WO2012042714A1 - リチウム抽出方法及び金属回収方法 - Google Patents

リチウム抽出方法及び金属回収方法 Download PDF

Info

Publication number
WO2012042714A1
WO2012042714A1 PCT/JP2011/003995 JP2011003995W WO2012042714A1 WO 2012042714 A1 WO2012042714 A1 WO 2012042714A1 JP 2011003995 W JP2011003995 W JP 2011003995W WO 2012042714 A1 WO2012042714 A1 WO 2012042714A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
solution
ions
leaching
Prior art date
Application number
PCT/JP2011/003995
Other languages
English (en)
French (fr)
Inventor
泰子 小島
山口 欣秀
岡本 正英
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/818,926 priority Critical patent/US20130206607A1/en
Publication of WO2012042714A1 publication Critical patent/WO2012042714A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a metal recovery technique for easily recovering metal from a battery.
  • Non-Patent Document 1 features a recycling technology of a lithium ion battery, and systematically describes a method for recovering valuable metals constituting the lithium ion battery.
  • a used lithium ion battery exudes valuable metals by acid leaching after mechanical processing such as opening, dismantling, and grinding, and from there, Using the difference in solubility characteristics for each desired component, the components are separated and collected for each desired component by a process such as separation for each component to form a precipitate, or solvent extraction of the desired component preferentially.
  • Patent Document 1 discloses a technique for recovering Cu and Co using a diaphragm electrolysis method in which a liquid obtained by leaching a valuable metal obtained by acid leaching is used as a catholyte and a cation exchange membrane as a diaphragm. .
  • Jinquiu Xu et al. “A review of processes and technologies for the recycling of lithium-ion secondary batteries”, Journal of Power Sources, vol. 177, pp. 512-527 (2008)
  • Non-Patent Document 1 aims at improving both the recovery rate of valuable materials and increasing the purity of recovered materials by various devices, but the process is complicated and it is enormous for processing a large amount of waste batteries. There is much room for improvement in terms of capital investment.
  • Patent Document 1 specifically uses the anion selectivity of the anion-selective membrane and the equipment (diaphragm electrolytic cell shown in FIG. 2 of Patent Document 1) using the ion-selective characteristics of the cation exchange membrane. Use the diffusion dialysis equipment (not shown). More specifically, Cu electrodeposition recovery by diaphragm electrolysis ⁇ pH adjustment ⁇ Co electrodeposition recovery by diaphragm electrolysis ⁇ pH adjustment ⁇ precipitation recovery of Fe (OH) 3 and Al (OH) 3 ⁇ by adding carbonate Major valuable metals can be recovered by a series of treatments of Li 2 CO 3 recovery.
  • Fe (OH) 3 and Al (OH) 3 Since there is a tendency to gelled in an aqueous solution of a weakly acidic to neutral, based on the technique of Patent Document 1 Fe (OH) 3 and Al (OH ) The operation of the step of collecting 3 by filtration is not easy. On the other hand, when the liquid is diluted to facilitate the filtration operation, the recovery rate of Li decreases. In addition, since the surface of the gel-like precipitate of Fe (OH) 3 or Al (OH) 3 also has a property of adsorbing Li ions, it is difficult to significantly improve the Li recovery rate from this viewpoint.
  • the present invention is characterized in that lithium is selectively leached from a positive electrode material containing lithium and a transition metal element, and the leaching is stopped while the ratio of the leaching amount of lithium to cobalt is large.
  • FIG. 2 is a schematic process flow for recovering valuable metals from the waste lithium battery (hereinafter, waste battery) of this example.
  • waste battery waste lithium battery
  • each constituent member obtained by disassembling a waste battery (S101) is sorted for each member (S102), and only an electrode active material containing a valuable metal in a high concentration is taken out.
  • the electrode active material thus taken out is treated with a Li selective exudate (Li selective exudation; S103) to obtain a Li exuded solution.
  • Li selective exudate and non-exudate are separated into solid and liquid (S104).
  • Li can be recovered as lithium carbonate Li 2 CO 3 (S106).
  • B which is relatively concentrated in transition metal, is still solid, so the transition metal precipitates and settles as a hydroxide by simple operation of pH adjustment after acid dissolution. (S108). Through this series of operations, valuable metals and excess acid can be recovered from the waste battery.
  • the charge remaining in the battery is discharged by immersing the battery in a conductive liquid containing an electrolyte.
  • Li ions dispersed in the battery can be concentrated inside the positive electrode active material, so that the amount of recovered Li can be maximized.
