WO2012043148A1 - 熱延鋼帯の製造装置及び製造方法 - Google Patents

熱延鋼帯の製造装置及び製造方法 Download PDF

Info

Publication number
WO2012043148A1
WO2012043148A1 PCT/JP2011/070108 JP2011070108W WO2012043148A1 WO 2012043148 A1 WO2012043148 A1 WO 2012043148A1 JP 2011070108 W JP2011070108 W JP 2011070108W WO 2012043148 A1 WO2012043148 A1 WO 2012043148A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel strip
rolled steel
roll
tension
Prior art date
Application number
PCT/JP2011/070108
Other languages
English (en)
French (fr)
Inventor
堀井 健治
裕二 池本
耕一 竹野
江藤 学
鷲北 芳郎
Original Assignee
三菱日立製鉄機械株式会社
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45892621&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012043148(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱日立製鉄機械株式会社, 住友金属工業株式会社 filed Critical 三菱日立製鉄機械株式会社
Priority to CA2820873A priority Critical patent/CA2820873C/en
Priority to EP11828709.3A priority patent/EP2623221B2/en
Priority to BR112013007338A priority patent/BR112013007338A2/pt
Priority to MX2013003575A priority patent/MX2013003575A/es
Priority to US13/876,360 priority patent/US9085022B2/en
Priority to KR1020137007610A priority patent/KR101464093B1/ko
Priority to CN201180046094.0A priority patent/CN103189152B/zh
Publication of WO2012043148A1 publication Critical patent/WO2012043148A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/02Feeding or supporting work; Braking or tensioning arrangements, e.g. threading arrangements
    • B21B39/08Braking or tensioning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/02Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/006Pinch roll sets

