WO2010101134A1 - ポリアミド粒子及びその製造方法 - Google Patents

ポリアミド粒子及びその製造方法 Download PDF

Info

Publication number
WO2010101134A1
WO2010101134A1 PCT/JP2010/053309 JP2010053309W WO2010101134A1 WO 2010101134 A1 WO2010101134 A1 WO 2010101134A1 JP 2010053309 W JP2010053309 W JP 2010053309W WO 2010101134 A1 WO2010101134 A1 WO 2010101134A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
particles
polyamide particles
particle
cyclic amide
Prior art date
Application number
PCT/JP2010/053309
Other languages
English (en)
French (fr)
Inventor
海磯 孝二
真典 阿部
常実 杉本
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US13/254,026 priority Critical patent/US8822555B2/en
Priority to EP10748729.0A priority patent/EP2404955A4/en
Priority to CN201080016142.7A priority patent/CN102388088B/zh
Priority to JP2011502755A priority patent/JP5652389B2/ja
Publication of WO2010101134A1 publication Critical patent/WO2010101134A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to polyamide particles and a method for producing the same.
  • Polyamide particles are applied to a wide range of fields such as cosmetics, additives such as paints and waxes, lubricants, adhesives, and anti-tacking agents.
  • nylon 12 polyamide 12
  • dipropylene glycol are mixed, heated, dissolved to form a uniform solution, and cooled to precipitate spherical particles of nylon 12
  • Patent Document 1 a method for producing polyamide porous particles in which methanol and water, which are non-solvents of the polyamide, are mixed in a polyamide phenol solution (Patent Document 2), and the polyamide is heated and dissolved in ethylene glycol and cooled.
  • Patent Document 3 Patent Document 4
  • Patent Document 2 describes that porous particles were obtained as described above
  • Patent Document 4 describes that “particles having a porous surface” were obtained (paragraph 0048 and the like).
  • the shape of the hole takes a specific shape and form depending on the manufacturing method, it may not be satisfactory for various applications.
  • the polyamide particles obtained in Patent Document 4 are fine particles having a particle size of about 12 to 15 ⁇ m, the oil absorption is 140 mL / g or less and does not have sufficient porosity.
  • An object of the present invention is to provide novel porous polyamide particles. Another object of the present invention is to provide a method for producing polyamide particles in which the removal of the solvent used and the drying of the polyamide particles are easy in the production of polyamide particles.
  • the present inventor can produce novel porous polyamide particles by dissolving polyamide in a cyclic amide by heating and cooling the polyamide amide. It has been found that residual polyamide amide as a solvent can be suppressed by washing high quality polyamide particles with liquid or supercritical carbon dioxide and drying.
  • a polyamide particle characterized in that the appearance of the particle is substantially spherical, and is a spongy shape having a through hole in the outer surface and an independent hole in the inner surface.
  • the polyamide particles according to item 1 having a number average particle diameter of 60 to 130 ⁇ m.
  • the polyamide particles according to item 1 wherein the BET specific surface area is 15 m 2 / g or more. 4).
  • the polyamide particles according to item 1, wherein the maximum pore diameter by a mercury porosimeter is 1 ⁇ m or less. 6).
  • the polyamide particles according to item 1 wherein the median pore diameter measured by a mercury porosimeter is 0.5 ⁇ m or less. 7).
  • DSC differential scanning calorimetry
  • Item 9 is characterized in that the polyamide particles obtained by heating and dissolving the polyamide in a cyclic amide to obtain a homogeneous solution and cooling are washed with carbon dioxide in a liquid state or a supercritical state and dried.
  • the manufacturing method of the polyamide particle of description is characterized in that the polyamide particles obtained by heating and dissolving the polyamide in a cyclic amide to obtain a homogeneous solution and cooling are washed with carbon dioxide in a liquid state or a supercritical state and dried.
  • a polyamide can be heated and dissolved in a cyclic amide, and a novel polyamide particle can be produced by cooling the polyamide.
  • the resulting novel polyamide particle is converted into a liquid state or a supercritical carbon dioxide.
  • the residual cyclic amide polyamide particles as a solvent can be suppressed.
  • a cyclic amide that dissolves in liquid or supercritical carbon dioxide is used as a solvent, the recovery and recycling of the solvent becomes simple, which is suitable as an industrial production method.
  • the obtained polyamide particles were analyzed by SEM (Scanning Electron Microscope) and found to be spongy porous (see FIGS. 3 and 4). In addition, it was found from other analyzes that it has the characteristic physical properties shown in the above-mentioned items 1 to 8 and has properties superior to conventional products in the scrub feeling.
  • the polyamide particles are effective as a raw material for various cosmetics because of their good slipperiness with the skin, and are excellent in oil absorption because they are porous.
  • polyamide particles having a spheroidal shape in which the appearance of the particles is substantially spherical, having a through hole in the outer surface and an independent hole in the inner surface.
  • the shape of the polyamide particles of the present invention is a spongy structure as seen in the scanning electron micrographs (SEM photographs) shown in FIGS. 1 and 2, and has through holes on the outer surface and independent holes on the inside. Yes. Since the through holes are concentrated on the outer surface, it is possible to develop a large specific surface area even though the particle diameter is large as shown below.
  • the appearance of the particles is mainly a spherical fine particle shape such as a spherical shape or an elliptical shape.
  • the number average particle size of the polyamide particles is in the range of 10 to 250 ⁇ m, particularly in the range of 20 to 200 ⁇ m, and further in the range of 60 to 130 ⁇ m, and the particle size can be controlled by the polyamide concentration and the cooling rate.
  • the other physical properties of the polyamide particles of the present invention are as follows.
  • the BET specific surface area is usually 15 m 2 / g or more, preferably 15 to 50 m 2 / g.
  • General porous particles tend to have a specific surface area that decreases as the particle size increases.
  • the polyamide particles of the present invention have a large specific surface area even though the particle diameter is around 100 ⁇ m.
  • the specific surface area is small, it is not preferable when the catalyst or the like is supported because the supporting ability is lowered.
  • the size is too large, the mechanical strength of the polyamide particles tends to be low, and the treatment for supporting the catalyst or the like tends to be difficult.
  • the cumulative specific surface area is usually 80 m 2 / g or more, preferably 80 to 200 m 2 / g.
  • the maximum pore diameter by a mercury porosimeter is usually 1 ⁇ m or less. This indicates that there are no pores having a diameter larger than 1 ⁇ m on the particle. Furthermore, since it has a high BET specific surface area of 15 m 2 / g or more, it can be said that very many fine pores exist on the polyamide particles. This feature slows the desorption rate of the adsorbed substance. This is very useful in applications where particles need to absorb maximum auxiliaries and do not release rapidly but rather slowly, such as cosmetics, paints, drugs and other applications. is there.
  • the median pore diameter measured by a mercury porosimeter is usually 0.5 ⁇ m or less.
  • the boiled linseed oil absorption amount is usually 170 ml / g or more.
  • the degree of crystallinity measured by DSC is usually 45% or more.
  • the crystallinity of polyamide can be determined by X-ray analysis, DSC measurement, or density. The DSC measurement is preferred.
  • Polyamides crystallized from ordinary melts have a high crystallinity of about 30%. If the crystallinity is lower than 40%, the porous particles become unstable due to heat, which is not preferable.
  • the polyamide particles of the present invention preferably have a crystallinity of 45% or more. It is particularly preferable that the crystallinity is higher than 50%.
  • the polyamide particles of the present invention have a large number of independent pores inside as seen in the scanning electron micrographs shown in FIGS.
  • the independent holes of the present invention are holes (encapsulated holes) that are not exposed on the surface of the polyamide particles and are encapsulated by the polyamide.
  • the through hole is a hole that is not completely wrapped in polyamide and communicates with the surface.
  • the shape of the hole may be in various forms, and the wall surface (cross section) may be linear, or may be irregularly winding, for example.
  • Whether the hole is a through hole or an independent hole can be determined by observing a cured cross section with a scanning electron microscope after embedding and fixing polyamide particles with an epoxy resin.
  • an epoxy resin that can be used is the main agent (Epok 812 manufactured by Oken Shoji Co., Ltd., viscosity 160CPS at 25 ° C., specific gravity 1.24 at 25 ° C.), curing agent (anhydrous methylnadic acid anhydride), polymerization accelerator (DMP-30). : 2,4,6-tris (dimethylaminomethyl) phenol) prepared according to the Lucas method, which can be cured at 70 ° C. for 12 hours, for example. Not only this epoxy resin but the thing with a similar viscosity and hardening conditions can also be used.
  • the ratio of the independent holes to the through-holes of the polyamide particles of the present invention (the ratio of the cross-sectional area by the cross-sectional observation described above) varies depending on the manufacturing conditions, but is about 10:90 to 30:70.
  • fragrances and antibacterial agents can be carried in these independent holes. It is also possible to change the elasticity of the particles themselves by changing the type of substance to be included.
  • polyamide particles having a particle diameter of about 100 ⁇ m have a relatively smooth surface, so the amount of oil absorption is low.
  • the polyamide particles of the present invention have a rough surface and are high Has oil absorption.
  • it When used as a body wash, it also has the advantage of giving the skin a comfortable, scrubbing, and refreshing feel with moderate skin irritation, and the possibility of creating an unprecedented new body wash. have.
  • polyamide particles are precipitated by heating and dissolving polyamide in a cyclic amide to form a uniform solution and cooling the solution.
  • the polyamide particles are advantageous for washing with carbon dioxide in a liquid state or supercritical state and drying, and as a result, the residual cyclic amide as a solvent can be reduced.
  • the polyamide used as a raw material in the method for producing polyamide particles of the present invention is a high molecular compound having an acid amide (—CONH—) bond as a repeating unit, and (1) by ring-opening polymerization of lactam according to the polymerization mode, (2 ) By polycondensation of aminocarboxylic acid, and (3) by polycondensation of diamine and dibasic acid.
  • polyamide 6 polyamide 6
  • polyamide 66 nylon 66
  • polyamide 11 polyamide 12
  • polyamide 46 polyamide 610
  • polyamide 612 and other aliphatic polyamides
  • poly (metaxylene azimuth) Pamid poly (hexamethylene terephthalamide), poly (hexamethylene isophthalamide), and other aliphatic-aromatic polyamides, copolymers thereof, and further, 2-methylpentamethylenediamine and adipine in its skeleton
  • bio-based polyamide examples include polyamide 1010 (PA1010), polyamide 610 (PA610), polyamide 11 (PA11), and polyamide 4 (PA4).
  • PA1010, PA610, and PA11 commercially available products can be used, and PA4 can be synthesized from 2-pyrrolidone, for example, based on the description in JP-A-2009-159840.
  • the cyclic amide used in the present invention preferably has 4 to 18 carbon atoms constituting the ring.
  • Specific examples include 2-pyrrolidone, piperidone, N-methylpyrrolidone, ⁇ -caprolactam, N-methylcaprolactam, ⁇ -lauryl lactam, and the like.
  • the cycloalkylidene ring may have a substituent that does not inhibit the reaction, and examples of the substituent include an acyclic or cyclic alkyl group such as a methyl group, an ethyl group, and a cyclohexyl group, a vinyl group, Examples include acyclic or cyclic alkenyl groups such as cyclohexenyl group, aryl groups such as phenyl group, alkoxy groups such as methoxy group, alkoxycarbonyl groups such as methoxycarbonyl group, and halogen groups such as chloro group. Unsubstituted 2-pyrrolidone and ⁇ -caprolactam are preferable.
  • the heating may be performed at a temperature at which the polyamide is dissolved in the cyclic amide.
  • heating more than necessary may cause deterioration of the polyamide, discoloration, and the like.
  • the time from the start of addition of polyamide to the cyclic amide to the formation of a homogeneous solution is usually in the range of 0.1 second to 120 minutes, preferably in the range of 1 second to 90 minutes, particularly preferably in the range of 1 second to The range is 60 minutes.
  • the amount of polyamide used is 2% to 30% by weight, preferably 3% to 20% by weight, based on the total weight of polyamide and cyclic amide. If the amount of polyamide used is low, the crystal growth is unidirectional, so that it tends to be fibrous, and if the amount used is high, a part or the whole tends to be agglomerated, and the particle shape may not be obtained.
  • the cooling is generally in the range of 5 to 100 ° C., preferably in the range of 10 to 80 ° C.
  • the standing time of the uniform solution of polyamide and cyclic amide is usually 5 minutes or more, preferably 120 minutes or more after the uniform solution is formed.
  • the cooling rate is not particularly limited, but typically ranges from 1.5 to 100 ° C./min.
  • the polyamide particles precipitated in a uniform solution of polyamide and cyclic amide can be separated by a usual method such as centrifugation, decantation, or filtration.
  • a low specific gravity solvent such as methanol, isopropanol or water
  • the polyamide particles may be separated by a method such as centrifugation or decantation.
  • the precipitated polyamide particles may be further washed several times with methanol, acetone or the like and then separated by a method such as centrifugation or decantation.
  • the polyamide particles separated from the mixed solution can be dried by an ordinary method such as vacuum drying or a spray dryer.
  • the obtained polyamide particles are spongy porous when analyzed by SEM (Scanning Electron Microscope) (see FIGS. 3 and 4).