  • the Li selectivity in the leaching process is maximized. If the positive electrode active material is LiCoO 2, since it is said that LiCoO 2, a Li recovery loss of about 60% at maximum Omitting the discharging process is Li 0.4 CoO 2, a full discharge state in the fully charged state There is a risk. Of course, there is an advantage that safety can be secured by discharging.
  • a sulfuric acid / ⁇ -butyrolactone mixed solution was used as the conductive liquid containing the electrolyte.
  • the conductivity (reciprocal of the resistance value) can be adjusted by adjusting the sulfuric acid concentration.
  • the electrical resistance of the solution from the right end to the left end of the discharge vessel was measured and found to be 100 k ⁇ . If the resistance value of the solution is too small, the discharge proceeds too rapidly, which is dangerous. On the other hand, if the resistance value is too large, it takes too much time to reduce the practicality.
  • the solution resistance is preferably in the range of about 1 k to 1000 k ⁇ , and the electrolyte concentration may be adjusted so as to fall within this resistance value range.
  • waste battery of the present embodiment in addition to the so-called used battery whose charge capacity has been reduced due to reaching the limit of the predetermined number of times of charge and discharge, half of the battery generated due to problems in the battery manufacturing process, etc. Including old-fashioned inventory items that occur when products and product specifications change.
  • S101 disassemble the waste battery after the discharge treatment.
  • the battery components of the waste battery after discharge such as casing, packing / safety valves, circuit elements, spacers, current collectors, separators, and positive electrode and negative electrode active materials. Sort.
  • waste lithium ion batteries are often filled with gas and are in a pressurized state, and needless to say, work safety considerations are necessary.
  • wet pulverization was performed while cooling in the state of being immersed in a conductive liquid containing the above electrolyte. By adopting wet pulverization under cooling, the gas filled in the battery could be safely crushed without being scattered in the atmosphere.
  • the composition of the conductive liquid containing the electrolyte is adjusted in order to promote separation of the positive electrode active material and the negative electrode active material coated and molded on the current collector surface from the current collector surfaces. Is fine.
  • the conductivity should be noted.
  • the viscosity and the dielectric constant should be noted. Since the required specifications differ between the discharge process and the wet pulverization process, the composition of the conductive liquid used for each process may be changed. In that case, it is necessary to prepare two or more kinds of conductive liquids. In this example, the same composition was used from the viewpoint of simplification and reduction of labor and cost.
  • the wet pulverization method that can be used in this embodiment includes, for example, a ball mill method, but is not necessarily limited thereto. If the roasting step is not performed before pulverization, lithium cobalt oxide and the polyvinylidene fluoride (PVDF) binder are not mixed, and lithium and cobalt can be recovered with high purity. This is because PVDF is decomposed by the roasting process to generate a fluorine-containing compound that makes the positive electrode material water repellent. If the positive electrode material becomes water-repellent, it will affect the lithium extraction process described later.
  • PVDF polyvinylidene fluoride
  • a positive electrode active material hereinafter referred to as positive electrode active material
  • a negative electrode active material negative electrode active material
  • the slurry obtained by the wet pulverization is separated as it is by a filtering process using a relatively coarse filter. You can also.
  • the recovery rate may be improved by introducing a continuous treatment from wet pulverization to filtration.
  • the casing, packing / safety valve, current collector (aluminum foil, copper foil), etc. have a higher spreadability than the positive electrode active material (typically LiCoO 2 ) or the negative electrode active material (typically graphite). Therefore, the breaking strength is also large. Because of this characteristic, the crushed material of the electrode active material has a smaller size than the crushed material obtained from other members, and as a result, it can be easily separated and collected by sieving or filtering.
  • the sieving material obtained by the above treatment is subjected to leaching (S103).
  • the exudate used in this example is as illustrated in FIG.
  • the positive electrode active material of the waste battery used in this example is a lithium compound mainly composed of LiCoO 2 , but may include a positive electrode active material of another composition such as iron phosphate, nickel, or manganese.
  • mineral acid that can be used in this embodiment, concentrated sulfuric acid (90% to 98%) to which hydrogen peroxide water is added as a redox regulator is used.
  • Mineral acids containing alkali metals other than lithium (sodium, potassium, rubidium, cesium) that are difficult to separate from lithium are not used. In consideration of the type and composition of the lithium compound, the treatment amount, the treatment time, the cost, etc., it can be appropriately selected from these.
  • H 2 SO 4 , LiCoO 2 and H 2 O 2 react to generate Li 2 SO 4 , CoO, and CoSO 4 .