Definitions

  • the present invention relates to a hot rolled steel strip manufacturing apparatus and manufacturing method, and more specifically, a hot rolled steel strip manufacturing apparatus and manufacturing method capable of obtaining a desired material by rapid cooling immediately after rolling and capable of producing a high yield. About.
  • Patent Document 1 aims to obtain a high-yield hot rolling system and the like that can stably convey a rolled plate even if a cooling bank with high water pressure and high flow and strong cooling is used.
  • a pinch roll is disposed closest to the outlet side of the cooling device, and the tension detecting means detects the tension of the rolled sheet based on the current value supplied to the drive motor of the pinch roll.
  • Patent Document 2 discloses a weir (draining) in a cooling device provided on the exit side of a finishing rolling mill row for the purpose of increasing the cooling efficiency in the run-out table as much as possible and minimizing the time required for rolling.
  • the weir roll is pressed against the steel sheet with a predetermined pressing force and a driving torque is applied so that the weir roll also serves as a pinch roll. This is thought to be because the tension is applied to the steel sheet as quickly as possible to quickly create a stable rolled state.
  • the tension is converted from the output torque of the drive motor.
  • the output torque of the drive motor includes the torque for acceleration / deceleration of the pinch roll and the rotational resistance of the bearing portion of the pinch roll.
  • the torque is also included. Normally, the speed at the end of the hot-rolled steel strip is low, and after that, the speed is increased and the speed is reduced before the rear end comes out.
  • This acceleration and deceleration is based on the moment of inertia of the machine around the pinch roll during rolling Torque fluctuation occurs. For this reason, it is necessary to control the tension to take a certain set value in consideration of this torque fluctuation, but it is difficult to match the actual tension acting on the hot-rolled steel strip to the target tension, and there is a difference.
  • Patent Document 1 describes a measure for reducing the moment of inertia of the pinch roll.
  • the torque change that reverses every acceleration / deceleration becomes a change in tension.
  • the actual tension Since the actual tension cannot be accurately grasped, it can be said that it is difficult to stably maintain the set tension.
  • rolling proceeds with the tension set by the pinch roll being different from the target tension and the actual tension. And if the actual tension becomes extremely small, the hot-rolled steel strip will not be able to flutter up and down uniformly in the cooling device, or it will come into contact with the upper and lower guide devices, causing wrinkles, or a plate will not be passed. . On the other hand, when the tension becomes an extremely large value, there arises a problem that the thickness of the hot-rolled steel strip becomes thin, which causes a variation in the thickness.
  • Trd Trd is the torque for rotating the pinch roll
  • Trt Tr-Trd
  • the tension Ft can be calculated by pulling.
  • Trd is necessary for controlling the rotation of the pinch roll itself, such as a change in the condition between the pinch roll and the plate, acceleration and deceleration, and has a large variation factor.
  • Trd1 Torque that fluctuates due to acceleration / deceleration: The speed at the time of feeding is low, and after that, the speed is increased and the speed is reduced before the rear end is removed. Considering this, it is quite difficult to put the tension into a certain set value, and actual fluctuations in tension are unavoidable.
  • Patent Document 1 describes a measure for reducing the moment of inertia of the pinch roll. However, it is difficult to controlly avoid that the torque change that reverses every acceleration / deceleration due to the moment of inertia becomes a change in tension, and it is difficult to stably maintain the set tension.
  • Trd2 Change in rolling resistance of the pinch roll ...
  • Trd3 When there is a change in plate thickness during rolling ...
  • the pinch roll moves up and down and there is hysteresis in the mechanical system, the net pressing force (force for pressing the plate) changes. Therefore, the tension varies.
  • I will consider a little about Tr. For example, there is a change in the friction coefficient ⁇ (vertical axis: traction coefficient, horizontal axis: ⁇ curve arranged by slip speed or slip ratio) while tension is applied by the pinch roll.
  • is the temperature of the hot-rolled steel strip and the surface condition (irregularity, dry or wet), and Since ⁇ is also affected by the friction of the pinch roll surface, it is considered difficult to grasp this ⁇ .
  • Patent Document 2 Such a problem also occurs in Patent Document 2 in which the weir roll is used as a pinch roll, and the tension cannot be measured accurately.
  • the hot-rolled steel strip in order to perform cooling properly, it is required to inject cooling water with tension applied from the tip of the hot-rolled steel strip. If tension is not applied, the hot-rolled steel strip becomes unstable in the vertical direction (both in the plate width direction and in the rolling direction) due to the cooling water jet, and there is a problem in that the cooling becomes uneven. In addition, the hot-rolled steel strip comes into contact with the upper and lower guide devices to cause wrinkles and obstructs threading. Therefore, it is required to apply tension to the tip of the hot-rolled steel strip as soon as possible.
  • a plate shape measuring method is generally used in which the hot rolled steel strip is wound around the downcoiler and the external shape of the hot rolled steel strip is observed in the absence of tension before the tension is set.
  • the cooling device is placed close to the exit side of the finish rolling mill, and the proximity pinch roll is placed on the exit side, the external shape is observed on the exit side of the proximity pinch roll, and the shape is observed. Based on the results, the shape will be corrected by the rolling mill, but the shape observation position is away from the finish rolling mill row, so that the portion that is produced without the defective shape portion being adjusted becomes longer, resulting in poor yield. .
  • Patent Document 3 discloses a technique of disposing a shape detector in the vicinity of the exit side of the wiping device in the cooling device in the vicinity of the exit side of the rolling mill, but this relates to cold rolling. Since the technical field is different from that of hot rolling and there is no description of the pinch roll, it can be inferred that the tension is applied by a coiler, and the configuration is different from that of the present invention in which the tension is applied by the pinch roll.
  • an object of the present invention is to provide a manufacturing apparatus and a manufacturing method of a hot-rolled steel strip that can obtain a desired material by rapid and uniform cooling immediately after rolling and can improve yield by early plate tension and plate shape measurement. It is in.
  • a hot-rolled steel strip manufacturing apparatus comprises: A finish rolling mill row, a cooling device installed immediately after the exit side of the finishing rolling mill row, and a pinch roll installed on the exit side of the cooling device and contacting the upper and lower surfaces of the hot-rolled steel strip.
  • a tension for disposing a draining roll positioned at least above the hot-rolled steel strip between the cooling device and the pinch roll, and measuring the tension of the hot-rolled steel strip between the draining roll and the pinch roll A measuring device is installed.
  • the tension measuring device has a roll provided with an arbitrary winding angle on the hot-rolled steel strip, and measures the pressing force on the roll caused by the winding angle to obtain the tension acting on the hot-rolled steel strip.
  • a finish rolling mill row a cooling device installed immediately after the exit side of the finishing rolling mill row, and a pinch roll installed on the exit side of the cooling device and contacting the upper and lower surfaces of the hot-rolled steel strip.
  • a draining roll positioned at least above the hot-rolled steel strip is disposed between the cooling device and the pinch roll, and the plate shape of the hot-rolled steel strip is measured between the draining roll and the pinch roll. It is characterized by the installation of a shape meter.
  • the shape meter has a plurality of rolls divided in the plate width direction of the hot-rolled steel strip by providing an arbitrary winding angle on the hot-rolled steel strip, and the pressing force applied to each roll caused by the winding angle in the plate width direction.
  • the distribution is measured, the tension distribution is obtained from the pressing force distribution, and the plate shape is obtained from the tension distribution.
  • the tension measuring device and the shape meter are the same device.
  • the tension measuring device and / or the shape meter is characterized in that a winding angle exists at the upper part of the roll.
  • the tension measuring device and / or shape meter when the tension of the hot-rolled steel strip between the finishing rolling mill row and the pinch roll is about to change, the winding angle varies and the variation in tension becomes as small as possible. It is characterized by doing so.
  • the draining roll is a drive roll, and the rotation resistance of the draining roll itself to the hot-rolled steel strip is minimized.
  • a finish rolling mill row a cooling device installed immediately after the exit side of the finishing rolling mill row, and a pinch roll installed on the exit side of the cooling device and contacting the upper and lower surfaces of the hot-rolled steel strip.
  • a draining roll positioned at least above the hot-rolled steel strip is disposed between the cooling device and the pinch roll, and the plate shape of the hot-rolled steel strip is measured between the draining roll and the pinch roll.
  • a shape meter was installed, and a hot-rolled steel strip temperature measurement device was installed to measure the temperature distribution in the plate width direction of the hot-rolled steel strip in the area including the air cooling zone installed from the draining roll to the pinch roll exit side.
  • the hot rolled steel strip temperature measuring device is installed between a draining roll and a pinch roll.
  • a method for producing a hot-rolled steel strip according to the present invention, A finish rolling mill row, a cooling device installed immediately after the exit side of the finishing rolling mill row, and a pinch roll installed on the exit side of the cooling device and contacting the upper and lower surfaces of the hot-rolled steel strip.
  • a tension for disposing a draining roll positioned at least above the hot-rolled steel strip between the cooling device and the pinch roll, and measuring the tension of the hot-rolled steel strip between the draining roll and the pinch roll A measuring device and / or a shape meter for measuring the plate shape of the hot-rolled steel strip is installed, and the roll of the tension measuring device and / or the shape-meter is hot-rolled after the tip of the hot-rolled steel strip is caught in the pinch roll.
  • the present invention is characterized in that the target wrap angle is arbitrarily determined for the steel strip.
  • the roll of the tension measuring device and / or shape meter is set to a target winding angle arbitrarily determined for the hot-rolled steel strip after the tip of the hot-rolled steel strip has bitten into the pinch roll, and thereafter the winding angle Is rolled while being maintained at substantially the same value, so that the winding angle disappears before the rear end of the hot-rolled steel strip passes through the roll.
  • a finish rolling mill row a cooling device installed immediately after the exit side of the finishing rolling mill row, and a pinch roll installed on the exit side of the cooling device and contacting the upper and lower surfaces of the hot-rolled steel strip.
  • a draining roll positioned at least above the hot-rolled steel strip is disposed between the cooling device and the pinch roll, and the plate shape of the hot-rolled steel strip is measured between the draining roll and the pinch roll.
  • a shape meter is installed, and the shape adjusting function of the rolling mill in at least the final stand of the finishing rolling mill row is operated while detecting the plate shape under cooling by the cooling device.
  • An air-cooling zone is provided on the outlet side of the pinch roll, and a hot-rolled steel strip temperature measuring device is installed in the region including the air-cooling zone on the outlet side of the pinch roll from the draining roll to measure the temperature distribution in the plate width direction of the hot-rolled steel strip.
  • the sheet shape obtained by the shape meter is corrected with a differential elongation distribution in the rolling direction based on the temperature distribution in the sheet width direction, and rolling at least in the final stand of the finish rolling mill row so that the corrected sheet shape becomes the target shape. It is characterized by operating the shape adjustment function of the machine.
  • the cooling device installed immediately after the exit side of the finish rolling mill row enables rapid cooling immediately after rolling, for example, crystals of ferrite structure
  • a hot-rolled steel strip having a fine grain structure with a grain size of 3 to 4 ⁇ m or less is obtained.
  • a tension measuring device and / or a shape meter is installed between the draining roll and the pinch roll, uniform cooling is possible by early plate tension and plate shape measurement, minimizing cooling unevenness and stable rolling. The state is obtained and the yield can be improved.
  • FIG. 1 shows the installation position of board tension
  • FIG. 1 shows the board
  • It is a principal part enlarged view of the hot rolling equipment which shows Example 2 of this invention.
  • FIG. 1 is an overall configuration diagram of a hot rolling facility showing Embodiment 1 of the present invention
  • FIG. 2 is an enlarged view of the main part of FIG. 1 showing the installation position of a plate tension and plate shape measuring device
  • FIG. 1 is an enlarged view of the main part of FIG. 1 showing the winding angle of the shape measuring device
  • FIGS. 4A and 4B are characteristic diagrams of shape control of the final stand of the finishing rolling mill row
  • FIG. FIG. 5B is a relationship diagram based on Non-Patent Document 1.
  • the hot rolling facility 10 includes a first cooling device 13 installed immediately after the exit side of the final stand 12 of the finish rolling mill row 11, and the exit side of the first cooling device 13. And a pinch roll 14 that contacts the upper and lower surfaces of the strip (hot-rolled steel strip) S, and a draining roll 15 is disposed between the first cooling device 13 and the pinch roll 14. Between the draining roll 15 and the pinch roll 14, a contact-type tension / shape measuring device 16 that measures the tension and shape of the strip S and a temperature measuring device (heat A steel strip temperature measuring device) 17 is installed.
  • a second cooling device 19 is disposed on the exit side of the pinch roll 14 via an air cooling zone (measurement zone) 18, and the exit side of the second cooling device 19 is disposed on the exit side of the pinch roll 20 via a pre-coiler pinch roll 20.
  • the downcoiler 21 is installed in two stages in the transport direction of the strip S.
  • the air cooling zone (measurement zone) 18 generally, plate thickness measurement, plate profile (plate thickness width direction distribution) measurement, plate shape measurement before tension action, plate temperature measurement, and the like are performed.
  • the strip S that has passed through the final stand 12 of the finishing rolling mill row 11 is the first cooling device 13 ⁇ the draining roll 15 ⁇ the tension / shape measuring device 16 ⁇ the pinch roll 14 ⁇ the air cooling zone 18 ⁇ the second cooling device 19 ⁇
  • the pre-coiler pinch roll 20 After being conveyed to the pre-coiler pinch roll 20, it is wound up by the downcoiler 21.
  • the pass line of the finish rolling mill row 11 (especially the final stand 12) is made substantially constant with the other pass lines, the cooling water injection state in the first cooling device 13 described later is favorable, which is preferable. .
  • the first cooling device 13 directly ejects a large amount of cooling water from a large number of nozzles 22 on the upper and lower surfaces of the strip S at a cooling rate of, for example, about 1000 ° C./S. Can be rapidly cooled.