  • the present inventor has found that the cyclic amide used in the present invention has a property of being dissolved with liquid carbon dioxide or supercritical carbon dioxide, and thus polyamide particles obtained from a uniform solution of polyamide and cyclic amide are obtained. It has been found that by washing with liquid carbon dioxide or supercritical carbon dioxide and drying, the polyamide particles can be separated and dried in a single step, and polyamide particles in which almost no cyclic amide as a solvent remains can be produced.
  • Polyamide particles precipitated from a homogeneous solution of polyamide and cyclic amide by the above method are added together with the solution to an autoclave equipped with a stirrer, a filter and a pressure control valve, and the system is pressurized to 5-10 MPa with carbon dioxide.
  • carbon dioxide is circulated with a pump.
  • the cyclic amide and carbon dioxide as the solvent are discharged from the pressure regulating valve.
  • the system pressure is reduced to normal pressure, and then released to obtain dried polyamide particles.
  • Carbon dioxide has a critical temperature of 31 ° C. and a critical pressure of 7.38 MPa. For example, when it is 8 MPa, it is liquid at 20 ° C. and supercritical at 50 ° C.
  • the residual solvent can be controlled to 0.01% by weight or less and 100 ppm or less.
  • the polyamide particles obtained by the production method of the present invention can be used as cleansing masks, foundations, UV care, antiperspirants, facial cleansers, shower gels, cosmetic raw materials such as detergent additives, and chromatographic fillers. It can also be used as a carrier or adsorbent for various catalysts in the food industry and the medical field, and can be used as a toner for electrophotography by loading a colorant on polyamide particles, or as an electronic material for display devices, etc. You can also Furthermore, it can also be used for water-based inks, HD abrasives, organic EL, adhesives, electrostatic coating applications, powder coating applications, and prototype fabrication by laser sintering.
  • Sample amount About 0.2g Sample cell: Small cell (10mm ⁇ ⁇ 3cm) Measurement range: Whole area measurement range: Pore diameter 400 ⁇ m ⁇ 0.0036 ⁇ m Calculation range: Pore diameter 400 ⁇ m to 0.0036 ⁇ m Mercury contact angle: 140 deg Mercury surface tension: 480 dyn / cm Measurement cell volume: 0.5cc Number of measurements: 1 time
  • Measurement was performed using a high-speed specific surface area / pore diameter distribution measuring device NOVA-1200 (manufactured by Quanta Chrome Co.). The following are the conditions. Pretreatment conditions: A sample was placed in a measurement cell and degassed for 30 minutes at 100 ° C. under vacuum.
  • ⁇ Measurement principle Constant volume method (blank correction type)
  • ⁇ Detection method Relative pressure; Ratio of adsorption equilibrium pressure and saturated vapor pressure in the sample cell by pressure transducer
  • Item Specific surface area and number of measurements by BET multipoint method: Measured twice with the same sample.
  • the crystallinity of the polyamide fine particles was measured by DSC (differential scanning calorimeter). Flow rate 40 ml / min. In a nitrogen stream, the heat of crystal fusion is calculated from the area of the endothermic peak at a rate of temperature increase of 5 ° C./min and a temperature range of 120 to 230 ° C. The degree of crystallinity is determined from the ratio between the calculated heat of fusion and the heat of crystal fusion of the polyamide constituting the polyamide fine particles. When the polyamide constituting the polyamide fine particles was polyamide 6, the heat of crystal melting was 189 J / g, and when the polyamide 12 was polyamide 12, the heat of crystal melting was 209 J / g.
  • Measurement was performed using a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.). The following are the conditions.
  • ⁇ Measurement mode Manual flow cell measurement
  • ⁇ Measurement range 0.02 ⁇ m to 1000 ⁇ m
  • Dispersion medium 200 cc of 2-propanol Refractive index: 1.28-0.001
  • Sample pretreatment A sample and a dispersion medium were placed in a sample tube and ultrasonically dispersed for 10 minutes.
  • -Number of measurements The sample was changed and measured twice.
  • Example 1 Production of polyamide 6 particles using 2-pyrrolidone as a solvent
  • a mixing vessel equipped with a stirrer in which 2-pyrrolidone was mixed with 20% by weight of polyamide 6 pellets with nitrogen.
  • the mixture was stirred at 200 ° C. for about 60 minutes until the polyamide 6 was completely dissolved.
  • the obtained homogeneous solution was cooled to room temperature at a cooling rate of 1.5 ° C./min.
  • 2-Propanol was added to this mixture, and the solvent was roughly separated by washing and filtration, followed by drying to obtain polyamide 6 spherical particles.
  • Observation of the obtained spherical particles with a microscope revealed spherical particles having a particle size of 130 to 200 ⁇ m (see FIG. 1).
  • the median diameter of the spherical particles was 154.8 ⁇ m.
  • the spherical particles had a BET specific surface area of 30.6 square meters / g.
  • the heat of crystal fusion was 103 J / g.
  • the crystallinity was 54%.
  • the cumulative specific surface area was 91 square meters (m 2 ) / g, the mercury maximum pore diameter was 0.03 ⁇ m, and the median pore diameter was 0.03 ⁇ m.
  • the boiled linseed oil absorption amount was 195 ml / g.
  • Table 1 shows the measurement results of the particle size distribution of polyamide 6 particles produced using 2-pyrrolidone. Further, the polyamide particles were mixed with epoxy resin (main agent (Epok Corporation, Epok 812, viscosity 160 CPS at 25 ° C., specific gravity 1.24 at 25 ° C.), curing agent (anhydrous methyl nadic acid), polymerization accelerator (DMP-30). : 2,4,6-tris (dimethylaminomethyl) phenol) was added according to the Lucas method (Luft JH: Improvments in epoxies resin embedding methods, J Biophys Biochem Cytol, 9: 409-414, 1961). Then, what was cured at 70 ° C.
  • epoxy resin main agent (Epok Corporation, Epok 812, viscosity 160 CPS at 25 ° C., specific gravity 1.24 at 25 ° C.
  • curing agent anhydrous methyl nadic acid
  • DMP-30 polymerization accelerator
  • Example 2 Production of polyamide 6 particles using 2-pyrrolidone as a solvent
  • the cooling rate of the solution was set to 100 ° C / min.
  • spherical particles of polyamide 6 were obtained. Similar to Example 1, the observation or measurement results are as follows.
  • Example 3 Production of polyamide 6 particles using 2-pyrrolidone as a solvent The same procedure as in Example 1 was repeated except that the amount of polyamide 6 pellets used was 15% by weight. Spherical particles were obtained. Similar to Example 1, the observation or measurement results are as follows.
  • Example 4 Production of polyamide 6 particles using ⁇ -caprolactam as a solvent
  • the solvent was changed from 2-pyrrolidone to ⁇ -caprolactam
  • the spherical shape of polyamide 6 was changed. Particles were obtained. Similar to Example 1, the observation or measurement results are as follows.
  • Example 5 Production of polyamide 6 particles using ⁇ -caprolactam as a solvent
  • the solvent was changed from 2-pyrrolidone to ⁇ -caprolactam, and the cooling rate of the solution was set to 100 ° C / min.
  • Spherical particles of polyamide 6 were obtained in the same manner as in Example 1 except that it was cooled to the ice temperature. Similar to Example 1, the observation or measurement results are as follows.
  • Example 6 Production of polyamide 12 particles using 2-pyrrolidone as a solvent In the same manner as in Example 1 except that polyamide 6 was changed to polyamide 12, spherical particles of polyamide 12 were obtained. . Similar to Example 1, the observation or measurement results are as follows.
  • Example 2 a sample cured by injecting an epoxy resin into polyamide particles was observed with a scanning electron microscope. This is shown in FIGS. As is apparent from the SEM image, the through hole exists in the outer surface portion, and the independent hole exists in the inside. The ratio of the through hole and the independent hole was 8: 2.
  • Example 7 Production of polyamide 12 particles using 2-pyrrolidone as a solvent In Example 6, except that the solution was cooled to the ice temperature at a cooling rate of 100 ° C / min. Thus, spherical particles of polyamide 12 were obtained. Similar to Example 1, the observation or measurement results are as follows.
  • Example 8 Production of polyamide 12 particles using 2-pyrrolidone as a solvent The same procedure as in Example 6 was repeated except that the amount of polyamide 12 pellets used was 15 wt%. Spherical particles were obtained. Similar to Example 1, the observation or measurement results are as follows.
  • Example 9 Production of polyamide 66 particles using 2-pyrrolidone as a solvent Mixing tank equipped with a stirrer in which 2-pyrrolidone was mixed with 5% by weight of polyamide 66 pellets with nitrogen. The mixture was stirred at 230 ° C. for about 60 minutes until the polyamide 66 was completely dissolved. The resulting homogeneous solution was cooled to ice temperature at a rate of 100 ° C./min. 2-Propanol was added to this mixture, and the solvent was roughly separated by washing and filtration, followed by drying to obtain polyamide 66 spherical particles. Similar to Example 1, the observation or measurement results are as follows.
  • Example 10 Cleaning and drying of polyamide particles using carbon dioxide Mixture of polyamide particles obtained in Example 6 (polyamide 12 particles and 2) in a 50 mL stainless steel autoclave equipped with a stirrer, a filter and a pressure control valve -Pyrrolidone mixture) was added in an amount of 10 g, and the pressure in the system was increased to 8 MPa with carbon dioxide. Next, after heating to a temperature of 30 ° C., carbon dioxide was passed through the pump at 3 mL / min for 4 hours. At this time, 2-pyrrolidone and carbon dioxide used as a solvent were discharged from the pressure regulating valve. After reducing the internal pressure to normal pressure, the polyamide particles were opened and dried to obtain polyamide particles. Similar to Example 1, the observation or measurement results are as follows.
  • the 2-pyrrolidone remaining in the spherical particles was measured by gas chromatography and found to be 97 ppm.
  • Example 11 Production of polyamide 1010 particles using ⁇ -caprolactam as a solvent Mixing tank equipped with a stirrer in which a mixture obtained by mixing 15 wt% of polyamide 1010 pellets with ⁇ -caprolactam was replaced with nitrogen The mixture was stirred at 200 ° C. for about 60 minutes until the polyamide 1010 was completely dissolved. The resulting homogeneous solution was cooled to room temperature at a rate of 1.5 ° C./min. Then, it processed like Example 1 and obtained the spherical particle of the polyamide 1010. Similar to Example 1, the observation or measurement results are as follows.
  • Example 12 Production of polyamide 11 particles using ⁇ -caprolactam as a solvent Mixing tank equipped with a stirrer in which a mixture obtained by mixing 15 wt% of pellets of polyamide 11 with ⁇ -caprolactam was replaced with nitrogen The mixture was stirred for about 60 minutes at 200 ° C. until the polyamide 11 was completely dissolved. The resulting homogeneous solution was cooled to room temperature at a rate of 1.5 ° C./min. Then, it processed like Example 1 and obtained the spherical particle of the polyamide 11. Similar to Example 1, the observation or measurement results are as follows.
  • Example 13 Production of polyamide 610 particles using ⁇ -caprolactam as a solvent Mixing tank equipped with a stirrer in which a mixture obtained by mixing 15 wt% of pellets of polyamide 610 with ⁇ -caprolactam was replaced with nitrogen The mixture was stirred at 200 ° C. for about 60 minutes until the polyamide 610 was completely dissolved. The resulting homogeneous solution was cooled to room temperature at a rate of 1.5 ° C./min. Thereafter, the same treatment as in Example 1 was performed to obtain spherical particles of polyamide 610. Similar to Example 1, the observation or measurement results are as follows.
  • Example U-1 Manufacture of liquid detergent containing polyamide particles Potassium laurate, potassium myristate, glycerin, propylene glycol, hydroxypropylcellulose, and coconut oil fatty acid diethanolamine were added to ion-exchanged water in the amounts shown in Table 2. It mix
  • Example U-2 A liquid detergent containing polyamide particles was produced in the same manner as in Example U-1, except that the polyamide particles obtained in Example 6 were used.
  • Example U-1 A liquid detergent containing polyamide particles was produced in the same manner as in Example U-1, except that general-purpose polyamide 12 true spherical particles (SP-500 manufactured by Toray Industries, Inc.) were used as the polyamide particles.
  • SP-500 manufactured by Toray Industries, Inc.
  • FIG. 9 is an image obtained by observing, with a scanning electron microscope, a sample obtained by injecting an epoxy resin into polyamide particles and curing the same as in Example 1.
  • Example U-2 A liquid detergent containing polyamide particles was produced in the same manner as in Example U-1, except that general-purpose polyamide 12 porous non-spherical particles (Orgasol 2002 UD NAT COS manufactured by Atofina) were used as the polyamide particles.
  • general-purpose polyamide 12 porous non-spherical particles Orgasol 2002 UD NAT COS manufactured by Atofina
  • FIG. 14 is an image obtained by observing, with a scanning electron microscope, a sample obtained by injecting an epoxy resin into polyamide particles and curing the same as in Example 1.
  • Example U-3 A liquid detergent containing polyamide particles was produced in the same manner as in Example U-1, except that general-purpose polyamide 6 porous particles (TR-1 manufactured by Metal Color) were used as the polyamide particles.
  • FIG. 17 is an image obtained by observing, with a scanning electron microscope, a sample obtained by injecting an epoxy resin into polyamide particles and curing the same as in Example 1.
  • the average value of each of these evaluation items was calculated and judged according to the following criteria.
  • the evaluation was performed twice by 10 panelists. 2.5 points or more and 3.0 points or less: ⁇ 2.0 points or more and less than 2.5 points: ⁇ 1.5 points or more and less than 2.0 points: 1.0 point or more and less than 1.5 point: ⁇
  • Examples U-1 and U-2 using the polyamide particles obtained in Examples 1 and 6 had high scrub feeling and high safety against the skin. In addition, it has a high detergency and was extremely effective in removing dirt on skin details.
  • Comparative Examples U-1, U-2, and U-3 did not have much scrub feeling and had a slightly high cleaning effect.
  • the polyamide particles of the present invention can be used in cosmetics, paints, chemicals, catalysts, and other various fields by utilizing at least one of the various characteristics described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyamides (AREA)

