WO2017195705A1 - ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物 - Google Patents

ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物 Download PDF

Info

Publication number
WO2017195705A1
WO2017195705A1 PCT/JP2017/017251 JP2017017251W WO2017195705A1 WO 2017195705 A1 WO2017195705 A1 WO 2017195705A1 JP 2017017251 W JP2017017251 W JP 2017017251W WO 2017195705 A1 WO2017195705 A1 WO 2017195705A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
fine particles
polyamide fine
hot water
less
Prior art date
Application number
PCT/JP2017/017251
Other languages
English (en)
French (fr)
Inventor
和行 山根
大輔 村野
瑛閣 肖
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to EP17796066.3A priority Critical patent/EP3438160A4/en
Priority to CN201780012515.5A priority patent/CN108699255A/zh
Priority to US16/086,132 priority patent/US11008421B2/en
Priority to JP2018516987A priority patent/JP6758370B2/ja
Publication of WO2017195705A1 publication Critical patent/WO2017195705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/24Pyrrolidones or piperidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Definitions

  • the present invention relates to polyamide fine particles, a method for producing the same, and a polyamide fine particle composition containing these polyamide fine particles.
  • resin fine particles have been used in industrial products such as cosmetics, personal care products and paints.
  • fine particles spherical fine particles having smooth slipperiness are used in many fields including cosmetics.
  • Synthetic resins such as polyethylene resins and polyamide resins represented by nylon are used for these fine particles.
  • Patent Document 1 describes resin particles mainly composed of polyamide 1010 resin.
  • Non-Patent Document 1 a method for synthesizing a specific polyamide is described in Non-Patent Document 1, for example.
  • JP 2013-72086 A (published on April 22, 2013)
  • the main synthetic resins currently used for resin fine particles including the polyamide 1010 resin used in the resin particles described in Patent Document 1, do not have biodegradability. Therefore, in recent years, the influence of fine particles made of these synthetic resins on the environment has been regarded as a problem. That is, there is a concern that an aquatic organism may ingest the discarded fine particles and bioconcentrate it through the food chain, thereby possibly affecting the human body.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide spherical fine particles having a low degree of environmental pollution and smooth sliding properties.
  • the polyamide fine particle according to the present invention is composed of repeating structural units having at least one alkylene group and at least one amide bond, and each of the at least one alkylene group has 1 to 5 carbon atoms. It consists of polyamide and has a sphericity of 80 or more.
  • the method for producing polyamide fine particles according to the present invention comprises repeating structural units having at least one alkylene group and at least one amide bond, and each of the at least one alkylene group has 1 or more carbon atoms, 5 It includes a dissolution step of dissolving the following polyamide in hot water and a precipitation step of cooling the hot water to precipitate polyamide fine particles made of polyamide.
  • the polyamide fine particles according to the present invention are decomposed in the environment even if discarded, the degree of environmental pollution is low. Further, since the polyamide fine particles according to the present invention have a sphericity of 80 or more, they have excellent slipperiness as spherical fine particles.
  • Example 1 of this invention it is the optical microscope photograph of the polyamide microparticles
  • Example 2 of this invention it is an optical micrograph of the polyamide microparticles
  • Example 3 of this invention it is an optical micrograph of the polyamide microparticles
  • 4 is an optical micrograph of fine particles obtained by pulverizing polyamide 4 in Comparative Example 1 of the present invention.
  • Example 4 of this invention it is a SEM image of the polyamide fine particle obtained.
  • Example 5 of this invention it is a SEM image of the polyamide fine particle obtained.
  • Example 6 of this invention it is a SEM image of the polyamide fine particle obtained.
  • Example 7 of this invention it is a SEM image of the polyamide fine particle obtained.
  • polyamide fine particles are composed of repeating structural units having at least one alkylene group and at least one amide bond, and each of the alkylene groups is carbon. It consists of a polyamide having a number of 1 or more and 5 or less, and has a sphericity of 80 or more.
  • polyamide is a polymer compound having a structure represented by —CONH—.
  • the polyamide according to the present embodiment includes repeating structural units having at least one alkylene group and at least one amide bond, and each alkylene group has 1 to 5 carbon atoms. is there.
  • the polyamide having the above structure has biodegradability.
  • biodegradable means a polyamide that is decomposed into low molecular weight compounds such as water and carbon dioxide by the action of microorganisms and water. That is, “biodegradability” in this specification includes hydrolyzability.
  • the number of repeating structural units according to this embodiment may be appropriately determined according to the weight average molecular weight of the polyamide.
  • the weight average molecular weight of the polyamide will be described later in detail.
  • the structural unit described above is not particularly limited as long as it has at least one alkylene group and at least one amide bond, but has at least one alkylene group and at most four alkylene groups. It is more preferable to have 1 or more and 3 or less, and most preferable to have 1 or more and 2 or less alkylene groups. In addition, it preferably has 1 or more and 4 or less amide bonds, more preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less. .
  • each of the alkylene groups according to this embodiment is not particularly limited as long as it has 1 to 5 carbon atoms, but preferably has 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms. It is more preferable.
  • the alkylene group according to this embodiment may be linear or branched.
  • each carbon number is independently 1 or more and 4 or less.
  • x is an integer of 2 or more and 5 or less, and is preferably 2, 3 or 4.
  • y is an integer of 1 to 5
  • z is an integer of 3 to 7.
  • y and z are 2, 3, or 4 each independently.
  • polyamide x a polyamide having a repeating structural unit represented by the formula (1) may be referred to as “polyamide x” depending on the number of x in the formula (1).
  • polyamide 4 a polyamide having a repeating structural unit represented by the formula (1)
  • the sphericity is a value calculated by measuring the short diameter and the long diameter of n arbitrarily selected polyamide fine particles, respectively, according to the following formula (3).
  • n is preferably 30 in the formula (3).
  • an optical micrograph or a scanning electron micrograph of the polyamide fine particles is taken, and the short diameter and long diameter of the polyamide fine particles are measured from the photographed micrograph. It is preferable to carry out. Moreover, when using an optical micrograph, it is preferable that the magnification of an optical micrograph shall be 300 times or more.
  • Equation (3) the closer the sphericity value is to 100, the closer to the true sphere.
  • the polyamide according to this embodiment has a sphericity of 80 or more and has a spherical shape.
  • the sphericity of the polyamide fine particles is preferably 85 or more, and more preferably 90 or more.
  • the sphericity of the polyamide fine particles is most preferably 100.
  • the slipperiness of the polyamide fine particles becomes smooth, and a sufficient texture can be obtained.
  • the shape of the polyamide fine particles is prevented from approaching an ellipse, and, for example, suitable slip properties can be obtained when using the polyamide fine particles for cosmetics, paints, and toners. In terms of surface.
  • the average particle diameter of the polyamide fine particles is not particularly limited, but is preferably 1 ⁇ m or more and 350 ⁇ m or less, more preferably 1 ⁇ m or more and 60 ⁇ m or less, further preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 1 ⁇ m or more, A thickness of 10 ⁇ m or less is particularly preferable.
  • the particle diameter of the polyamide fine particles is preferably uniform, more preferably the average particle diameter of the polyamide fine particles is within the above-mentioned range and the particle diameter is uniform.
  • uniform particle size means that the proportion of polyamide fine particles having a particle size of ⁇ 50% of the average particle size is 67% or more, preferably 95% or more, based on the total number of polyamide fine particles. , Most preferably 100%.
  • the polyamide particles Due to the uniform particle size of the polyamide particles, when the polyamide particles are used as a coating material in, for example, cosmetics, paints or toners, the polyamide particles slide smoothly against the object to be coated. Can be applied uniformly.
  • the weight average molecular weight (Mw) of the polyamide in the polyamide fine particles is not particularly limited, but is preferably 30,000 or more and 800,000 or less, more preferably 30,000 or more and 600,000 or less, Most preferably, it is 000 or more and 300,000 or less. If the weight average molecular weight of the polyamide is within this range, there is no possibility that the mechanical properties, heat resistance, etc. of the polyamide are impaired during the molding of the polyamide fine particles.
  • the weight average molecular weight of the polyamide may be 30,000 or more and 200,000 or less, or 30,000 or more and 100,000 or less. If the weight average molecular weight of the polyamide is 30,000 or more, it is possible to effectively suppress the dispersion of the polyamide fine particles dissolved in hot water on the water side. Can be formed efficiently.
