its positional isomer, 2-chlorobenzoic acid and its positional isomer, 2-bromobenzoic acid and its positional isomer, 2-nitrobenzoic
  • These acid compounds may be added at any stage in the production process described below before heating for emulsion formation starts, or may be used in advance in the raw material. .
  • the addition amount of the acid compound is preferably in the range of 0.1 to 10 times the molar ratio of the acid functional group to the sodium acetate contained in the polyvinyl alcohol used, more preferably The range is 0.2 to 8 times mol, and more preferably 0.3 to 5 times mol.
  • the crosslinking of the polyvinyl alcohol proceeds and the micronization process
  • the particle size controllability tends to deteriorate.
  • the particle size controllability after the second time tends to deteriorate.
  • the color change of the fine particles tends to occur due to a change in color tone presumed to be due to oxidation of polyvinyl alcohols.
  • the molar ratio of the acid functional group is too large, there is a tendency that oxidation, decomposition, crosslinking, etc. of polyvinyl alcohols occur due to the influence of the acid.
  • an acid compound having a first dissociation index (pKa1) of 4.5 or less is preferably used.
  • the acid compound used preferably has a heat resistant temperature of 100 ° C. or higher.
  • the heat resistant temperature refers to the decomposition temperature of the acid compound.
  • examples of those having a heat resistant temperature of 100 ° C. or more and pKa1 of 4.5 or less include L-ascorbic acid, erythorbic acid, lactic acid, malic acid, fumaric acid, phthalic acid, tartaric acid, formic acid, citric acid. Acid, glycolic acid, salicylic acid, maleic acid, malonic acid, glutaric acid, oxalic acid, adipic acid, succinic acid, hydrosuccinic acid, polyacrylic acid, glutamic acid, aspartic acid, arginine, ornithine, sarcosine, cysteine, serine, tyrosine, etc.
  • Inorganic acids such as amino acids, hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, pyrophosphoric acid, tripolyphosphoric acid can be used.
  • citric acid, tartaric acid, malonic acid, oxalic acid, adipic acid, maleic acid, malic acid, phthalic acid, succinic acid, and polyacrylic acid can be preferably used.
  • pKa is an acid dissociation index at 25 ° C., and indicates a logarithmic value of the reciprocal of the dissociation constant of an acid compound in an aqueous solution.
  • the pKa value of acid compounds can be referred to in the chemical handbook (revised 3 edition, chemical handbook, basic edition, edition of the Chemical Society of Japan, published by Maruzen Co., Ltd., published in 1984).
  • the pKa value is preferably the one described in the chemical handbook among the above two methods from the viewpoint of convenience.
  • the organic solvent that dissolves the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin is an organic solvent that can dissolve the polymer B other than the polyamide 1010 resin and the polyamide 1010 resin to be used, depending on the type of each polymer. Selected.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, n-decane, n-dodecane, n-tridecane, cyclohexane and cyclopentane, and aromatic carbonization such as benzene, toluene and xylene.
  • Hydrogen solvents such as ethyl acetate and methyl acetate, halogenated hydrocarbons such as chloroform, bromoform, methylene chloride, 1-2-dichloroethane, 1,1,1-trichloroethane, chlorobenzene and 2,6-dichlorotoluene Solvents, acetone solvents such as methyl ethyl ketone, methyl isobutyl ketone and methyl butyl ketone, alcohol solvents such as methanol, ethanol and 1-propanol-2-propanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylform Aprotic polar solvents such as amide, N, N-dimethylacetamide, propylene carbonate, trimethyl phosphoric acid, 1,3-dimethyl-2-imidazolidinone, sulfolane, and carboxyls such as formic acid, acetic solvents such as
  • the SP value is 20 (J / cm 3 ) 1/2 or more.
  • the SP value here is described on pages 688-701 in “Polymer Handbook Fourth Edition” by J. Brand, published by Wiley 1998). It means a certain value.
  • the calculation is based on Fedor's estimation method. This calculation is based on the cohesive energy density and molar molecular volume (hereinafter also referred to as solvent SP value calculation method) ("SP value basics / application and calculation method" by Hideki Yamamoto) , Information Organization Co., Ltd., issued March 31, 2005).
  • solvent SP value calculation method cohesive energy density and molar molecular volume
  • alcohol solvents preferred are alcohol solvents, aprotic polar solvents, and carboxylic acid solvents that are water-soluble solvents, and aprotic polar solvents and carboxylic acid solvents are particularly preferred.
  • these solvents since emulsion formation is carried out at a high temperature of 100 ° C. or higher, these solvents also preferably have heat resistance of 100 ° C. or higher, and in particular, the boiling point at normal pressure (100 kPa) is 100 ° C. or higher.
  • the solvent whose boiling point in a normal pressure is less than 100 degreeC, it can be used by pressurizing within a pressure-resistant container.
  • N-methyl-2-pyrrolidone from the viewpoint of such circumstances, being readily available, and capable of being uniformly mixed with a solvent that can be preferably used as a poor solvent to be described later, such as water and alcohol solvents.
  • organic solvents may be used in combination of a plurality of types, or may be used as a mixture. However, particles having a relatively small particle size and a small particle size distribution can be obtained, and at the time of recycling used solvents. From the standpoint of reducing the manufacturing process load and avoiding the troublesome separation process, it is preferable to use a single organic solvent. Further, a single solvent that dissolves both the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin. The organic solvent is preferably used.
  • the poor solvent for the polyamide 1010 resin refers to a solvent that does not dissolve the polyamide 1010 resin.
  • the fact that the polyamide 1010 resin is not dissolved means that the solubility of the polyamide 1010 resin in a poor solvent is 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less. It is.
  • a poor solvent for the polyamide 1010 resin is used.
  • the poor solvent is preferably a poor solvent for the polyamide 1010 resin and a solvent that dissolves the polymer B other than the polyamide 1010 resin.
  • the polyamide 1010 resin particles can be efficiently precipitated.
  • the solvent for dissolving the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin and the poor solvent for the polyamide 1010 resin are uniformly mixed.
  • the poor solvent in the present invention varies depending on the combination of the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin.
  • an aromatic hydrocarbon solvent an aliphatic hydrocarbon solvent, an alcohol solvent, an ether solvent, and water are preferable, and an alcohol solvent is particularly preferable.
  • an alcohol solvent is particularly preferable.
  • Water and most preferably water.
  • emulsion formation is performed at a temperature of 100 ° C. or higher in the present invention, when the present invention is carried out with a solvent having a boiling point of less than 100 ° C. at normal pressure or a boiling point of 100 ° C. or higher, In the case where the emulsion is formed at a temperature equal to or higher than its boiling point, it can be used under pressure in a pressure vessel.
  • the polyamide 1010 resin is efficiently precipitated by appropriately selecting and combining the polymer B other than the polyamide 1010 resin, the organic solvent for dissolving them, and the poor solvent for the polyamide 1010 resin.
  • polyamide 1010 resin particles can be obtained.
  • the solution obtained by mixing and dissolving the polyamide 1010 resin, the polymer B other than the polyamide 1010 resin, and the organic solvent for dissolving them is a solution phase mainly composed of the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin as the main component. It is necessary to perform phase separation into two phases of a solution phase (hereinafter sometimes referred to as polymer B solution phase).
  • the organic solvent in the solution phase mainly containing the polyamide 1010 resin and the organic solvent in the solution phase mainly containing the polymer B other than the polyamide 1010 resin may be the same or different. The same solvent is preferred.
  • the conditions for generating the two-phase separation state are as follows: polyamide 1010 resin, type of polymer B other than polyamide 1010 resin, molecular weight of polymer B other than polyamide 1010 resin and polyamide 1010 resin, type of organic solvent, polyamide 1010 resin and polyamide 1010 It varies depending on the concentration of polymer B other than resin, the temperature and pressure at which the invention is to be carried out.
  • the difference in solubility parameter (hereinafter also referred to as SP value) of the polymer B other than the polyamide 1010 resin and the polyamide 1010 resin is separated.
  • the difference in SP value is 1 (J / cm 3 ) 1/2 or more, more preferably 2 (J / cm 3 ) 1/2 or more, and further preferably 3 (J / cm 3 ) 1/2 or more. Particularly preferably, it is 5 (J / cm 3 ) 1/2 or more, and very preferably 8 (J / cm 3 ) 1/2 or more.
  • the SP value is within this range, phase separation is easily performed.
  • the upper limit of the difference in SP value is preferably 20 (J / cm 3 ) 1/2 or less, more Preferably, it is 15 (J / cm 3 ) 1/2 or less, more preferably 10 (J / cm 3 ) 1/2 or less.
  • the SP value is calculated based on the Fedor's estimation method, and is calculated based on the cohesive energy density and the molar molecular volume (hereinafter also referred to as a calculation method).
  • SP Value Basic / Application and Calculation Method
  • the SP value is calculated by an experimental method by determining whether or not the solubility parameter is dissolved in a known solvent (hereinafter also referred to as an experimental method), and is used.
  • Substitute Polymer Handbook Fourth Edition” by J. Brand, published in 1998 by Wiley.
  • the phase diagram is created by determining whether or not an interface is formed when the polyamide 1010 resin, the polymer B other than the polyamide 1010 resin, and the solvent are mixed and dissolved in an arbitrary ratio and left to stand, It is preferably performed at 5 points or more, more preferably at 10 points or more, and by separating the region that separates into two phases and the region that becomes one phase, it becomes possible to determine the conditions for the phase separation state. .
  • the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin are subjected to any polyamide 1010 resin and polymer at the temperature and pressure at which the present invention is to be carried out.
  • the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin are completely dissolved, dissolved, and then sufficiently stirred and left for 3 days to macroscopically separate the phases.
  • phase separation is determined by using an optical microscope, a phase contrast microscope, or the like based on whether the phase is microscopically separated.
  • the phase separation is formed by separating a polyamide 1010 resin solution phase mainly composed of polyamide 1010 resin and a polymer B solution phase other than polyamide 1010 resin mainly composed of polyamide 1010 resin in an organic solvent.
  • the polyamide 1010 resin solution phase is a phase in which the polyamide 1010 resin is mainly distributed
  • the polymer B solution phase other than the polyamide 1010 resin mainly including the polymer B other than the polyamide 1010 resin is the polymer B other than the polyamide 1010 resin.
  • are mainly distributed phases hereinafter sometimes referred to as polymer B solution phase).
  • the polyamide 1010 resin solution phase and the polymer B solution phase seem to have a volume ratio corresponding to the type and amount of polymer B other than polyamide 1010 resin and polyamide 1010 resin.
  • the concentration of the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin with respect to the organic solvent is within a possible range that can be dissolved in the organic solvent as a concentration at which phase separation can be obtained and industrially feasible. However, it is preferably more than 1% by mass to 50% by mass, more preferably more than 1% by mass to 30% by mass, and still more preferably 2% by mass to 20% by mass, respectively. It is.
  • the interfacial tension between the two phases of the polyamide 1010 resin solution phase and the polymer B solution phase is an organic solvent, so the interfacial tension is small, and the resulting emulsion can be stably maintained due to its properties. Therefore, the particle size distribution seems to be small. In particular, when the organic solvent of the polyamide 1010 resin solution phase and the polymer B solution phase are the same, the effect is remarkable.
  • the interfacial tension between the two phases in the present invention cannot be directly measured by the hanging drop method in which a different kind of solution is added to a commonly used solution because the interfacial tension is too small.
  • the interfacial tension can be estimated by estimating from the surface tension.
  • the surface tension of each phase with air is r 1 and r 2
  • a preferable range of r 1/2 is more than 0 to 10 mN / m, more preferably more than 0 to 5 mN / m, still more preferably more than 0 to 3 mN / m, and particularly preferably. , More than 0 to 2 mN / m.
  • phase-separating system Using the phase-separating system thus obtained, the phase-separated liquid phase is mixed, emulsified, and then contacted with a poor solvent to produce polyamide 1010 resin particles.
  • a step of forming an emulsion and contacting a poor solvent in a normal reaction vessel (hereinafter, sometimes referred to as a fine particle step) is performed.
  • the temperature at which the emulsion is formed is 100 ° C. or more because of the ease of forming the emulsion in terms of industrial operation.
  • the upper limit is the temperature at which the polyamide 1010 resin and the polymer B other than the polyamide 1010 resin dissolve and undergo phase separation, and are not particularly limited as long as polyamide 1010 resin particles can be obtained, but usually in the range of 100 ° C to 300 ° C. Yes, preferably 100 ° C. to 280 ° C., more preferably 120 ° C. to 260 ° C., still more preferably 120 ° C. to 240 ° C., particularly preferably 120 ° C. to 220 ° C. Preferably, it is in the range of 120 ° C to 200 ° C.
  • the polyamide 1010 resin particles may be required to have a narrow particle size distribution from the viewpoint of improving material properties.
  • temperature control in the step of contacting the poor solvent (micronization step) following the formation of the emulsion is effective, and the temperature is usually in the range of 100 ° C to 300 ° C. Yes, preferably 100 ° C. to 280 ° C., more preferably 120 ° C. to 260 ° C., still more preferably 120 ° C. to 240 ° C., particularly preferably 120 ° C. to 220 ° C. Preferably, it is in the range of 120 ° C to 200 ° C.
  • the temperature is preferably set to the same temperature as the emulsion formation temperature because of easy management of the production process.
  • the polyamide 1010 resin particles may need to be designed in accordance with the situation of use as a material, and particularly improve the fluidity of the powder or improve the slipperiness of the powder. In order to improve the tactile sensation, control of the surface shape is important, and not only a narrow particle size distribution but also more highly spherical particles may be required.
  • the temperature of the emulsification step and the micronization step is controlled as follows to make it more true. be able to.
  • the cooling crystallization temperature refers to a crystallization temperature measured by differential scanning calorimetry (DSC method), and a temperature range from 30 ° C. to a temperature exceeding 30 ° C. above the melting point of the polymer. Is the peak top of the exothermic peak that is observed when the temperature is raised once at 20 ° C./min, held for 1 minute, and then lowered to 0 ° C. at 20 ° C./min.
  • the pressure suitable for carrying out the present invention is in the range of atmospheric pressure to 100 atm (10.1 MPa), preferably 1 atm (101.3 kPa) to 50 atm (5 0.1 MPa), more preferably 1 atm (101.3 kPa) to 30 atm (3.0 MPa), particularly preferably 1 atm (101.3 kPa) to 20 atm (2.0 MPa). is there.
  • the micronization in the present invention is a high temperature region and may be under high pressure in some cases, it is easy to promote the thermal decomposition of the polyamide 1010 resin, the polymer B other than the polyamide 1010 resin and the organic solvent, It is preferable that the oxygen concentration be as low as possible.
  • the oxygen concentration in the atmosphere of the reaction tank is preferably 5% by volume or less, more preferably 1% by volume or less, more preferably 0.1% by volume or less, and still more preferably 0.01% by volume or less. Especially preferably, it is 0.001 volume% or less.
  • the oxygen concentration is theoretically calculated from the volume in the reaction vessel, the oxygen volume concentration of the inert gas, the replacement pressure in the vessel, and the number of times. To do.
  • an inert gas for the reaction tank.
  • nitrogen, helium, argon, and carbon dioxide are preferable, and nitrogen and argon are preferable.
  • an antioxidant may be used as an additive from the viewpoint of preventing oxidative deterioration of the raw material used for atomization.
  • Antioxidants are added for the purpose of scavenging radicals, so phenol-based antioxidants, sulfur-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, etc. Can be mentioned.
  • antioxidants include phenol, hydroquinone, p-methoxyphenol, benzoquinone, 1,2-naphthoquinone, cresol soot, catechol, benzoic acid, hydroxybenzoic acid, salicylic acid, hydroxybenzenesulfonic acid, 2,5-di -T-butylhydroquinone, 6-t-butyl -m-cresol, 2,6-di-t-butyl -p-cresol, 4-t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, -T-butylhydroquinone, 2-t-butyl -4-methoxyphenol and the like.
  • the concentration of the antioxidant is not particularly limited, but is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the mass of the polymer B other than the polyamide 1010 resin, and 0.05 to Most preferred is 3% by weight.
  • an emulsion is formed by mixing the phase separation system state. That is, an emulsion is formed by applying a shearing force to the phase separation solution obtained above.
  • the fine particles obtained by the production method as described above become fine particles having a very small particle size distribution. This is because the emulsion formation is carried out at a high temperature, and a more uniform emulsion can be obtained as compared with the case where it is not. Because.