Abstract

 新規なポリアミド粒子は、外観形状が略球形であり、外表部に貫通孔、内部に独立孔を有する海綿状である。このポリアミド粒子は、ポリアミドを環状アミドに加熱溶解させ、均一溶液とし、これを冷却することによって得られる。

Description

ポリアミド粒子及びその製造方法
 本発明は、ポリアミド粒子およびその製造方法に関する。
 ポリアミド粒子は、化粧品分野や塗料・ワックス等の添加剤、潤滑剤、接着剤、粘着防止剤等、幅広い分野に応用されている。また、その製造方法としては、例えば、ナイロン12(ポリアミド12)とジプロピレングリコールとを混合、加熱し、溶解させ均一溶液とし、これを冷却することによって、ナイロン12の球状粒子を析出させる方法(特許文献1)、ポリアミドのフェノール溶液に、該ポリアミドの非溶媒であるメタノール及び水を混合するポリアミド多孔質粒子の製造方法(特許文献2)、エチレングリコールにポリアミドを加熱溶解させ、これを冷却することによってポリアミド球状粒子粉末を製造する方法(特許文献3、特許文献4)などが知られている。
 これらの文献の中で、特許文献2では、上述のとおり多孔質粒子が得られ、また特許文献4では「表面が多孔状の粒子」が得られたこと(段落0048等)が記載されている。しかし、これらの文献において、孔の形態はその製造方法に依存して特有の形状および形態を取るため、種々の用途のためには満足できない場合がある。例えば特許文献4で得られたポリアミド粒子は、粒子径が12~15μm程度の微粒子であるにもかかわらず、吸油量が140mL/g以下であり、充分な多孔質性を有していない。
 さらに、従来の製造方法では、その製造方法で得られたポリアミド粒子から、粒子の凝集を起こさずに、使用した溶媒を除去し、乾燥させることが困難であり、洗浄工程で多量の洗浄液を必要とすることから、製造コスト、更には環境への影響において好ましくなかった。
 また、ポリアミド粒子の製造方法として、環状アミドを溶媒とする方法は知られていない。
特開2006-169373号公報 特開2008-38037号公報 特開2006-328173号公報 特開2007-56085号公報
 本発明は、新規な多孔質ポリアミド粒子を提供することを目的とする。また、本発明は、ポリアミド粒子の製造において、使用する溶媒の除去およびポリアミド粒子の乾燥が容易なポリアミド粒子の製造方法を提供することを目的とする。
 本発明者は、ポリアミド粒子を製造する方法において、ポリアミドを環状アミドに加熱溶解させ、これを冷却する事により新規な多孔質のポリアミド粒子を製造する事ができること、さらに、得られた新規な多孔質のポリアミド粒子を、液体状態または超臨界状態の二酸化炭素で洗浄し、乾燥させる事によって溶媒である環状アミドの残存を抑制できることを見出した。
 即ち、本発明は、以下の事項に関する。
1. 粒子の外観形状が略球形であり、外表部に貫通孔、内部に独立孔を有する海綿状であることを特徴とするポリアミド粒子。
2. 数平均粒子径が60~130μmである第1項に記載のポリアミド粒子。
3. BET比表面積が15m/g以上である第1項に記載のポリアミド粒子。
4. 累積比表面積が80m/g以上である第1項に記載のポリアミド粒子。
5. 水銀ポロシメータによる極大細孔直径が1μm以下である第1項に記載のポリアミド粒子。
6. 水銀ポロシメータによるメジアン細孔直径が0.5μm以下である第1項に記載のポリアミド粒子。
7. JIS K 5101に準拠する方法で測定した煮亜麻仁油吸油量が170ml/g以上である第1項に記載のポリアミド粒子。
8. 示差走査熱量測定(DSC:Differential scanning calorimetry)で測定された結晶化度が45%以上である第1項に記載のポリアミド粒子。
9. ポリアミドを環状アミドに加熱溶解させ、均一溶液とし、これを冷却することによって、ポリアミド粒子を析出させる第1項に記載のポリアミド粒子の製造方法。
10. ポリアミドの濃度が、ポリアミドと環状アミドとの重量和に対して2重量%から30重量%であることを特徴とする第9項に記載のポリアミド粒子の製造方法。
11. ポリアミドが、ポリアミド6(ナイロン6)、ポリアミド66(ナイロン66)、又はポリアミド12(ナイロン12)であることを特徴とする第9項に記載のポリアミド粒子の製造方法。
12. 環状アミドが、2-ピロリドン、N-メチルピロリドン、ε-カプロラクタム、N-メチルカプロラクタム、又はω-ラウリルラクタムであることを特徴とする第9項に記載のポリアミド粒子の製造方法。
13. ポリアミドを環状アミドに加熱溶解させ、均一溶液とし、これを冷却することによって得られたポリアミド粒子を、液体状態または超臨界状態の二酸化炭素で洗浄し、乾燥することを特徴とする第9項に記載のポリアミド粒子の製造方法。
 本発明によれば、ポリアミドを環状アミドに加熱溶解させ、これを冷却する事により新規なポリアミド粒子を製造する事ができ、得られた新規なポリアミド粒子を、液体状態または超臨界状態の二酸化炭素で洗浄、乾燥する事で、溶媒である環状アミドのポリアミド粒子における残存を抑制できる。また、液体または超臨界の二酸化炭素に溶解する環状アミドを溶媒として用いる事から、溶媒の回収、リサイクルは単純となり、工業的な製法として好適である。
 更に、環状アミドとして、使用するポリアミドの原料を用いる事も可能であり、別途、溶媒を用意する必要が無く、原材料として無駄の無い効率的な製造もできる。
 得られたポリアミド粒子を、SEM(Scanning Electron Microscope:走査電子顕微鏡)にて分析したところ海綿状の多孔質であることがわかった(図3、4参照)。また、その他の分析から上記第1項から第8項に示される特徴的な物性を有しており、スクラブ感等において従来品に勝る性質を有している事もわかった。
 更に、本ポリアミド粒子は皮膚との滑り性が良好であるため各種化粧品の原料として有効であり、多孔質であることから吸油性にも優れる。
実施例1で得られたポリアミド6粒子の顕微鏡写真 実施例6で得られたポリアミド12粒子の顕微鏡写真 実施例1で得られたポリアミド6粒子の断面図 SEM 5000倍 実施例6で得られたポリアミド12粒子の断面図 SEM 5000倍 実施例1で得られたポリアミド6粒子にエポキシ樹脂を注入した後の断面図 SEM 5000倍 実施例6で得られたポリアミド12粒子にエポキシ樹脂を注入した後の断面図 SEM 5000倍 実施例1で得られたポリアミド6粒子にエポキシ樹脂を注入した後の断面図 SEM 20000倍 実施例6で得られたポリアミド12粒子にエポキシ樹脂を注入した後の断面図 SEM 20000倍 比較例U-1記載のポリアミド12真球状粒子の顕微鏡写真 比較例U-1記載のポリアミド12真球状粒子の断面図 SEM 20000倍 比較例U-1記載のポリアミド12真球状粒子にエポキシ樹脂を注入した後の断面図 SEM 20000倍 比較例U-2記載のポリアミド12多孔質粒子の顕微鏡写真 比較例U-2記載のポリアミド12多孔質粒子の断面図 SEM 20000倍 比較例U-2記載のポリアミド12多孔質粒子にエポキシ樹脂を注入した後の断面図 SEM 20000倍 比較例U-3記載のポリアミド6多孔質粒子の顕微鏡写真 比較例U-3記載のポリアミド6多孔質粒子の断面図 SEM 20000倍 比較例U-3記載のポリアミド6多孔質粒子にエポキシ樹脂を注入した後の断面図 SEM 20000倍 実施例11で得られたポリアミド1010の顕微鏡写真である。
 本発明によれば、粒子の外観形状が略球形であり、外表部に貫通孔、内部に独立孔を有する海綿状であるポリアミド粒子が提供される。
 本発明のポリアミド粒子の形状は、図1~図2に示す走査型電子顕微鏡写真(SEM写真)に見られるように海綿状構造であり、外表部に貫通孔、内部に独立孔を有している。貫通孔が外表部に集中して存在していることによって、粒子径が以下に示す通り大きいにも関わらず大きい比表面積を発現することが可能となっている。
 粒子の外観形状は、主として球形、楕球形など略球形の微細粒子形状である。また、ポリアミド粒子の数平均粒子径は10~250μmの範囲、特に20~200μmの範囲、更に60~130μmの範囲にあり、ポリアミドの濃度、冷却速度により粒径を制御することができる。
 また、その他の本発明のポリアミド粒子の物性は、次のとおりである。
 BET比表面積は、通常、15m/g以上、好ましくは15~50m/gである。一般的な多孔質粒子は、大きい粒子径になるにつれて比表面積が低下する傾向にある。しかし、本発明のポリアミド粒子は粒子径100μm前後であるにもかかわらず大きな比表面積を有している。比表面積が小さいと、触媒等を坦持させる場合、担持能力が低下するため好ましくない。また、大きすぎるとポリアミド粒子の機械的強度が低くなり、触媒等を担持させる処理が行い難くなる傾向がある。
 累積比表面積は、通常、80m/g以上、好ましくは80~200m/gである。
 水銀ポロシメータによる極大細孔直径は、通常、1μm以下である。これは粒子上に直径1μmより大きい径の細孔が存在していないことを示している。さらに15m/g以上の高いBET比表面積を有していることから、このポリアミド粒子上には、微細な孔が非常に多く存在していると言える。この特徴から、吸着した物質の脱離速度は遅くなる。このことは、粒子に最大限の補助薬を吸収させ、急激に脱離させるのではなく、緩やかに脱離することが要求される用途、例えば化粧品、塗料、薬品その他の用途において非常に有用である。
 水銀ポロシメータによるメジアン細孔直径は、通常0.5μm以下である。
 また、煮亜麻仁油吸油量が、通常170ml/g以上である。