  • Specific surface area Smooth spherical polyamide microparticles, it is preferable specific surface area is small, specifically, preferably from 20 m 2 / g or less, 10 m 2 / g or less is particularly preferred. More preferable smooth polyamide fine particles have an average particle diameter of 1 ⁇ m or more and 30 ⁇ m or less and a specific surface area of 20 m 2 / g or less.
  • the specific surface area can be measured by the BET method using nitrogen adsorption.
  • the polyamide fine particles according to the present embodiment are fine particles made of a specific polyamide as described above and have biodegradability. Therefore, since the polyamide fine particles according to this embodiment are decomposed in the environment, the degree of environmental pollution is low. Moreover, since the polyamide fine particles according to the present embodiment have a sphericity of 80 or more, they have smooth slipperiness.
  • polyamide used in the method for producing polyamide fine particles according to this embodiment a commercially available product may be used. Further, for example, polyamide may be synthesized by the following method.
  • the polyamide used in the production method according to the present embodiment is composed of repeating structural units having at least one alkylene group and at least one amide bond, and each of the at least one alkylene group is carbon. It is not particularly limited as long as it is a polyamide having a number of 1 or more and 5 or less. A method for synthesizing such a polyamide is illustrated below.
  • first polyamide synthesis method examples include a method of ring-opening polymerization using an organic compound having a lactam structure as a raw material.
  • organic compound having a lactam structure examples include ⁇ -pyrrolidone and ⁇ -caprolactam.
  • the method for ring-opening polymerization is not particularly limited, and examples thereof include conventionally known methods such as bulk polymerization and particle polymerization in petroleum solvents.
  • a polyamide is synthesized by dehydrating and condensing the organic compound having a lactam structure described above after ring opening by hydrolysis.
  • the following procedure may also be selected. That is, it is a method of anionic ring-opening polymerization in which a small amount of a base is allowed to act on an organic compound having a lactam structure to generate an anionic species, and the anionic species opens a chain by opening the organic compound having a lactam structure.
  • polyamide synthesis method As a second polyamide synthesis method, a method of self-condensing amino acids can be mentioned. Examples of amino acids include glycine and ⁇ -aminobutanoic acid.
  • polyamide is synthesized by dehydration condensation by heating an amino acid under reduced pressure.
  • the next procedure is also selected. That is, using polystyrene polymer gel beads or the like having a diameter of about 0.1 mm as a solid phase, amino acids are bound thereto, and then the amino acid chain is extended one by one by deprotecting the terminal after the condensation reaction.
  • the Maryfield method is known as a method for producing synthetic peptides.
  • a method of condensing diamine and dicarboxylic acid can be mentioned.
  • the diamine include 1,2-ethylenediamine, 1,3-propanediamine, 1,4-butylenediamine, 1,6-hexamethylenediamine, and the like.
  • the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, and adipic acid.
  • polyamide 4 is, for example, “Alkaline-catalyzed polymerization of ⁇ -pyrrolidone in the presence of N, N′-adipyldipyrrolidone” cited as Non-Patent Document 1, Masakazu Taniyama, Takeshi Nagaoka, Toshihiro Takada, Kazunori Hatakeyama, Journal of Industrial Chemistry, Vol. 65, No. 3, 1962, pp. 419-422. More specifically, polyamide 4 can be obtained by the following procedure. That is, a small amount of metallic sodium is allowed to act on ⁇ -pyrrolidone to generate anionic species for some ⁇ -pyrrolidone. By adding N-acylated pyrrolidone as an initiator, the ring-opening reaction of pyrrolidone proceeds continuously, and a mass of polyamide 4 can be obtained.
  • This manufacturing method is a method using the polyamide having the above-described configuration, and includes (1) a dissolution step and (2) a precipitation step. Hereinafter, these two steps will be described in detail.
  • the dissolution step according to this embodiment includes dissolving the polyamide having the above-described configuration in hot water.
  • the polyamide concentration in the hot water is 0.1 wt% or more, 10 wt% or less, preferably 0.1 wt% or more, 3 wt% or less, more preferably 0.1 wt% or more, 1 wt% It is preferable to dissolve the polyamide so that it becomes less than or equal to%. By setting the amount of polyamide dissolved in the above range, the sphericity of the polyamide fine particles becomes higher.
  • the temperature of the hot water is preferably 100 ° C. or higher and 170 ° C. or lower, more preferably 100 ° C. or higher and 150 ° C. or lower, and most preferably 130 ° C. or higher and 150 ° C. or lower. It is preferable that the temperature of the hot water is within the above range in terms of solubility of the polyamide in hot water.
  • the polyamide it is preferable to dissolve the polyamide while maintaining the temperature of the hot water after adding the polyamide to water and heating it to a desired temperature.
  • the temperature of hot water is preferably maintained for 1 minute or more, more preferably 30 minutes or more, further preferably 3 hours or more, and particularly preferably 6 hours or more.
  • the mixture of hot water and polyamide is cooled after the dissolution step described above.
  • the cooling method is not particularly limited. For example, a method in which a mixture of polyamide and hot water is allowed to stand at room temperature (about 23 ° C.), a method in which a mixture of polyamide and hot water is allowed to stand in cold water, etc. Is mentioned.
  • the polyamide molecules dissolved in the hot water are regularly arranged, thereby forming spherical polyamide fine particles.
  • an operation of classifying the polyamide fine particles deposited by a sieve or the like to make the particle diameters of the polyamide fine particles uniform may be performed.
  • the polyamide fine particles according to this embodiment may be used alone.
  • the polyamide fine particles according to the present embodiment may be used as a polyamide fine particle composition containing the polyamide fine particles and other components.
  • the other component contained in the polyamide fine particle composition may be, for example, a biodegradable plastic.
  • examples of other components include polyethers such as polyethylene glycol, polyalcohols such as polyvinyl alcohol, and polyesters such as polylactic acid and polyglycolic acid.
  • the polyamide fine particle composition may contain two or more types of polyamide fine particles according to this embodiment. Therefore, for example, the polyamide fine particle composition according to the present embodiment may contain polyamide fine particles made of polyamide 2 and polyamide fine particles made of polyamide 4. Furthermore, when the polyamide fine particle composition according to the present embodiment includes two or more different polyamide fine particles, the content ratio of the polyamide fine particles is not particularly limited.
  • the polyamide fine particle composition according to this embodiment can be used, for example, as an external composition, a coating composition, a toner composition, or the like.
  • an external composition e.g., a coating composition, a toner composition, or the like.
  • the use of the polyamide fine particles according to the present embodiment will be specifically described.
  • the application of the polyamide fine particles according to the present embodiment is not limited to the specific examples described below, and it goes without saying that other applications can be suitably used.
  • the composition for external use means a composition that is directly used from the outside to the human body.
  • the composition for external use include cosmetics such as foundation, lipstick, and eye shadow. Since the composition for external use according to the present embodiment contains polyamide fine particles, light scattering can be made uniform by the spherical shape of the polyamide fine particles. Therefore, according to the composition for external use according to the present embodiment, polyamide fine particles can be suitably used as an additive component for making light scattering uniform.
  • components other than the polyamide fine particles contained in the composition for external use can include components contained in conventional cosmetics and the like.
  • the content of the polyamide fine particles in the external composition is not particularly limited, but the content of the polyamide fine particles in the external composition is 3% by weight or more in order to improve the uniformity of light scattering. It is preferably 5% by weight or more, more preferably 10% by weight or more.
  • the coating composition is, for example, a coating used for buildings, automobiles, metal products, electric appliances, and the like. Since the coating composition according to this embodiment contains polyamide fine particles, light scattering can be made uniform by the spherical shape of the polyamide fine particles. Therefore, according to the coating composition according to the present embodiment, polyamide fine particles can be suitably used as an additive component for making light scattering uniform.
  • examples of components other than the polyamide fine particles contained in the coating composition include components contained in conventional coatings such as acrylic resins, urethane resins, thickeners, plasticizers, solvents, and pigments. Can do.
  • the content of the polyamide fine particles in the coating composition is not particularly limited, but in order to improve the uniformity of light scattering, the content of the polyamide fine particles in the coating composition is 10% by weight or more. Preferably, it is 20% by weight or more, and most preferably 30% by weight or more.
  • the toner composition is, for example, toner used in laser printers, copiers, and the like.
  • the polyamide fine particles according to this embodiment can be used, for example, as plastic particles in toner.