  • stirring by a conventionally known method, such as a liquid phase stirring method using a stirring blade, a stirring method using a continuous biaxial mixer, or a homogenizer. They can be mixed by a generally known method such as a mixing method or ultrasonic irradiation.
  • the stirring speed is preferably 50 rpm to 1,200 rpm, more preferably 100 rpm to 1,000 rpm, still more preferably 200 rpm to 800 rpm, and particularly preferably. Is 300 to 600 rpm.
  • the stirring blade include a propeller type, a paddle type, a flat paddle type, a turbine type, a double cone type, a single cone type, a single ribbon type, a double ribbon type, a screw type, and a helical ribbon type.
  • a sufficient shearing force can be applied to the system, it is not particularly limited thereto.
  • a stirrer In order to generate an emulsion, not only a stirrer but also a widely known device such as an emulsifier and a disperser may be used.
  • a batch type emulsifier such as a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), TK auto homomixer (manufactured by Koki Kogyo Kogyo Co., Ltd.), Ebara Milder (manufactured by Ebara Seisakusho) , TK Philmix (manufactured by Koki Kogyo Kogyo Co., Ltd.), TK Pipeline Homo Mixer (manufactured by Koki Kogyo Kogyo Co., Ltd.), colloid mill (manufactured by Shinko Pantech Co., Ltd.), Thrasher, Trigonal Wet Mill Manufactured), ultrasonic homogenizer, static mixer and the like.
  • the emulsion thus obtained is subsequently subjected to a step of precipitating fine particles.
  • the poor solvent for the polyamide 1010 resin is brought into contact with the emulsion produced in the above-described step, thereby depositing fine particles with a diameter corresponding to the emulsion diameter.
  • the contact method of the poor solvent and the emulsion may be a method of putting the emulsion in the poor solvent or a method of putting the poor solvent in the emulsion, but a method of putting the poor solvent in the emulsion is preferable.
  • the method for introducing the poor solvent is not particularly limited as long as the polyamide 1010 resin particles can be obtained, and any of a continuous dropping method, a divided addition method, and a batch addition method may be used.
  • a continuous dropping method or a divided dropping method which is industrially efficient.
  • the continuous dropping method is most preferable.
  • the time for adding the poor solvent is 10 minutes or more and 50 hours or less, more preferably 30 minutes or more and 10 hours or less, and further preferably 1 hour or more and 5 hours or less.
  • the particle size distribution may increase or a lump may be generated due to the aggregation, fusion, and coalescence of the emulsion. Moreover, when it implements in the time longer than this, when industrial implementation is considered, it is unrealistic.
  • the amount of the poor solvent to be added depends on the state of the emulsion, it is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 1 part by mass of the total emulsion. Parts, more preferably 0.2 parts by weight to 3 parts by weight, particularly preferably 0.2 parts by weight to 2 parts by weight, and most preferably 0.2 parts by weight to 1.0 parts by weight. is there.
  • the contact time between the poor solvent and the emulsion may be a time sufficient for the fine particles to precipitate, but in order to cause sufficient precipitation and to obtain efficient productivity, 5 minutes to 50 minutes after completion of the addition of the poor solvent. Time, more preferably 5 minutes or more and 10 hours or less, still more preferably 10 minutes or more and 5 hours or less, particularly preferably 20 minutes or more and 4 hours or less, and most preferably 30 minutes or more and 3 hours or less. Within hours.
  • the polyamide 1010 resin particle dispersion thus prepared is subjected to solid-liquid separation by a generally known method such as filtration, vacuum filtration, pressure filtration, centrifugation, centrifugal filtration, spray drying, etc. It can be recovered.
  • the solid-liquid separated polyamide 1010 resin particles are washed with a solvent or the like, if necessary, to remove impurities attached or contained therein, and are purified.
  • the solvent obtained by solid-liquid separation is a mixture of polymer B other than polyamide 1010 resin, an organic solvent, and a poor solvent.
  • the method for removing the poor solvent is usually performed by a known method, and specific examples include simple distillation, vacuum distillation, precision distillation, thin film distillation, extraction, membrane separation, and the like. This is a method by distillation or precision distillation.
  • the reaction is preferably performed in a state free from oxygen as much as possible, and more preferably in an inert atmosphere. Specifically, it is preferable to carry out under nitrogen, helium, argon, carbon dioxide conditions. Moreover, you may re-add a phenol type compound as antioxidant.
  • the residual amount of the poor solvent is 10% by mass or less, preferably 5% by mass with respect to the total amount of the organic solvent to be recycled and the polymer B. % Or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less. If it exceeds this range, the particle size distribution of the polyamide 1010 resin particles becomes large or the particles agglomerate, which is not preferable.
  • the amount of the poor solvent in the solvent used for recycling can be measured by a generally known method, and can be measured by a gas chromatography method, a Karl Fischer method, or the like.
  • the polyamide 1010 resin particles obtained in the present invention are superior in powder flowability compared to the polyamide 1010 resin particles obtained by the conventional method, so that a smooth feel can be obtained, and crystals of the polyamide 1010 resin are developed. Therefore, since it has high brightness, surface smoothness, and true sphere, it is preferably used for cosmetics and paint modifiers.
  • the polyamide 1010 resin particles obtained in the present invention can be used extremely usefully and practically in various industrial applications.
  • skin care product additives such as face wash, sunscreen agent, cleansing agent, lotion, milky lotion, beauty essence, cream, cold cream, after shaving lotion, shaving soap, oil blotting paper, matifant agent, Cosmetics such as foundation, funny, watery, mascara, face powder, do, eyebrow, mascara, eyeline, eye shadow, eye shadow base, nose shadow, lipstick, gloss, hobo, tuna, nail polish, top coat Or its modifier, shampoo, dry shampoo, conditioner, rinse, rinse-in shampoo, treatment, hair tonic, hair styling, hair oil, pomade, hair coloring agent, etc.
  • Body fluidity improver lubricant, rubber compounding agent, abrasive, thickener, filter agent and filter aid, gelling agent, flocculant, paint additive, oil absorbent, mold release agent, plastic film
  • Various modifications such as sheet slipperiness improver, antiblocking agent, gloss modifier, matte finish, light diffusing agent, surface high hardness improver, toughness improver, etc.
  • Agents Liquid Crystal Display Spacers, Chromatographic Fillers, Cosmetic Foundation Substrates / Additives, Microcapsule Auxiliaries, Drug Delivery Systems, Diagnostic Agents, and Other Medical Materials, Fragrance / Agrochemical Retaining Agents, Chemical Reactions It can be used for catalyst for use and its support, gas adsorbent, sintered material for ceramic processing, standard particles for measurement and analysis, particles for food industry, powder coating material, toner for electrophotographic development, etc. .
  • polyamide 1010 resin particles made of polyamide 1010 resin produced from biomass-derived raw materials have characteristics as environmentally low load materials, and thus may replace conventionally used polymer fine particles.
  • resin moldings, films, fibers, etc. include, for example, electrical equipment housings, OA equipment housings, various covers, various gears, various cases, sensors, LED lamps, connectors, sockets, resistors, and relays.
  • switch various terminal boards, plug, printed wiring board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, housing, semiconductor, liquid crystal, FDD carriage, FDD chassis, motor brush holder, parabolic Audio equipment parts such as electrical and electronic parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / laser disks (registered trademark) / compact disks Cameras, VTRs, projection TVs and other photographic lenses, viewfinders, filters, prisms, Fresnel lenses and other video equipment related parts, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, etc.
  • Audio equipment parts such as electrical and electronic parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, audio / laser disks (registered trademark) / compact disks Cameras, VTRs, projection TVs and other photographic lenses, viewfinders, filters, prisms, Fresnel lenses and other video equipment related parts
  • Office electrical product parts office computer related parts, telephone related parts, facsimile related parts, copier related parts, various disk substrate protective films, optical disk player pickup lenses, optical fibers, optical switches, optical connectors, etc.
  • Information equipment related parts liquid crystal display, flat panel display, light guide plate of plasma display, Fresnel lens, polarizing plate, polarizing plate protective film, retardation film, light diffusion film, viewing angle widening film, reflective film, antireflection film, anti-reflection Dazzle film, brightness enhancement film, prism sheet, light guide film for touch panel, cleaning jig, motor parts, lighter, machine-related parts represented by typewriter, optical equipment represented by microscope, binoculars, watch, etc.
  • Precision machinery-related parts fuel-related / exhaust / intake-type pipes, air intake nozzle snorkel, intake manifold, fuel pump, fuse connector, horn terminal, electrical component insulation plate, lamp socket, lamp reflector, lamp housing, engine housing Illuminator filters and ignition device cases, and the like, are extremely effective for these various applications.
  • the individual particle size of polyamide 1010 resin particles (hereinafter sometimes referred to as particles) is determined by a scanning electron microscope (JSM-6301NF, a scanning electron microscope manufactured by JEOL Ltd.). ), The particles were observed 1000 times and measured. When the particles were not perfect circles, the major axis was measured as the particle diameter. The average particle diameter was calculated by measuring an arbitrary 100 particle diameter from a photograph and calculating the arithmetic average thereof. The particle size distribution index indicating the particle size distribution was calculated based on the following numerical conversion formula (2) for the individual particle diameter values obtained above.
  • Ri particle diameter of each particle
  • n number of measurements 100
  • Dn number average particle diameter
  • Dv volume average particle diameter
  • PDI particle diameter distribution index.
  • the sphericity is calculated according to the above formula (1) from the average of 30 arbitrary particles by observing particles with a scanning electron microscope and measuring the minor axis and major axis. .
  • n is the number of measurements 30.
  • the angle of repose was measured as evaluation of powder fluidity.
  • the angle of repose is measured by an injection method in which 5 g of particles are naturally dropped from a position 6 cm above the horizontal plane using a funnel, the particles are deposited on the horizontal plane, and the angle formed by the ridgeline between the horizontal plane and the particle powder is measured.
  • the angle of repose was measured. Particles with a large angle of repose have poor powder flowability, and particles with a small angle of repose have excellent fluidity. When the angle of repose is 25 ° or less, the powder fluidity is considered good.
  • the particle elastic modulus is calculated from the following equation 3 and equation 4, and from the following equation 3 and equation 4 to eliminate the influence of the apparatus base (stage) and indenter, from the particle elastic modulus E 1. did.
  • E 1 Elastic modulus of particle (GPa)
  • E 2 Modulus of elasticity of device indenter (1140 GPa)
  • E 3 Elastic modulus (200 GPa) of apparatus base (stage)
  • n 1 Poisson's ratio of particles (set to 0.4)
  • n 2 Poisson's ratio of device indenter (0.07)
  • n 3 Poisson's ratio of device stage (0.3)
  • compression displacement during particle compression ( ⁇ m)
  • E * Measurement object and composite elastic modulus (GPa)
  • R 1 particle radius ( ⁇ m)
  • P Load (mN)
  • the elastic modulus was calculated using data points in the deformation region of 1-5% of the particle diameter, which is the elastic deformation region.
  • Tactile sensation Using the obtained particles, sensory evaluation was performed by eight panelists. The evaluation method involves placing a small amount of particles (about 0.02 g) on the back of one hand, rubbing the particles with the three fingers of the other hand, 3 for “foreign material feeling”, “softness”, and “smoothness”. A sensory test was performed on the items. For each item, the average score of eight people when they were rated as follows was ranked according to the following criteria.
  • Example 1 ⁇ Production Method of Polyamide 1010 Resin Particles> 24.5 g of polyamide 1010 (weight average molecular weight 22,500, “Hiprolon (registered trademark)”-200 manufactured by Hipro Polymer Co., Ltd.) in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, Hyper Glaster TEM-V1000N) 273.5 g of N-methyl-2-pyrrolidone as an organic solvent, 42 g of polyvinyl alcohol with a low sodium acetate prepared in Reference Example 1 as a polymer B other than the polyamide 1010 resin (weight average molecular weight 29,000, SP value 32.
  • polyamide 1010 weight average molecular weight 22,500, “Hiprolon (registered trademark)”-200 manufactured by Hipro Polymer Co., Ltd.
  • a 1000 ml pressure-resistant glass autoclave pressure-resistant glass industry, Hyper Glaster TEM-V1000N
  • the evaluation results of the properties of the obtained polyamide 1010 resin particles are shown in Table 1.
  • the polyamide 1010 resin particles of this example were spherical and excellent in surface smoothness and powder flowability.
  • Example 2 ⁇ Production Method of Polyamide 1010 Resin Particles by Addition of Acid> 35 g of polyamide 1010 (weight average molecular weight 22,500, “Hiprolon (registered trademark)”-200 manufactured by Hipro Polymer Co., Ltd.) in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, HyperGlaster TEM-V1000N), organic 273 g of N-methyl-2-pyrrolidone as a solvent and 42 g of polyvinyl alcohol as a polymer B other than polyamide 1010 resin (G-type 'Gocenol (registered trademark)' GH-20, weight average molecular weight 44, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 600, SP value 32.8 (J / cm 3 ) 1/2 ) and 0.21 g of L-tartaric acid, and after replacing with 99% by volume or more of nitrogen, heating to 180 ° C.
  • polyamide 1010 weight average molecular weight 22,500, “Hi
  • the evaluation results of the properties of the obtained polyamide 1010 resin particles are shown in Table 1.
  • the polyamide 1010 resin particles of this example were spherical and excellent in surface smoothness, excellent in powder flowability and rigidity.
  • the molecular weight of polyvinyl alcohol in the filtrate after completion of granulation was measured.
  • the weight average molecular weight was 45,000, which was almost the same as before use.
  • Example 3 Method for Producing Polyamide 1010 Resin Particles> 35 g of polyamide 1010 (weight average molecular weight 22,500, “Hiprolon (registered trademark)”-200 manufactured by Hipro Polymer Co., Ltd.) in a 1000 ml pressure-resistant glass autoclave (pressure-resistant glass industry, HyperGlaster TEM-V1000N), organic 273 g of N-methyl-2-pyrrolidone as a solvent, 42 g of polyvinyl alcohol with a low sodium acetate prepared in Reference Example 1 as a polymer B other than polyamide 1010 resin (weight average molecular weight 29,000, SP value 32.8 (J / cm 3 ) 1/2 ) was added, 99% by volume or more of nitrogen was substituted, and then heated to 180 ° C.
  • polyamide 1010 weight average molecular weight 22,500, “Hiprolon (registered trademark)”-200 manufactured by Hipro Polymer Co., Ltd.
  • a 1000 ml pressure-resistant glass autoclave pressure-
  • the melting point of polyamide 1010 used in this example was 207 ° C.
  • the heat capacity of fusion was 29.0 J / g
  • the temperature-falling crystallization temperature was 144 ° C.
  • the SP value was calculated by a calculation method and was 22.47 (J / cm 3 ) 1/2 .
  • the estimated value of the interfacial tension of this system was 2 mN / m or less.
  • the solubility (room temperature) of the polyamide in water which is a poor solvent was 0.1% by mass or less.
  • the evaluation results of the properties of the obtained polyamide 1010 resin particles are shown in Table 1.
  • the polyamide 1010 resin particles of this example were spherical and excellent in surface smoothness, excellent in powder flowability and rigidity.
  • Polyamide 1010 resin particles were produced based on the method of Patent Document 1 (Japanese Patent Laid-Open No. 2007-277546).
  • Polyamide 1010 weight average molecular weight 22,500, 'Hiprolon (registered trademark)'-200 manufactured by Hipro Polymer Co., Ltd.) 24.0 g, oligosaccharide (reduced starch saccharified product PO-10 manufactured by Mitsubishi Corporation Foodtech) 40.0 g, penta 16.0 g of erythritol was added to a 230 ° C. lab plast mill, and melt kneading was performed at a rotation speed of 50 rotations / minute for 5 minutes. After cooling, the obtained lump was added to ion-exchanged water, washed at 60 ° C., and filtered off, followed by vacuum drying at 80 ° C. for 10 hours to obtain 21.0 g of a powdery brown solid.
  • Comparative Example 3 Using a freezer mill 6750 manufactured by SPEX, 16 g of polyamide 1010 (weight average molecular weight 22,500, 'Hiprolon (registered trademark) -200' manufactured by Hipro Polymer) was pulverized in liquid nitrogen for 2 minutes, impactor count 20 Freeze pulverization was performed under the conditions of 3 times / second and 3 times of pulverization to obtain polyamide 1010 resin powder. When the obtained powder was observed with a scanning electron microscope, it was a dispersed powder (FIG. 12), the average particle size was 434 ⁇ m, and the particle size distribution index was 2.15.
  • polyamide 1010 weight average molecular weight 22,500, 'Hiprolon (registered trademark) -200' manufactured by Hipro Polymer
  • the present invention can be applied to all uses requiring polyamide 1010 resin particles having excellent surface smoothness, spherical shape, good powder flowability and excellent rigidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 ポリアミド1010樹脂とそれ以外のポリマーBと有機溶媒とを溶解混合した際に、ポリアミド1010樹脂を主成分とする溶液相と、ポリマーBを主成分とする溶液相の2相に相分離する系において、エマルションを形成させた後、ポリアミド1010樹脂の貧溶媒を接触させて、ポリアミド1010樹脂を析出させるポリアミド1010樹脂粒子の製造において、エマルションの形成を100℃以上の温度で実施することにより、高い結晶性を有し、真球度が高いポリアミド1010粒子を得ることができる。