  • This reaction is divided into two stages. In the first stage, the lithium ions in the positive electrode material and the protons in the solution are ion-exchanged while maintaining the crystal structure. In the second stage, since the amount of lithium eluted from the crystal structure of the positive electrode material has increased, the crystal structure starts to collapse. At this time, the behavior of ion elution is changed, and cobalt ions are easily eluted. Therefore, it is important to dissolve lithium before the crystal structure collapses and stop the dissolution reaction before the crystal structure collapses and cobalt elution increases.
  • lithium ions are first leached into the solution and then cobalt ions are leached from the ease of reaction by reaction energy. If the leaching process is stopped before lithium ions are leached and cobalt ions are leached, selective acid dissolution can be performed so that the lithium ion concentration relative to the cobalt ion concentration is high.
  • the selective acid leaching is controlled by controlling the reaction conditions in the Li selective leaching step, but the leaching is performed in a range where the reaction rate of lithium ions is 80% or less (the remaining amount is 20% or more). Stop.
  • cobalt elution can be suppressed by stopping the reaction at a reaction rate of preferably about 70 to 75% (remaining amount 25 to 30%). If it exceeds 80%, the risk of deterioration of the selectivity in the Li selective leaching reaction increases, and if it is less than 70%, the recovery rate decreases and the economy is impaired.
  • the temperature is 50 ° C. or lower.
  • lithium ions are leached as lithium sulfate (Li 2 SO 4 )
  • cobalt ions are leached as cobalt sulfate (CoSO 4 ).
  • the activation energy for leaching lithium ions and the activation energy for leaching cobalt ions are significantly smaller in the former, so that the lithium ions are leached first. This reaction selectivity is more apparent at lower temperatures. This is because, when the temperature is high, the heat energy is abundant and the influence of the reaction selectivity due to the magnitude of the activation energy is small.
  • lithium sulfate has higher solubility as the temperature becomes lower, and cobalt sulfate becomes higher as the temperature becomes higher, selective dissolution of lithium can be enhanced by performing the treatment at a low temperature of 50 ° C. or less. This is because if the dissolution amount of cobalt sulfate is small, the leaching amount of cobalt ions forming the cobalt sulfate is also small. In addition, since the ion dissolution rate is low, lithium ions that are easily dissolved stably can be dissolved first.
  • the sulfuric acid used is preferably concentrated sulfuric acid (90% or more). Since dilute sulfuric acid works as a strong acid, both lithium and cobalt are dissolved at a high rate. On the other hand, concentrated sulfuric acid has a small amount of free acid and does not work as a strong acid. Therefore, when concentrated sulfuric acid is used (even when diluted slightly with 90% sulfuric acid), it does not act as a strong acid as dilute sulfuric acid, so the dissolution rate of metal ions is slow, and lithium and cobalt dissolve. Easy to control speed.
  • FIG. 3 shows an example of the concentration ratio between lithium ions and sulfuric acid during the acid leaching process.
  • Comparative Example 1 Patent Document 2
  • Comparative Example 2 Patent Document 3
  • when the concentration ratio of lithium ions and sulfuric acid during the acid leaching process is an extremely large value compared to this example. Has a low Li / Co ratio.
  • Hydrogen peroxide is used as a redox regulator in order to adjust the electric potential in the acid solution raised by dissolution. This is because if the potential deviates from the predetermined range, the selective solubility is affected.
  • the leaching step is performed without passing through the battery disassembly roasting step, it is possible to avoid a situation where the surface of the positive electrode material becomes water-repellent due to the PVDF as a binder and selective dissolution does not occur as described above.
  • the Li / Co concentration ratio of the acid exudate obtained by disassembling a used lithium ion battery for a digital camera is shown in FIG.
  • the treatment was performed as follows.
  • waste lithium ion batteries are crushed and sieved to remove the casing, packing / safety valves, circuit elements, separators, current collectors, etc., and then make up the lithium ion batteries using mineral acid. Acid leaching (dissolving) valuable metals.
  • the Li selective exudate used in this example is shown in FIG. After stirring at room temperature for 1 hour, the mixture is centrifuged at 15000 rpm, 20 ° C. for 15 minutes in a centrifuge to separate the supernatant and the residue to stop the exudation reaction, and the supernatant is recovered.
  • centrifugation was used as a solid-liquid separation process for easily stopping the Li leaching reaction from the positive electrode active material such as lithium cobaltate.
  • the acid used for the exudate As the acid used for the exudate, nitric acid, sulfuric acid, and hydrochloric acid were used. To these acids, a redox potential regulator such as methanol and hydrogen peroxide was added. By adding the oxidation-reduction potential regulator, there is an effect that acid leaching is stabilized and the recovery amount is increased.