  • the polyamide fine particles can be used as the plastic fine particles of the toner by imparting charging properties to the polyamide fine particles and further attaching colored particles such as pigments to the polyamide fine particles.
  • examples of components other than the polyamide fine particles contained in the toner composition include components contained in conventional toners such as polystyrene and polyester.
  • the content of the polyamide fine particles in the toner composition is not particularly limited.
  • the content of the polyamide fine particles in the toner composition is included.
  • the amount is preferably 40% by weight or more, more preferably 60% by weight or more, and most preferably 90% by weight or more.
  • the external composition, the coating composition, and the toner composition according to this embodiment may include one kind or two or more kinds of polyamide fine particles according to this embodiment as they are. Further, as described above, the external composition, the coating composition, and the toner composition according to the present embodiment are mixed with the polyamide fine particles according to the present embodiment, the dispersion medium, and the optional components as described above. It may be.
  • the dispersion medium is not particularly limited, and examples thereof include an aqueous dispersion medium such as water, an alcohol-containing aqueous solution such as ethyl alcohol and glycerin, and a nonpolar oil such as fatty acid ester oil.
  • the mixing method is not particularly limited, and examples thereof include a method using a stirrer such as a Henschel mixer, a plast mill, a corn mixer, a kneader, and a ribbon mixer.
  • the coating composition or the toner composition according to this embodiment includes other biodegradable plastics in addition to the polyamide fine particles according to this embodiment, for example, melt
  • the prepared polyamide and other biodegradable plastics may be stirred with a kneader, a ribbon mixer or the like.
  • the polyamide melted and dissolved in the stirrer and other biodegradable plastic may be added simultaneously or separately and mixed.
  • the polyamide fine particle according to the present invention is composed of a polyamide having a repeating structural unit having at least one alkylene group and at least one amide bond, and each of the at least one alkylene group having 1 to 5 carbon atoms. And the sphericity is 80 or more.
  • the polyamide fine particles according to the present invention preferably have an average particle size of 1 ⁇ m or more and 350 ⁇ m or less.
  • polyamide fine particles according to the present invention preferably have a weight average molecular weight of 30,000 or more and 800,000 or less.
  • the polyamide fine particles according to the present invention preferably have a specific surface area of 20 m 2 / g or less.
  • the structural unit is represented by the following formula (1).
  • x is an integer of 2 or more and 5 or less. It is preferable to be represented by
  • the polyamide fine particles according to the present invention have a structural unit represented by the following formula (2)
  • the method for producing polyamide fine particles according to the present invention comprises repeating structural units having at least one alkylene group and at least one amide bond, and each of the at least one alkylene group has 1 or more carbon atoms, 5 It includes a dissolution step of dissolving the following polyamide in hot water and a precipitation step of cooling the hot water to precipitate polyamide fine particles made of polyamide.
  • the polyamide is dissolved in water or hot water so that the concentration of polyamide in hot water is 0.1 wt% or more and 10 wt% or less in the dissolving step. It is preferable to do.
  • the polyamide is dissolved in water or hot water so that the concentration of the polyamide in hot water is 0.1 wt% or more and 3 wt% or less in the dissolving step. It is preferable to do.
  • the external composition, the coating composition and the toner composition according to the present invention each contain the polyamide fine particles according to the present invention.
  • Polyamide 4 (hereinafter also referred to as “PA4”) is the “alkali-catalyzed polymerization of ⁇ -pyrrolidone in the presence of N, N-adipyldipyrrolidone” described in Non-Patent Document 1, Masakazu Taniyama, Takeshi Nagaoka, Takada This was synthesized according to the synthesis method described in Toshihiro, Kazunori Hatakeyama, Occupational Chemical Journal, Vol. 65, No. 3, 1962, pp. 419-422.
  • the weight average molecular weight (Mw) of the obtained PA4 was 96,000. This weight average molecular weight was measured by the following procedure, analyzer and conditions.
  • the suspension solution obtained by the above method is dropped on a slide glass, and an observation sample obtained by placing a cover glass is used using an optical microscope (manufactured by KEYENCE, VHX-700F, lens used: VH-Z100R).
  • the dispersion state of the PA4 fine particles was observed under the conditions of room temperature (23 ° C.) and magnification ⁇ 300.
  • the observation results are shown in FIG. FIG. 1 is an optical micrograph of polyamide fine particles obtained with a PA4 concentration of 0.1% by weight. From FIG. 1, it can be seen that the PA4 fine particles are dispersed without being aggregated in pure water.
  • PA4 fine particles were arbitrarily selected from the optical micrograph shown in FIG. 1, the short diameter and long diameter of each PA4 fine particle were measured, and the sphericity of the PA4 fine particles was determined according to the following formula. The results are shown in Table 1.
  • PA4 fine particles in the optical micrograph shown in FIG. 1 were arbitrarily selected and their particle sizes were measured. And the average value of these particle diameters was made into the average particle diameter of PA4 microparticles
  • Example 2 A suspension solution was obtained in the same manner as in Example 1 except that PA4 was added so that the concentration of PA4 was 1% by weight. The obtained suspension solution was observed with an optical microscope in the same manner as in Example 1. The observation results are shown in FIG. FIG. 2 is an optical micrograph of polyamide fine particles obtained with a PA4 concentration of 1.0 wt%. FIG. 2 shows that the PA4 fine particles are dispersed without being aggregated in pure water. Further, from the optical micrograph shown in FIG. 2, the sphericity and average particle diameter of the PA4 fine particles were determined in the same manner as in Example 1. These results are shown in Table 1.
  • Example 3 A suspension solution was obtained in the same manner as in Example 1 except that PA4 was added so that the concentration of PA4 was 10% by weight. The obtained suspension solution was observed with an optical microscope in the same manner as in Example 1. The observation results are shown in FIG. FIG. 3 is an optical micrograph of polyamide fine particles obtained with a PA4 concentration of 10% by weight. FIG. 3 shows that the PA4 fine particles are dispersed without being aggregated in pure water. Further, from the optical micrograph shown in FIG. 3, the sphericity and average particle diameter of the PA4 fine particles were determined in the same manner as in Example 1. These results are shown in Table 1.
  • FIG. 4 is an optical micrograph of fine particles obtained by grinding PA4. Further, from the optical micrograph shown in FIG. 4, the sphericity and average particle diameter of the fine particles were determined in the same manner as in Example 1. These results are shown in Table 1.
  • Example 4 By adding PA4 having a weight average molecular weight of about 80,000 to a 1 L pressure vessel so that the concentration of PA4 with respect to pure water and pure water is 1% by weight, the 1 L pressure vessel is heated to an internal temperature of 150 ° C. Was dissolved in hot water. After the heating, the temperature of the hot water was maintained for 30 minutes, and then the hot water was cooled until the hot water reached room temperature (23 ° C.) to obtain a suspension solution in which PA4 fine particles were dispersed in pure water. Furthermore, the obtained suspension solution was filtered with a filter paper, and what was hold
  • the polyamide 4 fine particles were further dried at 120 ° C. for 10 minutes.
  • the specific surface area of the dried polyamide 4 fine particles was measured using a specific surface area measuring machine (MONOSORB: manufactured by Quantachrome Instruments). The results are shown in Table 2.
  • Example 5 Polyamide 4 fine particles were obtained in the same manner as in Example 4 except that the weight average molecular weight of PA4 added to the 1 L pressure vessel was about 210,000.
  • the obtained polyamide 4 fine particles were observed with an SEM in the same manner as in Example 4, they were spherical particles as shown in FIG. Further, the sphericity and the average particle diameter were determined in the same manner as in Example 4 using the SEM image. The results are shown in Table 2.
  • Example 6 Polyamide 4 fine particles were obtained in the same manner as in Example 4 except that the concentration of PA4 was 5% by weight.
  • the obtained polyamide 4 fine particles were observed with an SEM in the same manner as in Example 4, they were spherical particles as shown in FIG. Further, the sphericity and the average particle diameter were determined in the same manner as in Example 4 using the SEM image. The results are shown in Table 2.
  • Example 7 Polyamide 4 fine particles were obtained in the same manner as in Example 4 except that the weight average molecular weight of PA4 added to the pressure vessel was about 210,000 and the concentration of PA4 was 5% by weight.
  • the obtained polyamide 4 fine particles were observed with an SEM in the same manner as in Example 4, they were spherical particles as shown in FIG. Further, the sphericity and the average particle diameter were determined in the same manner as in Example 4 using the SEM image. The results are shown in Table 2.
  • the fine particles made of polyamide according to the present invention can be suitably used as fine particles contained in products such as cosmetics, personal care products and paints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyamides (AREA)
  • Cosmetics (AREA)
  • Paints Or Removers (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