  • the upper surface of the strip S is sprayed through a pool 23 of cooling water defined by the roll of the final stand 12 and the draining roll 15, and the lower surface of the strip S is passed through the apron 24. Cooling water is jetted through a number of jet holes (not shown) formed in.
  • the tension / shape measuring device 16 is installed below the strip S.
  • the distribution in the plate width direction of the pressing force to each roll 16a generated by the angle ⁇ is measured to determine the tension distribution from the pressing force distribution, and the plate shape is determined from the tension distribution.
  • the tension / shape measuring device 16 has already been proposed in Patent Document 4 by the present applicant and the like, and detailed description thereof will be omitted with reference to this.
  • the method of measuring the total tension distribution as the tension of the strip S there are the following methods.
  • the tension / shape measuring device 16 is swung from the position of the broken line and provided with a winding angle ⁇ around the strip S.
  • winding angle
  • the roll 16a of the tension / shape measuring device 16 has a target winding angle ⁇ arbitrarily determined with respect to the strip S after the leading end of the strip S is engaged with the pinch roll 14, and then the winding angle ⁇ is almost equal.
  • the roll is maintained at the same value, and the winding angle ⁇ is eliminated before the rear end of the strip S passes through the roll 16a.
  • the draining roll 15 does not pinch the strip S, even if the draining roll 15 and the tension / shape measuring device 16 are arranged close to each other, the tension of the cooling unit can be accurately measured by the tension / shape measuring device 16. is there.
  • the load distribution is locally distributed in the plate width direction due to the plate width direction distribution of the contact pressure with the plate and the plate width direction distribution of the friction coefficient. Therefore, when the draining roll 15 is disposed close to the tension / shape measuring device 16, the above-mentioned local load distribution causes a problem in plate shape measurement.
  • the draining roll 15 in contact with the upper surface of the strip S is constituted by a drive roll so that the rotational resistance of the roll itself to the strip S is reduced.
  • bending acts on the strip S in contact with the draining roll 15, but this bending acts as compression and tension whose absolute values are almost equal on the front and back surfaces (upper surface and lower surface in the thickness direction) of the strip S.
  • the tension distribution is not generated in the sheet width direction because it does not affect the tension, and the sheet shape can be accurately measured even when the tension / shape measuring device 16 is brought close to the draining roll 15.
  • the temperature measuring device 17 is disposed above the strip S between the draining roll 15 and the pinch roll 14, and the plate shape obtained by the tension / shape measuring device 16 is determined as the difference in elongation in the rolling direction based on the plate width direction temperature distribution. It corrects by distribution, and operates the shape adjusting function of the rolling mill in at least the final stand 12 of the finish rolling mill row 11 so that the corrected plate shape becomes the target shape.
  • a shape adjusting function of the rolling mill it is conceivable to perform shape control by changing a mechanical control means such as a roll bender or a shift or a width direction flow rate distribution of the roll coolant (see Patent Document 3).
  • a method of crossing at least a work roll of a rolling mill is also considered as a shape adjusting function.
  • the characteristic of (a) in the figure shows an example of the result of measuring the shape with the tension / shape measuring device 16. It can be seen that the shape of the quarter portion is elongated.
  • the characteristic of (b) in the figure shows the temperature distribution in the plate width direction. It is the result measured with the temperature measuring device 17 of FIG.
  • the characteristic (c) in the figure is a value obtained by calculating the elongation difference from the temperature distribution of the characteristic (b) in the figure.
  • the characteristic of (d) in the figure the characteristic of (a) in the figure-the characteristic of (c) in the figure is the exit side of the finishing mill
  • the shape before cooling is considered.
  • a shape control function of the final stand 12 is intended to correct the shape before cooling having the characteristic (d) in the figure to the target shape having the characteristic (e) in the figure. In this way, a good plate shape after cooling can be obtained by adopting a rolling method in which the shape in the width direction becomes the target shape when the same temperature is reached.
  • the tension distribution in the width direction is almost symmetrical and balanced, it can be said that the plate is in a condition that is difficult to traverse.
  • the tension distribution in the width direction has a large difference between the working side and the driving side, it is conceivable that the conditions are such that the plate is likely to traverse.
  • the tension distribution is required to be almost symmetrical in the width direction. Therefore, if there is an asymmetric temperature distribution on the working side and the driving side, the tension becomes symmetrical.
  • rolling stability can be obtained. In this way, an operation combining (1) and (2), that is, an operation that satisfies both (1) and (2) is required.
  • the distance L1 from the collision position of the cooling water in the first cooling device 13 to the tension / shape measuring device 16 and the distance L2 from the tension / shape measuring device 16 to the pinch roll 14 are (0 .5 to 1.0) ⁇ W (W is the maximum plate width here), and the distance L3 from the cooling water injection completion to the pinch roll 14 is as short as possible.
  • Non-Patent Document 1 the installation position of the tension / shape measuring device 16 will be described based on Non-Patent Document 1 and Non-Patent Document 2.
  • the influence of the load acting on the strip S can be considerably reduced by measuring the plate shape at least at least the plate width away from the position where the load is acting.
  • the width to the strip S by the cooling water injection in the first cooling device 13 is used as the local external force that gives a tension distribution in the plate width direction on the entry side or the exit side of the position where the plate shape is measured. It is conceivable that the width-direction pressing condition is non-uniform due to the local collision force in the direction and the strip S sandwiched by the pinch roll 14.
  • Each of the load acting position that is, the distance L1 from the collision position of the cooling water in the first cooling device 13 to the tension / shape measuring device 16 and the distance L2 from the tension / shape measuring device 16 to the pinch roll 14 are not less than the plate width.
  • the local load is considered to be better in condition than at least the concentrated load. Therefore, it is considered that the influence of the external force load on the shape measurement in the tension / shape measuring device 16 is considerably reduced.
  • FIG. 5A shows a calculation model.
  • a load P per unit length acts as a concentrated load at the center in the width direction.
  • the coefficient K is a ratio of the stress ( ⁇ y) in the plate width direction to the uniform stress (P / W).
  • FIG. 5 (c) shows the relationship between the distance from the action point / plate width and the K value (K0) at the center of the plate width.
  • the coefficient K0 is the ratio of the peak stress ( ⁇ y (0)) acting on the center of the plate width to the uniform stress (P / W).
  • K0 is a value very close to 1.0, and further increases to 1.0 as c / W increases, and the uniformity of the load distribution in the width direction increases.
  • FIG. 5 shows the relationship between the distance / plate width from the action point and the converted shape ⁇ shape at the center of the plate width.
  • the unit of ⁇ shape is I-unit.
  • the definition of I-unit is based on P.266 of Non-Patent Document 2, for example.
  • the load P is in the direction of compression, but the same tendency occurs even if it acts in the direction of tension.
  • the shape meter is intended to measure the plate shape inherent in a rolled and cooled plate. Considering this, the action of a local load such as a concentrated load is handled as an error in measurement of the plate shape measurement, and exists at the measurement point of the plate shape as the converted shape.
  • the plate shape detected in rolling is generally 5 to 10 I-unit or more. It is preferable that the converted shape ⁇ shape, which causes an error in measuring the plate shape, is smaller. However, if it is 2I-unit or less, the influence on detecting 5 to 10I-unit or more can be reduced. From FIG. 5 (d), ⁇ shape is 2I-unit or less when c / W is 0.5 or more. In other words, the ⁇ shape can be 2I-unit or less from the point where the local load is applied to the position at least 0.5 times the plate width W, and the plate can be measured without any actual damage. The shape can be measured. Further, from FIG. 5D, when c / W becomes 0.5 or less, the converted shape ⁇ shape increases rapidly and cannot be ignored as an error in measurement.
  • the tension in the rolling direction increases locally at that portion, and acts as a local load in the plate width direction.
  • the load distribution acts locally in the width direction of the pinch roll due to the distribution of the contact pressure between the pinch roll and the plate in the plate width direction and the friction coefficient in the plate width direction.
  • This local load distribution is not the shape inherent in the plate itself, but the converted shape ⁇ shape can be made 2I-unit or less by measuring the plate shape at least 0.5 times the plate width W. And the influence of local load on the plate shape measurement is almost eliminated.
  • the influence of the local load is regarded as a local tension, which is a measurement error, that is, a disturbance.
  • a local tension which is a measurement error, that is, a disturbance.
  • the cooling water injection in the first cooling device 13 is completed by installing the tension / shape measuring device 16 at a position (0.5 to 1.0) ⁇ W away from the position where the local load is applied.
  • the distance from the pinch roll 14 to the pinch roll 14 can be shortened, and the plate-shaped measurement can also reduce the disturbance due to the load acting on the strip S.
  • the pinch roll 14 is arranged separately from the cooling device (the first cooling device 13), and the draining roll 15 and the non-water cooling zone (here, between the draining roll 15 and the pinch roll 14). Is provided.
  • the cooling water on the upper surface of the strip S sprayed by the cooling device is cut by the draining roll 15, and the water is cut in the non-water cooling zone. Since the cooling water falls downward on the lower surface of the strip S, it can easily be free of water in the non-water cooling zone.
  • the draining roll 15 and providing the non-water cooling zone the draining state is stabilized, the friction state between the strip S and the pinch roll 14 is stabilized, and the fluctuation of the friction coefficient, that is, the disturbance of the friction coefficient is reduced. can do.
  • the pinch roll 14 is arranged separately from the cooling device so that the tension can be measured between the draining roll 15 and the pinch roll 14, an apparatus such as a tension fluctuation based on the moment of inertia of the pinch roll 14 itself.
  • the actual tension can be grasped without considering the disturbance generated by the. By accurately grasping the tension, the adjustment to the target tension is facilitated, and the tension can be stably maintained.
  • the first cooling device 13 is disposed immediately after the exit side of the finish rolling mill row 11, and the tension / shape measuring device 16 is disposed between the draining roll 15 and the pinch roll 14 so that the tension and the shape of the strip S are increased.
  • the distance L1 from the collision position of the cooling water in the first cooling device 13 to the tension / shape measuring device 16 and the distance L2 from the tension / shape measuring device 16 to the pinch roll 14 are (0. 5 to 1.0) ⁇ W (maximum plate width), and the distance L3 from the completion of cooling water injection to the pinch roll 14 is made as short as possible.
  • the yield can be increased while maintaining the high measurement accuracy of the tension / shape measuring device 16.
  • the tension / shape measuring device 16 is installed between the draining roll 15 and the pinch roll 14, uniform cooling is possible by early plate tension and plate shape measurement, minimizing cooling unevenness and stable rolling. The state is obtained and the yield can be improved. Further, since the tension / shape measuring device 16 is integrated as a single device, space can be saved as compared to arranging them separately.
  • the temperature measuring device 17 corrects the plate shape obtained by the tension / shape measuring device 16 with the elongation difference distribution in the rolling direction based on the temperature distribution in the plate width direction so that the corrected plate shape becomes the target shape. Since the shape adjusting function of the rolling mill in at least the final stand 12 of the finishing rolling mill row 11 is operated, the plate shape of the strip S that has exited the finishing rolling mill row 11 has already been adjusted to the target shape. Further, cooling unevenness does not occur. Of course, the shape of the strip S is adjusted by the rolling mill at least in the final stand 12 of the finishing rolling mill row 11 while the plate shape being cooled is detected by the tension / shape measuring device 16 without measuring the temperature by the temperature measuring device 17. You may make it do. The temperature measuring device 17 is installed at a position close to the tension / shape measuring device 16 so that the above correction is performed more accurately.
  • the roll 16a of the tension / shape measuring device 16 has a target winding angle ⁇ that is arbitrarily determined with respect to the strip S after the end of the strip S is engaged with the pinch roll 14, and then the winding angle ⁇ is substantially equal. Since the winding angle ⁇ is eliminated before the rear end of the strip S passes through the roll 16a, the roll S is maintained at the same value, and immediately after the front end of the strip S is caught in the pinch roll 14.
  • the target tension and shape can be set arbitrarily, and the cooling can be started at an early timing, thereby further improving the yield.
  • the roll 16a of the tension / shape measuring device 16 can be used even if the looper does not move up and down like between the stands of the finish rolling mill row 11. .
  • the winding angle ⁇ is constant, the apparatus becomes simple.
  • FIG. 6 is an enlarged view of a main part of the hot rolling facility showing Example 2 of the present invention.
  • This tension measuring device 16A has a load cell built in the bearings at both ends of one non-divided continuous roll 16a, and this is urged to the lower surface of the strip S by a pantograph mechanism or the like to measure the tension of the entire strip S. To do.
  • the shape measuring means in the air cooling zone 18 is a plate shape measuring system for observing the appearance of the hot-rolled steel strip. The tension until the downcoiler 21 winds the tip of the strip S and the tension is applied. The shape is measured while it is not acting, and the shape adjustment is performed by the finish rolling mill 11 using the shape measurement result.
  • the tension / shape measuring device 16 is moved up and down like the looper used between the stands of the finish rolling mill row 11 as in the present invention.
  • the wrapping angle ⁇ it is possible to minimize the variation in the tension of the strip S.
  • the tension fluctuation of the strip S between the pinch roll 14 and the final stand 12 can be minimized.
  • the present invention is not limited to the above-described embodiments, and various modifications such as structural changes of the first cooling device 13 and the tension / shape measuring device 16 can be made without departing from the gist of the present invention. Not too long.
  • the manufacturing apparatus and manufacturing method for hot-rolled steel strip according to the present invention can be applied to an iron-making process line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