  • the leaching time is desirably 2 hours or less at the longest, and more preferably about 1 hour. In the case of leaching for a short time that is significantly less than 1 hour, for example, 15 minutes, the recovery rate tends to decrease.
  • the crystal structure of the positive electrode active material from which lithium ions have been leached and removed is not stable against strong acids, if the leaching treatment for a long time exceeding 2 hours is performed, the crystal of the positive electrode active material collapses and cobalt Exudation begins. As a result, the Li selectivity in the acid leaching reaction is reduced.
  • the temperature of the exudate should be carefully taken so as not to reach 80 ° C. to 90 ° C., which is employed in non-selective exudation (complete exudation) described in Non-Patent Document 1. In this embodiment, room temperature (15 ° C. to 30 ° C.) is most preferable, but the maximum is 50 ° C. or less. When the temperature greatly exceeds 50 ° C., the Li selectivity tends to decrease in the exudation reaction.
  • FIG. 1 shows the results of an exudation reaction for 1 hour at 20 ° C. (excluding hot water) under each dissolution condition.
  • the Li / Co concentration ratio of the acid exudate was about 0.2.
  • the Li / Co concentration ratio is about 1.2
  • the Li / Co concentration ratio is about 0.8.
  • the Li / Co concentration ratio is about 1.7.
  • the acid added excessively at the time of acid leaching is simultaneously recovered in the recovery liquid (A) obtained by the above selective leaching.
  • the residue after the above leaching process is a transition metal component of the negative electrode active material and the positive electrode active material.
  • the acidic solution, the negative electrode active material, and the positive electrode active material can be easily separated by utilizing the fact that the specific gravity is different (FIG. 2 (S104)).
  • the exudate can be separated and recovered by centrifuging.
  • the centrifugal separation method was adopted, and separation and recovery were performed by treating at 15000 rpm for 15 minutes.
  • the higher the number of revolutions the higher the acidic solution (recovered liquid, Li), the negative electrode active material (C : Carbon) and the positive electrode active material (Co) are easily separated.
  • the exudate can be filtered and separated and recovered into a supernatant and a residue (a negative electrode active material and a positive electrode active material).
  • a step of further separating the residue into the negative electrode active material and the positive electrode active material is performed.
  • High-purity Li can be recovered by neutralizing the recovered liquid (A) having a large Li content obtained as described above with a carbonate not containing sodium (S105).
  • the transition metal component (B) can be separated and recovered from the Li-containing liquid (A) by the centrifugal separation process utilizing the above specific gravity difference (S106).
  • the positive electrode active material is recovered from the one separated in S104 (S107). Then, the positive electrode material is immersed in an acidic solution to exude (or elute) cobalt ions.
  • a precipitation recovery method can be used in which cobalt is precipitated and recovered as a hydroxide by pH adjustment in a solution from which cobalt ions have exuded (S108).
  • a treatment using the difference in the dissolution characteristics of the hydroxides of the respective metal elements after the transition metal component (B) is acid-dissolved basically Can be recovered separately for each type of transition metal element by repeated pH adjustment and precipitation recovery.
  • the positive electrode active material contains a lithium compound other than LiCoO 2 , for example, LiNiO 2 , LiMnO 2 , Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , LiCoPO 4 , LiFePO 4 , LiCoPO 4 F
  • LiFePO 4 F LiFePO 4 F
  • Co, Ni, Mn, and Fe can be fractionated as hydroxides by adjusting the pH of the liquid and precipitated and recovered.
  • FIG. 4 shows a flowchart of the metal recovery method in Example 2.
  • S201 to S202 are the same as S101 to S102 of the first embodiment.
  • the positive electrode material is leached in the same manner as in Example 1, and then separated into a supernatant and a residue.
  • the supernatant is an acidic solution in which lithium ions and cobalt ions are leached and the ratio of Li / Co is high
  • the residue is a negative electrode active material and a positive electrode active material from which ions are leached. These are separated into a supernatant and a residue by a method such as centrifugation or filtration.
  • the residue is further dissolved in an acidic solution, whereby cobalt and lithium contained in the positive electrode active material in the residue are ionized and dissolved in the acidic solution.
  • the target is cobalt and lithium
  • the negative electrode active material made of carbon may be removed before dissolution, and only the positive electrode active material may be dissolved.
  • an acidic solution with a low Li / Co ratio is produced.
  • the lithium ions and cobalt ions in the supernatant obtained in S203 are separated.
  • Examples of the separation method include the following.