環境汚染の程度が低く、滑らかな滑り性を有する、球形状のポリアミド微粒子を提供する。本発明に係るポリアミド微粒子は、少なくとも1つのアルキレン基と少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに当該少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドからなり、真球度が80以上である。

Description

ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物
 本発明は、ポリアミド微粒子およびその製造方法ならびにこれらポリアミド微粒子を含有するポリアミド微粒子組成物に関する。
 近年、化粧品、パーソナルケア用品および塗料等の工業用品等に樹脂製の微粒子が用いられている。これらの微粒子の中でも、滑らかな滑り性を有する球状の微粒子は、化粧品用途をはじめとした多くの分野で用いられている。これらの微粒子にはポリエチレン系樹脂およびナイロンを代表とするポリアミド系樹脂等の合成樹脂が用いられている。
 例えば、特許文献1には、ポリアミド1010樹脂を主成分とした樹脂粒子が記載されている。
 また、特定のポリアミドの合成方法は、例えば、非特許文献1に記載されている。
日本国公開特許公報「特開2013-72086号公報(2013年4月22日公開)」
「N,N’-アジピルジピロリドンの存在下におけるα-ピロリドンのアルカリ触媒重合」、谷山雅一、長岡武、高田利宏、讃山一則、工業化学雑誌、第65巻、第3号、1962年、419~422頁
 しかしながら、特許文献1に記載の樹脂粒子において使用されているポリアミド1010樹脂をはじめ、現在樹脂製の微粒子に用いられている主な合成樹脂は、生分解性を有していない。そのため、近年これらの合成樹脂からなる微粒子の、環境への影響が問題視されている。すなわち、廃棄された微粒子を水性生物が摂取し、食物連鎖を通して生体濃縮されることにより、人体に影響が生じる可能性等が懸念されている。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、環境汚染の程度が低く、かつ、滑らかな滑り性を有する球状の微粒子を提供することにある。
 本発明者らは、上記の課題を解決するために鋭意研究を行った結果、特定構造を有するポリアミドからなる球状の微粒子であれば、環境汚染の程度が低い微粒子として有効活用できることを見出し、本発明を完成させるに至った。
 すなわち、本発明に係るポリアミド微粒子は、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに当該少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドからなり、真球度が80以上である。
 また、本発明に係るポリアミド微粒子の製造方法は、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともにこの少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドを熱水中に溶解する溶解工程と、この熱水を冷却してポリアミドからなるポリアミド微粒子を析出させる析出工程とを含むものである。
 本発明に係るポリアミド微粒子は、廃棄されても環境中で分解されるため、環境汚染の程度が低い。また、本発明に係るポリアミド微粒子は真球度が80以上であるため、球状の微粒子として優れた滑り性を有する。
本発明の実施例1において、ポリアミド4の濃度を0.1重量%として得られたポリアミド微粒子の光学顕微鏡写真である。 本発明の実施例2において、ポリアミド4の濃度を1.0重量%として得られたポリアミド微粒子の光学顕微鏡写真である。 本発明の実施例3において、ポリアミド4の濃度を10重量%として得られたポリアミド微粒子の光学顕微鏡写真である。 本発明の比較例1において、ポリアミド4を粉砕することによって得られた微粒子の光学顕微鏡写真である。 本発明の実施例4において、得られたポリアミド微粒子のSEM画像である。 本発明の実施例5において、得られたポリアミド微粒子のSEM画像である。 本発明の実施例6において、得られたポリアミド微粒子のSEM画像である。 本発明の実施例7において、得られたポリアミド微粒子のSEM画像である。
 以下、本発明の一実施の形態について詳細に説明する。
 <ポリアミド微粒子>
 本実施形態に係るポリアミド微粒子(以下、「ポリアミド微粒子」ということがある)は、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに当該アルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドからなり、真球度が80以上である。
 [ポリアミド]
 本明細書において「ポリアミド」とは、-CONH-で表される構造を有する高分子化合物である。
 より具体的には、本実施形態に係るポリアミドは、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに、アルキレン基のそれぞれが炭素数1以上、5以下である。
 本実施形態において、上記構成のポリアミドは生分解性を有する。なお、本明細書において「生分解性」とは、微生物および水等の作用により、例えば水および二酸化炭素等の低分子量化合物に分解されるポリアミドを意味する。すなわち、本明細書における「生分解性」とは、加水分解性を含むものである。
 本実施形態に係る構造単位の繰り返しの数は、ポリアミドの重量平均分子量に応じて適宜定めればよい。なお、ポリアミドの重量平均分子量については詳しくは後述する。
 本実施形態において、上述した構造単位は、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有していれば特に限定されないが、アルキレン基を1つ以上、4つ以下有していることが好ましく、1つ以上、3つ以下有していることがより好ましく、アルキレン基を1つ以上、2つ以下有していることが最も好ましい。また、アミド結合を1つ以上、4つ以下有していることが好ましく、1つ以上、3つ以下有していることがより好ましく、1つ以上、2つ以下有していることが好ましい。
 さらに、本実施形態に係るアルキレン基のそれぞれは、炭素数が1以上、5以下であれば特に限定されないが、炭素数が1以上、4以下であることが好ましく、1以上、3以下であることがより好ましい。
 本実施形態に係るアルキレン基は、直鎖状または分岐鎖状であってもよい。また、構造単位にアルキレン基が複数含まれる場合、それぞれの炭素数は独立して1以上、4以下であることが好ましい。
 本実施形態に係る構造単位の一態様として、例えば下記式(1)
Figure JPOXMLDOC01-appb-C000003
で表される構造単位を挙げることができる。
 式(1)中、xは2以上、5以下の整数であり、2、3または4であることが好ましい。
 また、本実施形態に係る構造単位の他の態様として、例えば、下記式(2)
Figure JPOXMLDOC01-appb-C000004
で表される構造単位を挙げることができる。
 式(2)中、yは1以上、5以下の整数であり、zは3以上、7以下の整数である。また、yおよびzは、それぞれ独立して、2、3または4であることが好ましい。
 ところで、本明細書では、式(1)で表される構造単位の繰り返しを有するポリアミドを、式(1)中のxの数に応じて「ポリアミドx」と称することがある。よって、例えば式(1)においてxが4のポリアミドであれば、「ポリアミド4」と称する。
 〔ポリアミド微粒子〕
 (真球度)
 本明細書において、真球度とは、任意に選択したポリアミド微粒子n個について、それらの短径および長径をそれぞれ測定し、下記式(3)に従って算出した値である。
Figure JPOXMLDOC01-appb-M000005
 なお、本実施形態では、式(3)において、nは30であることが好ましい。
 本実施形態においてポリアミド微粒子の短径および長径を正確に測定するためには、ポリアミド微粒子の光学顕微鏡写真または走査型電子顕微鏡写真を撮影し、撮影した顕微鏡写真からポリアミド微粒子の短径および長径の測定を行うことが好ましい。また、光学顕微鏡写真を用いる場合、光学顕微鏡写真の倍率は、300倍以上とすることが好ましい。
 式(3)において真球度の値が100に近いものほど真球に近づく。本実施形態に係るポリアミドは、真球度が80以上であり、球状の形状を有している。
 本実施形態において、ポリアミド微粒子の真球度は85以上であることが好ましく、90以上であることがより好ましい。また、ポリアミド微粒子の真球度は100であることが最も好ましいが、通常、真球度が80以上であればポリアミド微粒子の滑り性は滑らかとなり、十分な質感を得ることができる。ポリアミド微粒子の真球度が80以上であることは、ポリアミド微粒子の形状が楕円形に近づくことが回避され、例えば化粧品、塗料およびトナー用途としてポリアミド微粒子を使用する際に好適な滑り性が得られる面において好ましい。
 (平均粒子径)
 ポリアミド微粒子の平均粒子径は特に限定されないが、1μm以上、350μm以下であることが好ましく、1μm以上、60μm以下であることがより好ましく、1μm以上、30μm以下であることがさらに好ましく、1μm以上、10μm以下であることが特に好ましい。
 さらに、ポリアミド微粒子の粒子径は均一であることが好ましく、より好ましくはポリアミド微粒子の平均粒子径が上述の範囲内であり、かつ、粒子径が均一であることである。
 なお、本明細書において「粒子径が均一」とは、ポリアミド微粒子全数に対して、粒子径が平均粒子径に対して±50%のポリアミド微粒子が占める割合が67%以上、好ましくは95%以上、最も好ましくは100%であることを意味するものとする。
 ポリアミド微粒子の粒子径が均一であることによって、ポリアミド微粒子を例えば化粧品、塗料またはトナーにおいて塗布材料として用いる場合、ポリアミド微粒子は塗布対象物に対して滑らかに滑るため、ポリアミド微粒子を塗布対象物に対して均一に塗布することができる。
 (重量平均分子量)
 ポリアミド微粒子におけるポリアミドの重量平均分子量(Mw)は特に限定されないが、30,000以上、800,000以下であることが好ましく、30,000以上、600,000以下であることがより好ましく、30,000以上、300,000以下であることが最も好ましい。ポリアミドの重量平均分子量がこの範囲内であれば、ポリアミド微粒子の成形時にポリアミドの機械的物性および耐熱性等が損なわれるおそれがない。また、ポリアミドの重量平均分子量は、30,000以上、200,000以下、または30,000以上、100,000以下でもあり得る。ポリアミドの重量平均分子量が30,000以上であれば、熱水中に溶解されたポリアミド微粒子が水側に分散することを効果的に抑制することができ、その結果、マイクロメートルサイズ以上のポリアミド粒子を効率的に形成することができる。
 (比表面積)
 滑らかな球状ポリアミド微粒子は、比表面積が小さい方が好ましく、具体的には、20m/g以下が好ましく、10m/g以下が特に好ましい。より好適な滑らかなポリアミド微粒子は、平均粒子径が1μm以上、30μm以下であり、かつ比表面積が20m/g以下である。比表面積は窒素吸着によるBET法などで測定できる。
 [ポリアミド微粒子の利点]