 圧延直後の急速均一冷却により所望の材質が得られるとともに早期の板張力及び板形状計測により歩留り向上が可能な熱延鋼帯の製造装置及び製造方法を提供するために、仕上げ圧延機列(11)と、該仕上げ圧延機列の出側直後に設置された第1の冷却装置(13)と、該第1の冷却装置の出側に設置されてストリップ(S)の上,下両面に当接するピンチロール(14)と、を備えるとともに、前記第1の冷却装置とピンチロールとの間に少なくともストリップ(S)の上方に位置した水切りロール(15)を配置し、かつ該水切りロールとピンチロールとの間にストリップ(S)の張力及び形状を測定する張力/形状測定装置(16)を設置した。

Description

熱延鋼帯の製造装置及び製造方法
 本発明は、熱延鋼帯の製造装置及び製造方法に係り、一層詳細には、圧延直後急冷で所望の材質が得られるとともに歩留りの良い生産が可能な熱延鋼帯の製造装置及び製造方法に関する。
 この種の熱間圧延設備としては、例えば特許文献1及び2に開示されたものが有る。即ち、特許文献1には、高水圧、高流量の強冷却の冷却バンクを用いたとしても、圧延板を安定して搬送することができ、高歩留りの熱間圧延システム等を得ることを目的として、冷却装置の出側にピンチロールを直近配置して、張力検出手段がピンチロールの駆動モータに供給される電流値に基づいて圧延板の張力を検出することが記載されている。
 また、特許文献2には、ランアウトテーブルにおける冷却効率を可能な限り高めるとともに、圧延所要時間を最短化することを目的として、仕上げ圧延機列の出側に設けた冷却装置における堰止め(水切り)ロールを鋼板に密着させる場合、所定の押力で堰止めロールを鋼板に押し付けるとともに駆動トルクを与え、堰止めロールがピンチロールを兼ねる形態とすることが記載されている。これは、鋼板に極力早く張力を作用させて安定圧延状態を早く作り上げるためと考えられる。
特開2003-136108号公報 特開2005-342767号公報 特開2005-66614号公報 特開2006-346714号公報 特許第3801145号公報
S.P.Timoshenko、J.N.Goodier、『Theory of Elasticity THIRD EDITION』、McGRAW-HILL BOOK COMPANY INTERNATIONAL EDITION 1970 『板圧延の理論と実際』、社団法人 日本鉄鋼協会 昭和59年9月1日
 ところで、特許文献1にあっては、駆動モータの出力トルクから張力を換算することになるが、駆動モータの出力トルクにはピンチロールの加速減速のためのトルクやピンチロールの軸受部の回転抵抗のトルクも含まれている。通常、熱延鋼帯の先端通板時の速度は低く、その後増速して、後端が抜ける前に減速するので、この加速減速のため圧延中にピンチロール周りの機械の慣性モーメントに基づくトルク変動が生じる。そのため、このトルク変動を考慮して張力をある設定値になるように制御することが求められるが、実際に熱延鋼帯に作用する張力を目標とする張力に合せることは難しく、差が存在する。また、特許文献1ではピンチロールの慣性モーメントを小さくする対策が述べられているが、慣性モーメントを小さくしたとしても加速減速のたびに反転するトルク変化が張力変化になってしまうことに変わりはなく、実際の張力との間に差が生じている。実際の張力を正確に把握できていないため、設定張力を安定的に維持することは難しいと言える。
 また、熱延鋼帯の先端通板時は冷却せずに先端がピンチロールに噛み込んだ後に冷却を行う場合、先端通板時と冷却開始後ではピンチロールと熱延鋼帯との間の摩擦係数が異なる。このような乾燥か湿潤かの他に、熱延鋼帯表面の凹凸やピンチロール表面の摩耗の影響なども摩擦係数に対して影響を与える。駆動モータの出力トルクで張力をコントロールしようとすると摩擦係数の正確な値が必要になるが、上記の各条件(外乱)それぞれにおける摩擦係数を把握することは、実質的に困難と言える。従って、ピンチロールと熱延鋼帯との間の摩擦係数が不安定な位置にあるピンチロールで張力をコントロールする場合、その把握された張力は多くの誤差を含むこととなる。そのため、ピンチロールで設定した張力は目標張力と実績張力が異なった状態で圧延が進行することとなる。そして、実績張力が極端に小さくなると冷却装置内で熱延鋼帯が上下にバタツキ均一冷却が出来なくなったり、上下のガイド装置に接触して疵付きが生じたり、通板ができなくなる問題が生じる。一方、張力が極端に大きな値になると熱延鋼帯の板厚が薄くなってしまうなどの板厚変動の要因となってしまう問題が生じる。
 さらに、ピンチロールで張力を検出することの問題点を以下に詳説する。

 モータ出力Trは、Tr=Trt+ Trd
 Trtは張力分のトルク、Trdはピンチロールを回転させるためのトルク
 Trt=Tr-Trdであり、張力FtはFt=Trt/R・・・Rはピンチロールの半径
 よって、測定できるTrからTrdを引くことで張力Ftを算出できる。

 しかし、Trdはピンチロールと板との間の条件の変化や加速減速などピンチロール自身を回転制御するために必要なもので大きな変動要素のあるものである。Trdを張力算出の上での外乱と表現することもできる。

 外乱を以下に表現してみると、
 Trd=Trd1+Trd2+Trd3+・・・

 Trd1:加速減速により変動するトルク・・・通板時の速度は低く、その後増速して、後端が抜ける前に減速するので、圧延中に、このトルク変動が大きくなる。これを考慮して張力をある設定値に入れることはかなり困難であり、実際の張力の変動は避けがたい。特許文献1ではピンチロールの慣性モーメントを小さくする対策が述べられている。しかし、慣性モーメントの影響で加速減速のたびに反転するトルク変化が張力変化になってしまうことを制御的に避けることが難しく、設定張力を安定的に維持することは難しい。
 Trd2:ピンチロールのころがり抵抗の変化・・・ピンチロールの押付力を一定としても、速度変化があると、ころがり抵抗も変化する。ころがり抵抗の絶対値を低くするなどの対策によって、ころがり抵抗の変化を無視するようにするなどの対策が必要と考えられる。
 Trd3:圧延中に板厚変化があるとき・・・ピンチロールの上下動をともない、機械系にヒステリシスがあると正味の押付力(板を押し付ける力)に変化が生じる。そのために張力が変動する。