  • An anion selective permeable membrane is a membrane that allows anions to pass therethrough, but a phenomenon occurs in which lithium ions are transmitted through the anion selective permeable membrane even though they are cations. Therefore, when an acidic solution in which ions are leached in S203 is flowed to one of the surfaces of the anion selective permeation membrane and a recovery solution (for example, pure water) for recovering lithium ions is flowed to the other surface, the acidic solution Lithium ions permeate through the dialysis membrane and move into the recovered solution. At this time, cobalt ions do not permeate the dialysis membrane and remain in the acidic solution. In this way, lithium ions can be separated into the recovered solution and cobalt ions into the acidic solution.
  • a recovery solution for example, pure water
  • lithium ions and cobalt ions can be separated by using an ion exchange resin.
  • Acid retardation is known in which when an acidic solution is passed through an ion exchange resin, an acid salt elutes first, and then an acid elutes later. At this time, when lithium ions and cobalt ions are contained as an acid salt, cobalt ions are eluted first, lithium ions are then eluted, and acid is finally eluted. If the liquid to be eluted is divided by time, the solution eluted first has a large cobalt ion concentration, and the solution eluted thereafter has a large lithium ion, so that lithium ions and cobalt ions can be separated.
  • the supernatant can be separated into a Li concentrate having a high Li / Co concentration ratio and a Co concentrate having a low Li / Co concentration ratio.
  • the lithium ion and cobalt ion of the acidic solution obtained in S204 are separated to obtain a Li concentrated solution and a Co concentrated solution.
  • a separation method the same method as in S205 can be applied.
  • Example 2 lithium and Co are recovered in this way.
  • a recovery step of lithium and Co is improved by adding a step of separating lithium and Co to Example 1 and collecting and collecting the obtained Li concentrated solution and Co concentrated solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 煩雑な工程を使用せず、かつ、比較的簡便な設備によって、リチウムイオン電池からリチウムを回収する方法を提供するために、リチウムとコバルトを含むリチウムイオン電池の正極材からリチウムを抽出するリチウム抽出方法において、正極材を酸性溶液に50℃以下で浸漬して、酸性溶液中にコバルトイオンの滲出を抑えながらリチウムイオンを選択的に滲出させ、正極材のリチウムの含有量が十分なうちにリチウムイオンの滲出を止めることを特徴とする。