 本実施形態に係るポリアミド微粒子は、上述したように特定のポリアミドからなる微粒子であり、生分解性を有している。そのため、本実施形態に係るポリアミド微粒子は環境中で分解されるため、環境汚染の程度が低い。また、本実施形態に係るポリアミド微粒子は真球度が80以上であるため、滑らかな滑り性を有する。
 〔ポリアミド微粒子の製造方法〕
 次に、本実施形態に係るポリアミド微粒子の製造方法について説明する。
 本実施形態に係るポリアミド微粒子の製造方法において用いるポリアミドとして、一般に市販されているものを使用してもよい。また、例えば以下の方法によってポリアミドを合成してもよい。
 本実施形態に係る製造方法において使用するポリアミドは、上述したように、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなり、当該少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドであれば特に限定されるものではない。このようなポリアミドの合成方法を以下に例示する。
 (第1のポリアミド合成方法)
 第1のポリアミド合成方法として、ラクタム構造を有する有機化合物を原料として開環重合する方法を挙げることができる。ラクタム構造を有する有機化合物としては、例えばα-ピロリドン、ε-カプロラクタム等を挙げることができる。また開環重合する方法は、特に限定されるものではなく、例えばバルク重合および石油系溶媒中粒子重合等の従来公知の方法を挙げることができる。
 より具体的には、この方法では、例えば、上述したラクタム構造を有する有機化合物を加水分解によって開環後、脱水縮合させることでポリアミドを合成する。その際、次の手順も選択され得る。すなわち、ラクタム構造を有する有機化合物に少量の塩基を作用させてアニオン種を発生させ、そのアニオン種がラクタム構造を有する有機化合物を開環させることで鎖延長するアニオン開環重合の方法である。
 (第2のポリアミド合成方法)
 第2のポリアミド合成方法として、アミノ酸を自己縮合する方法を挙げることができる。アミノ酸としては、例えばグリシン、γ-アミノブタン酸等を挙げることができる。
 より具体的には、この方法では、アミノ酸を減圧下加熱することで脱水縮合させることでポリアミドを合成する。その際、次の手順も選択される。すなわち直径0.1mm程度のポリスチレン高分子ゲルのビーズ等を固相として用い、ここにアミノ酸を結合させ、続けて縮合反応後に末端を脱保護することによって1つずつアミノ酸鎖を伸長していく、合成ペプチドの製造方法として公知であるメリーフィールド法である。
 (第3のポリアミド合成方法)
 第3のポリアミド合成方法として、ジアミンとジカルボン酸とを縮合する方法を挙げることができる。ジアミンとして、例えば1,2-エチレンジアミン、1,3-プロパンジアミン、1,4-ブチレンジアミンおよび1,6-ヘキサメチレンジアミン等を挙げることができる。またジカルボン酸として、例えばシュウ酸、マロン酸、コハク酸およびアジピン酸等を挙げることができる。
 (その他のポリアミドの合成方法)
 ポリアミド3であれば、例えばアクリルアミド類の水素移動重合法によって合成してもよい。
 また、ポリアミド4の合成方法は、例えば非特許文献1として挙げた「N,N’-アジピルジピロリドンの存在下におけるα-ピロリドンのアルカリ触媒重合」、谷山雅一、長岡武、高田利宏、讃山一則、工業化学雑誌、第65巻、第3号、1962年、419~422頁に記載されている。より具体的には、次の手順によりポリアミド4を得ることができる。すなわちα-ピロリドンに少量の金属ナトリウムを作用させ、一部のα-ピロリドンについてアニオン種を発生させる。そこに開始剤としてN-アシル化ピロリドンを加えることで、ピロリドンの開環反応が連続的に進行し、ポリアミド4の塊状物を得ることができる。
 (ポリアミド微粒子の製造方法)
 次に、本実施形態に係るポリアミド微粒子の製造方法(以下、「本製造方法」ということがある)について説明する。
 本製造方法は、上述した構成を有するポリアミドを用いる方法であって、(1)溶解工程と、(2)析出工程をと含むものである。以下、この2つの工程について、詳細に説明する。
 (1)溶解工程
 本実施形態に係る溶解工程には、上述した構成を有するポリアミドを熱水中に溶解することが含まれる。
 溶解工程では、熱水中のポリアミドの濃度が0.1重量%以上、10重量%以下、好ましくは0.1重量%以上、3重量%以下、より好ましくは0.1重量%以上、1重量%以下となるように、ポリアミドを溶解することが好ましい。ポリアミドの溶解量を上記範囲内とすることにより、ポリアミド微粒子の真球度がより高くなる。
 溶解工程において、熱水の温度は100℃以上、170℃以下であることが好ましく、100℃以上、150℃以下であることがより好ましく、130℃以上、150℃以下であることが最も好ましい。熱水の温度が上記範囲内であることは、ポリアミドの熱水への溶解性の面で好ましい。
 本実施形態では、水にポリアミドを添加して所望の温度に加熱した後、熱水の温度を維持しながらポリアミドを溶解することが好ましい。また、その場合、熱水の温度は1分以上維持することが好ましく、30分以上維持することがより好ましく、3時間以上維持することがさらに好ましく、6時間以上維持することが特に好ましい。なお、予め水を所望の温度に加熱した熱水にポリアミドを添加した後、熱水の温度を維持しながらポリアミドを溶解するようにしてもよい。
 (2)析出工程
 析出工程では、上述した溶解工程後に、熱水とポリアミドとの混合物を冷却する。冷却方法は特に限定されるものでなく、例えばポリアミドと熱水との混合物を室温(23℃程度)で静置しておく手法およびポリアミドと熱水との混合物を冷水中に静置させる手法等が挙げられる。
 本実施形態では、熱水とポリアミドとの混合物を冷却する過程で、熱水中に溶解していたポリアミドの分子が規則的に配列し、これにより球状のポリアミド微粒子が形成される。
 本実施形態では、必要に応じて、上述の工程に加えて、篩等によって析出されたポリアミド微粒子を紛級してポリアミド微粒子の粒子径をそろえる操作を行ってもよい。
 [ポリアミド微粒子の用途]
 本実施形態に係るポリアミド微粒子は単独で用いてもよい。また、本実施形態に係るポリアミド微粒子は、当該ポリアミド微粒子と他の成分とを含有するポリアミド微粒子組成物として用いてもよい。ポリアミド微粒子組成物に含有される他の成分は、例えば生分解性プラスチックであってもよい。さらに、他の成分としては、例えば、ポリエチレングリコール等のポリエーテル類、ポリビニルアルコール等のポリアルコール類ならびにポリ乳酸およびポリグリコール酸等のポリエステル類等を挙げることができる。
 ポリアミド微粒子組成物に含まれるポリアミド微粒子と他の成分との含有比は、例えばポリアミド微粒子:他の成分=1:99以上、99:1以下であることが好ましく、2:98以上、98:2以下であることがより好ましく、3:97以上、97:3以下であることが最も好ましい。
 さらに、ポリアミド微粒子組成物には、本実施形態に係るポリアミド微粒子が2種類以上含有されてもよい。したがって例えば本実施形態に係るポリアミド微粒子組成物には、ポリアミド2からなるポリアミド微粒子およびポリアミド4からなるポリアミド微粒子が含有されていてもよい。さらに、本実施形態に係るポリアミド微粒子組成物が2種類以上の異なるポリアミド微粒子を含む場合には、それらポリアミド微粒子の含有比は特に限定されない。
 本実施形態に係るポリアミド微粒子組成物は、例えば、外用組成物、塗料用組成物およびトナー用組成物等として用いることができる。以下、本実施形態に係るポリアミド微粒子の用途について具体的に説明する。しかし、当然ながら、本実施形態に係るポリアミド微粒子の用途は以下に説明する具体例に限定されるものではなく、他の用途についても好適に用いることができることは言うまでもない。
 (外用組成物)
 本実施形態において外用組成物とは、人体に対して外側から直接用いられる組成物を意味する。外用組成物としては、例えばファンデーション、口紅、アイシャドウ等の化粧品等を挙げることができる。本実施形態に係る外用組成物はポリアミド微粒子を含有するため、それらポリアミド微粒子の球形状によって光の散乱を均一とすることができる。そのため、本実施形態に係る外用組成物によれば、光の散乱を均一化するための添加成分として、ポリアミド微粒子を好適に用いることができる。
 本実施形態において、外用組成物に含まれるポリアミド微粒子以外の成分としては、従来の化粧品等に含まれる成分を挙げることができる。
 外用組成物中のポリアミド微粒子の含有量は特に限定されるものではないが、光の散乱の均一化を向上させるためには、外用組成物中のポリアミド微粒子の含有量が3重量%以上であることが好ましく、5重量%以上であることがより好ましく、10重量%以上であることが最も好ましい。
 (塗料用組成物)
 本実施形態において塗料用組成物とは、例えば、建築物用、自動車用、金属製品用、電気器具用等に用いられる塗料である。本実施形態に係る塗料用組成物はポリアミド微粒子を含有するため、それらのポリアミド微粒子の球形状によって光の散乱を均一とすることができる。そのため、本実施形態に係る塗料用組成物によれば、光の散乱を均一化するための添加成分として、ポリアミド微粒子を好適に用いることができる。
 本実施形態において、塗料用組成物に含まれるポリアミド微粒子以外の成分として、従例えばアクリル樹脂、ウレタン樹脂、増粘剤、可塑剤、溶剤、顔料等の従来の塗料等に含まれる成分を挙げることができる。
 塗料用組成物中のポリアミド微粒子の含有量は特に限定されるものではないが、光の散乱の均一化を向上させるためには、塗料用組成物中のポリアミド微粒子の含有量が10重量%以上であることが好ましく、20重量%以上であることがより好ましく、30重量%以上であることが最も好ましい。
 (トナー用組成物)
 本実施形態においてトナー用組成物とは、例えば、レーザープリンターおよび複写機等に用いられるトナー等である。本実施形態に係るポリアミド微粒子は、例えばトナーにおけるプラスチック粒子として用いることができる。具体的には、例えば、ポリアミド微粒子に帯電性を付与し、さらに、顔料等の色粒子をポリアミド微粒子に付着させることによって、ポリアミド微粒子をトナーのプラスチック微粒子として用いることができる。
 本実施形態において、トナー用組成物に含まれるポリアミド微粒子以外の成分として、例えばポリスチレン、ポリエステル等の従来のトナー等に含まれる成分を挙げることができる。
 トナー用組成物中のポリアミド微粒子の含有量は特に限定されるものではないが、例えば用紙等の対象物に対してトナーが均一に塗布されるためには、トナー組成物中のポリアミド微粒子の含有量が40重量%以上であることが好ましく、60重量%以上であることがより好ましく、90重量%以上であることが最も好ましい。
 [外用組成物、塗料用組成物、トナー用組成物の製造方法]
 本実施形態に係る外用組成物、塗料用組成物およびトナー用組成物は、本実施形態に係るポリアミド微粒子1種類または2種類以上をそのままの状態で含むものであってもよい。また、本実施形態に係る外用組成物、塗料用組成物およびトナー用組成物は、上述したように、本実施形態に係るポリアミド微粒子と、分散媒および上述したような任意成分とが混合されてなるものであってもよい。この場合、分散媒としては、特に限定されないが、例えば、水、エチルアルコール、グリセリン等のアルコール類含有水溶液等の水系分散媒、脂肪酸エステル油等の非極性油等を挙げることができる。また、混合方法においても、特に限定されるものではなく、例えば、ヘンシェルミキサー、プラストミル、コーンミキサー、ニーダー、リボンミキサー等の攪拌機等を用いた方法を挙げることができる。