 DSC(Differential scanning calorimetry:示差走査熱量測定)で測定された結晶化度は、通常45%以上である。ポリアミドの結晶化度は、X線解析より求める方法、DSC測定法により求める方法、密度から求める方法があるが、DSC測定法により求める方法が好適である。普通溶融物から結晶化させたポリアミドの結晶化度は高いもので30%程度である。結晶化度が40%より低いと多孔質粒子が熱によって形状的に不安定になるため好ましくない。
 本発明のポリアミド粒子は、結晶化度が45%以上であることが好ましい。特に好ましくは、結晶化度50%より高いことが好ましい。
 本発明のポリアミド粒子は、図7~図8に示す走査型電子顕微鏡写真に見られる通り、内部に多数の独立孔を有している。本発明の独立孔とは、ポリアミド粒子表面に露出せず、ポリアミドにより内包された穴(カプセル化された穴)である。一方、貫通孔とは、ポリアミドに完全に包まれておらず、表面に連通している穴である。穴の形状は、種々の形態であってよく、壁面(断面)が直線的なものでも、例えば不規則に曲がりくねったものでもよい。
 孔が、貫通孔であるか、独立孔であるかは、エポキシ樹脂でポリアミド粒子を包埋固定後、硬化させた断面を走査型電子顕微鏡にて観察して決定することができる。使用できるエポキシ樹脂の1例は、主剤(応研商事株式会社製 Epok812 25℃での粘度160CPS 25℃での比重1.24)、硬化剤(無水メチルナディック酸)、重合促進剤(DMP-30:2,4,6-トリス(ジメチルアミノメチル)フェノール)をLuft法に準じて調合したものであり、これは例えば、70℃、12時間で硬化することができる。このエポキシ樹脂に限らず、粘度や硬化条件が類似のものを使用することもできる。
 本発明のポリアミド粒子の独立孔と貫通孔の比率(上記の断面観察による断面積の比率)は、製造条件によっても変動するが、10:90~30:70程度である。
 この独立孔に芳香剤や抗菌剤など、様々な機能性物質を担持させることができる。また、内包する物質の種類を変えることにより、粒子自体の弾力性を変化させることも可能である。
 これまでに知られている粒子径100μm程度のポリアミド粒子の多くが、比較的滑らかな表面を有しているために吸油量が低かったが、本発明のポリアミド粒子は表面が凹凸形態であり高い吸油量を有している。身体洗浄料などに使用した時には、皮膚への適度な刺激による心地よさ、スクラブ感、さっぱり感のような感触を与えるという利点もあり、これまでにない新感触の身体洗浄料を創出する可能性を有している。
 本発明のポリアミド粒子の製造方法は、ポリアミドを環状アミドに加熱溶解させ、均一溶液とし、これを冷却することによってポリアミド粒子を析出させるものである。このポリアミド粒子は、液体状態または超臨界状態の二酸化炭素で洗浄し、乾燥を行うのに有利であり、その結果、溶媒である環状アミドの残存を低減することができる。
 本発明のポリアミド粒子の製造方法において原料として用いるポリアミドとしては、酸アミド(-CONH-)結合を繰り返し単位にもつ高分子化合物で、重合形式により(1)ラクタムの開環重合によるもの、(2)アミノカルボン酸の重縮合によるもの、(3)ジアミンと二塩基酸の重縮合によるものなどが挙げられる。
 ポリアミドの具体例としては、ポリアミド6(ナイロン6)、ポリアミド66(ナイロン66)、ポリアミド11、ポリアミド12(ナイロン12)、ポリアミド46、ポリアミド610、ポリアミド612等の脂肪族ポリアミド、ポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)などの脂肪族-芳香族ポリアミド、及びこれらの共重合体、更には、その骨格に2-メチルペンタメチレンジアミンと、アジピン酸又はドデカ二酸との縮合物を含むポリアミド66、ポリアミド612、ポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、又はポリ(ヘキサメチレンイソフタルアミド)、或いは、これらの共重合体が挙げられ、これらを2種類以上選択して用いることができる。
 加えて、バイオベースポリアミド(100%バイオベースで無くてもよい)として、ポリアミド1010(PA1010)、ポリアミド610(PA610)、ポリアミド11(PA11)、およびポリアミド4(PA4)等も挙げることができる。ここで、PA1010、PA610、PA11は、市販品を使用することが可能であり、PA4は、例えば、特開2009-159840の記載に基づき、2-ピロリドンから合成することができる。
 本発明において用いられる環状アミドは、その環を構成する炭素数が4から18のものが好ましい。具体的には、2-ピロリドン、ピペリドン、N-メチルピロリドン、ε-カプロラクタム、N-メチルカプロラクタム、ω-ラウリルラクタムなどが挙げられる。また、シクロアルキリデン環上に反応を阻害しない置換基を有していてもよく、その置換基としては、例えば、メチル基、エチル基、シクロヘキシル基等の非環状もしくは環状のアルキル基、ビニル基、シクロヘキセニル基等の非環状もしくは環状のアルケニル基、フェニル基等のアリール基、メトキシ基等のアルコキシ基、メトキシカルボニル基等のアルコキシカルボニル基、クロル基等のハロゲン基が挙げられる。好ましくは無置換の2-ピロリドン、ε-カプロラクタムである。
 本発明の製造方法においては、ポリアミドを環状アミドに加熱溶解させ、均一溶液を調製する際において、加熱はポリアミドが環状アミドに溶解する温度に加熱すれば良い。特に限定されるものではないが、必要以上の加熱は、ポリアミドの劣化、変色などをもたらすこともあるので、通常、180~240℃が好ましい。
 ポリアミドの環状アミドへの添加を開始してから、均一溶液を形成するまでの時間は、通常0.1秒~120分の範囲、好ましくは1秒~90分の範囲、特に好ましくは1秒~60分の範囲である。
 ポリアミドの使用量は、ポリアミドと環状アミドとの重量和に対して2重量%から30重量%、好ましくは3重量%から20重量%である。ポリアミドの使用量が低いと結晶成長が一方向となるため繊維状となり易く、また使用量が高いと一部または全体が塊状物となり易く、粒子形状が得られないことがある。
 ポリアミド粒子を析出させる際の、冷却は、一般に5~100℃の範囲、好ましくは10~80℃の範囲まで冷却すれば良い。ポリアミドと環状アミドの均一溶液の静置時間は、同均一溶液が形成されてから、通常は5分以上であり、好ましくは120分以上である。冷却速度は、特に限定されないが、典型的には1.5~100℃/分の範囲である。
 本発明の製造方法において、ポリアミドと環状アミドの均一溶液に析出したポリアミド粒子は、遠心分離、デカンテーション、ろ過などの通常の方法で分離することができる。例えば、ポリアミドと環状アミドの均一溶液にポリアミド粒子が析出した状態の混合溶液に、メタノール、イソプロパノールあるいは水などの低比重溶媒を加えて、同混合溶液とポリアミド粒子との比重の差を大きくした後、遠心分離やデカンテーションなどの方法で、ポリアミド粒子を分離してもよい。また析出したポリアミド粒子は、さらにメタノールやアセトンなどで数回洗浄した後、遠心分離やデカンテーションなどの方法で分離してもよい。混合液から分離したポリアミド粒子は、真空乾燥やスプレイドライヤーなどの通常の方法で乾燥させることができる。
 得られるポリアミド粒子はSEM(Scanning Electron Microscope:走査電子顕微鏡)にて分析したところ海綿状の多孔質である(図3、4参照)。
 本発明者は、本発明で使用する環状アミドが、液体二酸化炭素または超臨界二酸化炭素と溶解する特性を有することを見出し、この事により、ポリアミドと環状アミドの均一溶液から得られたポリアミド粒子を液体二酸化炭素または超臨界二酸化炭素で洗浄し、乾燥する事で、一段でポリアミド粒子を分離、乾燥でき、溶媒である環状アミドが殆ど残存しないポリアミド粒子を製造できる事を見出した。
 二酸化炭素を利用したポリアミド粒子の洗浄、乾燥は、以下の通り行われる。
 攪拌機、フィルター、圧力調整弁を備え持つオートクレーブに、上記方法によってポリアミドと環状アミドの均一溶液から析出させたポリアミド粒子を単離する事無く溶液とともに加え、系内を二酸化炭素で5~10MPaまで昇圧させる。次いで、加熱して温度20~100℃としてから、二酸化炭素をポンプで流通させる。このとき圧力調整弁からは、溶媒である環状アミドと二酸化炭素が排出される。次いで、常圧まで系内圧力を低下させた後、開放することで乾燥したポリアミド粒子が得られる。
 なお、二酸化炭素の臨界温度は31℃、臨界圧力は7.38MPaであり、例えば8MPaのとき20℃では液体であり、50℃では超臨界である。
 また、上記の二酸化炭素を利用したポリアミド粒子の洗浄、乾燥を行うと、残存溶媒は、0.01重量%以下、100ppm以下に制御できる。
 本発明の製造方法により得られるポリアミド粒子は、クレンジングマスク、ファンデーション、UVケア、制汗剤、洗顔剤、シャワージェル、洗剤添加剤などの化粧品原料、クロマトグラフィーの充填剤として利用することができる。また、各種触媒の担体あるいは吸着剤として、食品工業や医療分野にも利用することができ、ポリアミド粒子に着色剤を担持させて電子写真のトナーとして利用、あるいは、表示機器などの電子材料として利用することもできる。さらに、水性インク、HD研磨剤、有機EL、接着剤、静電塗装用途、粉体塗装用途、レーザー焼結によるプロトタイプ製作にも利用することもできる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。吸油量、細孔径分布、比表面積、結晶化度、粒度分布などの測定は次のように行なった。
 [吸油量の測定]
 ポリアミド粒子の吸油量は、JIS K 5101に従って、煮亜麻仁油の吸油量を測定した。
 [細孔径分布の測定]
 水銀圧入式細孔径分布測定装置PoreMaster60GT(Quanta chrome .Co製)を用い、測定を行なった。以下はその条件である。
 