Description

リチウム抽出方法及び金属回収方法
 本発明は、電池から金属を簡便に回収する金属回収技術に関する。
 近年、電子機器の携帯化が進むにつれて2次電池の使用量が急激に増大している。携帯電話や携帯型音楽プレイヤーなどの比較的小電力の機器に限らず、電動工具、電動自転車、電気自動車などの高出力を要する機器へも2次電池の適用が広がるに至り、高エネルギー密度が得られるリチウムイオン電池に注目が集まっている。高出力機器への適用が増えたことにより、使用済み電池からの有価物回収の必要性が高まっており、リチウムイオン電池からの有価金属を回収するためのさまざまな技術が提案されている。
 例えば、非特許文献1には、リチウムイオン電池のリサイクル技術が特集されており、リチウムイオン電池を構成する有価金属類を回収する方法が系統的に説明されている。非特許文献1に掲載された典型的なリサイクル方法によると、例えば、使用済みリチウムイオン電池は開封・解体・粉砕などの機械的な処理の後に、酸滲出によって有価金属を滲出させ、そこから、所望成分毎の溶解特性の差を利用して、成分毎に分別して沈殿形成させる、あるいは所望成分を優先的に溶媒抽出するなどの処理によって所望成分毎に分別回収される。
 また、特許文献1には、酸滲出によって得られる有価金属を滲出した液を陰極液とし、陽イオン交換膜を隔膜とする隔膜電解法を用いてCuおよびCoを回収する技術が開示されている。
特許第3675392号公報 特許第3980526号公報 特開平11-292533号公報
Jinqiu Xu et al.,"A review of processes and technologies for the recycling of lithium‐ion secondary batteries",Journal of Power Sources,vol.177,pp.512‐527(2008)
 非特許文献1においては、さまざまな工夫により有価物の回収率向上と回収物の高純度化の両立を目指しているが、工程が煩雑であるうえ、多量の廃電池を処理するには莫大な設備投資が必要という点で改善の余地が大きい。
 また、特許文献1は、具体的には、陽イオン交換膜が有するイオン選択特性を利用した設備(特許文献1の図2に示す隔膜電解槽)と陰イオン選択膜の陰イオン選択性を利用した拡散透析設備(説明図なし)を用いる。より具体的に説明すると、隔膜電解によるCuの電析回収→pH調整→隔膜電解によるCoの電析回収→pH調整→Fe(OH)およびAl(OH)の沈殿回収→炭酸塩添加によるLiCO回収という一連の処理により主要有価金属を回収できる。この技術によると、Cu(2価イオン)およびCo(3価イオン)を電気化学的に還元して回収するので高純度な金属を得ることができるが、多量の廃電池を処理する場合には莫大な電気量の印加が必要という点で改善の余地がある。
 例えば、約100kgのCoを回収するためには、1アンペアの電流を約100時間流し続ける必要があるが、その前にCuの電析でもほぼ同等の電気量を印加するのであるから、隔膜電解だけで全ての金属を回収することは案外な手間を要する。さらに、多段のpH調整を経るごとに液量が増大するために一連の処理の最終段階でLiCOを回収する際にはLiの濃度が低下しており、炭酸塩を添加してもLiの回収率は必ずしも高くならないと考えられる。これは、炭酸リチウムの飽和溶解度は20℃で1.3wt%もあるので液量が多くなるほど未回収成分が増えるためである。これを避けるためには濃縮工程を追加するなどの処理が必要である。さらに、Fe(OH)やAl(OH)は弱酸性~中性の水溶液中でゲル状化しやすい傾向があるため、上記特許文献1の技術に基づいてFe(OH)やAl(OH)を濾別回収する工程の操作は容易ではなく、一方、濾別操作を容易化するために液を希釈するとLiの回収率が低下する。また、Fe(OH)やAl(OH)のゲル状沈殿の表面はLiイオンを吸着する特性もあるので、この観点でもLi回収率を大幅に改善することは難しい。
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次のとおりである。
 本発明は、リチウムと遷移金属元素とを含む正極材からリチウムを選択的に滲出させ、コバルトに対するリチウムの滲出量の割合が大きいうちに滲出を停止させることを特徴とする。
 本発明によれば、リチウムイオン電池からリチウムを簡便に高効率に回収する方法を提供することができる。
本発明の実施例に係る滲出液の組成および各組成の滲出液のLi/Co比である。 本発明に係る実施例1の有価金属を回収するための工程フロー概略である。 酸滲出処理のリチウムイオンと硫酸の濃度比の例である。 本発明に係る実施例2の有価金属を回収するための工程フロー概略である。
 以下、本発明を実施するための形態を説明する。なお、図を用いて説明する場合には図面を構成する各部品にはそれぞれ符号を付して説明を施すが、同一機能の場合には符号や説明を省略する場合がある。また、図中に示した各部品の寸法は実際の部品寸法を反映した縮尺には必ずしも一致していない場合がある。