 本実施形態に係る外用組成物、塗料用組成物またはトナー用組成物中に、本実施形態に係るポリアミド微粒子に加えて他の生分解性プラスチックが含まれる構成とする場合には、例えば、溶融されたポリアミドと、その他の生分解性プラスチックとをニーダーおよびリボンミキサー等で撹拌してもよい。あるいは、攪拌機に溶融・溶解したポリアミドとその他の生分解性プラスチックとを同時または別々に投入して混合してもよい。
 (まとめ)
 本発明に係るポリアミド微粒子は、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに当該少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドからなり、真球度が80以上である。
 また、本発明に係るポリアミド微粒子は、平均粒子径が1μm以上、350μm以下であることが好ましい。
 また、本発明に係るポリアミド微粒子は、重量平均分子量が30,000以上、800,000以下であることが好ましい。
 また、本発明に係るポリアミド微粒子は、比表面積が20m/g以下であることが好ましい。
 また、本発明に係るポリアミド微粒子において、構造単位は、下記式(1)
Figure JPOXMLDOC01-appb-C000006
(式中、xは2以上、5以下の整数である。)
で表されることが好ましい。
 また、本発明に係るポリアミド微粒子は、構造単位は、下記式(2)
Figure JPOXMLDOC01-appb-C000007
(式中、yは1以上、5以下の整数であり、zは3以上、7以下の整数である。)
で表されることが好ましい。
 また、本発明に係るポリアミド微粒子の製造方法は、少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともにこの少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドを熱水中に溶解する溶解工程と、この熱水を冷却してポリアミドからなるポリアミド微粒子を析出させる析出工程とを含むものである。
 また、本発明に係るポリアミド微粒子の製造方法は、溶解工程において、熱水中のポリアミドの濃度が0.1重量%以上、10重量%以下となるように水中、あるいは熱水中にポリアミドを溶解することが好ましい。
 また、本発明に係るポリアミド微粒子の製造方法は、溶解工程において、熱水中のポリアミドの濃度が0.1重量%以上、3重量%以下となるように水中、あるいは熱水中にポリアミドを溶解することが好ましい。
 また、本発明に係る外用組成物、塗料用組成物およびトナー用組成物は、いずれも本発明に係るポリアミド微粒子を含有することが好ましい。
 以下に実施例を示し、本発明の実施形態についてさらに詳しく説明する。もちろん本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。さらに、本発明は上述の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本文中に記載された文献の全てが参考として援用される。
 <合成例>
(ポリアミド4の合成方法)
 ポリアミド4(以下、「PA4」とも言う)は、非特許文献1に挙げた「N,N-アジピルジピロリドンの存在下におけるα-ピロリドンのアルカリ触媒重合」、谷山雅一、長岡武、高田利宏、讃山一則、工業化学雑誌、第65巻、第3号、1962年、419~422頁に記載の合成方法にしたがって合成した。より具体的には、50℃の湯浴下で、密閉したフラスコ中に、α‐ピロリドンに1mol%の金属ナトリウム(Na)を加えた。Na溶解後、開始剤として0.1mol%のN,N’アジピルジピロリドンを加えた。するとただちに系は白濁し、まもなく撹拌困難となった。撹拌停止してから10時間後、フラスコ中に生成した塊状物を取り出して塊状物を粉砕後、アセトンで未反応物および低分子物を洗浄した。それから塊状物を乾燥させることによって、粉末状のPA4を得た。
 得られたPA4の重量平均分子量(Mw)は96,000であった。この重量平均分子量は、以下の手順、分析装置および条件によって測定した。
 測定手順:
 トリフルオロ酢酸ナトリウムを5mMの濃度で溶解したヘキサフルオロイソプロパノール(HFIP)に、上記のようにして得られたPA4試料10mgを溶解させて10cmとした後、メンブレンフィルターでろ過して試料溶液を得た。この試料溶液10μLを以下に示す分析装置に注入し、後述する測定条件でPA4の重量平均分子量を測定した。・分析装置:ゲルパーミエーションクロマトグラフィー(GPC)分析装置(昭和電工株式会社製、GPC104)
・測定条件:
   A)SHODEX 104システム
   B)カラム:昭和電工HFIP 606×2本 直列、40℃
   C)5 mM CF3COONa/HFIP、0.1 mL/min
   D)Detector:RI
   E)サンプル10~11mg/5mM CF3COONa/HFIP 10mL
   F)PMMA標準物質(150 E4, 65.9 E4, 21.8 E4, 4.96 E4, 2.06 E4, 0.68 E4, 0.2 E4)による校正(PMMA換算)法
 <実施例1>
 (ポリアミド4微粒子の調製)
 純水及び純水に対するPA4の濃度が0.1重量%となるように耐圧容器にPA4を加え、耐圧容器を150℃の恒温槽で3時間加熱し、熱水中でPA4を溶解した。加熱終了後、熱水が室温(23℃)となるまで熱水を自然冷却し、さらに一晩静置することにより、PA4微粒子が純水に分散した懸濁溶液を得た。
 上記手法で得られた懸濁溶液をスライドガラスの上に滴下し、カバーガラスを載せて得られた観察試料について、光学顕微鏡(KEYENCE社製、VHX-700F,使用レンズ:VH-Z100R)を用いて、室温(23℃)、倍率×300の条件で、PA4微粒子の分散状態を観察した。観察結果を図1に示す。図1は、PA4の濃度を0.1重量%として得られたポリアミド微粒子の光学顕微鏡写真である。図1から、PA4微粒子は、純水中で凝集することなく分散していることがわかる。
 図1に示す光学顕微鏡写真からPA4微粒子30個を任意に選択し、各々のPA4微粒子について、それらの短径および長径を測定し、以下の式にしたがってPA4微粒子の真球度を求めた。この結果を表1に示す。
Figure JPOXMLDOC01-appb-M000008
 また、図1に示す光学顕微鏡写真中のPA4微粒子50個を任意に選択し、それらの粒径を計測した。そして、それら粒径の平均値をPA4微粒子の平均粒子径とした。この結果を表1に示す。
 <実施例2>
 PA4の濃度が1重量%となるようにPA4を加えた以外は実施例1と同様にして懸濁溶液を得た。得られた懸濁溶液について、実施例1と同様にして光学顕微鏡で観察した。観察結果を図2に示す。図2は、PA4の濃度を1.0重量%として得られたポリアミド微粒子の光学顕微鏡写真である。図2から、PA4微粒子は純水中で凝集することなく分散していることがわかる。また、図2に示す光学顕微鏡写真から、実施例1と同様にしてPA4微粒子の真球度および平均粒子径を求めた。これらの結果を表1に示す。
 <実施例3>
 PA4の濃度が10重量%となるようにPA4を加えた以外は実施例1と同様にして懸濁溶液を得た。得られた懸濁溶液について、実施例1と同様にして光学顕微鏡で観察した。観察結果を図3に示す。図3は、PA4の濃度を10重量%として得られたポリアミド微粒子の光学顕微鏡写真である。図3から、PA4微粒子は純水中で凝集することなく分散していることがわかる。また、図3に示す光学顕微鏡写真から、実施例1と同様にしてPA4微粒子の真球度および平均粒子径を求めた。これらの結果を表1に示す。
 <比較例1>
 合成例で得られたPA4を乳鉢を用いて粉砕して、微粒子を得た。得られた微粒子について、実施例1と同様の光学顕微鏡で観察した。観察結果を図4に示す。図4は、PA4を粉砕することによって得られた微粒子の光学顕微鏡写真である。また、図4に示す光学顕微鏡写真から、実施例1と同様にして微粒子の真球度および平均粒子径を求めた。これらの結果を表1に示す。
 <実施例4>
 純水及び純水に対するPA4の濃度が1重量%となるように1L耐圧容器に重量平均分子量約80,000のPA4を加え、1L耐圧容器を加熱し内温を150℃とすることで、PA4を熱水に溶解した。加熱終了後に熱水の温度を30分維持した後、熱水が室温(23℃)となるまで熱水を冷却することにより、PA4微粒子が純水に分散した懸濁溶液を得た。さらに得られた懸濁溶液をろ紙でろ過し、ろ紙上に保持されたものを80℃で8時間真空乾燥し、ポリアミド4微粒子を得た。1L耐圧容器を用いることで、比表面積測定を行うのに十分な量のサンプルを得ることができる。
 (SEM観察)
 上記手法で得られたポリアミド4微粒子を走査型電子顕微鏡(NeoScopeJCM-5000:日本電子株式会社製)を用いて観察を行ったところ図5に示すような球状粒子であった。また光学顕微鏡写真の代わりにSEM画像を用いた以外は実施例1と同様に真球度および平均粒径を求めた。結果を表2に示す。
 (比表面積の測定)
 ポリアミド4微粒子をさらに120℃で10分間乾燥させた。比表面積測定機(MONOSORB:Quantachrome Inturuments社製)を用いて、乾燥させたポリアミド4微粒子の比表面積を測定した。結果を表2に示す。
 <実施例5>
 1L耐圧容器に加えるPA4の重量平均分子量が約210,000である以外は実施例4と同様にしてポリアミド4微粒子を得た。得られたポリアミド4微粒子について実施例4と同様にSEM観察を行うと、図6に示すような球状粒子であった。またSEM画像を用いて実施例4と同様に真球度および平均粒径を求めた。結果を表2に示す。
 また、得られたポリアミド4微粒子について実施例4と同様にして、比表面積を測定した。結果を表2に示す。
 <実施例6>
 PA4の濃度が5重量%である以外は実施例4と同様にしてポリアミド4微粒子を得た。得られたポリアミド4微粒子について実施例4と同様にSEM観察を行うと、図7に示すような球状粒子であった。またSEM画像を用いて実施例4と同様に真球度および平均粒径を求めた。結果を表2に示す。
 また、得られたポリアミド4微粒子について実施例4と同様にして、比表面積を測定した。結果を表2に示す。
 <実施例7>
 耐圧容器に加えるPA4の重量平均分子量が約210,000であり、PA4の濃度が5重量%である以外は実施例4と同様にしてポリアミド4微粒子を得た。得られたポリアミド4微粒子について実施例4と同様にSEM観察を行うと、図8に示すような球状粒子であった。またSEM画像を用いて実施例4と同様に真球度および平均粒径を求めた。結果を表2に示す。
 また、得られたポリアミド4微粒子について実施例4と同様にして、比表面積を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明に係るポリアミドからなる微粒子は、化粧品、パーソナルケア用品および塗料等の製品に含まれる微粒子として好適に利用することができる。