 尚、Trについて少し考察する。
 例えば、ピンチロールによって張力が作用中に摩擦係数μ(縦軸:トラクション係数、横軸:すべり速度或いはすべり率で整理されたμカーブ)の変化がある。通板時が乾燥状態で、冷却開始で湿潤状態となるがこの過程でμカーブが刻々と変化する。このμの変化に対してモータ出力トルクでコントロールしようとするとμの正確な値を必要とするが、μは、熱延鋼帯の温度や表面の状態(凹凸、乾燥か湿潤かなど)、また、ピンチロール表面の摩擦などの影響も受けることから、このμを把握することは難しいと考えられる。
 このような問題は、堰止めロールをピンチロールとして使用する特許文献2においても同様に生じ、張力を正確に測定することができない。
 また、冷却をきちんと行うためには、熱延鋼帯の先端部から張力を張って冷却水を噴射することが求められる。張力が張られていないと冷却水噴射によって熱延鋼帯が上下方向に(板幅方向にも圧延方向にも)不安定となり、冷却の不均一が生じる不具合があった。また、熱延鋼帯が上下のガイド装置に接触して疵付きが生じたり、通板を阻害するなどの不具合もあった。そのため、できるだけ早く熱延鋼帯の先端部に張力を与えることが求められる。
 さらに、仕上げ圧延機列出側近傍に設けた冷却装置の出側に近接配置したピンチロールで単に張力を早く設定できたとしても、その時点で熱延鋼帯の板形状が分からない。板形状が悪いと冷却装置での冷却が不均一となり、冷却むらが生じるが、特許文献1及び2では、この観点での配慮がなされていない。
 仕上げ圧延機では、熱延鋼帯の先端部がダウンコイラに巻きついて張力が設定される前の張力が無い状態で熱延鋼帯の外観形状を観察する板形状計測方式が一般的である。冷却装置が仕上げ圧延機列出側に近接配置され、その出側に近接ピンチロールが配置された場合、その外観形状の観察は近接ピンチロールの出側に設置されることになり、その形状観察結果に基づいて、圧延機で形状を修正することとなるが、形状観察位置が仕上げ圧延機列から離れることで、形状不良部が調整されずに生産される部分が長くなるため歩留りが悪くなる。一方、形状を早く測定しようとして、仕上げ圧延機列の出側近くを形状観察位置とすると、仕上げ圧延機列出側近傍の冷却装置を仕上げ圧延機列から離すこととなり、圧延直後急冷による材質作りこみが出来なくなる。
 尚、特許文献3には、圧延機出側近傍の冷却装置におけるワイピング装置の出側近傍に形状検出器を配置する技術が開示されているが、これは冷間圧延に関するものであり、本発明の熱間圧延とは技術分野が異なるとともに、ピンチロールの記載が無いことから張力はコイラで付与するものと推察でき、ピンチロールで張力を付与する本発明とは構成が異なる。
 そこで、本発明の目的は、圧延直後の急速均一冷却により所望の材質が得られるとともに早期の板張力及び板形状計測により歩留り向上が可能な熱延鋼帯の製造装置及び製造方法を提供することにある。
 前記目的を達成するための本発明に係る熱延鋼帯の製造装置は、
 仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の張力を測定する張力測定装置を設置したことを特徴とする。
 また、
 前記張力測定装置は熱延鋼帯に任意の巻き付け角を設けたロールを有し、巻き付け角によって生じるロールへの押し付け力を測定して熱延鋼帯に作用した張力を求めるようにしたことを特徴とする。
 また、
 仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の板形状を測定する形状計を設置したことを特徴とする。
 また、
 前記形状計は熱延鋼帯に任意の巻き付け角を設けて熱延鋼帯の板幅方向に分割された複数のロールを有し、巻き付け角によって生じる各ロールへの押し付け力の板幅方向の分布を測定して該押付力分布から張力分布を求め、該張力分布から板形状を求めるようにしたことを特徴とする。
 また、
 前記張力測定装置と形状計とは同一の装置であることを特徴とする。
 また、
 前記張力測定装置及び/又は形状計は、ロールの上部に巻き付け角が存在することを特徴とする。
 また、
 前記張力測定装置及び/又は形状計は、仕上げ圧延機列とピンチロールとの間の熱延鋼帯の張力が変化しようとしたときに、巻き付け角が変動して前記張力の変動が極力小さくなるようにしたことを特徴とする。
 また、
 前記水切りロールは駆動ロールとし、水切りロール自身の熱延鋼帯への回転抵抗が極力小さくなるようにしたことを特徴とする。
 また、
 仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の板形状を測定する形状計を設置し、さらには水切りロールからピンチロール出側に設置した空冷ゾーンを含む領域に熱延鋼帯の板幅方向温度分布を測定する熱延鋼帯温度計測装置を設置したことを特徴とする。
 また、
 前記熱延鋼帯温度計測装置は、水切りロールとピンチロールとの間に設置したことを特徴とする。
 前記目的を達成するための本発明に係る熱延鋼帯の製造方法は、
 仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の張力を測定する張力測定装置及び/又は熱延鋼帯の板形状を測定する形状計を設置し、前記張力測定装置及び/又は形状計のロールは熱延鋼帯の先端がピンチロールに噛み込んだ後に、熱延鋼帯に対し任意に定めた目標とする巻き付け角となるようにしたことを特徴とする。
 また、
 前記張力測定装置及び/又は形状計のロールは、熱延鋼帯の先端がピンチロールに噛み込んだ後に熱延鋼帯に対し任意に定めた目標とする巻き付け角に設定され、その後は巻き付け角はほぼ同様の値に維持されて圧延し、熱延鋼帯の後端が当該ロールを通過する前に巻き付け角がなくなるようにしたことを特徴とする。
 また、
 仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の板形状を測定する形状計を設置し、前記冷却装置による冷却下の板形状を検出しながら、仕上げ圧延機列の少なくとも最終スタンドにおける圧延機の形状調整機能を動作させるようにしたことを特徴とする。
 また、
 前記ピンチロールの出側に空冷ゾーンを設け、前記水切りロールからピンチロール出側の空冷ゾーンを含む領域に熱延鋼帯の板幅方向温度分布を測定する熱延鋼帯温度計測装置を設置し、前記形状計で求めた板形状を、板幅方向温度分布に基づく圧延方向の伸び差分布で補正し、補正後の板形状を目標形状となるように仕上げ圧延機列の少なくとも最終スタンドにおける圧延機の形状調整機能を動作させるようにしたことを特徴とする。
 前記構成の本発明に係る熱延鋼帯の製造装置及び製造方法によれば、仕上げ圧延機列の出側直後に設置された冷却装置により圧延直後の急速冷却が可能となり、例えばフェライト組織の結晶粒径が3~4μm以下という微細粒組織からなる熱延鋼帯が得られる。そして、水切りロールとピンチロールとの間に張力測定装置及び/又は形状計を設置したので、早期の板張力及び板形状計測により均一冷却が可能となって冷却むらを最小とするとともに安定した圧延状態が得られて歩留り向上が図れる。
本発明の実施例1を示す熱間圧延設備の全体構成図である。 板張力及び板形状測定装置の設置位置を示す図1の要部拡大図である。 板張力及び板形状測定装置の巻き付け角を示す図1の要部拡大図である。 仕上げ圧延機列最終スタンドの形状制御における各々の特性図である。 仕上げ圧延機列最終スタンドの形状制御における各々の特性図である。 非特許文献1に基づく計算モデルと各々の関係図である。 非特許文献1に基づく各々の関係図である。 本発明の実施例2を示す熱間圧延設備の要部拡大図である。
 以下、本発明に係る熱延鋼帯の製造装置及び製造方法を実施例により図面を用いて詳細に説明する。
 図1は本発明の実施例1を示す熱間圧延設備の全体構成図、図2は板張力及び板形状測定装置の設置位置を示す図1の要部拡大図、図3は板張力及び板形状測定装置の巻き付け角を示す図1の要部拡大図、図4A及び図4Bは仕上げ圧延機列最終スタンドの形状制御における各々の特性図、図5Aは非特許文献1に基づく計算モデルと各々の関係図、図5Bは非特許文献1に基づく各々の関係図である。
 図1に示すように、熱間圧延設備10は、仕上げ圧延機列11の最終スタンド12の出側直後に設置された第1の冷却装置13と、該第1の冷却装置13の出側に設置されてストリップ(熱延鋼帯)Sの上,下両面に当接するピンチロール14と、を備えるとともに、前記第1の冷却装置13とピンチロール14との間に水切りロール15が配置され、かつ該水切りロール15とピンチロール14との間には、ストリップSの張力及び形状を測定する接触式の張力/形状測定装置16とストリップSの板幅方向温度分布を測定する温度測定装置(熱延鋼帯温度計測装置)17が設置される。
 そして、ピンチロール14の出側に空冷ゾーン(計測ゾーン)18を介して第2の冷却装置19が配置されるとともに、該第2の冷却装置19の出側にコイラ前ピンチロール20を介してダウンコイラ21がストリップSの搬送方向へ2段に亘って設置される。尚、空冷ゾーン(計測ゾーン)18においては、一般的に、板厚計測、板プロファイル(板厚の幅方向分布)計測、張力作用前の板形状計測、板温度計測等が行われる。
 従って、仕上げ圧延機列11の最終スタンド12を経たストリップSは、第1の冷却装置13→水切りロール15→張力/形状測定装置16→ピンチロール14→空冷ゾーン18→第2の冷却装置19→コイラ前ピンチロール20へと搬送された後、ダウンコイラ21により巻き取られる。尚、この際、仕上げ圧延機列11(特に最終スタンド12)のパスラインをその他のパスラインとほぼ一定にすると、後述する第1の冷却装置13における冷却水の噴射状態が良好となり好適である。
 図2に示すように、第1の冷却装置13は、ストリップSの上,下両面に多数のノズル22から多量の冷却水が、例えば1000℃/S程度の冷却速度で直接噴射され、ストリップSを急速に冷却することが可能になっている。具体的には、ストリップSの上面は最終スタンド12のロールと水切りロール15とにより画成された冷却水のプール23を介して冷却水が噴射されるとともに、ストリップSの下面は通板エプロン24に形成された図示しない多数の噴射孔を通して冷却水が噴射される。
 図3に示すように、張力/形状測定装置16はストリップSの下側に設置される。そして、張力/形状測定装置16はストリップSの下面に任意の巻き付け角(巻き付け角θ=θ1+θ2)を設けてストリップSの板幅方向に分割された複数のロール16aを有し、巻き付け角θによって生じる各ロール16aへの押し付け力の板幅方向の分布を測定して該押付力分布から張力分布を求め、該張力分布から板形状を求めるようになっている。尚、この張力/形状測定装置16は、本出願人等による特許文献4で提案済みであるのでこれを参照して詳細な説明は省略する。該張力分布の合計をストリップSの張力として測定する方法以外にも以下の方法がある。即ち、図1,図2で張力/形状測定装置16は、破線の位置から旋回してストリップSに巻き付け角θを設けているが、従来の仕上げ圧延機列11内のルーバと同様に、この旋回の支点部に作用するトルクを利用して張力を検出することも可能である。
 そして、張力/形状測定装置16のロール16aは、ストリップSの先端がピンチロール14に噛み込んだ後に、ストリップSに対し任意に定めた目標とする巻き付け角θとなり、その後、巻き付け角θはほぼ同様の値に維持されて圧延し、ストリップSの後端が当該ロール16aを通過する前に巻き付け角θがなくなるようになっている。
 また、水切りロール15がストリップSをピンチしないので、水切りロール15と張力/形状測定装置16が近接配置されたとしても、張力/形状測定装置16により冷却部の張力を正確に測ることができるのである。後述するが、水切りロール15の下にロールを配置してピンチしたときは、板との接触圧力の板幅方向分布や摩擦係数の板幅方向分布などによって、板幅方向で局部的に負荷分布が作用するため、水切りロール15を張力/形状測定装置16に近接配置すると、前記の局部的負荷分布が板形状測定上の誤差となる問題が生じる。また、ストリップSの上面に接する水切りロール15は駆動ロールで構成され、ロール自身のストリップSへの回転抵抗が小さくなるようになっている。尚、この際、水切りロール15と接するストリップSには曲がりが作用するが、この曲がりは、ストリップSの表裏(厚さ方向の上面と下面)で絶対値がほぼ等しい圧縮と引張として作用するので、張力へ影響するものではないから板幅方向に張力分布を発生させることがなく、張力/形状測定装置16を水切りロール15に近づけても板形状を正確に測定することができる。
 温度測定装置17は、水切りロール15とピンチロール14との間のストリップSの上方に配置され、張力/形状測定装置16で求めた板形状を、板幅方向温度分布に基づく圧延方向の伸び差分布で補正し、補正後の板形状を目標形状となるように仕上げ圧延機列11の少なくとも最終スタンド12における圧延機の形状調整機能を動作させるようになっている。圧延機の形状調整機能としては、ロールベンダーやシフト等の機械的制御手段やロールクーラントの幅方向流量分布を変更して形状制御を行うことが考えられる(特許文献3参照)。また、その他に、圧延機の少なくともワークロールをクロスする方式なども形状調整機能として考えられる。
 ここで、仕上げ圧延機列11の最終スタンド12における圧延機の形状制御を図4A及び図4Bの特性図に基づいて説明する。