Description

ポリアミド1010樹脂粒子およびその製造方法
 本発明は、ポリアミド1010樹脂粒子およびその製造方法に関し、さらに詳しくは、表面平滑性に優れ、真球状で、粉体流動性が良く、剛性に優れたポリアミド1010樹脂粒子、およびその製造方法に関する。
 樹脂粒子とは、樹脂からなる粒子のことであり、一般的にその直径は数十nmから、数百μmの大きさまでの多岐にわたる粒子のことである。樹脂粒子は、フィルム、繊維、射出成形品、押出成形品などのポリマー成形品とは異なり、比表面積が大きい点や、微粒子の構造を利用することで、各種材料の改質、改良に用いられている。
 主要用途としては、化粧品の改質剤、トナー用添加剤、塗料などのレオロジー改質剤、医療用診断検査剤、自動車材料、建築材料などの成形品への添加剤などが挙げられる。特に近年では、樹脂粒子の微粒子構造を活かし、レーザー加工技術と組み合わせてオーダーメードの成形品を作る手法であるラピッドプロトタイピング、ラピッドマニュファクチャリングの原料として用いられるようになってきている。
 近年、液晶ディスプレイを始めとする電子情報材料などの分野や化粧品や塗料の分野において、この樹脂微粒子に対して、現状よりさらなる耐熱性、耐溶剤性などの特性や、粒子径分布がより均一な形態のものなど、より高機能、高精度な樹脂微粒子が求められるようになってきている。
 樹脂微粒子の中でも、ポリアミド粒子は、その素材の強度や適度な吸湿性などの特徴から、化粧品や塗料の分野で古くから使われているが、近年の地球環境保護の観点から、その原料をバイオマス由来のものにした、非石油原料化の動きが加速しており、特に素材の機能特性や原料の入手性の観点からポリアミド1010樹脂粒子が注目されている。
 ポリアミド1010樹脂粒子の製造法には、一般的にポリアミド1010樹脂のペレットを機械的に粉砕する方法が用いられるが、粉砕により得られる粒子は真球度が低く、粒度分布が広い点に課題がある。
 これらを改良する方法として、特許文献1では、ポリアミド樹脂と水に可溶な成分と溶融混練し、混練後、可溶成分を水で除去することで、ポリアミド樹脂粒子を製造する方法が提案されているが、球状の粒子が得られるものの、粉体流動性に課題が残るものであった。
 また、特許文献2に代表されるように、ポリアミド樹脂をアルコールなどの溶媒中にて加熱して溶媒に溶解し、溶媒の温度を下げながらポリアミド樹脂粒子を析出する方法が提案されているが、得られた粒子は多孔質であることが開示されており、粉体流動性などの点で、機能性微粒子としてのさらなる改良技術が求められているのが現状である(特許文献2、3、4)。
 一方、樹脂微粒子を形成する手法として、既に特許文献5にて、2種以上の樹脂を溶解し、高分子溶液の相分離現象によるエマルションを利用し、樹脂粒子を得る方法が提案されているが、結晶性ポリマーであるポリアミド樹脂の粒子化については技術改良が必要であった。
特開2007-277546号 特開2010-163618号 特開2011-218330号 特開2011-219756号 WO2009/142231号
 これまでのポリアミド1010樹脂粒子の製造方法では、ポリアミド1010樹脂粒子の流動性やすべり性などに課題があり、さらに粒子が多孔質になる方法では、粉体流動性に加え、機械的強度に課題があり、使用時に粒子つぶれが発生するなどの点で課題があった。
 本発明では、真球度が高く、結晶化度が高い形状にし、粉体流動性や剛性等の機械特性に優れたポリアミド1010樹脂粒子を提供することを課題とする。
 上記課題を達成するために、本発明者らが鋭意検討した結果、下記発明に到達した。
 即ち、本発明は、
「(1)平均粒子径が1~100μmであり、真球度が80以上であり、広角X線散乱測定による回折角2θにおいて24度にピークを有することを特徴とするポリアミド1010樹脂粒子、
(2)広角X線散乱測定による回折角2θにおいて、20度と24度にピークを有することを特徴とする(1)記載のポリアミド1010樹脂粒子、
(3)粉体の安息角が30°以下であることを特徴とする(1)または(2)に記載のポリアミド1010樹脂粒子、
(4)微小圧縮試験機による粒子の圧縮弾性率が、1.6GPa以上であることを特徴とする(1)から(3)のいずれかに記載のポリアミド1010樹脂粒子、
(5)分光式色彩計で測定したときの明度であるL値が70以上であることを特徴とする(1)から(4)のいずれかに記載のポリアミド1010樹脂粒子、
(6)ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBと有機溶媒とを溶解混合した際に、ポリアミド1010樹脂を主成分とする溶液相と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相の2相に相分離する系において、エマルションを形成させた後、ポリアミド1010樹脂の貧溶媒を接触させて、ポリアミド1010樹脂を析出させるポリアミド1010樹脂粒子の製造方法において、エマルションの形成を100℃以上の温度で実施することを特徴とするポリアミド1010樹脂粒子の製造方法、
(7)ポリアミド1010樹脂以外のポリマーBのSP値が20(J/cm1/2以上であることを特徴とする、(6)記載のポリアミド1010樹脂粒子の製造方法、
(8)ポリアミド1010樹脂以外のポリマーBの25℃における水への溶解度が1g/100g以上であることを特徴とする、(6)または(7)に記載のポリアミド1010樹脂粒子の製造方法、
(9)ポリアミド1010樹脂以外のポリマーBが、その分子骨格中に水酸基、エーテル基、アミド基、カルボキシル基の少なくともいずれかを有することを特徴とする、(6)から(8)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(10)ポリアミド1010樹脂以外のポリマーBが、ポリビニルアルコール類、ヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸のいずれかであることを特徴とする、(6)から(9)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(11)ポリアミド1010樹脂以外のポリマーBが、ポリビニルアルコール類であり、ポリビニルアルコール中の酢酸ナトリウム含量が、0.1質量%以下であることを特徴とする、(6)から(10)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(12)ポリアミド1010樹脂以外のポリマーBが、ポリビニルアルコール類であり、エマルション形成時に系中に酸化合物を添加することを特徴とする、(6)から(10)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(13)添加する酸化合物が、第1解離指数(pKa1)が4.5以下の酸であり、分解温度が貧溶媒の沸点以上であることを特徴とする、(12)に記載のポリアミド1010樹脂粒子の製造方法、
(14)添加する酸化合物が、クエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸から選ばれる1種以上であることを特徴とする、(12)または(13)に記載のポリアミド1010樹脂粒子の製造方法、
(15)有機溶媒のSP値が20(J/cm1/2以上で沸点が100℃以上であることを特徴とする、(6)から(14)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(16)有機溶媒が、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノンから選ばれる1種以上であることを特徴とする、(6)から(15)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(17)エマルション形成後、ポリアミド1010樹脂を析出させるため、貧溶媒を接触させる温度がポリアミド1010樹脂の降温結晶化温度以上の温度であることを特徴とする、(6)から(16)のいずれかに記載のポリアミド1010樹脂粒子の製造方法、
(18)ポリアミド1010樹脂を析出させた後に、固液分離をし、ポリアミド1010樹脂粒子を除いた、ポリアミド1010樹脂以外のポリマーB成分を含む溶液から、貧溶媒を除去し、得られた溶液に、再度、ポリアミド1010樹脂を加えて、ポリアミド1010樹脂を主成分とする溶液相と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相の2相に相分離する系を形成させ、有機溶媒およびポリアミド1010樹脂以外のポリマーBを再利用することを特徴とする、(6)から(17)のいずれかに記載のポリアミド1010樹脂粒子の製造方法。」である。
 本発明のポリアミド1010樹脂粒子は、真球状かつ高い結晶性を有することから、粉体流動性や剛性に優れるため、例えば、化粧品用途や塗料などの分野で、滑らかな触感と長期品質安定性に優れ、さらに、高い耐薬品性に優れることから、エンジン等の摺動部材の潤滑剤の添加材として使用することにより、摺動部材の傷つきを抑制しつつ、摺動性を長期間維持できるなど、産業上有益な材料となる。
図1は実施例1で製造したポリアミド1010樹脂粒子のX線測定チャートである。 図2は実施例2で製造したポリアミド1010樹脂粒子のX線測定チャートである。 図3は実施例3で製造したポリアミド1010樹脂粒子のX線測定チャートである。 図4は比較例1で製造したポリアミド1010樹脂粒子のX線測定チャートである。 図5は比較例2で製造したポリアミド1010樹脂粒子のX線測定チャートである。 図6は比較例3で製造したポリアミド1010樹脂粒子のX線測定チャートである。 図7は実施例1で製造したポリアミド1010樹脂粒子を走査型電子顕微鏡で倍率1000倍にて観察した結果を示す図である。 図8は実施例2で製造したポリアミド1010樹脂粒子を走査型電子顕微鏡で倍率1000倍にて観察した結果を示す図である。 図9は実施例3で製造したポリアミド1010樹脂粒子を走査型電子顕微鏡で倍率1000倍にて観察した結果を示す図である。 図10は比較例1で製造したポリアミド1010樹脂粒子を走査型電子顕微鏡で倍率1000倍にて観察した結果を示す図である。 図11は比較例2で製造したポリアミド1010樹脂粒子を走査型電子顕微鏡で倍率100倍にて観察した結果を示す図である。 図12は比較例3で製造したポリアミド1010樹脂粒子を走査型電子顕微鏡で倍率30倍にて観察した結果を示す図である。
 以下、本発明について、詳細に説明する。
 本発明のポリアミド1010樹脂粒子は、粒子の平均粒子径が1~100μm、広角X線散乱による回折角2θにおいて24度にピークを有していることを特徴とするポリアミド1010樹脂粒子である。
 本発明のポリアミド1010樹脂粒子とは、ポリアミド1010樹脂からなる粒子のことである。ポリアミド1010樹脂とは、ポリデカメチレンセバカミドのことであり、脂肪族ジアミンの1,10-デカンジアミンと脂肪族ジカルボン酸のセバシン酸とが重合してなるものである。
 ポリアミド1010樹脂は、従来公知の方法により入手することができ、例えば、上記ジアミンとジカルボン酸との塩を原料とした溶融重合、溶液重合、さらには低分子量ポリアミド1010を原料とした固相重合などにより得ることができる。
 原料であるデカンジアミンやセバシン酸は、石油由来原料、バイオマス由来原料から化学変換されることにより得られるが、本発明においては特に制限はなく、地球環境保護の観点からバイオマス由来原料であることが好ましい。
 ポリアミド1010樹脂の重合度に、特に制限はないが、得られる樹脂粒子の剛性の観点から、重量平均分子量として、その下限は1,000以上であり、好ましくは、5,000以上であり、より好ましくは、10,000以上であり、さらに好ましくは、12,000以上であり、特に好ましくは、15,000以上である。また、その上限としては、1,000,000以下であり、好ましくは500,000以下であり、より好ましくは、100,000以下であり、さらに好ましくは、50,000以下であり、特に好ましくは、30,000以下である。ここで、重量平均分子量は、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリメタクリル酸メチルで換算した値のことを指す。
 本発明におけるポリアミド1010樹脂粒子における平均粒子径は、1μm~100μmの範囲のものを指すが、その好ましい上限としては、80μm以下であり、より好ましくは、60μm以下であり、さらに好ましくは、50μm以下であり、特に好ましくは30μm以下である。またその下限は、1.0μm以上であり、好ましくは、1.0μm超であり、より好ましくは5μm以上であり、さらに好ましくは、5μm超であり、特に好ましくは、10μm以上であり、著しく好ましくは、10μm超である。
 なお、本発明のポリアミド1010樹脂粒子の平均粒子径とは、走査型電子顕微鏡写真から任意の100個の粒子直径を特定し、その算術平均を求めることにより算出したものである。上記の写真において、当該粒子が真円状でない場合、即ち楕円状のような場合は、粒子の最大径をその粒子径とする。粒子径を正確に測定するためには、少なくとも500倍以上、好ましくは、1000倍以上の倍率に拡大し、粒子径の測定を行う。
 また、本発明のポリアミド1010樹脂粒子は、その粒子の粒度分布が狭いほうが好ましい。粒度分布は、後述の数式(2)における粒子径分布指数で表すことができる。本発明のポリアミド1010樹脂粒子の粒度分布指数は、3以下であり、好ましくは、2.5以下であり、より好ましくは、2.0以下であり、さらに好ましくは、1.8以下であり、特に好ましくは、1.5以下であり、著しく好ましくは、1.3以下である。また、好ましい下限は特にはないが、理論的にその下限は1以上である。
 本発明のポリアミド1010樹脂粒子は、真球度が高い点に特徴があり、真球度が高いことから、良好な流動性が発現しているものと考えられる。
 本発明における真球度とは、走査型電子顕微鏡写真から、任意の30個の粒子の短径と長径を測定し、下記数式(1)に従い算出した値で表すことができ、100に近いものほど真球度が高いといえる。
Figure JPOXMLDOC01-appb-M000001