 本実施例の有価金属回収方法の概略について図2を用いて説明する。図2は、本実施例の廃リチウム電池(以下、廃電池)から有価金属を回収するための概略の工程フローである。まず始めに廃電池を解体(S101)して得られる各構成部材を部材毎に分別(S102)し、有価金属を高濃度で含有する電極活物質のみを取り出す。こうして取り出した電極活物質をLi選択滲出液で処理(Li選択滲出;S103)してLiが滲出した溶液とする。このLi選択滲出液と非滲出分と固液分離する(S104)。Liを含むA液(S105)に炭酸塩を混合すれば炭酸リチウムLiCOとしてLiを回収することができる(S106)。遷移金属が相対的に濃縮されたB(S107)は、まだ固体なので酸溶解させた後にpH調整するだけの簡便な操作により、遷移金属が水酸化物として析出・沈降するのでこれを濾別回収(S108)する。この一連の操作により、廃電池からの有価金属類および過剰の酸をそれぞれ回収することができる。
 以下、図2に示す工程に従って有価金属回収フローをさらに詳しく説明する。
 廃電池から有価金属を回収するためには、まず電池を解体する必要があるが、解体に先立ち、電池内には電荷が残っている可能性があるので放電する。本実施例では、電解質を含有する導電性液体中に電池を浸漬することによって電池内に残っている電荷を放電させる。
 この放電操作により、電池内に分散しているLiイオンを正極活物質内部に濃縮させることができるので、Li回収量を最大化できる。また、Liが特定の結晶構造にとりこまれている状態を確保することにより滲出処理におけるLi選択性が最大となる。正極活物質がLiCoOの場合、完全充電状態ではLi0.4CoO、完全放電状態ではLiCoOと言われているので、上記放電処理を省略すると最大で6割程度のLi回収ロスとなる危険性がある。もちろん、放電により安全性が確保できる利点もある。
 本実施例においては、電解質を含有する導電性液体として硫酸/γブチロラクトン混合溶液を用いた。この混合溶液中では硫酸が電解質として作用するので硫酸濃度を調節することによって導電率(抵抗値の逆数)を調整することができる。本実施例では、放電槽の右端~左端までの溶液の電気抵抗を実測したところ100kΩであった。溶液の抵抗値が小さすぎると放電が急速に進みすぎて危険であるし、逆に、抵抗値が大きすぎると放電に時間がかかりすぎて実用性が低下する。本実施例では、溶液抵抗が1k~1000kΩ程度の範囲にあることが望ましく、この抵抗値範囲に入るように電解質濃度を調整すると良い。
 ここで、本実施例の廃電池としては、所定の充放電回数の限界に達して充電容量が低下してしまったいわゆる使用済み電池の他に、電池製造工程内での不具合などで発生する半製品、製品仕様変更に伴って発生する旧型式在庫整理品なども含む。
 S101にて放電処理後の廃電池を解体する。適当な方法を用いて筐体、パッキン・安全弁、回路素子類、スペーサ、集電体、セパレータ、正極および負極の電極活物質などの放電処理後の廃電池の電池構成部材をそれぞれ部材毎に解体分別する。
 なお、廃リチウムイオン電池は内部にガスが充満して加圧状態になっていることが多いので、作業安全上の配慮が必要であることは言うまでも無い。本実施例では、上記の電解質を含有する導電性液体に浸漬した状態で冷却しながら湿式粉砕した。冷却下での湿式粉砕を採用したことにより、電池内部に充満しているガスを大気中に飛散させることなく安全に破砕することができた。
 また、集電体表面に塗工・成形された正極活物質および負極活物質をそれぞれの集電体表面からの剥離を促進するために、上記電解質を含有する導電性液体の組成を調整することは差し支えない。尚、放電工程に使用する導電性液体では導電性が留意すべき特性であり、湿式粉砕工程に使用する導電性液体では粘度や誘電率が留意すべき特性である。放電工程と湿式粉砕工程では要求仕様が異なるので、工程毎に使用する導電性液体の組成を換えても良いが、その場合には2種類以上の導電性液体を準備する必要がある。本実施例では、簡便化や手間・コストの抑制の観点から、同一の組成とした。
 本実施例で使用可能な湿式粉砕法としては、例えばボールミルなどの方法があるが、かならずしもこれに限るわけではない。粉砕する前に焙焼工程なしとすると、コバルト酸リチウムとバインダーのポリフッ化ビニリデン(PVDF)が混入せず、リチウムとコバルトを純度よく回収できる。焙焼工程によりPVDFが分解し、正極材を撥水化させるフッ素含有化合物を発生させるからである。正極材が撥水化してしまうと、後述のリチウム抽出工程に影響を与えてしまう。筐体、パッキン・安全弁、回路素子類、スペーサ、集電体、セパレータ、電極活物質などの構成部材のうち、正極の電極活物質(以下正極活物質)と負極の電極活物質(負極活物質)が優先的に破砕する条件で破砕した後に、篩い分け処理を施す。これにより、正極活物質と負極活物質は篩い下、それ以外の部材は篩い上に分別回収される(S102)。