 (1)図中(a)の特性は、張力/形状測定装置16で形状を測定した結果の一例を示す。クォータ部に伸びのある形状であることがわかる。一方、図中(b)の特性は板幅方向の温度分布を示す。図2の温度測定装置17で測定した結果である。温度差Δtによる伸び歪εは、線膨張係数αsを用いて、ε=αs×Δtとなる。例えば、αs=1.5×10^(-5)(単位1/℃)で、Δt=5℃ならば、ε=7.5×10^(-5)となる。この伸び歪εが伸び差率を意味するものであり、ε=1.0×10^(-5)が1I-unit(平坦度の測定単位)である。図中(c)の特性は図中(b)の特性の温度分布から伸び差率を求めた値である。圧延及び冷却後、水切りロール15とピンチロール14との間で測定した結果、この幅方向温度分布があることから、この温度分布による伸び差率がすでに存在していると考えられる。その状態で形状を測定した結果が図中(a)の特性であるから、図中(d)の特性=図中(a)の特性-図中(c)の特性が仕上げ圧延機列出側の冷却前形状と考えられる。図中(d)の特性の冷却前形状を図中(e)の特性の目標形状になるように最終スタンド12の形状制御機能で直そうとするものである。
 このように、同じ温度になったときに、幅方向の形状が目標形状になるような圧延方法とすることによって、冷却後の良好な板形状を得ることができる。
 (2)一方、圧延の安定性を考えたとき、上記の方法と異なる使い方も存在する。幅方向の張力分布がほぼ対称でバランスしていれば、板は横行しにくい条件であることが言える。しかし、幅方向の張力分布が作業側と駆動側で差が大きい場合、板が横行しやすい条件となっていることが考えられる。この板の横行が問題となる場合は、張力分布が幅方向でほぼ対称になっていることが求められるため、作業側と駆動側で非対称な温度分布があったときは張力が対称になるように仕上げ圧延機列11をコントロールすることで圧延の安定性が得られる。
 このように、(1)と(2)を組み合わせた操業、つまり、(1),(2)を両立した操業が求められる。
 そして、本実施例では、第1の冷却装置13における冷却水の衝突位置から張力/形状測定装置16までの距離L1と張力/形状測定装置16からピンチロール14までの距離L2が、それぞれ(0.5~1.0)×W(ここでは、Wは最大板幅)に設定され、冷却水噴射完了からピンチロール14までの距離L3が可及的に短くなるようになっている。
 ここで、張力/形状測定装置16の設置位置について、非特許文献1と非特許文献2に基づいて説明すると、先ず、非特許文献1のP.58~60には、集中荷重が作用した場合、その荷重が作用した位置から離れるほど、幅方向の負荷分布が一様になっていく傾向が述べられており、板幅以上離れた位置では幅方向負荷分布がかなり均一な分布になっていくことが述べられている。
 このことから、負荷が作用している位置から少なくとも板幅以上離れたところで板形状を測定することで、ストリップSに対して作用する負荷の影響をかなり少なくすることができることは定性的に理解できる。ここで、板形状を測定する位置の入側あるいは出側で、板幅方向に張力分布を与えるような局部的な外力としては、第1の冷却装置13における冷却水噴射によるストリップSへの幅方向の局部的な衝突力とピンチロール14によるストリップSを挟み込むことにより生じる幅方向押付け条件の不均一性が考えられる。荷重作用位置即ち第1の冷却装置13における冷却水の衝突位置から張力/形状測定装置16までの距離L1及び張力/形状測定装置16からピンチロール14までの距離L2のそれぞれが、板幅以上の長さとすると、前記の局部的な負荷は少なくとも集中荷重よりも条件は良いと考えられることから、張力/形状測定装置16において形状測定に対して外力の負荷の影響はかなり少なくなると考えられる。しかし、冷却完了からピンチロール14までの距離L3(=L1+L2)が長くなってしまう問題があった。
 これを非特許文献1のFig.37,38をもとに詳細に分析すると以下のようになる。図5の(a)に計算モデルを示す。幅方向の中央に単位長さあたりの荷重Pが集中荷重として作用している。荷重Pが作用しているところからcだけ離れたところをy座標=0とする。
 図5の(b)には、c=0.5Wのときのy=0における幅位置と係数Kの関係を示す。係数Kは、板幅方向の応力(σy)の均一応力(P/W)に対する比である。x/Wが0のところ、すなわち、板幅中央では係数Kのピークがあり、c=0.5Wのときは、板幅中央では均一荷重の約1.4倍の応力が存在することが分かる。
 図5の(c)は、作用点からの距離/板幅と板幅中央におけるK値(K0)の関係を示す。係数K0は、板幅中央に作用するピーク応力(σy(0))の均一応力(P/W)に対する比である。c/Wが1のとき、K0は1.0にかなり近い値であり、c/Wの増加で1.0にさらに近づいていき、幅方向負荷分布の均一度が増加していく。
 図5の(d)は、作用点からの距離/板幅と板幅中央における換算形状Δshapeの関係を示す。図中に示すΔεyは、板幅中央の応力σy(0)と均一応力P/Wとの応力差Δσy(0)=σy(0)-P/Wに相当する伸び差率である。ΔshapeはこのΔεyを用いて、Δshape=Δεy×10^5として算出されるものであり、換算形状と表現した。Δshapeの単位はI-unitである。I-unitの定義は、例えば非特許文献2のP.266による。
 図5の(a)では、荷重Pが圧縮の方向となっているが、引張の方向に作用しても同様の傾向となる。形状計は、圧延され、また、冷却された板に内在する板形状を測定することを目的としている。このことを考慮すると集中荷重のような局部的な負荷の作用は、板形状測定の測定上の誤差として取り扱われるものであり、前記換算形状として板形状の測定ポイントで存在することになる。
 圧延において検出する板形状は、5~10I-unit以上が一般的である。板形状を測定する上で誤差となる換算形状Δshapeは小さいほど好ましいが、2I-unit以下であれば、5~10I-unit以上を検出することに対する影響は少ないとすることができる。図5の(d)から、c/Wが0.5以上ではΔshapeは2I-unit以下となる。つまり、局部的な負荷が作用しているところから、少なくとも板幅Wの0.5倍離れた位置までは、Δshapeを2I-unit以下とすることができ、測定上の実害の無い状態で板形状を測定できることとなる。また、図5の(d)から、c/Wが0.5以下になると換算形状Δshapeは急激に増加し測定上の誤差として無視できなくなる。
 冷却噴射によって、例えばスプレー水のような圧力のある水が局部的に板にあたるとその部分では圧延方向の張力が局部的に増加し、板幅方向の局部的な負荷として作用する。また、ピンチロールの噛込み部でも、ピンチロールと板の接触圧力の板幅方向分布や摩擦係数の板幅方向分布などによって、板幅方向で局部的に負荷分布が作用する。この局部的な負荷分布は板に内在する形状そのものではないが、少なくとも板幅Wの0.5倍離れた位置で板形状を測定することで、換算形状Δshapeを2I-unit以下とすることができ、局部的な負荷の板形状測定に対する影響はほとんどなくなる。板幅方向で局部的な負荷から板幅Wの0.5倍以下しか離れていない位置で板形状を測定すると、局部的な負荷の影響が局部的な張力として測定上の誤差、即ち、外乱となり、板形状を正確に測定することが難しくなる。
 以上から、局部的な負荷が作用した位置から(0.5~1.0)×W離れた位置に張力/形状測定装置16を設置することで、第1の冷却装置13における冷却水噴射完了からピンチロール14までの距離を短くして、かつ板形状の計測もストリップSに作用する負荷による外乱を少なくすることができる。
 本実施例によれば、ピンチロール14を冷却装置(第1の冷却装置13)から隔てて配置し、その間に水切りロール15と非水冷ゾーン(ここでは、水切りロール15とピンチロール14の間)が設けられている。冷却装置によって噴射されたストリップSの上面の冷却水は、水切りロール15で切られ、非水冷ゾーンでは水が切られた状態となる。ストリップSの下面は、冷却水が下方に落下するので、非水冷ゾーンで容易に水がない状態となり得る。水切りロール15を設置して非水冷ゾーンを設けることで、水切り状態が安定し、ストリップSとピンチロール14との間の摩擦状態を安定化し、摩擦係数の変動、即ち、摩擦係数の外乱を小さくすることができる。さらに、ピンチロール14を冷却装置から隔てて配置し、水切りロール15とピンチロール14との間で張力を測定することができるようにしたので、ピンチロール14自身の慣性モーメントに基づく張力変動など装置が生み出す外乱を考慮せずに実績張力を把握できる。この張力の正確な把握により、目標張力への調整が容易となり、張力を安定的に維持することが可能となる。
 また、第1の冷却装置13を仕上げ圧延機列11の出側直後に配置するとともに、張力/形状測定装置16を水切りロール15とピンチロール14との間に配置してストリップSの張力及び形状を早期に測定・把握できるようにしたので、圧延直後急冷による材質作りこみができ、例えばフェライト組織の結晶粒径が3~4μm以下という微細粒組織からなる熱延鋼帯が得られる一方、高歩留りを確保できる。
 この際、前述したように第1の冷却装置13における冷却水の衝突位置から張力/形状測定装置16までの距離L1と張力/形状測定装置16からピンチロール14までの距離L2を、(0.5~1.0)×W(最大板幅)に設定し、冷却水噴射完了からピンチロール14までの距離L3を可及的に短くしたので、前述した水切りロール15による効果的な水切り作用も相まって、張力/形状測定装置16の高い測定精度を維持しつつ歩留りを高められる。
 また、水切りロール15とピンチロール14との間に張力/形状測定装置16を設置したので、早期の板張力及び板形状計測により均一冷却が可能となって冷却むらを最小とするとともに安定した圧延状態が得られて歩留り向上が図れる。また、張力/形状測定装置16は、一つの装置として纏められているので、それぞれ別個に配置することに比べて、省スペースが図れる。
 また、温度測定装置17は、張力/形状測定装置16で求めた板形状を、板幅方向温度分布に基づく圧延方向の伸び差分布で補正し、補正後の板形状を目標形状となるように仕上げ圧延機列11の少なくとも最終スタンド12における圧延機の形状調整機能を動作させるようになっているので、仕上げ圧延機列11を出たストリップSの板形状が既に目標形状に調整されているので、より一層冷却むらが生じない。勿論、温度測定装置17による温度測定をしないで、張力/形状測定装置16で冷却中の板形状を検出しながら、仕上げ圧延機列11の少なくとも最終スタンド12における圧延機でストリップSの形状調整を行うようにしても良い。尚、温度測定装置17は、張力/形状測定装置16に近い位置に設置されることで上記の補正がより正確に行われる。
 また、張力/形状測定装置16のロール16aは、ストリップSの先端がピンチロール14に噛み込んだ後に、ストリップSに対し任意に定めた目標とする巻き付け角θとなり、その後、巻き付け角θはほぼ同様の値に維持されて圧延し、ストリップSの後端が当該ロール16aを通過する前に巻き付け角θがなくなるようになっているので、ストリップSの先端がピンチロール14に噛み込んだ直後に任意に定めた目標とする張力及び形状に設定でき、冷却開始を早いタイミングで行うことができてより一層歩留りが向上する。また、巻き付け角θは、圧延中ほぼ一定であるので、張力/形状測定装置16のロール16aは、仕上げ圧延機列11のスタンド間のようにルーパが上下動する方式でなくても可能である。この場合、巻き付け角θを一定とするので装置が簡単なものになる。
 図6は本発明の実施例2を示す熱間圧延設備の要部拡大図である。
 これは、実施例1における張力/形状測定装置16を単なる張力測定装置16Aに変更して形状測定は空冷ゾーン18(図1参照)における形状測定手段で行うようにした例である。この張力測定装置16Aは非分割の連続する一本のロール16aの両端の軸受部にロードセルを内蔵し、これをパンタグラフ機構等でストリップSの下面に付勢することでストリップS全体の張力を測定するものである。
 また、空冷ゾーン18における形状測定手段は、熱延鋼帯の外観形状を観察する板形状計測方式となっており、ダウンコイラ21がストリップSの先端部を巻き取り張力が作用するまでの、張力が作用していない間に形状を測定するものであり、該形状測定結果を用いて仕上げ圧延機列11で形状調整を行うようにしている。
 この実施例においても、実施例1と同様の作用効果が得られる。
 ところで、通常、ピンチロール14ではストリップSを圧延しないため、ピンチロール14にストリップSの先端が噛み込まれた後のピンチロール14と最終スタンド12との間のストリップSの張力変動は、仕上げ圧延機列11内のスタンド間の張力変動よりも小さいと想定されるが、大きな張力変動が生じようとする場合もある。このような場合、張力/形状測定装置16の測定結果を用いてピンチロール14のモータドライブを制御したとしても、ピンチロール14のモータドライブの張力に対応した制御が追付かなくなり、張力に変化が生じてしまう。
 ここで、大きな張力変動が生じようとする原因としては、第1の冷却装置13の冷却開始に伴うピンチロール14とストリップSとの間の摩擦係数の急変などが考えられる。このように大きな張力変動が生じようとすることがある場合には、仕上げ圧延機列11のスタンド間で使用されているルーパと同様に、本発明のように張力/形状測定装置16を上下動させて巻き付け角θを変動させることで、ストリップSの張力変動を極力小さくすることが可能である。これによって、ピンチロール14と最終スタンド12との間のストリップSの張力変動を極力小さくすることができる。
 また、本発明は上記各実施例に限定されず、本発明の要旨を逸脱しない範囲で、第1の冷却装置13や張力/形状測定装置16の構造変更等各種変更が可能であることはいうまでもない。特に、第1の冷却装置13として本出願人等による特許文献5に開示された冷却装置を用いると好適である。
 本発明に係る熱延鋼帯の製造装置及び製造方法は、製鉄プロセスラインに適用することができる。
 10 熱間圧延設備
 11 仕上げ圧延機列
 12 最終スタンド
 13 第1の冷却装置
 14 ピンチロール
 15 水切りロール
 16 張力/形状測定装置
 16A 張力測定装置
 16a ロール
 17 温度測定装置
 18 空冷ゾーン
 19 第2の冷却装置
 20 コイラ前ピンチロール
 21 ダウンコイラ
 22 ノズル
 23 冷却水のプール
 24 通板エプロン
 S ストリップ
 θ 巻き付け角