 尚、n:測定数30とする。
 本発明のポリアミド1010樹脂粒子の真球度は80以上であり、好ましくは85以上、より好ましくは90以上、さらに好ましくは95以上である。好ましい上限としては100以下であるが、通常90以下でもすべり性や滑らかな質感向上などの十分な効果を得ることができる。真球度が80未満である場合には、球が楕円形に近くなり、滑らかな触感が得られない。
 本発明におけるポリアミド1010樹脂粒子は、結晶性が非常に高い点に特徴があり、この特性から樹脂粒子の弾性率が従来のものに比べ高いという特性を有している。結晶性の高さの程度は、粉末X線測定を行うことでその判定が可能であり、本発明のポリアミド1010樹脂粒子は、銅原子(Cu)のKα線を用いた広角X線散乱測定において、回折角2θにおいて、特徴的な20度と24度にピークを有する。
 特に、広角X線散乱による回折角2θにおける24度のピークは、ポリアミド1010樹脂の結晶構造が発達した際に観察される特有のピークであり、本ポリアミド1010樹脂粒子は、そのピークを有している。
 また、本発明のポリアミド1010樹脂粒子は、結晶構造が発達しているにもかかわらず、その形状として、真球度が高いことから、流動性が良好であり、粉体の安息角が低いという特徴を併せ持つ。
 本発明のポリアミド1010樹脂粒子から形成される粉体の安息角は、30°以下であり、好ましくは、25°以下であり、より好ましくは、20°以下であり、さらに好ましくは、15°以下である。安息角の下限は、特にはないが0°超である。
 本発明のポリアミド1010樹脂粒子は、結晶性が高いことから、その機械強度が高く、弾性率が高いことに特徴を有する。
 本発明におけるポリアミド1010樹脂粒子の弾性率は、1.6GPa以上であり、好ましくは、1.7GPa以上であり、より好ましくは、1.8GPa以上であり、さらに好ましくは、1.9GPa以上であり、特に好ましくは、2.0GPa以上である。
 粒子状物質の弾性率を求めるには、島津株式会社製 微小圧縮試験機を用い、ヘルツの弾性理論を用いることにより、その弾性率を算出することができる。
 このように高い弾性率を持つことにより、摺動部材などのへの適用範囲が広がるため、樹脂微粒子として有用な材料となる。
 本発明のポリアミド1010樹脂粒子は、結晶構造が発達しているので、光の反射が粒子界面での反射に加えて、粒子内部の結晶構造に起因する反射も起こるため、特に分光式色彩計で測定したときの明度を表すL値が高くなる点に特徴を有する。
 明度を表わすL値としては、70以上であることが好ましく、さらに好ましくは80以上、特に好ましくは85以上である。L値が70未満である場合には着色の要因が大きくなり、化粧品用途や塗料用途などに用いた場合には、任意の色味にすることが困難になる。L値の好ましい上限は100である。
 本発明のポリアミド1010樹脂粒子は、表面平滑性の真球状であることに特徴を有する。ここでいう表面平滑性は、走査型電子顕微鏡写真による形態観察によって得られた粒子の表面の写真から、目視で判断できる凹凸数を計測することにより定量化することができる。1粒子あたり20個以下であることが好ましく、さらに好ましくは10個以下である。
 なお、上記表面平滑度は、走査型電子顕微鏡写真の1000~5000倍の倍率によって観察される領域で、任意粒子の30個の凹凸を観測し、その平均値によって定められる。
 上記のような良好な特性をもつポリアミド1010樹脂粒子を製造するに当たっては、以下に示す方法を採用することができる。
 本発明に係るポリアミド1010樹脂粒子の製造方法は、ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBと有機溶媒とを溶解混合させ、ポリアミド1010樹脂を主成分とする溶液相(以下、ポリアミド1010樹脂溶液相と称することもある)と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相(以下、ポリマーB溶液相と称することもある)の2相に相分離する系において、エマルションを形成させた後、ポリアミド1010樹脂の貧溶媒を接触させることにより、ポリアミド1010樹脂を析出させることを特徴とする方法である。
 本発明におけるポリアミド1010樹脂以外のポリマーBとしては、熱可塑性樹脂、熱硬化性樹脂が挙げられるが、溶液相を形成するために溶解でき、2相に分離する状態が得られやすい観点から熱可塑性樹脂が好ましく、2相に分離する状態を得やすいことから、本発明におけるポリアミド1010樹脂以外のポリマーBとしては、そのSP値が20(J/cm1/2以上であることが良い。
 上記ポリアミド1010樹脂以外のポリマーBであると、ポリマーB溶液相とポリアミド1010樹脂溶液相との相分離状態を形成しやすく、かつ後述する貧溶媒による析出時において、ポリアミド1010樹脂以外のポリマーBの析出が発生しにくいため、粒子形成に悪影響を与えない。
 この際、ポリアミド1010樹脂以外のポリマーBのSP値としては、好ましくは21(J/cm1/2以上、より好ましくは23(J/cm1/2以上、さらに好ましくは25(J/cm1/2以上、特に好ましくは28(J/cm1/2以上、極めて好ましくは30(J/cm1/2以上である。
 ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBの両者が有機溶媒に溶けるのであれば、特に制限はないが、SP値の差の上限としては、好ましくは20(J/cm1/2以下、より好ましくは、15(J/cm1/2以下であり、さらに好ましくは10(J/cm1/2以下である。
 ここでいう、SP値とは、Fedorの推算法に基づき計算されるものであり、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年3月31日発行)。
 上記方法により計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用することができる(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
 中でも、ポリアミド1010樹脂以外のポリマーBは、後述する貧溶媒との親和性が高いものが好ましく、その親和性の指標としては、水への溶解度をもって判断することができる。ポリアミド1010樹脂以外のポリマーBの水への溶解度は25℃で、水100gに対し1g溶解するものを、1g/100gと表記すると定義した場合、好ましくは、1g/100g以上であり、より好ましくは、2g/100g以上であり、さらに好ましくは、5g/100g以上であり、特に好ましくは、10g/100g以上であり、著しく好ましくは、15g/100g以上である。この範囲であれば、後述する貧溶媒との親和性が高く、本ポリアミド1010樹脂粒子製造法において、有利に機能する。
 ポリアミド1010樹脂以外のポリマーBの高分子の種類として、具体的に好ましいものとしては、その分子骨格中に、水酸基、エーテル基、アミド基、カルボキシル基の少なくともいずれかを有するものが良い。
 ポリアミド1010樹脂以外のポリマーBを具体的に例示するならば、その分子骨格中に水酸基を持つものとしては、ポリビニルアルコール類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体などのポリ(ビニルアルコール-エチレン)共重合体類など)、ポリ(パラビニルフェノール)、マルトース、セルビオース、ラクトース、スクロースなどの二糖類、セルロースおよびその誘導体(ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロースなど)、セルロース、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル、キトサン等)、アミロースおよびその誘導体、デンプンおよびその誘導体、デキストリン、シクロデキストリン、アルギン酸ナトリウムおよびその誘導体等の多糖類またはその誘導体、ゼラチン、カゼイン、コラーゲン、アルブミン、フィブロイン、ケラチン、フィブリン、カラギーナン、コンドロイチン硫酸、アラビアゴム、寒天、たんぱく質等が挙げられ、その分子骨格中にエーテル基を持つものとしては、ポリアルキレングリコール、ショ糖脂肪酸エステル、ポリ(オキシエチレン脂肪酸エステル)、ポリ(オキシエチレンラウリン脂肪酸エステル)、ポリ(オキシエチレングリコールモノ脂肪酸エステル)、ポリ(オキシエチレンアルキルフェニルエーテル)、ポリ(オキシアルキルエーテル)、ポリビニルエーテル、ポリビニルホルマール等が挙げられ、その分子骨格中にアミド基を持つものとしては、ポリビニルピロリドン、アミノポリ(アクリルアミド)、ポリ(アクリルアミド)、ポリ(メタクリルアミド)、“AQナイロン(登録商標)”(A-90、P-70、P-95、T-70;東レ株式会社製)などの水溶性ナイロン等が挙げられ、その分子骨格中にカルボキシル基を持つものとしては、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム等が挙げられ、その他にも、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルピロリジニウムクロライド、ポリ(スチレン-マレイン酸)共重合体、ポリアリルアミン、ポリ(オキシエチレンアミン)、ポリ(ビニルピリジン)、ポリアミノスルホン、ポリエチレンイミン等の合成樹脂が挙げられる。
 好ましくは、ポリビニルアルコール類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体などのポリ(ビニルアルコール-エチレン)共重合体類)、セルロース誘導体(カルボキシメチルセルロース、ヒロドキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース)、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル等)、ポリアルキレングリコール、ショ糖脂肪酸エステル、ポリ(オキシエチレンアルキルフェニルエーテル)、ポリ(オキシアルキルエーテル)、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸、ポリメタクリル酸であり、より好ましくは、ポリ(ビニルアルコール)類(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)、完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体などのポリ(ビニルアルコール-エチレン)共重合体類)、セルロース誘導体(カルボキシメチルセルロース、ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース)、メチルセルロース、エチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースエステル等)、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸であり、特に好ましくは、完全ケン化型や部分ケン化型のポリ(ビニルアルコール)などのポリビニルアルコール類、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸である。
 本発明におけるポリアミド1010樹脂以外のポリマーBとしては、著しく好ましくは、ポリビニルアルコール類を用いる。さらに詳しくは、ポリビニルアルコール類とは、分子内に下記一般式(1)の構造を有するポリマーのことを指す。
Figure JPOXMLDOC01-appb-C000002
 ポリ(ビニルアルコール)(完全ケン化型や部分ケン化型のポリ(ビニルアルコール)であってもよい。単にポリビニルアルコールと称する場合もある。)、ポリ(ビニルアルコール-エチレン)共重合体(完全ケン化型や部分ケン化型のポリ(ビニルアルコール-エチレン)共重合体であってもよい)などが挙げられるが、溶解性の点からポリビニルアルコールが好ましい。
 ポリアミド1010樹脂以外のポリマーBの分子量は、好ましくは、重量平均分子量で、1,000~100,000,000、より好ましくは、1,000~10,000,000、さらに好ましくは、5,000~1,000,000であり、特に好ましくは、10,000~500,000の範囲であり、最も好ましい範囲は、10,000~100,000の範囲である。
 ここでいう重量平均分子量とは、溶媒として水を用いたゲルパーミエーションクロマトグラフィー(GPC)で測定し、ポリエチレングリコールで換算した重量平均分子量を指す。
 水で測定できない場合においては、ジメチルホルムアミドを用い、それでも測定できない場合においては、テトラヒドロフランを用い、さらに測定できない場合においては、ヘキサフルオロイソプロパノールを用いる。
 ポリビニルアルコール類は、酢酸ビニルを原料として重合した後に、アルカリ条件下にて加水分解することにより、ポリビニルアルコールを生成させることが一般的であり、その中には、一部酢酸ナトリウムが不純物として残留することが通常であり、市販品においても0.2質量%前後含まれているのが通常である。
 本発明においては、上記ポリビニルアルコールに含まれる酢酸ナトリウムが、何らかの形で影響し、ポリアミド1010樹脂と有機溶媒に溶解混合してエマルションを形成させる際、その温度が100℃以上であると微粒子が着色したり、ポリビニルアルコールが劣化してリサイクル性が悪化したりすることを見出した。
 すなわち、ポリアミド1010樹脂以外のポリマーBであるポリビニルアルコール類が、100℃以上での微粒子化条件下でも安定化するようにするためには、エマルションを形成させる系中に存在させる酢酸ナトリウム量を低減させることが好ましい。そのための方法としては、ポリビニルアルコール類を酢酸ナトリウム含量の少ないポリビニルアルコールを使用することが好ましい。
 この場合使用するポリビニルアルコール中の酢酸ナトリウムの量は、ポリビニルアルコール100質量部に対して、0.1質量部以下、好ましくは、0.05質量部以下、さらに好ましくは、0.01質量部以下である。
 この範囲に制御することにより、高温下でポリアミド1010樹脂の微粒子化を行っても、ポリビニルアルコール類が、分解、架橋することなどに起因する変質を抑制することができ、高温下での微粒子化を安定化することができる。また、好ましい下限は、0質量部である。
 酢酸ナトリウム含量の少ないポリビニルアルコール類を得るためには、例えば、メタノール、エタノールなどの有機溶媒での洗浄する方法や、水等に溶解した後に、ポリビニルアルコール類の貧溶媒に沈殿させて生成させる再沈殿法、限外ろ過法、イオン交換樹脂やイオン交換担体等により除去する方法などが挙げられる。
 また、エマルション形成の際、酢酸ナトリウムの影響を抑制する別の方法としては、エマルションを形成させる系に酸化合物を添加する方法が挙げられる。これにより、実質上酢酸ナトリウムが含まれない状態にすることができる。
 本発明に用いる酸化合物としては、ギ酸、酢酸、吉草酸、酪酸、バレリック酸、ヘキサン酸、ヘプタン酸、オクタン酸、アクリル酸、メタクリル酸、クロトン酸、シュウ酸、マロン酸、フマル酸、マレイン酸、グルタル酸、アジピン酸、セバシン酸、ピルビン酸、コハク酸、ポリアクリル酸などの脂肪族カルボン酸、乳酸、グリコール酸、L-アスコルビン酸、エリソルビン酸、リンゴ酸、シキミ酸、クエン酸、ヒドロコハク酸、酒石酸などのヒドロキシル基含有カルボン酸、安息香酸、2-フロロ安息香酸およびその位置異性体、2-クロロ安息香酸およびその位置異性体、2-ブロモ安息香酸およびその位置異性体、2-ニトロ安息香酸およびその位置異性体、2-トルイル酸およびその位置異性体、フェノキシ酢酸、桂皮酸、フェニルマロン酸、フタル酸、テレフタル酸、サリチル酸などの芳香族カルボン酸、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、プロリン、リジン、アスパラギン酸、グルタミン酸、システイン、メチオニン、フェニルアラニン、チロシン、ヒスチジン、アスパラギン、グルタミン、アルギニン、トリプトファン、オルニチン、サルコシン等などのアミノ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸およびその位置異性体、p-ヒドロキシベンゼンスルホン酸およびその位置異性体などの有機スルホン酸類、フェニルホスホン酸、ジフェニルホスフィン酸、ジフェニルホスフェート、1-ナフチルホスフェートなどの有機リン酸類、硫酸マグネシウム、塩化マグネシウム、塩化アンモニウム、硫酸アンモニウム等の強酸と弱塩基からなる塩、塩酸、硫酸、燐酸、硝酸、ピロリン酸、トリポリ燐酸等の無機酸などが具体的に挙げられる。これらは1種または2種以上で用いることができる。
 これら酸化合物は、後述する製造工程のうち、エマルション形成のための加熱が始まる前であれば、いずれの段階で加えてもよく、また、原料の中にあらかじめ入れて使用しておいても良い。
 この際、酸化合物の添加量としては、使用するポリビニルアルコール類に含有している酢酸ナトリウムに対して、酸官能基のモル比として、0.1~10倍モルの範囲が好ましく、より好ましくは、0.2~8倍モルの範囲であり、さらに好ましくは、0.3~5倍モルの範囲である。
 酸化合物の添加量が使用するポリビニルアルコール類中に含有している酢酸ナトリウムの量に対して、酸官能基のモル比が少な過ぎる場合は、ポリビニルアルコール類の架橋が進行し、微粒子化工程での粒径制御性が悪化する傾向にある。また、ポリビニルアルコール類の再利用を行う際、2回目以降の粒子径制御性が悪化する傾向にある。さらには、ポリビニルアルコール類の酸化によると推定される色調変化により、微粒子の変色が起きる傾向にある。また、酸官能基のモル比が多過ぎる場合は、酸による影響により、ポリビニルアルコール類の酸化・分解・架橋などが起こる傾向にある。
 本発明に係る方法に用いる酸化合物としては、酸化合物の第1解離指数(pKa1)が4.5以下のものを用いるのが好ましい。
 本発明に係る方法は、100℃以上の高温下で実施されることから、用いる酸化合物としては、耐熱温度が100℃以上のものが好ましい。この際、耐熱温度とは、その酸化合物の分解温度のことを指す。
 中でも、100℃以上の耐熱温度を有し、pKa1が、4.5以下であるものの例としては、L-アスコルビン酸、エリソルビン酸、乳酸、リンゴ酸、フマル酸、フタル酸、酒石酸、ギ酸、クエン酸、グリコール酸、サリチル酸、マレイン酸、マロン酸、グルタル酸、シュウ酸、アジピン酸、コハク酸、ヒドロコハク酸、ポリアクリル酸、グルタミン酸、アスパラギン酸、アルギニン、オルニチン、サルコシン、システイン、セリン、チロシン等のアミノ酸、塩酸、硫酸、燐酸、硝酸、ピロリン酸、トリポリ燐酸等の無機酸が使用可能である。中でもクエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸を好ましく用いることができる。
 ここでpKaとは、25℃での酸解離指数であり、水溶液中での酸化合物の解離定数の逆数の対数値のことを指す。酸化合物のpKa値については、化学便覧(改訂3版 化学便覧 基礎編 日本化学会編 丸善株式会社出版 昭和59年 発刊)などで参照できる。
 pKa値は、利便性の点から上記ふたつの方法のうち、化学便覧記載のものが好ましい。
 本発明においてポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBを溶解させる有機溶媒としては、ポリアミド1010樹脂と用いるポリアミド1010樹脂以外のポリマーBを溶解し得る有機溶媒であり、各ポリマーの種類に応じて選択される。
 具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、n-デカン、n-ドデカン、n-トリデカン、シクロヘキサン、シクロペンタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1-2-ジクロロエタン、1,1,1-トリクロロエタン、クロロベンゼン、2,6-ジクロロトルエン等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン等のケトン系溶媒、メタノール、エタノール、1-プロパノール-2-プロパノール等のアルコール系溶媒、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、プロピレンカーボネート、トリメチルリン酸、1,3-ジメチル-2-イミダゾリジノン、スルホラン等の非プロトン性極性溶媒、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等のカルボン酸溶媒、アニソール、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジグライム、ジメトキシエタン等のエーテル系溶媒、あるいはこれらの混合物が挙げられる。好ましくは、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、非プロトン性極性溶媒、カルボン酸溶媒である。
 さらに好ましいものとしては、SP値が20(J/cm1/2以上のものである。ここでいう、SP値とは、「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)に688-701ページに記載されている値のことをいう。
 これに記載のないものは、Fedorの推算法に基づき計算を行う。この計算は、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、溶媒SP値の計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
 中でも好ましいものとしては、水溶性溶媒であるアルコール系溶媒、非プロトン性極性溶媒、カルボン酸溶媒であり、著しく好ましいのは、非プロトン性極性溶媒、カルボン酸溶媒である。
 本発明においては、100℃以上の高温下でエマルション形成が実施されることから、これら溶媒についても、耐熱性が100℃以上のものがよく、中でも常圧(100kPa)での沸点が100℃以上のものが好ましい。また常圧での沸点が100℃未満の溶媒を使用する場合は、耐圧容器内で、加圧することにより使用することが可能である。このような状況の考慮と、入手が容易で、かつ水やアルコール系溶媒等など後述する貧溶媒として好ましく用い得る溶媒と均一に混合し得る点から、最も好ましくは、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノンである。
 これらの有機溶媒は、複数種用いてもよいし、混合して用いてもよいが、粒子径が比較的小さく、かつ、粒子径分布の小さい粒子が得られる点、使用済みの溶媒のリサイクル時の分離の工程のわずらわしさを避け、製造上のプロセス負荷低減という観点で、単一の有機溶媒であるほうが好ましく、さらにポリアミド1010樹脂、およびポリアミド1010樹脂以外のポリマーBの両方を溶解する単一の有機溶媒であることが好ましい。
 本発明におけるポリアミド1010樹脂の貧溶媒とは、ポリアミド1010樹脂を溶解させない溶媒のことをいう。ポリアミド1010樹脂を溶解させないとは、ポリアミド1010樹脂の貧溶媒に対する溶解度が1質量%以下のものであり、より好ましくは、0.5質量%以下であり、さらに好ましくは、0.1質量%以下である。
 本発明の製造方法において、ポリアミド1010樹脂の貧溶媒を用いるが、かかる貧溶媒としてはポリアミド1010樹脂の貧溶媒でありかつ、ポリアミド1010樹脂以外のポリマーBを溶解する溶媒であることが好ましい。これにより、ポリアミド1010樹脂粒子を効率よく析出させることができる。また、ポリアミド1010樹脂およびポリアミド1010樹脂以外のポリマーBを溶解させる溶媒とポリアミド1010樹脂の貧溶媒とは均一に混合する溶媒であることが好ましい。
 本発明における貧溶媒としては、ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBとの組み合わせによって変わるが、具体的に例示するならば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、n-デカン、n-ドデカン、n-トリデカン、シクロヘキサン、シクロペンタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、クロロベンゼン、2,6-ジクロロトルエン等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルブチルケトン等のケトン系溶媒、メタノール、エタノール、1-プロパノール-2-プロパノール等のアルコール系溶媒、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、トリメチルリン酸、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、スルホラン等の非プロトン性極性溶媒、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等のカルボン酸溶媒、アニソール、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジグライム、ジメトキシエタン等のエーテル系溶媒、水の中から少なくとも1種類から選ばれる溶媒などが挙げられる。