サンプル量 :約0.2g
サンプルセル:スモールセル(10mmΦ×3cm)
測定レンジ :全域
測定範囲  :細孔直径 400μm ~ 0.0036μm
計算範囲  :細孔直径 400μm ~ 0.0036μm
水銀接触角 :140deg
水銀表面張力:480dyn/cm
測定セル容積:0.5cc
測定回数  :1回
[比表面積の測定]
 高速比表面積・細孔径分布測定装置 NOVA-1200(Quanta chrome .Co製)を用い、測定を行なった。以下はその条件である。
・前処理条件:試料を測定セルに入れ、100℃真空下で30分間脱気した。
・測定原理 :定容法(ブランク補正型)
・検出法  :相対圧力;圧力トランデューサによるサンプルセル内の吸着平衡圧力と飽和蒸気圧の比
      吸着ガス量;圧力トランデューサによる圧力検出とサーミスタによるマニホールド 温度検出から理想気体での注入ガス量を計算
セルサイズ:スモール・ペレット・セル
・吸着ガス :窒素ガス
・測定範囲 :0.01m2/g以上
・測定項目 :P/P0=0.1、0.2、0.3の吸着側3点
・解析項目 :BET多点法による比表面積
・測定回数 :同一試料で2回測定した。
[結晶化度の測定]
 ポリアミド微粒子の結晶化度は、DSC(示差走査熱量計)で測定した。流速40ml/min.窒素気流中で、昇温速度5℃/min、温度範囲120~230℃の吸熱ピークの面積から結晶融解熱量を算出する。結晶化度は、算出した融解熱量とポリアミド微粒子を構成するポリアミドの結晶融解熱量との比から求める。ポリアミド微粒子を構成するポリアミドがポリアミド6の場合、結晶融解熱を189J/g、ポリアミド12の場合、結晶融解熱を209J/gとした。
[粒度分布の測定]
 レーザー回折/散乱式粒度分布測定装置LA-910(堀場製作所(株)製)を用い、測定した。以下はその条件である。
・測定モード:マニュアルフロー式セル測定
・測定範囲 :0.02μm ~ 1000μm
・分散媒  :2-プロパノール 200cc
・屈折率  :1.28 ― 0.001
・試料前処理:試料と分散媒をサンプル管に入れ、10分間超音波分散した。
・測定回数 :試料を替えて2回測定した。
 [実施例1]溶媒として2-ピロリドンを用いたポリアミド6粒子の製造
 2-ピロリドンにポリアミド6のペレットを20重量%混合し得られた混合物を、窒素で置換した撹拌機がついた混合槽内で、200℃にてポリアミド6が完全に溶解するまで約60分間撹拌した。得られた均一溶液を1.5℃/分の冷却速度で室温まで冷却した。 この混合物に2-プロパノールを添加し、洗浄、ろ過によって溶媒を粗分離後、乾燥してポリアミド6の球状粒子を得た。得られた球状粒子を顕微鏡にて観察したところ粒径が130~200μmの球状粒子が確認された(図1参照)。また得られた粒子の粒径とその分布を粒度分布測定器を用いて確認した結果、この球状粒子のメジアン径は154.8μmであった。また、この球状粒子のBET比表面積は、30.6平方メートル/gであった。
 さらに、DSC測定を行なったところ結晶融解熱は103J/gであった。この値を用いて結晶化度を算出した結果、結晶化度は54%であった。水銀ポロシメータによる細孔径分布の測定結果は、累積比表面積が91平方メートル(m)/gで、水銀極大細孔直径が0.03μm、メジアン細孔直径が0.03μmであった。また、煮亜麻仁油吸油量が、195ml/gであった。
 この2-ピロリドンを用いて製造したポリアミド6粒子粒度分布測定結果を表1に示す。また、ポリアミド粒子を、エポキシ樹脂(主剤(応研商事株式会社製 Epok812 25℃での粘度160CPS 25℃での比重1.24)、硬化剤(無水メチルナディック酸)、重合促進剤(DMP-30:2,4,6-トリス(ジメチルアミノメチル)フェノール)をLuft法(Luft JH: Improvements in epoxy resin embedding methods, J Biophys Biochem Cytol, 9: 409-414, 1961)に準じて調合した)に添加して、70℃、12時間で硬化させたものを、切断して走査型電子顕微鏡で観察した。これを図5および図7に示す。SEM画像から明らかなように、貫通孔が外表部に存在し、独立孔が内部に存在している。貫通孔と独立孔の比は、8:2であった。
 [実施例2]溶媒として2-ピロリドンを用いたポリアミド6粒子の製造
 実施例1において、溶液の冷却速度を100℃/分の速度として、氷温まで冷却した以外は、実施例1と同様にして、ポリアミド6の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が20~40μmの球状粒子
 メジアン径:28.1μm
 BET比表面積:10.9m/g
 粒度分布測定結果:表1に示す。
 [実施例3]溶媒として2-ピロリドンを用いたポリアミド6粒子の製造
 実施例1において、使用したポリアミド6ペレットの量を15重量%とした以外は、実施例1と同様にして、ポリアミド6の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が80~130μmの球状粒子
 メジアン径:107.8μm
 BET比表面積:11.9m/g
 粒度分布測定結果:表1に示す。
[実施例4]溶媒としてε-カプロラクタムを用いたポリアミド6粒子の製造
 実施例1において、溶媒を2-ピロリドンからε-カプロラクタムに変更した以外は、実施例1と同様にして、ポリアミド6の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が80~130μmの球状粒子
 メジアン径:102.2μm
 BET比表面積:23.3m/g
 粒度分布測定結果:表1に示す。
[実施例5]溶媒としてε-カプロラクタムを用いたポリアミド6粒子の製造
 実施例1において、溶媒を2-ピロリドンからε-カプロラクタムに変更し、また溶液の冷却速度を100℃/分の速度として、氷温まで冷却した以外は、実施例1と同様にして、ポリアミド6の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が40~90μmの球状粒子
 メジアン径:61.0μm
 BET比表面積:19.9m/g
 粒度分布測定結果:表1に示す。
 [実施例6]溶媒として2-ピロリドンを用いたポリアミド12粒子の製造
 実施例1において、ポリアミド6をポリアミド12に変更した以外は、実施例1と同様にして、ポリアミド12の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が110~180μmの球状粒子(図2参照)。
 メジアン径:133.0μm
 BET比表面積:8.7m/g
 結晶融解熱:108J/g
 結晶化度:52%
 累積比表面積:92m/g
 水銀極大細孔直径:0.18μm
 メジアン細孔直径:0.12μm
 煮亜麻仁油吸油量:180ml/g
 粒度分布測定結果:表1に示す。
 また、実施例1と同様に、ポリアミド粒子にエポキシ樹脂を注入して硬化したサンプルを、走査型電子顕微鏡で観察した。これを図6および図8に示す。SEM画像から明らかなように、貫通孔が外表部に存在し、独立孔が内部に存在している。貫通孔と独立孔の比は、8:2であった。
 [実施例7]溶媒として2-ピロリドンを用いたポリアミド12粒子の製造
 実施例6において、溶液の冷却速度を100℃/分の速度として、氷温まで冷却した以外は、実施例6と同様にして、ポリアミド12の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が60~120μmの球状粒子
 メジアン径:86.9μm
 BET比表面積:16.7m/g
 粒度分布測定結果:表1に示す。
 [実施例8]溶媒として2-ピロリドンを用いたポリアミド12粒子の製造
 実施例6において、使用したポリアミド12ペレットの量を15重量%とした以外は、実施例6と同様にして、ポリアミド12の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が100~180μmの球状粒子
 メジアン径:119.6μm
 BET比表面積:11.2m/g
 粒度分布測定結果:表1に示す。
 [実施例9]溶媒として2-ピロリドンを用いたポリアミド66粒子の製造
 2-ピロリドンにポリアミド66のペレットを5重量%混合して得られた混合物を、窒素で置換した撹拌機がついた混合槽内で、230℃にてポリアミド66が完全に溶解するまで約60分間撹拌した。得られた均一溶液を100℃/分の速度で氷温まで冷却した。この混合物に2-プロパノールを添加し、洗浄、ろ過によって溶媒を粗分離後、乾燥してポリアミド66の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が70~130μmの球状粒子
 メジアン径:96.5μm
 BET比表面積:3.3m/g
 粒度分布測定結果:表1に示す。
 [実施例10]二酸化炭素を利用したポリアミド粒子の洗浄、乾燥
 攪拌機、フィルター、圧力調整弁を備え持つ容積50mLのステンレス製オートクレーブに実施例6で得られたポリアミド粒子含有混合物(ポリアミド12粒子と2-ピロリドンの混合物)を10g添加し、系内を二酸化炭素で8MPaまで昇圧した。次に加熱して温度30℃にしてから、二酸化炭素をポンプで3mL/minで4時間流通させた。このとき圧力調整弁からは、溶媒として使用した2-ピロリドンと二酸化炭素が排出された。常圧まで系内圧力を低下させた後、開放して乾燥したポリアミド粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が110~180μmの球状粒子