Claims (12)

  1.  少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに当該少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドからなり、真球度が80以上であることを特徴とするポリアミド微粒子。
  2.  平均粒子径が1μm以上、350μm以下であることを特徴とする請求項1に記載のポリアミド微粒子。
  3.  重量平均分子量が30,000以上、800,000以下であることを特徴とする請求項1または2に記載のポリアミド微粒子。
  4.  比表面積が20m/g以下であることを特徴とする請求項1から3のいずれか1項に記載のポリアミド微粒子。
  5.  前記構造単位は、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、xは2以上、5以下の整数である。)
    で表されることを特徴とする請求項1から4のいずれか1項に記載のポリアミド微粒子。
  6.  前記構造単位は、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、yは1以上、5以下の整数であり、zは3以上、7以下の整数である。)
    で表されることを特徴とする請求項1から4のいずれか1項に記載のポリアミド微粒子。
  7.  少なくとも1つのアルキレン基と、少なくとも1つのアミド結合とを有する構造単位の繰り返しからなるとともに当該少なくとも1つのアルキレン基のそれぞれが炭素数1以上、5以下であるポリアミドを熱水中に溶解する溶解工程と、
     前記熱水を冷却して前記ポリアミドからなるポリアミド微粒子を析出させる析出工程とを含むことを特徴とするポリアミド微粒子の製造方法。
  8.  前記溶解工程において、前記熱水中の前記ポリアミドの濃度が0.1重量%以上、10重量%以下となるように前記熱水中に前記ポリアミドを溶解することを特徴とする請求項7に記載のポリアミド微粒子の製造方法。
  9.  前記溶解工程において、前記熱水中の前記ポリアミドの濃度が0.1重量%以上、3重量%以下となるように前記熱水中に前記ポリアミドを溶解することを特徴とする請求項7に記載のポリアミド微粒子の製造方法。
  10.  請求項1から6のいずれか1項に記載のポリアミド微粒子を含むことを特徴とする外用組成物。
  11.  請求項1から6のいずれか1項に記載のポリアミド微粒子を含有することを特徴とする塗料用組成物。
  12.  請求項1から6のいずれか1項に記載のポリアミド微粒子を含むことを特徴とするトナー用組成物。
PCT/JP2017/017251 2016-05-10 2017-05-02 ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物 WO2017195705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17796066.3A EP3438160A4 (en) 2016-05-10 2017-05-02 POLYAMIDE PARTICLES, PROCESS FOR THEIR PREPARATION AND POLYAMIDE FINE PARTICLE COMPOSITION
CN201780012515.5A CN108699255A (zh) 2016-05-10 2017-05-02 聚酰胺微粒及其制造方法以及聚酰胺微粒组合物
US16/086,132 US11008421B2 (en) 2016-05-10 2017-05-02 Polyamide fine particle, method for producing same, and polyamide fine particle composition
JP2018516987A JP6758370B2 (ja) 2016-05-10 2017-05-02 ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016094932 2016-05-10
JP2016-094932 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017195705A1 true WO2017195705A1 (ja) 2017-11-16

Family

ID=60266619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017251 WO2017195705A1 (ja) 2016-05-10 2017-05-02 ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物

Country Status (5)