 ポリアミド1010樹脂を効率的に粒子化させる観点から、好ましくは、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、水であり、特に好ましいのは、アルコール系溶媒、水であり、最も好ましくは、水である。
 なお、本発明は、100℃以上の温度でエマルション形成が実施されることから、常圧での沸点が100℃未満などの溶媒で、本発明を実施する場合や沸点が100℃以上であってもエマルション形成をその沸点以上の温度で実施する場合は、耐圧容器内で、加圧条件で使用することができる。
 本発明において、ポリアミド1010樹脂に対し、ポリアミド1010樹脂以外のポリマーB、これらを溶解する有機溶媒およびポリアミド1010樹脂の貧溶媒を適切に選択して組み合わせることにより、効率的にポリアミド1010樹脂を析出させてポリアミド1010樹脂粒子を得ることが出来る。
 ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーB、これらを溶解する有機溶媒を混合溶解させた液は、ポリアミド1010樹脂を主成分とする溶液相と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相(以下、ポリマーB溶液相と称することもある。)の2相に相分離することが必要である。この際、ポリアミド1010樹脂を主成分とする溶液相の有機溶媒と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相の有機溶媒とは、同一でも異なっていてもよいが、実質的に同じ溶媒であることが好ましい。
 2相分離の状態を生成する条件は、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBの種類、ポリアミド1010樹脂およびポリアミド1010樹脂以外のポリマーBの分子量、有機溶媒の種類、ポリアミド1010樹脂およびポリアミド1010樹脂以外のポリマーBの濃度、発明を実施しようとする温度、圧力によって異なってくる。
 相分離状態になりやすい条件を得るためには、ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBの溶解度パラメーター(以下、SP値と称することもある)の差が離れていた方が好ましい。
 この際、SP値の差としては1(J/cm1/2以上、より好ましくは2(J/cm1/2以上、さらに好ましくは3(J/cm1/2以上、特に好ましくは5(J/cm1/2以上、極めて好ましくは8(J/cm1/2以上である。SP値がこの範囲であれば、容易に相分離しやすくなる。
 ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBの両者が有機溶媒に溶けるのであれば、特に制限はないが、SP値の差の上限として好ましくは20(J/cm1/2以下、より好ましくは、15(J/cm1/2以下であり、さらに好ましくは10(J/cm1/2以下である。
 ここでいう、SP値とは、Fedorの推算法に基づき計算されるものであり、凝集エネルギー密度とモル分子容を基に計算されるもの(以下、計算法と称することもある。)である(「SP値 基礎・応用と計算方法」山本秀樹著、株式会社情報機構、平成17年 3月 31日発行)。
 本方法により、計算できない場合においては、溶解度パラメーターが既知の溶媒に対し溶解するか否かの判定による、実験法によりSP値を算出(以下、実験法と称することもある。)し、それを代用する(「ポリマーハンドブック 第4版(Polymer Handbook Fourth Edition)」 ジェー・ブランド(J.Brand)著、ワイリー(Wiley)社1998年発行)。
 相分離状態になる条件を選択するためには、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBおよびこれらを溶解する有機溶媒の3成分の比率を変化させた状態の観察による簡単な予備実験で作成できる、3成分相図で判別が出来る。
 相図の作成は、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBおよび溶媒を任意の割合で混合溶解させ、静置を行った際に、界面が生じるか否かの判定を少なくとも3点以上、好ましくは5点以上、より好ましくは10点以上の点で実施し、2相に分離する領域および1相になる領域を峻別することで、相分離状態になる条件を見極めることが出来るようになる。
 この際、相分離状態であるかどうかを判定するためには、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBを、本発明を実施しようとする温度、圧力にて、任意のポリアミド1010樹脂、ポリマーBおよび溶媒の比に調整した後に、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBを、完全に溶解させ、溶解させた後に、十分な攪拌を行い、3日放置し、巨視的に相分離をするかどうかを確認する。しかし、十分に安定なエマルションになる場合においては、3日放置しても巨視的な相分離をしない場合がある。その場合は、光学顕微鏡・位相差顕微鏡などを用い、微視的に相分離しているかどうかで、相分離を判別する。
 相分離は、有機溶媒中でポリアミド1010樹脂を主とするポリアミド1010樹脂溶液相と、ポリアミド1010樹脂以外のポリマーBを主とするポリアミド1010樹脂以外のポリマーB溶液相に分離することによって形成される。この際、ポリアミド1010樹脂溶液相は、ポリアミド1010樹脂が主として分配された相であり、ポリアミド1010樹脂以外のポリマーBを主とするポリアミド1010樹脂以外のポリマーB溶液相はポリアミド1010樹脂以外のポリマーBが主として分配された相(以下、ポリマーB溶液相と称することもある。)である。この際、ポリアミド1010樹脂溶液相とポリマーB溶液相は、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBの種類と使用量に応じた体積比を有するようである。
 相分離の状態が得られ、且つ工業的に実施可能な濃度として、有機溶媒に対するポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBの濃度は、有機溶媒に溶解する可能な限りの範囲内であることが前提であるが、全質量に対して好ましくは、それぞれ1質量%超~50質量%、より好ましくは、それぞれ1質量%超~30質量%、さらに好ましくは、それぞれ2質量%~20質量%である。
 本発明における、ポリアミド1010樹脂溶液相とポリマーB溶液相の2相間の界面張力は、両相とも有機溶媒であることから、その界面張力が小さく、その性質により、生成するエマルションが安定に維持できることから、粒子径分布が小さくなるようである。特に、ポリアミド1010樹脂溶液相とポリマーB溶液相の有機溶媒が同一である時は、その効果が顕著である。
 本発明における2相間の界面張力は、界面張力が小さすぎることから、通常用いられる溶液に異種の溶液を加えて測定する懸滴法などでは直接測定することは出来ないが、各相の空気との表面張力から推算することにより、界面張力を見積もることが出来る。各相の空気との表面張力をr、rとした際、その界面張力r1/2は、r1/2=r-rの絶対値で推算することができる。この際、このr1/2の好ましい範囲は、0超~10mN/mであり、より好ましくは0超~5mN/mであり、さらに好ましくは、0超~3mN/mであり、特に好ましくは、0超~2mN/mである。
 このようにして得られた相分離する系を用い、相分離した液相を混合させ、エマルション化させた後、貧溶媒を接触させることによりポリアミド1010樹脂粒子を製造する。
 微粒子化を行うには、通常の反応槽でエマルション形成および貧溶媒を接触させる工程(以下、微粒子化工程と称することもある。)が実施される。
 本発明に係るポリアミド1010樹脂粒子を製造する方法では、その工業的な操作の面で、エマルションの形成のしやすさから、エマルションを形成する温度は100℃以上である。上限としてはポリアミド1010樹脂およびポリアミド1010樹脂以外のポリマーBが溶解し、相分離する温度であって、ポリアミド1010樹脂粒子が得られるならば特に制限はないが、通常100℃~300℃の範囲であり、好ましくは、100℃~280℃であり、より好ましくは、120℃~260℃であり、さらに好ましくは、120℃~240℃であり、特に好ましくは、120℃~220℃であり、最も好ましくは、120℃~200℃の範囲である。
 ポリアミド1010樹脂粒子は、材料特性の向上の点から、粒度分布が狭いものが求められる場合がある。
 このような要求に対しては、エマルションを形成させた後に続く、貧溶媒を接触させる工程(微粒子化工程)における温度制御が有効であり、その温度としては、通常100℃~300℃の範囲であり、好ましくは、100℃~280℃であり、より好ましくは、120℃~260℃であり、さらに好ましくは、120℃~240℃であり、特に好ましくは、120℃~220℃であり、最も好ましくは、120℃~200℃の範囲である。中でも製造工程の管理の容易さから、エマルション形成温度と同じ温度にするのが好ましい。
 ポリアミド1010樹脂粒子は、材料として使用される状況に応じて粒子の表面形状を設計することが必要な場合があり、特に粉体の流動性を向上させたり、粉体のすべり性を向上させたり、触感を向上させたりするためには、表面形状の制御が重要であり、粒度分布が狭いだけでなく、より高度に真球状化した微粒子が求められることがある。
 このような要望に向けて、本発明では、その粒子形状を真球化させるためには、エマルション化工程および微粒子化工程の温度を、以下のように制御することでより高度に真球化させることができる。
 即ち、ポリアミド1010樹脂の熱特性である、降温結晶化温度よりも高い温度でエマルション形成および貧溶媒を接触させる工程を行い、微粒子化を行うことで、よりいっそう粒度分布を狭くし、かつより高度に真球状化した微粒子を得ることができる。
 ここで、降温結晶化温度とは、示差走査熱量測定法(DSC法)により、測定される結晶化温度のことを指し、30℃から、当該ポリマーの融点よりも30℃超える温度までの温度範囲を、20℃/分の昇温速度で1回昇温させた後に、1分間保持した後、20℃/分で0℃まで降温させたときに、観測させる発熱ピークのピークトップのことを指す。
 本発明を実施するにふさわしい圧力は、工業的な実現性の観点から、常圧状態から100気圧(10.1MPa)の範囲であり、好ましくは、1気圧(101.3kPa)~50気圧(5.1MPa)の範囲であり、さらに好ましくは、1気圧(101.3kPa)~30気圧(3.0MPa)であり、特に好ましくは、1気圧(101.3kPa)~20気圧(2.0MPa)である。
 本発明における微粒子化は、高い温度領域であり、場合によっては高圧下もあり得るため、ポリアミド1010樹脂、ポリアミド1010樹脂以外のポリマーBや有機溶媒の熱分解を促進しやすい状態にあることから、極力酸素濃度が低い状態で行うことが好ましい。この際、反応槽の雰囲気の酸素濃度は、5体積%以下が好ましく、より好ましくは、1体積%以下、より好ましくは、0.1体積%以下、さらに好ましくは、0.01体積%以下、特に好ましくは、0.001体積%以下である。
 なお、微量酸素濃度の測定は、実質的には難しいため、酸素濃度は、反応容器内の容積、不活性ガスの酸素体積濃度、容器内の置換圧力及びその回数から理論的に算出するものとする。
 また、反応槽は不活性ガスを使用することが好ましい。具体的には、窒素、ヘリウム、アルゴン、二酸化炭素であり、好ましくは、窒素、アルゴンである。
 また、微粒子化に使用する原料の酸化劣化を防止する観点から、酸化防止剤を添加剤として使用してもよい。
 酸化防止剤としては、ラジカルを補足する目的で添加することから、フェノール系酸化防止剤、硫黄系酸化防止剤、芳香族アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などが挙げられる。
 これら酸化防止剤の具体例としては、フェノール、ハイドロキノン、p-メトキシフェノール、ベンゾキノン、1,2-ナフトキノン、クレゾール 、カテコール、安息香酸、ヒドロキシ安息香酸、サリチル酸、ヒドロキシベンゼンスルホン酸、2,5-ジ-t-ブチルハイドロキノン、6-t-ブチル -m-クレゾール 、2,6-ジ-t-ブチル -p-クレゾール 、4-t-ブチルカテコール、2,4-ジメチル-6-t-ブチルフェノール、2-t-ブチルハイドロキノン、2-t-ブチル -4-メトキシフェノール等が挙げられる。
 酸化防止剤の濃度については、特に限定されないが、ポリアミド1010樹脂以外のポリマーBの質量に対して0.001~10質量%が好ましく、0.01~5質量%がさらに好ましく、0.05~3質量%が最も好ましい。
 このような条件下にて、相分離系状態を混合することにより、エマルションを形成させる。すなわち、上記で得られた相分離溶液に、剪断力を加えることにより、エマルションを生成させる。
 上記のような製造法で得られる微粒子は、粒子径分布が極めて小さい微粒子になるが、これは、エマルション形成を高温で行うことにより、そうでない場合に比較してより一層均一なエマルションが得られるからである。
 このため、エマルションを形成させるに十分な剪断力を得るためには、従前公知の方法による攪拌を用いれば十分であり、攪拌羽による液相攪拌法、連続2軸混合機による攪拌法、ホモジナイザーによる混合法、超音波照射等通常公知の方法で混合することが出来る。
 特に、攪拌羽による攪拌の場合、攪拌羽の形状にもよるが、攪拌速度は、好ましくは50rpm~1,200rpm、より好ましくは、100rpm~1,000rpm、さらに好ましくは、200rpm~800rpm、特に好ましくは、300~600rpmである。
 攪拌羽としては、具体的には、プロペラ型、パドル型、フラットパドル型、タービン型、ダブルコーン型、シングルコーン型、シングルリボン型、ダブルリボン型、スクリュー型、ヘリカルリボン型などが挙げられるが、系に対して十分に剪断力をかけられるものであれば、これらに特に限定されるものではない。また、効率的な攪拌を行うために、槽内に邪魔板等を設置してもよい。
 また、エマルションを発生させるためには、攪拌機だけでなく、乳化機、分散機など広く一般に知られている装置を用いてもよい。具体的に例示するならば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機、エバラマイルダー(荏原製作所社製)、TKフィルミックス(特殊機化工業社製)、TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、超音波ホモジナイザー、スタティックミキサーなどが挙げられる。
 このようにして得られたエマルションは、引き続き微粒子を析出させる工程に供する。
 ポリアミド1010樹脂粒子を得るためには、ポリアミド1010樹脂に対する貧溶媒を、前記工程で製造したエマルションに接触させることでエマルション径に応じた径で、微粒子を析出させる。
 貧溶媒とエマルションの接触方法は、貧溶媒にエマルションを入れる方法でも良いし、エマルションに貧溶媒を入れる方法でも良いが、エマルションに貧溶媒を入れる方法が好ましい。
 この際、貧溶媒を投入する方法としては、ポリアミド1010樹脂粒子が得られる限り特に制限はなく、連続滴下法、分割添加法、一括添加法のいずれでも良いが、貧溶媒添加時にエマルションが凝集・融着・合一し、粒子径分布が大きくなったり、1000μmを超える塊状物が生成しやすくならないようにするために、好ましくは連続滴下法、分割滴下法であり、工業的に効率的に実施するためには、最も好ましいのは、連続滴下法である。
 また、貧溶媒を加える時間としては、10分以上50時間以内であり、より好ましくは、30分以上10時間以内であり、さらに好ましくは1時間以上5時間以内である。
 この範囲よりも短い時間で実施すると、エマルションの凝集・融着・合一に伴い、粒子径分布が大きくなったり、塊状物が生成したりする場合がある。また、これ以上長い時間で実施する場合は、工業的な実施を考えた場合、非現実的である。
 この時間の範囲内で行うことにより、エマルションからポリアミド1010樹脂粒子に転換する際に、粒子間の凝集を抑制することができ、粒子径分布の小さいポリアミド1010樹脂粒子を得ることができる。
 加える貧溶媒の量は、エマルションの状態にもよるが、好ましくは、エマルション総重量1質量部に対して、0.1質量部から10質量部、より好ましくは、0.1質量部から5質量部、さらに好ましくは、0.2質量部から3質量部であり、特に好ましくは、0.2質量部から2質量部であり、最も好ましくは、0.2質量部から1.0質量部である。
 貧溶媒とエマルションとの接触時間は、微粒子が析出するのに十分な時間であればよいが、十分な析出を引き起こしかつ効率的な生産性を得るためには、貧溶媒添加終了後5分から50時間であり、より好ましくは、5分以上10時間以内であり、さらに好ましくは10分以上5時間以内であり、特に好ましくは、20分以上4時間以内であり、最も好ましくは、30分以上3時間以内である。
 このようにして作られたポリアミド1010樹脂粒子分散液は、ろ過、減圧濾過、加圧ろ過、遠心分離、遠心ろ過、スプレードライ等の通常公知の方法で固液分離することにより、微粒子粉体を回収することが出来る。
 固液分離したポリアミド1010樹脂粒子は、必要に応じて、溶媒等で洗浄を行うことにより、付着または含有している不純物等の除去を行い、精製を行う。
 本発明の方法においては、微粒子粉体を得る際に行った固液分離工程で分離された有機溶媒及びポリアミド1010樹脂以外のポリマーBを再度活用するリサイクル化を行うことが可能であることが有利な点である。
 この際、リサイクルする上では、有機溶媒及びポリアミド1010樹脂以外のポリマーBが一連の微粒子製造工程において、物質の変化が抑制されていることが安定な製造を継続する要件になる。本発明の方法を用いれば、これまで課題であったポリアミド1010樹脂以外のポリマーBの変化を抑えることができるため、有機溶剤及びポリアミド1010樹脂以外のポリマーBのリサイクルをしても、製造バッチごとに品質が変化することなく、安定的に製造できるという利点を有する。
 固液分離で得た溶媒は、ポリアミド1010樹脂以外のポリマーB、有機溶媒および貧溶媒の混合物である。この溶媒から、貧溶媒を除去することにより、エマルション形成用の溶媒として再利用することが出来る。貧溶媒を除去する方法としては、通常公知の方法で行われ、具体的には、単蒸留、減圧蒸留、精密蒸留、薄膜蒸留、抽出、膜分離などが挙げられるが、好ましくは単蒸留、減圧蒸留、精密蒸留による方法である。
 単蒸留、減圧蒸留等の蒸留操作を行う際は、ポリアミド1010樹脂粒子製造時と同様、系に熱がかかり、ポリアミド1010樹脂以外のポリマーBや有機溶媒の熱分解を促進する可能性があることから、極力酸素のない状態で行うことが好ましく、より好ましくは、不活性雰囲気下で行う。具体的には、窒素、ヘリウム、アルゴン、二酸化炭素条件下で実施することが好ましい。また、酸化防止剤としてフェノール系化合物を再添加してもよい。
 リサイクルする際、貧溶媒は、極力除くことが好ましいが、具体的には、貧溶媒の残存量が、リサイクルする有機溶媒及びポリマーBの合計量に対して、10質量%以下、好ましくは5質量%以下、より好ましくは、3質量%以下、特に好ましくは、1質量%以下である。この範囲よりも超える場合には、ポリアミド1010樹脂粒子の粒子径分布が大きくなったり、粒子が凝集したりするので、好ましくない。
 リサイクルで使用する溶媒中の貧溶媒の量は、通常公知の方法で測定でき、ガスクロマトグラフィー法、カールフィッシャー法などで測定できる。
 貧溶媒を除去する操作において、現実的には、有機溶媒、ポリアミド1010樹脂以外のポリマーBなどをロスすることもあるので、適宜、初期の組成比に調整し直すのが好ましい。
 このように本発明で得られたポリアミド1010樹脂粒子は、従来の方法で得られるポリアミド1010樹脂粒子に比べ、粉体流動性に優れるため滑らかな感触を得られ、ポリアミド1010樹脂の結晶が発達しているために明度が高く、表面平滑性かつ真球であるために、化粧品用途や塗料の改質剤の用途に好ましく用いられる。
 これらのことから、本発明で得られたポリアミド1010樹脂粒子は、産業上、各種用途で、極めて有用かつ実用的に利用することが可能である。具体的には、洗顔料、サンスクリーン剤、クレンジング剤、化粧水、乳液、美容液、クリーム、コールドクリーム、アフターシェービングローション、シェービングソープ、あぶらとり紙、マティフィアント剤などのスキンケア製品添加剤、ファンデーション、おしろい、水おしろい、マスカラ、フェイスパウダー、どうらん、眉墨、マスカラ、アイライン、アイシャドー、アイシャドーベース、ノーズシャドー、口紅、グロス、ほうべに、おはぐろ、マニキュア、トップコートなどの化粧品またはその改質剤、シャンプー、ドライシャンプー、コンディショナー、リンス、リンスインシャンプー、トリートメント、ヘアトニック、整髪料、髪油、ポマード、ヘアカラーリング剤などのヘアケア製品の添加剤、香水、オーデコロン、デオドラント、ベビーパウダー、歯磨き粉、洗口液、リップクリーム、石けんなどのアメニティ製品の添加剤、トナー用添加剤、塗料などのレオロジー改質剤、医療用診断検査剤、自動車材料、建築材料などの成形品への機械特性改良剤、フィルム、繊維などの機械特性改良材、ラピッドプロトタイピング、ラピッドマニュファクチャリングなどの樹脂成形体用原料、フラッシュ成形用材料、プラスティックゾル用ペーストレジン、粉ブロッキング材、粉体の流動性改良材、潤滑剤、ゴム配合剤、研磨剤、増粘剤、濾剤および濾過助剤、ゲル化剤、凝集剤、塗料用添加剤、吸油剤、離型剤、プラスティックフィルム・シートの滑り性向上剤、ブロッキング防止剤、光沢調節剤、つや消し仕上げ剤、光拡散剤、表面高硬度向上剤、靭性向上材等の各種改質剤、液晶表示装置用スペーサー、クロマトグラフィー用充填材、化粧品ファンデーション用基材・添加剤、マイクロカプセル用助剤、ドラッグデリバリーシステム・診断薬などの医療用材料、香料・農薬の保持剤、化学反応用触媒およびその担持体、ガス吸着剤、セラミック加工用焼結材、測定・分析用の標準粒子、食品工業分野用の粒子、粉体塗料用材料、電子写真現像用トナーなどに用いることができる。
 また、バイオマス由来の原料で製造されたポリアミド1010樹脂からなるポリアミド1010樹脂粒子は、環境低負荷な材料としての特性を有することから、従来使用されていたポリマー微粒子を代替する可能性があり、上記の樹脂成形体、フィルム、繊維などの具体的用途としては、例えば、電気機器のハウジング、OA機器のハウジング、各種カバー、各種ギヤー、各種ケース、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、各種端子板、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、カメラ、VTR、プロジェクションTVなどの撮影用レンズ、ファインダー、フィルター、プリズム、フレネルレンズなどの映像機器関連部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭、事務電気製品部品、オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、各種ディスク基板保護フィルム、光ディスクプレイヤーピックアップレンズ、光ファイバー、光スイッチ、光コネクターなどの情報機器関連部品、液晶ディスプレイ、フラットパネルディスプレイ、プラズマディスプレイの導光板、フレネルレンズ、偏光板、偏光板保護フィルム、位相差フィルム、光拡散フィルム、視野角拡大フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、プリズムシート、タッチパネル用導光フィルム、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品、顕微鏡、双眼鏡、時計などに代表される光学機器、精密機械関連部品、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ランプソケット、ランプリフレクター、ランプハウジング、エンジンオイルフィルターおよび点火装置ケースなどが挙げられ、これら各種の用途にとって極めて有効である。
 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれに限定されるものではない。
(1)平均粒子径および粒子径分布測定方法
 ポリアミド1010樹脂粒子(以下、粒子と称することもある)の個々の粒子径は、走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、粒子を1000倍で観察し、測長した。尚、粒子が真円でない場合は、長径をその粒子径として測定した。平均粒子径は、写真から任意の100個の粒子直径を測長し、その算術平均を求めることにより算出した。
 粒子径分布を示す粒子径分布指数は、上記で得られた個々の粒子直径の値を、下記数値変換式(2)に基づき算出した。
Figure JPOXMLDOC01-appb-M000003