 メジアン径:133.3μm
 BET比表面積:8.8m/g
 粒度分布測定結果:表1に示す。
 また、この球状粒子に残存する2-ピロリドンをガスクロマトグラフィーで測定したところ、97ppmであった。
 [比較例]溶媒としてエチレングリコールを用いたポリアミド12粒子の製造及び洗浄、乾燥
 エチレングリコールにポリアミド12のペレットを10重量%混合して得られた混合物を、窒素で置換した撹拌機がついた混合槽内で、190℃にてポリアミド12が完全に溶解するまで約60分間撹拌した。得られた均一溶液を1.5℃/分の速度で室温まで冷却してポリアミド粒子含有混合物を得た。
 得られたポリアミド粒子含有混合物の10gを攪拌機、フィルター、圧力調整弁を備え持つ容積50mLのステンレス製オートクレーブに添加し、系内を二酸化炭素で8MPaまで昇圧した。次に加熱して温度30℃にし、二酸化炭素をポンプで3mL/minで4時間流通させた後、常圧まで系内圧力を低下させ開放したところ、溶媒として使用したエチレングリコールがオートクレーブ内に残存し、乾燥したポリアミド粒子を得ることは出来なかった。
Figure JPOXMLDOC01-appb-T000001
[実施例11]溶媒としてε-カプロラクタムを用いたポリアミド1010粒子の製造
 ε-カプロラクタムにポリアミド1010のペレットを15重量%混合して得られた混合物を、窒素で置換した撹拌機がついた混合槽内で、200℃にてポリアミド1010が完全に溶解するまで約60分間撹拌した。得られた均一溶液を1.5℃/分の速度で室温まで冷却した。その後、実施例1と同様に処理して、ポリアミド1010の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が70~130μmの球状粒子(図18参照)
 メジアン径:110μm
 BET比表面積:8.1m/g
 [実施例12]溶媒としてε-カプロラクタムを用いたポリアミド11粒子の製造
 ε-カプロラクタムにポリアミド11のペレットを15重量%混合して得られた混合物を、窒素で置換した撹拌機がついた混合槽内で、200℃にてポリアミド11が完全に溶解するまで約60分間撹拌した。得られた均一溶液を1.5℃/分の速度で室温まで冷却した。その後、実施例1と同様に処理して、ポリアミド11の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が70~130μmの球状粒子
 メジアン径:105μm
 BET比表面積:9.3m/g
 [実施例13]溶媒としてε-カプロラクタムを用いたポリアミド610粒子の製造
 ε-カプロラクタムにポリアミド610のペレットを15重量%混合して得られた混合物を、窒素で置換した撹拌機がついた混合槽内で、200℃にてポリアミド610が完全に溶解するまで約60分間撹拌した。得られた均一溶液を1.5℃/分の速度で室温まで冷却した。その後、実施例1と同様に処理して、ポリアミド610の球状粒子を得た。実施例1と同様に、観察または測定した結果は次のとおりである。
 顕微鏡観察:粒径が70~130μmの球状粒子
 メジアン径:108μm
 BET比表面積:8.5m/g
 <使用実施例>
 次に、本発明のポリアミド粒子の使用実施例を示す。
 [実施例U-1] ポリアミド粒子入り液体洗浄剤の製造
 表2に示す配合量にてイオン交換水にラウリン酸カリウム、ミリスチン酸カリウム、グリセリン、プロピレングリコール、ヒドロキシプロピルセルロース、及びヤシ油脂肪酸ジエタノールアミンを配合し、60℃で加熱溶解した。これにジステアリン酸エチレングリコールを表2に示す配合量で添加し、実施例1で得られたポリアミド粒子を表2に記載の配合量だけ添加し、均一に混合した。これを30℃まで冷却し、白色不透明のポリアミド粒子入り液体洗浄剤を製造した。
 [実施例U-2]
 実施例6で得られたポリアミド粒子を用いた以外は、実施例U-1と同様にして、ポリアミド粒子入り液体洗浄剤を製造した。
 [比較例U-1]
 ポリアミド粒子として、汎用のポリアミド12真球状粒子(東レ製 SP-500)を使用した以外は、実施例U-1と同様にして、ポリアミド粒子入り液体洗浄剤を製造した。
 ここで、汎用のポリアミド12真球状粒子(東レ製 SP-500)の表面および断面について、SEM写真で観察したところ、表面は真球状で多孔質に伴う細孔は確認できなかった(図9)。外表部に貫通孔は存在しておらず、内部の独立孔の存在も認められなかった(図10、11)。ここで、図11は、実施例1と同様に、ポリアミド粒子にエポキシ樹脂を注入して硬化したサンプルを、走査型電子顕微鏡で観察した画像である。
 この汎用のポリアミド12真球状粒子の特性は次のとおりである。
 数平均粒子径:10μm
 比表面積:1.2m/g
 累積比表面積:21.7m/g
 極大細孔直径:2.02μm
 メジアン細孔直径:1.83μm
 煮亜麻仁油吸油量:80mL/100g
 [比較例U-2]
 ポリアミド粒子として、汎用のポリアミド12多孔質非球状粒子(アトフィナ製 Orgasol 2002 UD NAT COS)を使用した以外は、実施例U-1と同様にして、ポリアミド粒子入り液体洗浄剤を製造した。
 ここで、汎用のポリアミド12多孔質非球状粒子(アトフィナ製 Orgasol 2002 UD NAT COS)の表面および断面について、SEM写真で観察したところ、表面は凹凸状で多孔質に伴う細孔が確認された(図12参照)。外表部に貫通孔はほとんど存在しておらず、内部の独立孔の存在は認められなかった(図13、14)。ここで、図14は、実施例1と同様に、ポリアミド粒子にエポキシ樹脂を注入して硬化したサンプルを、走査型電子顕微鏡で観察した画像である。
 この汎用のポリアミド12多孔質非球状粒子の特性は次のとおりである。
 数平均粒子径:7μm
 比表面積:8.2m/g
 累積比表面積:30.1m/g
 極大細孔直径:1.88μm
 メジアン細孔直径:1.68μm
 煮亜麻仁油吸油量:80mL/100g
 [比較例U-3]
 ポリアミド粒子として、汎用のポリアミド6多孔質粒子(メタルカラー製 TR-1)を使用した以外は、実施例U-1と同様にして、ポリアミド粒子入り液体洗浄剤を製造した。
 ここで、汎用のポリアミド6多孔質粒子(メタルカラー製 TR-1)の表面および断面について、SEM写真で観察したところ、表面は凹凸状で多孔質に伴う細孔が確認された(図15)。外表部に貫通孔はほとんど存在しておらず、内部の独立孔の存在は認められなかった(図16、17)。ここで、図17は、実施例1と同様に、ポリアミド粒子にエポキシ樹脂を注入して硬化したサンプルを、走査型電子顕微鏡で観察した画像である。
 この汎用のポリアミド6多孔質粒子の特性は次のとおりである。
 数平均粒子径:15μm
 比表面積:2.5m/g
 累積比表面積:34.7m/g
 極大細孔直径:5.36μm
 メジアン細孔直径:5.05μm
 煮亜麻仁油吸油量:130mL/100g
 次に、実施例U-1~2、比較例U-1~3で得られた液体洗浄剤に関し1)スクラブ感、2)すすぎ時のスクラブの落ち易さ、3)使用後のヒリヒリ感、4)洗浄効果について下記の基準にて評価した。その結果を表3に示す。
 (1)スクラブ感、2)すすぎ時のスクラブの落ち易さ、3)使用後のヒリヒリ感の評価)の評価基準
(スクラブ感)
十分強い    :3点
ふつう     :2点
少し物足りない :1点
(スクラブの落ち易さ)
非常に落ち易い :3点
ふつう     :2点
少し落ちにくい :1点
(ヒリヒリ感)
なし      :3点
少しある    :2点
ある      :1点
 これらの各評価項目の平均値を算出し、以下の基準で判定した。尚、評価は10人のパネラーにより、2回行った。
2.5点以上3.0点以下:◎
2.0点以上2.5点未満:○
1.5点以上2.0点未満:△
1.0点以上1.5点未満:×
 (4)洗浄効果の評価)
 カーボンブラックを手のひらに2mg/cm塗布し、乾燥後、実施例U-1~2、比較例U-1~3で得られた液体洗浄剤をつけて指による摩擦洗浄を一定回数行い、さらに、水洗、乾燥後、手のひら1cm当たりに残ったカーボンブラックの度合いを実体顕微鏡で観察した。
なお、評価は下記の5段階とした。
5:洗浄力高い(皮膚細部の汚れがほぼ全量除去)
4:洗浄力高い(皮膚細部の汚れが8~9割程度除去)
3:洗浄力中位(皮膚細部の汚れが6~7割程度除去)
2:洗浄力中位(皮膚細部の汚れが4~5割程度除去)
1:洗浄力低い(皮膚細部の汚れが2~3割程度除去)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[結果]
 実施例1、6で得られたポリアミド粒子を用いた実施例U-1、U-2は、高いスクラブ感を有し、皮膚に対する高い安全性を有しているという結果であった。また、洗浄力も高く皮膚細部の汚れ除去にも極めて有効であった。
 これに対し、比較例U-1、U-2、U-3は、スクラブ感があまりなく、洗浄効果もやや高い程度であった。
 本発明のポリアミド粒子は、以上述べた種々の特性の少なくとも1つを利用して、化粧品、塗料、薬品、触媒、その他種々の分野で使用することができる。