Country Link
US (1) US11008421B2 (ja)
EP (1) EP3438160A4 (ja)
JP (1) JP6758370B2 (ja)
CN (1) CN108699255A (ja)
WO (1) WO2017195705A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150835A1 (ja) * 2017-02-14 2018-08-23 株式会社クレハ ポリアミド粒子、およびポリアミド粒子の製造方法
WO2019239965A1 (ja) * 2018-06-14 2019-12-19 日本曹達株式会社 ポリアミド4粒子の製造方法
WO2020095702A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 ポリアミド微粒子の製造方法、およびポリアミド微粒子
WO2022113993A1 (ja) 2020-11-30 2022-06-02 東レ株式会社 ポリアミド微粒子、およびその製造方法
JP2022547683A (ja) * 2019-09-11 2022-11-15 エルエックス・ハウシス・リミテッド 熱可塑性高分子粒子及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812765A (ja) * 1994-06-28 1996-01-16 Korea Advanced Inst Of Sci Technol 結晶性ポリアミド球状粒子粉末の製造方法
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
WO2010101134A1 (ja) * 2009-03-05 2010-09-10 宇部興産株式会社 ポリアミド粒子及びその製造方法
JP2011094128A (ja) * 2009-09-30 2011-05-12 Toray Ind Inc ポリアミド微粒子の製造方法
JP2013072086A (ja) 2011-09-27 2013-04-22 Toray Ind Inc ポリアミド1010樹脂粒子およびその製造方法
JP2016509117A (ja) * 2013-03-07 2016-03-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリアミドの加水分解重合、後重合および後続の抽出による製造
JP2016186068A (ja) * 2015-03-19 2016-10-27 株式会社リコー ポリアミド粒子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264553A (en) 1991-01-24 1993-11-23 Coulter Corporation Method of forming uniform polymer spheres, composite particles and polymer encapsulated particles
KR101290510B1 (ko) * 2005-09-27 2013-07-26 우베 고산 가부시키가이샤 폴리아미드 다공질 구상 입자
KR101063227B1 (ko) * 2009-10-12 2011-09-07 현대자동차주식회사 나일론-4 복합재료 조성물
EP2496634B1 (en) * 2009-11-04 2016-10-05 Research Foundation Of The City University Of New York Method for making polyamide particles
CN102399371B (zh) 2011-10-17 2015-11-04 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的聚酰胺粉末制备方法
CN103467823B (zh) * 2013-09-18 2016-01-20 张兴华 一种热塑性塑料球形颗粒的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812765A (ja) * 1994-06-28 1996-01-16 Korea Advanced Inst Of Sci Technol 結晶性ポリアミド球状粒子粉末の製造方法
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
WO2010101134A1 (ja) * 2009-03-05 2010-09-10 宇部興産株式会社 ポリアミド粒子及びその製造方法
JP2011094128A (ja) * 2009-09-30 2011-05-12 Toray Ind Inc ポリアミド微粒子の製造方法
JP2013072086A (ja) 2011-09-27 2013-04-22 Toray Ind Inc ポリアミド1010樹脂粒子およびその製造方法
JP2016509117A (ja) * 2013-03-07 2016-03-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリアミドの加水分解重合、後重合および後続の抽出による製造
JP2016186068A (ja) * 2015-03-19 2016-10-27 株式会社リコー ポリアミド粒子及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAKAZU TANIYAMA; TAKESHI NAGAOKA; TOSHIHIRO TAKATA; KAZUNORI SAYAMA: "Alkaline Catalyst Polymerization of a-Pyrrolidone in the Presence of N,N'-Adipyl Dipyrrolidone", JOURNAL OF INDUSTRIAL CHEMISTRY, vol. 65, no. 3, 1962, pages 419 - 422
MASAKAZU TANIYAMA; TAKESHI NAGAOKA; TOSHIHIRO TAKATA; KAZUNORI SAYAMA: "Alkaline Catalyst Polymerization of a-Pyrrolidone in the Presence of N,N'-Adipyl Dipyrrolidone", THE JOURNAL OF CHEMICAL INDUSTRY, vol. 65, no. 3, 1962, pages 419 - 422
See also references of EP3438160A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150835A1 (ja) * 2017-02-14 2018-08-23 株式会社クレハ ポリアミド粒子、およびポリアミド粒子の製造方法
JPWO2019239965A1 (ja) * 2018-06-14 2021-04-01 日本曹達株式会社 ポリアミド4粒子の製造方法
WO2019239965A1 (ja) * 2018-06-14 2019-12-19 日本曹達株式会社 ポリアミド4粒子の製造方法
EP3808795A4 (en) * 2018-06-14 2022-03-09 Nippon Soda Co., Ltd. PROCESS FOR PRODUCTION OF POLYAMIDE 4 PARTICLES
TWI734122B (zh) * 2018-06-14 2021-07-21 日商日本曹達股份有限公司 聚醯胺4粒子之製造方法
CN112218909A (zh) * 2018-06-14 2021-01-12 日本曹达株式会社 聚酰胺4粒子的制造方法
JP6702516B1 (ja) * 2018-11-09 2020-06-03 東レ株式会社 ポリアミド微粒子の製造方法、およびポリアミド微粒子
JP2020100846A (ja) * 2018-11-09 2020-07-02 東レ株式会社 ポリアミド微粒子
WO2020095702A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 ポリアミド微粒子の製造方法、およびポリアミド微粒子
US11685813B2 (en) 2018-11-09 2023-06-27 Toray Industries, Inc. Method of producing polyamide fine particles, and polyamide fine particles
JP2022547683A (ja) * 2019-09-11 2022-11-15 エルエックス・ハウシス・リミテッド 熱可塑性高分子粒子及びその製造方法
JP7350417B2 (ja) 2019-09-11 2023-09-26 エルエックス・ハウシス・リミテッド 熱可塑性高分子粒子及びその製造方法
WO2022113993A1 (ja) 2020-11-30 2022-06-02 東レ株式会社 ポリアミド微粒子、およびその製造方法
KR20230112617A (ko) 2020-11-30 2023-07-27 도레이 카부시키가이샤 폴리아미드 미립자, 및 그 제조 방법

Also Published As

Publication number Publication date
JPWO2017195705A1 (ja) 2018-12-20
EP3438160A1 (en) 2019-02-06
CN108699255A (zh) 2018-10-23
US20200231751A1 (en) 2020-07-23
US11008421B2 (en) 2021-05-18
EP3438160A4 (en) 2019-05-08
JP6758370B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2017195705A1 (ja) ポリアミド微粒子およびその製造方法ならびにポリアミド微粒子組成物
TWI412559B (zh) 聚乳酸系樹脂微粒之製造方法、聚乳酸系樹脂微粒及使用其而成之化妝品
Tsuji In vitro hydrolysis of blends from enantiomeric poly (lactide) s Part 1. Well-stereo-complexed blend and non-blended films
TWI612083B (zh) 多孔質樹脂微粒子及其製造方法
US20040180980A1 (en) Laser-sintering powder with PMMI, PMMA, and/or PMMI-PMMA copolymers, process for its preparation, and moldings produced from this laser-sintering powder
Battigelli Design and preparation of organic nanomaterials using self‐assembled peptoids
Bao et al. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle
JP2005200663A (ja) 生分解性球状単独粉体の製造方法
Blachechen et al. Interplay of colloidal stability of cellulose nanocrystals and their dispersibility in cellulose acetate butyrate matrix
US20210047468A1 (en) Polyamide particles and method for producing polyamide particles
Zhang et al. A facile method for fabricating room-temperature-film-formable casein-based hollow nanospheres
Tudorachi et al. Poly (vinyl alcohol-co-lactic acid)/Hydroxyapatite Composites: Synthesis and Characterization
WO2021095749A1 (ja) ポリアミド粒子およびその製造方法
Mallakpour et al. Novel polyvinylpyrrolidone nanocomposites with dispersed poly (amide-imide)/nano-ZrO 2 as new nano-filler: morphology, thermal and optical properties
JP2010018684A (ja) 複合型微粒子の製造方法
Fujishiro et al. Stability of adhesive interfaces by stereocomplex formation of polylactides and hybridization with nanoparticles
JP3675733B2 (ja) 生分解性球状複合粉体の製造方法
Ogi et al. Amphiphilic POSS-core dendrons for optically transparent thermoplastic films with tunable wettability
CN107163523B (zh) 一种熔融沉积成型用聚羟基脂肪酸酯材料及其制备方法
Gargol et al. Synthesis and characterization of polymeric blends as a new materials in optical fiber technology
Turasan Fabrication of zein-based biodegradable surface enhanced Raman spectroscopy biosensor platforms for the detection of food toxins
WO2022113993A1 (ja) ポリアミド微粒子、およびその製造方法
Subramani et al. A facile preparation of microparticles from sulfonated polyester nanoparticles via emulsion–aggregation process
Ben Saleh et al. Thermal, morphological and topographic characterization of a biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/polyaniline. CSA film composites
EP2336218B1 (en) Hydrophilic material, medical material and sustained release pharmaceutical material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516987

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2017796066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017796066

Country of ref document: EP

Effective date: 20181031

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796066

Country of ref document: EP

Kind code of ref document: A1