Claims (14)

  1.  仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の張力を測定する張力測定装置を設置したことを特徴とする熱延鋼帯の製造装置。
  2.  前記張力測定装置は熱延鋼帯に任意の巻き付け角を設けたロールを有し、巻き付け角によって生じるロールへの押し付け力を測定して熱延鋼帯に作用した張力を求めるようにしたことを特徴とする請求項1に記載の熱延鋼帯の製造装置。
  3.  仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の板形状を測定する形状計を設置したことを特徴とする熱延鋼帯の製造装置。
  4.  前記形状計は熱延鋼帯に任意の巻き付け角を設けて熱延鋼帯の板幅方向に分割された複数のロールを有し、巻き付け角によって生じる各ロールへの押し付け力の板幅方向の分布を測定して該押付力分布から張力分布を求め、該張力分布から板形状を求めるようにしたことを特徴とする請求項3に記載の熱延鋼帯の製造装置。
  5.  前記張力測定装置と形状計とは同一の装置であることを特徴とする請求項1又は3に記載の熱延鋼帯の製造装置。
  6.  前記張力測定装置及び/又は形状計は、ロールの上部に巻き付け角が存在することを特徴とする請求項1又は3に記載の熱延鋼帯の製造装置。
  7.  前記張力測定装置及び/又は形状計は、仕上げ圧延機列とピンチロールとの間の熱延鋼帯の張力が変化しようとしたときに、巻き付け角が変動して前記張力の変動が極力小さくなるようにしたことを特徴とする請求項1又は3に記載の熱延鋼帯の製造装置。
  8.  前記水切りロールは駆動ロールとし、水切りロール自身の熱延鋼帯への回転抵抗が極力小さくなるようにしたことを特徴とする請求項1又は3に記載の熱延鋼帯の製造装置。
  9.  仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の板形状を測定する形状計を設置し、さらには水切りロールからピンチロール出側に設置した空冷ゾーンを含む領域に熱延鋼帯の板幅方向温度分布を測定する熱延鋼帯温度計測装置を設置したことを特徴とする熱延鋼帯の製造装置。
  10.  前記熱延鋼帯温度計測装置は、水切りロールとピンチロールとの間に設置したことを特徴とする請求項9に記載の熱延鋼帯の製造装置。
  11.  仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の張力を測定する張力測定装置及び/又は熱延鋼帯の板形状を測定する形状計を設置し、前記張力測定装置及び/又は形状計のロールは熱延鋼帯の先端がピンチロールに噛み込んだ後に、熱延鋼帯に対し任意に定めた目標とする巻き付け角となるようにしたことを特徴とする熱延鋼帯の製造方法。
  12.  前記張力測定装置及び/又は形状計のロールは、熱延鋼帯の先端がピンチロールに噛み込んだ後に熱延鋼帯に対し任意に定めた目標とする巻き付け角に設定され、その後は巻き付け角はほぼ同様の値に維持されて圧延し、熱延鋼帯の後端が当該ロールを通過する前に巻き付け角がなくなるようにしたことを特徴とする請求項11に記載の熱延鋼帯の製造方法。
  13.  仕上げ圧延機列と、該仕上げ圧延機列の出側直後に設置された冷却装置と、該冷却装置の出側に設置されて熱延鋼帯の上,下両面に当接するピンチロールと、を備えるとともに、前記冷却装置とピンチロールとの間に少なくとも熱延鋼帯の上方に位置した水切りロールを配置し、かつ該水切りロールとピンチロールとの間に熱延鋼帯の板形状を測定する形状計を設置し、前記冷却装置による冷却下の板形状を検出しながら、仕上げ圧延機列の少なくとも最終スタンドにおける圧延機の形状調整機能を動作させるようにしたことを特徴とする熱延鋼帯の製造方法。
  14.  前記ピンチロールの出側に空冷ゾーンを設け、前記水切りロールからピンチロール出側の空冷ゾーンを含む領域に熱延鋼帯の板幅方向温度分布を測定する熱延鋼帯温度計測装置を設置し、前記形状計で求めた板形状を、板幅方向温度分布に基づく圧延方向の伸び差分布で補正し、補正後の板形状を目標形状となるように仕上げ圧延機列の少なくとも最終スタンドにおける圧延機の形状調整機能を動作させるようにしたことを特徴とする請求項13に記載の熱延鋼帯の製造方法。
PCT/JP2011/070108 2010-09-28 2011-09-05 熱延鋼帯の製造装置及び製造方法 WO2012043148A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2820873A CA2820873C (en) 2010-09-28 2011-09-05 Manufacturing device and manufacturing method for hot-rolled steel strip
EP11828709.3A EP2623221B2 (en) 2010-09-28 2011-09-05 Manufacturing device and manufacturing method for hot-rolled steel strip
BR112013007338A BR112013007338A2 (pt) 2010-09-28 2011-09-05 dispositivo e método de fabricação para uma tira de aço laminada a quente
MX2013003575A MX2013003575A (es) 2010-09-28 2011-09-05 Dispositivo de fabricacion y metodo de fabricacion para tira de acero laminada en caliente.
US13/876,360 US9085022B2 (en) 2010-09-28 2011-09-05 Manufacturing device and manufacturing method for hot-rolled steel strip
KR1020137007610A KR101464093B1 (ko) 2010-09-28 2011-09-05 열연 강대의 제조 장치 및 제조 방법
CN201180046094.0A CN103189152B (zh) 2010-09-28 2011-09-05 热轧钢带的制造装置及制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010216352A JP4918155B2 (ja) 2010-09-28 2010-09-28 熱延鋼帯の製造装置及び製造方法
JP2010-216352 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012043148A1 true WO2012043148A1 (ja) 2012-04-05