Claims (13)

  1.  粒子の外観形状が略球形であり、外表部に貫通孔、内部に独立孔を有する海綿状であることを特徴とするポリアミド粒子。
  2.  数平均粒子径が60~130μmである請求項1に記載のポリアミド粒子。
  3.  BET比表面積が15m/g以上である請求項1に記載のポリアミド粒子。
  4.  累積比表面積が80m/g以上である請求項1に記載のポリアミド粒子。
  5.  水銀ポロシメータによる極大細孔直径が1μm以下である請求項1に記載のポリアミド粒子。
  6.  水銀ポロシメータによるメジアン細孔直径が0.5μm以下である請求項1に記載のポリアミド粒子。
  7.  JIS K 5101に準拠する方法で測定した煮亜麻仁油吸油量が170ml/g以上である請求項1に記載のポリアミド粒子。
  8.  示差走査熱量測定で測定された結晶化度が45%以上である請求項1に記載のポリアミド粒子。
  9.  ポリアミドを環状アミドに加熱溶解させ、均一溶液とし、これを冷却することによって、ポリアミド粒子を析出させる請求項1に記載のポリアミド粒子の製造方法。
  10.  ポリアミドの濃度が、ポリアミドと環状アミドとの重量和に対して2重量%から30重量%であることを特徴とする請求項9に記載のポリアミド粒子の製造方法。
  11.  ポリアミドが、ポリアミド6、ポリアミド66、又はポリアミド12であることを特徴とする請求項9に記載のポリアミド粒子の製造方法。
  12.  環状アミドが、2-ピロリドン、N-メチルピロリドン、ε-カプロラクタム、N-メチルカプロラクタム、又はω-ラウリルラクタムであることを特徴とする請求項9に記載のポリアミド粒子の製造方法。
  13.  ポリアミドを環状アミドに加熱溶解させ、均一溶液とし、これを冷却することによって得られたポリアミド粒子を、液体状態または超臨界状態の二酸化炭素で洗浄し、乾燥することを特徴とする請求項9に記載のポリアミド粒子の製造方法。
PCT/JP2010/053309 2009-03-05 2010-03-02 ポリアミド粒子及びその製造方法 WO2010101134A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/254,026 US8822555B2 (en) 2009-03-05 2010-03-02 Polyamide particles and process for producing same
EP10748729.0A EP2404955A4 (en) 2009-03-05 2010-03-02 POLYAMIDE PARTICLES AND METHOD FOR THE PRODUCTION THEREOF
CN201080016142.7A CN102388088B (zh) 2009-03-05 2010-03-02 聚酰胺颗粒及其制备方法
JP2011502755A JP5652389B2 (ja) 2009-03-05 2010-03-02 ポリアミド粒子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-052174 2009-03-05
JP2009052174 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010101134A1 true WO2010101134A1 (ja) 2010-09-10

Family

ID=42709691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053309 WO2010101134A1 (ja) 2009-03-05 2010-03-02 ポリアミド粒子及びその製造方法

Country Status (5)

Country Link
US (1) US8822555B2 (ja)
EP (1) EP2404955A4 (ja)
JP (1) JP5652389B2 (ja)
CN (1) CN102388088B (ja)
WO (1) WO2010101134A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116976A (ja) * 2009-11-05 2011-06-16 Sanyo Chem Ind Ltd 樹脂粒子の製造方法
JP2011218330A (ja) * 2010-04-14 2011-11-04 Ube Industries Ltd 吸着材
JP2013216890A (ja) * 2012-04-11 2013-10-24 Evonik Industries Ag 適合された溶融挙動を有するポリマー粉末
CN104530472A (zh) * 2014-12-17 2015-04-22 湖南华曙高科技有限责任公司 一种激光烧结用尼龙余粉的回收方法
JP2016186068A (ja) * 2015-03-19 2016-10-27 株式会社リコー ポリアミド粒子及びその製造方法
WO2017122387A1 (ja) * 2016-01-13 2017-07-20 株式会社クレハ 外用組成物及び、それを用いた皮膚洗浄剤、歯磨剤
WO2017195705A1 (ja) * 2016-05-10 2017-11-16 株式会社クレハ ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物
WO2018150835A1 (ja) 2017-02-14 2018-08-23 株式会社クレハ ポリアミド粒子、およびポリアミド粒子の製造方法
JPWO2019155584A1 (ja) * 2018-02-08 2021-01-28 株式会社 資生堂 粉末含有組成物、水系溶媒用粉末、及び水系溶媒用粉末の製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541586B2 (ja) * 2011-09-27 2014-07-09 東レ株式会社 ポリアミド1010樹脂粒子およびその製造方法
FR3012961B1 (fr) * 2013-11-13 2016-08-12 Arkema France Utilisation de poudre de polyamide dans une composition cosmetique pour les ongles.
US10138344B2 (en) * 2015-03-19 2018-11-27 Ricoh Company, Ltd. Particulate polyamide, and method for preparing the particulate polyamide
MX2018010015A (es) * 2016-02-19 2018-11-09 Basf Se Proceso para preparar polvos de poliamida mediante precipitacion.
EP3416808B1 (de) 2016-02-19 2022-10-26 Basf Se Polyamidzusammensetzung enthaltend ein polyamid und ein additiv
CA3014262A1 (en) 2016-02-19 2017-08-24 Basf Se Kaolin for mechanical reinforcement of polymeric laser sinter powder
US11697716B2 (en) 2017-02-01 2023-07-11 BASF SE (Ellwanger & Baier Patentanwälte) Process for producing a polyamide powder by precipitation
DE102017206963A1 (de) * 2017-04-25 2018-10-25 Eos Gmbh Electro Optical Systems Verfahren zur Herstellung eines dreidimensionalen Objekts
CN108250735B (zh) * 2018-01-23 2020-09-11 烟台大学文经学院 一种表面多孔尼龙微球及其制备方法
US11866562B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Nanoparticle-coated elastomeric particulates and methods for production and use thereof
US11814494B2 (en) 2019-09-09 2023-11-14 Xerox Corporation Thermoplastic polyester particles and methods of production and uses thereof
US11866552B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Polyamide particles and methods of production and uses thereof
US11801617B2 (en) 2019-09-09 2023-10-31 Xerox Corporation Optical absorbing thermoplastic polymer particles and methods of production and uses thereof
US11667788B2 (en) 2019-09-09 2023-06-06 Xerox Corporation Nanoparticle-coated elastomeric particulates and surfactant-promoted methods for production and use thereof
US11802206B2 (en) 2019-09-09 2023-10-31 Xerox Corporation Particles comprising polyamides with pendent pigments and related methods
US11753505B2 (en) 2019-09-09 2023-09-12 Xerox Corporation Polyamides with pendent optical absorbers and related methods
US11866581B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Particles comprising polyamides with in-backbone optical absorbers and related methods
US11643566B2 (en) 2019-09-09 2023-05-09 Xerox Corporation Particulate compositions comprising a metal precursor for additive manufacturing and methods associated therewith
US11572441B2 (en) 2019-09-09 2023-02-07 Xerox Corporation Polyamides with pendent pigments and related methods
US11787937B2 (en) 2019-09-09 2023-10-17 Xerox Corporation Particles comprising polyamides with pendent optical absorbers and related methods
US11787944B2 (en) 2020-11-25 2023-10-17 Xerox Corporation Pigmented polymer particles and methods of production and uses thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054153A (ja) * 2003-08-07 2005-03-03 Ube Ind Ltd ポリアミド多孔質粒子の製造方法
JP2006169373A (ja) 2004-12-15 2006-06-29 Metal Color:Kk ナイロン12球状粒子粉末の製造方法
WO2006082908A1 (ja) * 2005-02-02 2006-08-10 Ube Industries, Ltd. 多孔質球状ポリアミド粒子の製造方法
JP2006328173A (ja) 2005-05-25 2006-12-07 Metal Color:Kk ポリアミド球状粒子粉末の製造方法
JP2007056085A (ja) 2005-08-23 2007-03-08 Toray Ind Inc ポリカプロアミド樹脂微粒子およびそれを含む化粧品
JP2007106895A (ja) * 2005-10-14 2007-04-26 Sumika Enviro-Science Co Ltd 球状ポリアミド粒子の製造方法
JP2007515500A (ja) * 2003-06-26 2007-06-14 ロディア・ポリアミド・インターミーディエッツ ポリアミドから作られた球形粒子の製造方法
JP2007204767A (ja) * 2000-06-14 2007-08-16 Ube Ind Ltd ポリアミド多孔質粒子の製造方法
JP2008038037A (ja) 2006-08-07 2008-02-21 Ube Ind Ltd 多孔質ポリアミド粉末の製造方法
JP2008088296A (ja) * 2006-10-02 2008-04-17 Ube Ind Ltd 着色ポリアミド微粒子およびその製造方法
JP2008086874A (ja) * 2006-09-29 2008-04-17 Ube Ind Ltd 吸放湿材料
JP2008127495A (ja) * 2006-11-22 2008-06-05 Teijin Ltd 全芳香族ポリアミド粒子の製造方法
JP2008189895A (ja) * 2007-02-08 2008-08-21 Gantsu Kasei Kk 球状ポリアミド粒子の製造方法
JP2009159840A (ja) 2007-12-28 2009-07-23 National Institute Of Advanced Industrial & Technology バイオマスからの2−ピロリドン乃至ポリアミド4、n−メチル−2−ピロリドン、ポリビニルピロリドンの合成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958677A (en) * 1955-05-10 1960-11-01 Phillips Petroleum Co Purification of polymers of the polyamide type
US5128125A (en) * 1988-02-16 1992-07-07 Barnes Arthur C Method for preparing finely divided nylon-4 complex with iodine and antiseptic preparation made therefrom
CA2044787A1 (en) * 1990-10-31 1992-05-01 Shahid P. Qureshi Fiber-reinforced composites toughened with porous resin particles
US5268223A (en) 1991-05-31 1993-12-07 Amoco Corporation Toughened fiber-reinforced composites
JP2005239575A (ja) * 2004-02-24 2005-09-08 Ube Ind Ltd ポリアミド多孔質粒子を含有する皮膚用及び毛髪用の化粧料組成物
WO2007069694A1 (ja) * 2005-12-14 2007-06-21 Ube Industries, Ltd. 無機化合物担持ポリアミド多孔質粒子からなる粉末