 尚、Ri:粒子個々の粒子直径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
(2)広角X線回折スペクトル測定方法
 株式会社リガク製 RINT2100 Ultima/PCを用いて、X線回折を測定した。測定条件は下記のとおりである。
 X線線源:銅 Kα線、管電圧:40kV、管電流:30mA
 波長:1.54Å、走査速度:3.0°/min
 発散スリット:1°、散乱スリット:1°、受光スリット:0.15mm
(3)真球度の測定
 真球度は、走査型電子顕微鏡にて、粒子を観察し、短径と長径を測定し、任意粒子30個の平均より前述の数式(1)に従い、算出する。前述の数式(1)においては、n:測定数30とする。
(4)表面平滑性の評価
 走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、粒子を1000倍で観察し、得られた粒子の表面の観察写真から下記の基準で目視で判断した。
A:表面が平滑でほとんど凹凸がない。
B:表面が平滑であるが、粒子1個当たり、10個以下の凹凸がある。
C:表面に粒子1個当たり10個を超える凹凸がある。
D:表面が平滑でない。
(5)粉体流動性の評価
 粉体流動性の評価として、安息角の測定を行った。安息角の測定方法は、水平面から高さ6cmの位置から漏斗を用いて粒子5gを自然落下させ、水平面に粒子を堆積させ、水平面と粒子粉体の稜線の作る角度を測定する、注入法にて安息角の測定を行った。安息角が大きい粒子は粉体流動性が悪く、安息角が小さい粒子は流動性に優れる。安息角は25°以下の場合に粉体流動性が良いとした。
(6)粒子の剛性の評価
 株式会社島津製作所製 微小圧縮試験機 MCTW-500を用いて、ダイヤモンド製平面圧子(φ=50μm)、負荷速度一定方式の負荷速度0.3874mN/s、室温23℃、湿度50%RHの標準室内にて、粒子の弾性率を測定した。
 なお、粒子の弾性率の算出は下記式3および式4を用い、装置の架台(ステージ)および圧子の影響を除くために、下記式3および式4から、粒子弾性率であるEから算出した。
  E1:粒子の弾性率(GPa)
  E:装置圧子の弾性率 (1140GPa)
  E:装置架台(ステージ)の弾性率 (200GPa)
  n:粒子のポアソン比(0.4とした)
  n:装置圧子のポアソン比(0.07)
  n3  :装置ステージのポアソン比(0.3)
  δ :粒子圧縮時の圧縮変位(μm)
  E:測定対象と複合弾性率(GPa)
  R:粒子の半径(μm)
  P :荷重(mN)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 なお、弾性率算出には、弾性変形領域である粒子直径の1-5%の変形領域のデータ点を使用し、算出した。
(7)かさ密度
 粒子を10mlのメスシリンダーに静かに充填し、メスシリンダー内の粒子の重量を測定し、単位体積あたりの質量を求め、かさ密度とした。
(8)触感
 得られた粒子を用いて、8名のパネラーによる官能評価を実施した。評価方法は、粒子少量(0.02g程度)を一方の手の甲に乗せ、もう一方の手の3本の指で粒子をこすり合わせ、「異物感」、「やわらかさ」、「滑らかさ」の3項目について官能試験を行った。それぞれの項目につき、下記のとおり評点をつけたときの8人の平均点を、下記基準でランクづけした。
「異物感」
3点:異物感がない
2点:やや異物感がある
1点:異物感がある
「やわらかさ」
3点:やわらかい感触
2点:やややわらかい感触
1点:硬い感触
「滑らかさ」
3点:滑らかである
2点:やや滑らかである
1点:引っかかりがある
<判定基準>
9.0~6.5点は○
6.4~4.5点は△
4.4~3.0点は×
(9)明度の測定
 日本電色工業株式会社製 分光式色彩計 SE-2000を用いて明度Lの測定を行った。基準として、装置付属の標準白板(y=95.99、x=94.04、z=113.10)を用いた。
(10)ポリビニルアルコール類に含まれる酢酸ナトリウムの定量方法
 日本工業規格「ポリビニルアルコール試験方法」(K6726-1994年度)に記載の酢酸ナトリウム溶解滴定法によって測定を行った。
参考例1<ポリビニルアルコール類中の酢酸ナトリウムの洗浄1>
 1Lのナスフラスコ中に、ポリビニルアルコール(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’ GM-14 重量平均分子量 29,000、SP値32.8(J/cm1/2、酢酸ナトリウム含量0.23質量%)50g、メタノール500mlを加え、室温下で1時間撹拌した。その後、吸引濾過(濾紙5A、φ90mm)によって濾別した。同じ操作を、引き続き2回行い、計3回行った後、80℃10時間乾燥することにより、酢酸ナトリウム含量の少ないポリビニルアルコールを得た。得られたポリビニルアルコール中の酢酸ナトリウムを定量したところ、0.05質量%であった。
実施例1<ポリアミド1010樹脂粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリアミド1010(重量平均分子量22,500、Hiproポリマー社製‘Hiprolon(登録商標)’-200)を24.5g、有機溶媒としてN-メチル-2-ピロリドンを273.5g、ポリアミド1010樹脂以外のポリマーBとして参考例1で作成した酢酸ナトリウムの少ないポリビニルアルコールを42g(重量平均分子量29,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約110gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃、10時間真空乾燥を行い、白色固体を24.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の粒子形状であり(図7)、平均粒子径7.5μm、粒子径分布指数1.12のポリアミド1010樹脂粒子であった。このポリアミド1010樹脂粒子について、広角X線回折スペクトルを測定したところ、回折角2θで20度および24度にピークを有していた(図1)。なお、本実施例で用いたポリアミド1010の融点は、207℃、融解熱容量は、29.0J/g、降温結晶化温度は、144℃であった。SP値は、計算法により求め、22.47(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 得られたポリアミド1010樹脂粒子の特性の評価結果を表1に示した。本実施例のポリアミド1010樹脂粒子は真球状で表面平滑性に優れ、粉体流動性に優れるものであった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量が28,500であり、使用前とほとんど変化は無かった。
実施例2<酸の添加によるポリアミド1010樹脂粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリアミド1010(重量平均分子量22,500、Hiproポリマー社製‘Hiprolon(登録商標)’-200)を35g、有機溶媒としてN-メチル-2-ピロリドンを273g、ポリアミド1010樹脂以外のポリマーBとしてポリビニルアルコールを42g(日本合成化学工業株式会社製 G型‘ゴーセノール(登録商標)’GH-20、重量平均分子量44,600、SP値32.8(J/cm1/2)およびL-酒石酸0.21gを加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで3時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約80gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃、10時間真空乾燥を行い、白色固体を34.5g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の粒子形状であり(図8)、平均粒子径15.8μm、粒子径分布指数1.14のポリアミド1010樹脂粒子であった。このポリアミド1010樹脂粒子について、広角X線回折スペクトルを測定したところ、回折角2θで20度および24度にピークを有していた(図2)。なお、本実施例で用いたポリアミド1010の融点は、207℃、融解熱容量は、29.0J/g、降温結晶化温度は、144℃であった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 得られたポリアミド1010樹脂粒子の特性の評価結果を表1に示した。本実施例のポリアミド1010樹脂粒子は真球状で表面平滑性に優れ、粉体流動性、剛性に優れるものであった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量が45,000であり、使用前とほとんど変化は無かった。
実施例3<ポリアミド1010樹脂粒子の製造方法>
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリアミド1010(重量平均分子量22,500、Hiproポリマー社製‘Hiprolon(登録商標)’-200)を35g、有機溶媒としてN-メチル-2-ピロリドンを273g、ポリアミド1010樹脂以外のポリマーBとして参考例1で作成した酢酸ナトリウムの少ないポリビニルアルコールを42g(重量平均分子量29,000、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。この際、酸素濃度は、計算上1%以下である。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.91g/分のスピードで滴下した。約110gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃、10時間真空乾燥を行い、白色固体を34.0g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり(図9)、平均粒子径11.8μm、粒子径分布指数1.21のポリアミド1010樹脂粒子であった。このポリアミド1010樹脂粒子の真球度は90であり、広角X線回折スペクトルを測定したところ、回折角2θで20度および24度にピークを有していた(図3)。
 なお、本実施例で用いたポリアミド1010の融点は、207℃、融解熱容量は、29.0J/g、降温結晶化温度は、144℃であった。SP値は、計算法により求め、22.47(J/cm1/2だった。また、本系の界面張力の推算値は、2mN/m以下であった。貧溶媒である水に対するポリアミドの溶解度(室温)は、0.1質量%以下であった。
 得られたポリアミド1010樹脂粒子の特性の評価結果を表1に示した。本実施例のポリアミド1010樹脂粒子は真球状で表面平滑性に優れ、粉体流動性、剛性に優れるものであった。
 粒子化終了後のろ液中のポリビニルアルコールの分子量を測定したところ、重量平均分子量が28,500であり、使用前とほとんど変化は無かった。
比較例1
 特許文献1(特開2007-277546号公報)の方法をもとに、ポリアミド1010樹脂粒子を製造した。ポリアミド1010(重量平均分子量22,500、Hiproポリマー社製‘Hiprolon(登録商標)’-200)24.0g、オリゴ糖(三菱商事フードテック社製 還元でん粉糖化物PO-10)40.0g、ペンタエリスリトール16.0gを230℃のラボプラストミルに加え、50回転/分の回転速度で、5分間溶融混錬を行った。冷却後、得られた塊状物をイオン交換水に加え、60℃で洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、粉体状の茶色固体を21.0g得た。
 得られた粉体を走査型電子顕微鏡にて観察したところ、平滑表面な粒子形状であり(図10)、平均粒子径7.0μm、粒子径分布指数12.59であった。このポリアミド1010樹脂粒子について、広角X線回折スペクトルを測定したところ、回折角2θで20度にはピークが見られたものの、24度にはピークが見られなかった(図4)。得られたポリアミド1010樹脂粒子の特性の評価を表1に示した。得られた粒子は明度が低く、粉体流動性に劣るものであった。
比較例2
 特許文献2(特開2010-163618号公報)の方法をもとに、ポリアミド1010樹脂粒子を製造した。1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリアミド1010(重量平均分子量22,500、Hiproポリマー社製‘Hiprolon(登録商標)’-200)を56.5g、有機溶媒としてエタノール280gを加え、99体積%以上の窒素置換を行った後、155℃に加熱し、ポリマーが溶解するまでパドル型攪拌翼で250回転/分の回転速度で1時間攪拌を行った。その後、エタノールを連続的に留去しながら125℃に降温し、1時間攪拌を行った。その後、攪拌しながら120℃に降温した時点で樹脂の析出が開始した。エタノールを留去しながら25分後、樹脂の析出が終了した時点で、攪拌しながら降温させ、析出した粉体を取り出し、50℃、10時間真空乾燥を行い、白色固体を53g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、多孔質の異形粒子状であり(図11)、平均粒子径149μm、粒子径分布指数30.7であった。このポリアミド1010樹脂粒子について、広角X線回折スペクトルを測定したところ、回折角2θで20度および24度にピークを有していたが(図5)、平均粒子径、真球度が本発明で規定した範囲外であった。得られたポリアミド1010樹脂粒子の特性の評価結果を表1に示した。得られた粒子はざらつきがあり、粉体流動性に劣るものであった。
比較例3
 SPEX社製 フリーザーミル6750を用いて、ポリアミド1010(重量平均分子量22,500、Hiproポリマー社製‘Hiprolon(登録商標)’-200)16gを液体窒素中で、粉砕時間2分、インパクター回数20回/秒、粉砕回数3回の条件で凍結粉砕し、ポリアミド1010樹脂の粉体を得た。得られた粉体を走査型電子顕微鏡にて観察したところ、ばらついた形状の粉体であり(図12)、平均粒子径は434μm、粒子径分布指数は2.15であった。このポリアミド1010の紛体について、広角X線回折スペクトルを測定したところ、回折角2θで24度にはピークが見られなかった(図6)。得られたポリアミド1010樹脂粉体の特性の評価結果を表1に示した。得られた粉体は球状ではないためざらつきが大きく、粒径が均一ではないため粉体流動性が劣るものであった。
Figure JPOXMLDOC01-appb-T000006
 本発明は、表面平滑性に優れ、真球状で、粉体流動性が良く、剛性に優れたポリアミド1010樹脂粒子が要求されるあらゆる用途に適用可能である。