Family

ID=45892621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070108 WO2012043148A1 (ja) 2010-09-28 2011-09-05 熱延鋼帯の製造装置及び製造方法

Country Status (10)

Country Link
US (1) US9085022B2 (ja)
EP (1) EP2623221B2 (ja)
JP (1) JP4918155B2 (ja)
KR (1) KR101464093B1 (ja)
CN (1) CN103189152B (ja)
BR (1) BR112013007338A2 (ja)
CA (1) CA2820873C (ja)
MX (1) MX2013003575A (ja)
TW (1) TWI486219B (ja)
WO (1) WO2012043148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833823B2 (en) 2013-05-03 2017-12-05 Sms Group Gmbh Method for producing a metal strip

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946380B2 (ja) * 2012-09-10 2016-07-06 新日鐵住金株式会社 熱延鋼板の冷却装置、製造装置、及び、製造方法
PL2740549T3 (pl) * 2012-12-07 2016-10-31 Rolka napędowa urządzenia zwijającego walcowni
DE102013221710A1 (de) 2013-10-25 2015-04-30 Sms Siemag Aktiengesellschaft Aluminium-Warmbandwalzstraße und Verfahren zum Warmwalzen eines Aluminium-Warmbandes
JP6323812B2 (ja) * 2015-02-09 2018-05-16 ジヤトコ株式会社 ワーク測定装置
DE102015102765B4 (de) 2015-02-26 2018-05-17 Vacuumschmelze Gmbh & Co. Kg Fördersystem zum Spannen für ein Nachbehandeln eines rascherstarrten Metallbandes und Nachbehandlungsverfahren
TWI574754B (zh) * 2016-04-22 2017-03-21 中國鋼鐵股份有限公司 軋輥機台監控方法
JP6880610B2 (ja) * 2016-09-09 2021-06-02 株式会社Ihi 張力分布制御装置及び帯状体搬送装置
JP7063074B2 (ja) * 2018-04-11 2022-05-09 トヨタ紡織株式会社 プレス加工装置
JP7135991B2 (ja) * 2019-04-25 2022-09-13 トヨタ自動車株式会社 校正判断装置、及び校正判断方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193713A (ja) * 1985-02-20 1986-08-28 Mitsubishi Electric Corp 形状制御装置
JP2003136108A (ja) 2001-11-06 2003-05-14 Nkk Corp 熱間圧延システム及びランナウトテーブル通板方法並びに圧延板の製造方法
JP2004290989A (ja) * 2003-03-26 2004-10-21 Jfe Steel Kk 熱延鋼帯の搬送方法
JP2005066614A (ja) 2003-08-21 2005-03-17 Hitachi Ltd 圧延機および圧延方法
JP2005342767A (ja) 2004-06-04 2005-12-15 Sumitomo Metal Ind Ltd 熱延鋼板の製造設備及び熱延鋼板の製造方法
JP3801145B2 (ja) 2003-04-04 2006-07-26 住友金属工業株式会社 高温鋼板の冷却装置
JP2006346714A (ja) 2005-06-17 2006-12-28 Mitsubishi-Hitachi Metals Machinery Inc 形状検出装置及びその方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1527645A1 (de) 1965-10-29 1970-02-26 Hitachi Ltd Regeleinrichtung und Anordnung zum Walzen von Baendern
DE2537188C3 (de) 1975-08-21 1978-05-18 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh, 4100 Duisburg Verfahren und Vorrichtung zur Herstellung von Warmband mit verbesserten Qualitätseigenschaften
US4358887A (en) * 1980-04-04 1982-11-16 Creps John A Method for galvanizing and plastic coating steel
JPS6188904A (ja) 1984-10-09 1986-05-07 Kawasaki Steel Corp 微細結晶質急冷薄帯の製造方法および装置
GB8621102D0 (en) 1986-09-01 1986-10-08 Davy Mckee Sheffield Hot strip mill
DE3721746A1 (de) 1987-07-01 1989-01-19 Schloemann Siemag Ag Verfahren und vorrichtung zur messung der planheit von walzband in warmbreitbandstrassen
FR2682762B1 (fr) 1991-10-17 1994-01-14 Sollac Procede de mesure en continu des caracteristiques mecaniques d'une bande, notamment d'une bande d'acier, produite en continu.
JP2845097B2 (ja) * 1993-03-18 1999-01-13 株式会社日立製作所 熱間鋼板圧延設備及びその圧延方法
DE19912796A1 (de) 1999-03-15 2000-10-12 Sms Demag Ag Planheitsregelung zur Erzielung von planem Kaltband
JP3591409B2 (ja) 2000-03-01 2004-11-17 Jfeスチール株式会社 熱延鋼帯の冷却装置と、その冷却方法
CN100402168C (zh) * 2005-09-13 2008-07-16 王宇 张力板形仪
DE102006059244A1 (de) 2006-10-21 2008-04-24 Sms Demag Ag Vorrichtung zur Messung des Bandzuges in einem metallischen Band

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193713A (ja) * 1985-02-20 1986-08-28 Mitsubishi Electric Corp 形状制御装置
JP2003136108A (ja) 2001-11-06 2003-05-14 Nkk Corp 熱間圧延システム及びランナウトテーブル通板方法並びに圧延板の製造方法
JP2004290989A (ja) * 2003-03-26 2004-10-21 Jfe Steel Kk 熱延鋼帯の搬送方法
JP3801145B2 (ja) 2003-04-04 2006-07-26 住友金属工業株式会社 高温鋼板の冷却装置
JP2005066614A (ja) 2003-08-21 2005-03-17 Hitachi Ltd 圧延機および圧延方法
JP2005342767A (ja) 2004-06-04 2005-12-15 Sumitomo Metal Ind Ltd 熱延鋼板の製造設備及び熱延鋼板の製造方法
JP2006346714A (ja) 2005-06-17 2006-12-28 Mitsubishi-Hitachi Metals Machinery Inc 形状検出装置及びその方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Theory and Practice of Strip Rolling", 1 September 1984, THE IRON AND STEEL INSTITUTE OF JAPAN
S. P. TIMOSHENKO; J. N. GOODIER: "Theory of Elasticity THIRD EDITION", 1970, MCGRAW-HILL BOOK COMPANY INTERNATIONAL EDITION
See also references of EP2623221A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833823B2 (en) 2013-05-03 2017-12-05 Sms Group Gmbh Method for producing a metal strip

Also Published As

Publication number Publication date
CA2820873C (en) 2015-11-03
EP2623221A1 (en) 2013-08-07
EP2623221B2 (en) 2023-07-26
EP2623221A4 (en) 2014-09-10
EP2623221B1 (en) 2016-04-06
US9085022B2 (en) 2015-07-21
KR101464093B1 (ko) 2014-11-21
TWI486219B (zh) 2015-06-01
CN103189152B (zh) 2015-04-08
CA2820873A1 (en) 2012-04-05
CN103189152A (zh) 2013-07-03
US20130247638A1 (en) 2013-09-26
JP4918155B2 (ja) 2012-04-18
MX2013003575A (es) 2013-10-30
BR112013007338A2 (pt) 2017-11-21
KR20130055003A (ko) 2013-05-27
JP2012071316A (ja) 2012-04-12
TW201223654A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP4918155B2 (ja) 熱延鋼帯の製造装置及び製造方法
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
KR101498843B1 (ko) 열연강판 냉각 장치
JP6036659B2 (ja) 連続鋳造機におけるロール開度管理方法
KR101467724B1 (ko) 열연 강판 냉각 방법
JP5821568B2 (ja) 鋼帯の圧延方法
TW201938286A (zh) 鑄片的製造方法及連續鑄造設備
JP6828596B2 (ja) 連続鋳造設備及び板クラウン制御方法
JP5626275B2 (ja) 熱延鋼板の冷却方法
JP2013006190A (ja) 条鋼の圧延方法
JP4924579B2 (ja) 熱延鋼帯の冷却装置と、その冷却方法
KR100862778B1 (ko) 열간압연 권취설비 제어장치
JP5310964B1 (ja) 鋼板製造方法
US9211574B2 (en) Method for manufacturing steel sheet
TWI769727B (zh) 壓延機的形狀控制方法及形狀控制裝置
JP2001246412A (ja) 熱延鋼帯の冷却装置と、その冷却方法
JPH0479722B2 (ja)
JP5278580B2 (ja) 熱延鋼板の冷却装置及び冷却方法
JP6848596B2 (ja) 双ドラム式連続鋳造設備における圧延設備及び圧延方法
JP5644811B2 (ja) 熱延鋼板の冷却方法
JP2007090382A (ja) 鋼板の冷却設備及び冷却方法
JPH09118930A (ja) 鋼帯の連続焼鈍ライン
JP2011121079A (ja) 熱延鋼板の製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2820873

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137007610

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003575

Country of ref document: MX

Ref document number: 2011828709

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13876360

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007338

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007338

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130327