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204767A (ja) * 2000-06-14 2007-08-16 Ube Ind Ltd ポリアミド多孔質粒子の製造方法
JP2007515500A (ja) * 2003-06-26 2007-06-14 ロディア・ポリアミド・インターミーディエッツ ポリアミドから作られた球形粒子の製造方法
JP2005054153A (ja) * 2003-08-07 2005-03-03 Ube Ind Ltd ポリアミド多孔質粒子の製造方法
JP2006169373A (ja) 2004-12-15 2006-06-29 Metal Color:Kk ナイロン12球状粒子粉末の製造方法
WO2006082908A1 (ja) * 2005-02-02 2006-08-10 Ube Industries, Ltd. 多孔質球状ポリアミド粒子の製造方法
JP2006328173A (ja) 2005-05-25 2006-12-07 Metal Color:Kk ポリアミド球状粒子粉末の製造方法
JP2007056085A (ja) 2005-08-23 2007-03-08 Toray Ind Inc ポリカプロアミド樹脂微粒子およびそれを含む化粧品
JP2007106895A (ja) * 2005-10-14 2007-04-26 Sumika Enviro-Science Co Ltd 球状ポリアミド粒子の製造方法
JP2008038037A (ja) 2006-08-07 2008-02-21 Ube Ind Ltd 多孔質ポリアミド粉末の製造方法
JP2008086874A (ja) * 2006-09-29 2008-04-17 Ube Ind Ltd 吸放湿材料
JP2008088296A (ja) * 2006-10-02 2008-04-17 Ube Ind Ltd 着色ポリアミド微粒子およびその製造方法
JP2008127495A (ja) * 2006-11-22 2008-06-05 Teijin Ltd 全芳香族ポリアミド粒子の製造方法
JP2008189895A (ja) * 2007-02-08 2008-08-21 Gantsu Kasei Kk 球状ポリアミド粒子の製造方法
JP2009159840A (ja) 2007-12-28 2009-07-23 National Institute Of Advanced Industrial & Technology バイオマスからの2−ピロリドン乃至ポリアミド4、n−メチル−2−ピロリドン、ポリビニルピロリドンの合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUFT JH: "Improvements in epoxy resin embedding methods", J BIOPHYS BIOCHEM CYTOL, vol. 9, 1961, pages 409 - 414
See also references of EP2404955A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116976A (ja) * 2009-11-05 2011-06-16 Sanyo Chem Ind Ltd 樹脂粒子の製造方法
JP2011218330A (ja) * 2010-04-14 2011-11-04 Ube Industries Ltd 吸着材
JP2013216890A (ja) * 2012-04-11 2013-10-24 Evonik Industries Ag 適合された溶融挙動を有するポリマー粉末
CN104530472A (zh) * 2014-12-17 2015-04-22 湖南华曙高科技有限责任公司 一种激光烧结用尼龙余粉的回收方法
JP2016186068A (ja) * 2015-03-19 2016-10-27 株式会社リコー ポリアミド粒子及びその製造方法
WO2017122387A1 (ja) * 2016-01-13 2017-07-20 株式会社クレハ 外用組成物及び、それを用いた皮膚洗浄剤、歯磨剤
WO2017195705A1 (ja) * 2016-05-10 2017-11-16 株式会社クレハ ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物
JPWO2017195705A1 (ja) * 2016-05-10 2018-12-20 株式会社クレハ ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物
US11008421B2 (en) 2016-05-10 2021-05-18 Kureha Corporation Polyamide fine particle, method for producing same, and polyamide fine particle composition
WO2018150835A1 (ja) 2017-02-14 2018-08-23 株式会社クレハ ポリアミド粒子、およびポリアミド粒子の製造方法
JPWO2018150835A1 (ja) * 2017-02-14 2019-07-25 株式会社クレハ ポリアミド粒子、およびポリアミド粒子の製造方法
CN110088173A (zh) * 2017-02-14 2019-08-02 株式会社吴羽 聚酰胺粒子以及聚酰胺粒子的制造方法
JPWO2019155584A1 (ja) * 2018-02-08 2021-01-28 株式会社 資生堂 粉末含有組成物、水系溶媒用粉末、及び水系溶媒用粉末の製造方法
JP7142653B2 (ja) 2018-02-08 2022-09-27 株式会社 資生堂 粉末含有組成物、水系溶媒用粉末、及び水系溶媒用粉末の製造方法

Also Published As

Publication number Publication date
US20110311821A1 (en) 2011-12-22
JP5652389B2 (ja) 2015-01-14
EP2404955A4 (en) 2013-07-03
US8822555B2 (en) 2014-09-02
EP2404955A1 (en) 2012-01-11
CN102388088A (zh) 2012-03-21
CN102388088B (zh) 2015-11-25
JPWO2010101134A1 (ja) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5652389B2 (ja) ポリアミド粒子及びその製造方法
Bao et al. Robust superhydrophobic coating with hollow SiO2/PAA-b-PS Janus microspheres for self-cleaning and oil–water separation
Cao et al. Dually prewetted underwater superoleophobic and under oil superhydrophobic fabric for successive separation of light oil/water/heavy oil three-phase mixtures
JP5635615B2 (ja) 再利用可能なポリアミド粉末の製造方法
TWI457375B (zh) 球狀複合粒子及其製作方法
Goto et al. Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments
JP2008303248A (ja) 樹脂粒子の製造方法
JP3457655B2 (ja) 複合化粒子の製造法
JP5446172B2 (ja) 紫外線防除機能を有する複合化ポリアミド多孔質微粒子およびその製造方法
CN112457486B (zh) 具有主链内光吸收剂的聚酰胺及相关方法
JP2021042360A (ja) ペンダント光吸収体を有するポリアミド及び関連する方法
JP4093142B2 (ja) ポリアミド多孔質粒子の製造方法
JP2013543921A (ja) 表面上のナノ粒子を有するポリアミド
JP5365573B2 (ja) 吸着材
CN114539765A (zh) 涉及增材制造期间聚酰胺的原位交联的组合物、方法和制品
JP2023160743A (ja) ポリマーでコーティングされた微粒子組成物並びに関連する方法及び用途
EP1873190B1 (en) Method for the mechano-chemical treatment of materials comprising at least one polymer in the liquid state
Sarkar POSS-containing polyamide-based nanocomposites
JP2009179760A (ja) ポリペンタメチレンセバカミド樹脂微粒子とそれを含む化粧品
JP5498364B2 (ja) ポリアミド系複合材料の製造方法
JP5163158B2 (ja) ポリヘキサメチレンセバカミド樹脂微粒子を含む化粧品
Bolakhrif Synthesis and application of PLA and PLA/GO fibers through thermo-responsive transformation of PLA particles
JP2009249516A (ja) 抗菌性を有する複合化ポリアミド多孔質微粒子およびその製造方法
JP2009203366A (ja) ポリシロキサン被覆ポリアミド多孔質微粒子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016142.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502755

Country of ref document: JP

Ref document number: 13254026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010748729

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010748729

Country of ref document: EP