Claims (18)

  1.  平均粒子径が1~100μmであり、真球度が80以上であり、広角X線散乱測定による回折角2θにおいて24度にピークを有することを特徴とするポリアミド1010樹脂粒子。
  2.  広角X線散乱測定による回折角2θにおいて、20度と24度にピークを有することを特徴とする請求項1に記載のポリアミド1010樹脂粒子。
  3.  粉体の安息角が30°以下であることを特徴とする請求項1または2に記載のポリアミド1010樹脂粒子。
  4.  微小圧縮試験機による粒子の圧縮弾性率が、1.6GPa以上であることを特徴とする請求項1から3のいずれかに記載のポリアミド1010樹脂粒子。
  5.  分光式色彩計で測定したときの明度であるL値が70以上であることを特徴とする請求項1から4のいずれかに記載のポリアミド1010樹脂粒子。
  6.  ポリアミド1010樹脂とポリアミド1010樹脂以外のポリマーBと有機溶媒とを溶解混合した際に、ポリアミド1010樹脂を主成分とする溶液相と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相の2相に相分離する系において、エマルションを形成させた後、ポリアミド1010樹脂の貧溶媒を接触させて、ポリアミド1010樹脂を析出させるポリアミド1010樹脂粒子の製造方法において、エマルションの形成を100℃以上の温度で実施することを特徴とするポリアミド1010樹脂粒子の製造方法。
  7.  ポリアミド1010樹脂以外のポリマーBのSP値が20(J/cm1/2以上であることを特徴とする、請求項6に記載のポリアミド1010樹脂粒子の製造方法。
  8.  ポリアミド1010樹脂以外のポリマーBの25℃における水への溶解度が1g/100g以上であることを特徴とする、請求項6または7に記載のポリアミド1010樹脂粒子の製造方法。
  9.  ポリアミド1010樹脂以外のポリマーBが、その分子骨格中に水酸基、エーテル基、アミド基、カルボキシル基の少なくともいずれかを有することを特徴とする、請求項6から8のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  10.  ポリアミド1010樹脂以外のポリマーBが、ポリビニルアルコール類、ヒドロキシアルキルセルロース、ポリアルキレングリコール、ポリビニルピロリドン、水溶性ナイロン、ポリアクリル酸のいずれかであることを特徴とする、請求項6から9のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  11.  ポリアミド1010樹脂以外のポリマーBが、ポリビニルアルコール類であり、ポリビニルアルコール中の酢酸ナトリウム含量が、0.1質量%以下であることを特徴とする、請求項6から10のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  12.  ポリアミド1010樹脂以外のポリマーBが、ポリビニルアルコール類であり、エマルション形成時に系中に酸化合物を添加することを特徴とする、請求項6から10のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  13.  添加する酸化合物が、第1解離指数(pKa1)が4.5以下の酸であり、分解温度が貧溶媒の沸点以上であることを特徴とする、請求項12に記載のポリアミド1010樹脂粒子の製造方法。
  14.  添加する酸化合物が、クエン酸、酒石酸、マロン酸、シュウ酸、アジピン酸、マレイン酸、リンゴ酸、フタル酸、コハク酸、ポリアクリル酸から選ばれる1種以上であることを特徴とする、請求項12または13に記載のポリアミド1010樹脂粒子の製造方法。
  15.  有機溶媒のSP値が20(J/cm1/2以上で沸点が100℃以上であることを特徴とする、請求項6から14のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  16.  有機溶媒が、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノンから選ばれる1種以上であることを特徴とする、請求項6から15のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  17.  エマルション形成後、ポリアミド1010樹脂を析出させるため、貧溶媒を接触させる温度がポリアミド1010樹脂の降温結晶化温度以上の温度であることを特徴とする、請求項6から16のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
  18.  ポリアミド1010樹脂を析出させた後に、固液分離をし、ポリアミド1010樹脂粒子を除いた、ポリアミド1010樹脂以外のポリマーB成分を含む溶液から、貧溶媒を除去し、得られた溶液に、再度、ポリアミド1010樹脂を加えて、ポリアミド1010樹脂を主成分とする溶液相と、ポリアミド1010樹脂以外のポリマーBを主成分とする溶液相の2相に相分離する系を形成させ、有機溶媒およびポリアミド1010樹脂以外のポリマーBを再利用することを特徴とする、請求項6から17のいずれかに記載のポリアミド1010樹脂粒子の製造方法。
PCT/JP2012/067693 2011-09-27 2012-07-11 ポリアミド1010樹脂粒子およびその製造方法 WO2013046860A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112014007130-6A BR112014007130A2 (pt) 2011-09-27 2012-07-11 partículas de polímero e método para produção
AU2012313453A AU2012313453A1 (en) 2011-09-27 2012-07-11 Polyamide 1010 resin particles and method for producing same
EP12837041.8A EP2743290A4 (en) 2011-09-27 2012-07-11 POLYAMIDE RESIN PARTICLES 1010 AND METHOD FOR PRODUCING THE SAME
US14/345,448 US9617395B2 (en) 2011-09-27 2012-07-11 Polyamide 1010 polymer particles and method for producing same
CN201280041329.1A CN103748143B (zh) 2011-09-27 2012-07-11 聚酰胺1010树脂粒子及其制造方法
KR1020147003389A KR20140080478A (ko) 2011-09-27 2012-07-11 폴리아미드 1010 수지입자 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/071954 WO2012043509A1 (ja) 2010-09-28 2011-09-27 ポリマー微粒子およびその製造方法
JPPCT/JP2011/071954 2011-09-27
JP2012-067571 2012-03-23
JP2012067571A JP5541586B2 (ja) 2011-09-27 2012-03-23 ポリアミド1010樹脂粒子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013046860A1 true WO2013046860A1 (ja) 2013-04-04

Family

ID=47994917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067693 WO2013046860A1 (ja) 2011-09-27 2012-07-11 ポリアミド1010樹脂粒子およびその製造方法

Country Status (9)

Country Link
US (1) US9617395B2 (ja)
EP (1) EP2743290A4 (ja)
JP (1) JP5541586B2 (ja)
KR (1) KR20140080478A (ja)
CN (1) CN103748143B (ja)
AU (1) AU2012313453A1 (ja)
BR (1) BR112014007130A2 (ja)
TW (1) TWI527846B (ja)
WO (1) WO2013046860A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896656A4 (en) * 2012-09-14 2016-04-20 Toray Industries POLYAMIDE RESIN COMPOSITION AND CORRESPONDING MOLDED ARTICLE
EP3006488A4 (en) * 2013-05-31 2017-03-15 Toray Industries, Inc. Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition including same, and method for producing said microparticles
EP3153541A4 (en) * 2014-06-09 2018-01-10 Toray Industries, Inc. Method for producing polymer microparticles

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291222B2 (ja) * 2013-11-19 2018-03-14 Jxtgエネルギー株式会社 プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
JP6291221B2 (ja) * 2013-11-19 2018-03-14 Jxtgエネルギー株式会社 プリプレグ、繊維強化複合材料及び粒子含有樹脂組成物
CN104149219B (zh) * 2014-07-31 2017-04-26 中国科学院重庆绿色智能技术研究院 一体化粉体球化及分级方法
EP3175303B1 (fr) * 2014-08-01 2019-01-02 Cartier International AG Composant horloger avec une surface comportant de la fibroïne de soie
CN105440663B (zh) * 2014-08-07 2018-08-24 中国科学院理化技术研究所 一种选择性激光烧结用尼龙微粉的制备方法
CN104262646B (zh) * 2014-09-12 2017-07-21 中国科学院化学研究所 形貌可控的长碳链聚酰胺粉末基体及形貌可控的高导电复合粉末材料
JP6647209B2 (ja) 2014-10-29 2020-02-14 住友精化株式会社 ポリエステル系弾性体の水性分散体及びその製造方法
CN106674553B (zh) * 2015-11-11 2020-02-11 中国科学院理化技术研究所 一种聚酰胺多孔微球及其制备方法
CN106751767B (zh) * 2015-11-24 2019-09-24 中国科学院理化技术研究所 一种选择性激光烧结用尼龙合金复合微粉及其制备方法
WO2017195705A1 (ja) 2016-05-10 2017-11-16 株式会社クレハ ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物
CN108720547B (zh) * 2017-04-25 2024-02-13 佛山市顺德区美的电热电器制造有限公司 不粘涂层及其制备方法以及锅具和煮食设备
WO2019239965A1 (ja) * 2018-06-14 2019-12-19 日本曹達株式会社 ポリアミド4粒子の製造方法
CN109171647B (zh) * 2018-08-14 2021-06-11 上海常仁信息科技有限公司 能够皮肤检测的健康机器人
JP7055784B2 (ja) * 2018-12-13 2022-04-18 キヤノン化成株式会社 霧化塗布用表面反射防止塗料および表面反射防止塗膜
CN113337105B (zh) * 2020-03-02 2022-09-23 中国科学院化学研究所 一种聚合物粉体及其制备方法
CN113354942B (zh) * 2020-03-02 2022-10-18 中国科学院化学研究所 一种聚合物粉体及其制备方法
US11643503B2 (en) * 2020-07-10 2023-05-09 Xerox Corporation Highly spherical polyamide microparticles and synthesis methods related thereto
CN112300415A (zh) * 2020-11-19 2021-02-02 广东聚石科技研究有限公司 一种球形尼龙粉末及其制备方法和应用
US20240026090A1 (en) * 2020-11-30 2024-01-25 Toray Industries, Inc. Polyamide fine particles and method of producing the same
WO2023117915A1 (en) * 2021-12-21 2023-06-29 Basf Se Inbound chemical product with environmental attributes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277546A (ja) 2006-04-01 2007-10-25 Degussa Gmbh ポリマー粉末、係る粉末の製造方法及びその使用並びに該粉末からなる成形体
WO2009142231A1 (ja) 2008-05-21 2009-11-26 東レ株式会社 ポリマー微粒子の製造方法
JP2010163618A (ja) 2004-04-27 2010-07-29 Evonik Degussa Gmbh ポリアミドを有するポリマー粉末、形状付与方法における使用および該ポリマー粉末から製造された成形体
JP2010189472A (ja) * 2009-02-16 2010-09-02 Unitika Ltd 環境配慮型熱可塑性樹脂組成物
JP2011094128A (ja) * 2009-09-30 2011-05-12 Toray Ind Inc ポリアミド微粒子の製造方法
JP2011219756A (ja) 2010-04-07 2011-11-04 Evonik Goldschmidt Gmbh ポリアミド1010粉末およびパーソナルケア製品におけるその使用
JP2011218330A (ja) 2010-04-14 2011-11-04 Ube Industries Ltd 吸着材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081430A (en) * 1975-10-20 1978-03-28 Mitsubishi Rayon Co., Ltd. Aromatic polyamide crystalline complex and the method for producing the same
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
DE102005053071A1 (de) * 2005-11-04 2007-05-16 Degussa Verfahren zur Herstellung von ultrafeinen Pulvern auf Basis Polymaiden, ultrafeinen Polyamidpulver sowie deren Verwendung
WO2010101134A1 (ja) * 2009-03-05 2010-09-10 宇部興産株式会社 ポリアミド粒子及びその製造方法
BR112012026755A2 (pt) 2010-04-20 2016-07-12 Ube Industries micropartículas de poliamida, método de fabricação das mesmas, película óptica que utiliza as ditas micropartículas de poliamida, e dispositivo de tela de cristal líquido
WO2012043509A1 (ja) * 2010-09-28 2012-04-05 東レ株式会社 ポリマー微粒子およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163618A (ja) 2004-04-27 2010-07-29 Evonik Degussa Gmbh ポリアミドを有するポリマー粉末、形状付与方法における使用および該ポリマー粉末から製造された成形体
JP2007277546A (ja) 2006-04-01 2007-10-25 Degussa Gmbh ポリマー粉末、係る粉末の製造方法及びその使用並びに該粉末からなる成形体
WO2009142231A1 (ja) 2008-05-21 2009-11-26 東レ株式会社 ポリマー微粒子の製造方法
JP2010189472A (ja) * 2009-02-16 2010-09-02 Unitika Ltd 環境配慮型熱可塑性樹脂組成物
JP2011094128A (ja) * 2009-09-30 2011-05-12 Toray Ind Inc ポリアミド微粒子の製造方法
JP2011219756A (ja) 2010-04-07 2011-11-04 Evonik Goldschmidt Gmbh ポリアミド1010粉末およびパーソナルケア製品におけるその使用
JP2011218330A (ja) 2010-04-14 2011-11-04 Ube Industries Ltd 吸着材

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Chemical Handbook", 1984, MARUZEN CO., LTD.
HIDEKI YAMAMOTO: "SP value, base, application and calculation method", 31 March 2005, JOHOKIKO CO., LTD.
J. BRAND: "Polymer Handbook Fourth Edition", 1998, WILEY
J. BRAND: "Polymer Handbook Fourth Edition", 1998, WILEY, pages: 688 - 701
See also references of EP2743290A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896656A4 (en) * 2012-09-14 2016-04-20 Toray Industries POLYAMIDE RESIN COMPOSITION AND CORRESPONDING MOLDED ARTICLE
EP3006488A4 (en) * 2013-05-31 2017-03-15 Toray Industries, Inc. Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition including same, and method for producing said microparticles
US10125252B2 (en) 2013-05-31 2018-11-13 Toray Industries, Inc. Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition containing same, and method of producing said microparticles
EP3153541A4 (en) * 2014-06-09 2018-01-10 Toray Industries, Inc. Method for producing polymer microparticles

Also Published As

Publication number Publication date
JP2013072086A (ja) 2013-04-22
EP2743290A4 (en) 2015-03-25
KR20140080478A (ko) 2014-06-30
TWI527846B (zh) 2016-04-01
CN103748143A (zh) 2014-04-23
US9617395B2 (en) 2017-04-11
TW201323489A (zh) 2013-06-16
AU2012313453A1 (en) 2014-05-15
JP5541586B2 (ja) 2014-07-09
EP2743290A1 (en) 2014-06-18
US20140349113A1 (en) 2014-11-27
BR112014007130A2 (pt) 2020-10-27
CN103748143B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5541586B2 (ja) ポリアミド1010樹脂粒子およびその製造方法
KR101382732B1 (ko) 폴리락트산계 수지 미립자의 제조 방법, 폴리락트산계 수지 미립자 및 그것을 이용하여 이루어지는 화장품
JP5648740B2 (ja) 複合ポリアミド微粒子およびその製造方法
JP6543920B2 (ja) ポリマー微粒子
JP6168401B2 (ja) ポリ乳酸系樹脂微粒子およびそれを用いてなる分散液、ならびにポリ乳酸系樹脂微粒子の製造方法
JP5777675B2 (ja) 積層フィルムおよびそれを用いてなる液晶ディスプレイ用反射板
JP2013133473A (ja) ポリ乳酸系樹脂微粒子の製造方法
JP5593932B2 (ja) 樹脂微粒子およびその製造方法
JP2015209478A (ja) 脂肪族ポリエステル樹脂微粒子およびその製造方法
JP2020084131A (ja) 樹脂粒子の製造方法
JP2016113618A (ja) 樹脂微粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147003389

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012837041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012837041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14345448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012313453

Country of ref document: AU

Date of ref document: 20120711

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014007130

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014007130

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140325