 本実施例においては篩い分けを用いたが、もともと湿式にて粉砕しているのであるから、湿式粉砕によって得られたスラリーをそのまま比較的目の粗いフィルターを用いて濾別処理にて分別することもできる。湿式粉砕~濾別の連続処理を導入することにより、回収率が向上する可能性もある。尚、筐体、パッキン・安全弁、集電体(アルミ箔、銅箔)などは、正極活物質(典型的にはLiCoO)や負極活物質(典型的にはグラファイト)よりも延展性が大きく、従って破断強度も大きい。この特性のために、電極活物質の破砕物はそれ以外の部材から得られる破砕物よりもサイズが小さくなり、その結果として、篩い分けあるいは濾別によって容易に分別回収することができる。
 上記処理によって得られた篩い下物に滲出処理を行う(S103)。
 本実施例で用いた滲出液は、図1に例示したとおりである。本実施例で使用した廃電池の正極活物質はLiCoOを主成分とするリチウム化合物であるが、リン酸鉄やニッケル、マンガンなど他組成の正極活物質を含んでいても構わない。
 本実施例で使用できる鉱酸としては、濃硫酸(90%~98%)に、酸化還元調節剤として過酸化水素水添加を添加したものを用いる。リチウムとの分離が困難なリチウム以外のアルカリ金属類(ナトリウム、カリウム、ルビジウム、セシウム)を含有する鉱酸は使わないものとする。リチウム化合物の種類や組成、処理量、処理時間、コストなどを考慮して、これらの中から適宜選択できる。
 酸滲出処理では、HSOとLiCoOとHとが反応することにより、LiSO、CoO、CoSOが生成すると考えられる。この反応は、2段階に分かれている。1段階目では、結晶構造を維持したまま、正極材中のリチウムイオンと溶液中のプロトンがイオン交換される。2段階目では、正極材の結晶構造からのリチウム溶出量が大きくなったために、結晶構造が崩壊し始める。このときにイオン溶出の挙動が変化し、コバルトイオンも溶出しやすくなる。よって、結晶構造が崩壊する前にリチウムを溶解させ、結晶構造が崩壊してコバルトの溶出が大きくなる前に溶解反応を停止させることが重要である。
 本実施例では、正極材に硫酸と過酸化水素を作用させると、反応エネルギーによる反応容易性から、まずリチウムイオンが溶液中に滲出し、その後にコバルトイオンが滲出する。リチウムイオンが滲出し、コバルトイオンが滲出する前に滲出処理を停止すれば、コバルトイオン濃度に対するリチウムイオン濃度が高いように選択酸溶解することができる。本実施例では、Li選択滲出工程の反応条件を制御することにより選択酸滲出させるのであるが、リチウムイオンの反応率は最大で80%以下(残量が20%以上)となる範囲で滲出を停止させる。実用的には誤差を考慮すると、好ましくは、70~75%程度(残量25~30%)の反応率で停止させると、コバルトの溶出を抑えることができる。80%を越えるとLi選択滲出反応における選択比が劣化する危険性が高まり、70%を下回れば回収率が低下して経済性を損なう。
 また、温度は50℃以下で行う。硫酸の作用により、リチウムイオンは硫酸リチウム(LiSO)として滲出するとともに、コバルトイオンは硫酸コバルト(CoSO)として滲出する。リチウムイオンが滲出するための活性化エネルギーと、コバルトイオンが滲出するための活性化エネルギーとでは、前者の方が著しく小さいことにより、リチウムイオンが先に滲出する。この反応選択性は、低温のほうが顕著に現れる。高温の場合には、熱エネルギーが豊富であり活性化エネルギーの大小による反応選択性の影響が小さいからである。
 また、硫酸リチウムは、低温になるにつれ溶解度が大きくなり、硫酸コバルトは高温になるにつれ溶解度が大きくなるので、50℃以下の低温で処理を行うことによりリチウムの選択溶解を高めることができる。硫酸コバルトの溶解量が小さければ、それを形成するコバルトイオンの滲出量も少ないからである。また、イオンの溶解速度が遅いので、安定して溶解しやすいリチウムイオンを先に溶解させることができる。
 用いる硫酸としては、濃硫酸(90%以上)であることが望ましい。希硫酸は強酸として働くので、リチウムとコバルトとをともに速い速度で溶解させる。一方で濃硫酸は、遊離する酸の量が少なく、強酸としては働かない。そのため、濃硫酸を用いた場合(90%硫酸を用いて若干の希釈をした場合も)、希硫酸ほどの強酸としての働きがないため、金属イオンの溶解速度が遅くなり、リチウムとコバルトの溶解速度を制御しやすい。
 また、希硫酸であっても、pHの小さい溶液に対しては、硫酸イオンを有する硫酸コバルトの溶解量が小さくなり、リチウムイオンの選択溶解性が高くなる。特に、酸滲出処理中のリチウムイオンと硫酸の濃度比が7以下となるように、硫酸の濃度、量、リチウムの添加量を調整することが望ましい。この濃度比の範囲では、選択溶解性が高いからである。図3に酸浸出処理中のリチウムイオンと硫酸の濃度比の例を記す。比較例1(特許文献2)及び比較例2(特許文献3)のように酸浸出処理中のリチウムイオンと硫酸の濃度比が、本実施例と比較して桁違いに大きな値である場合には、Li/Co比は低い値をとる。
 過酸化水素は、溶解により上がった酸溶液中の電位を調整するために、酸化還元調整剤として用いる。電位が所定の範囲から外れてしまうと、選択溶解性に影響を与えてしまうからである。
 また、電池解体の焙焼工程を経ずに滲出工程を行うと、前述のようにバインダーのPVDFに起因する物質により正極材表面が撥水化して、選択溶解が起こらないという事態を回避できる。
 本実施例では使用済みデジタルカメラ用リチウムイオン電池を解体して得られた酸滲出液のLi/Co濃度比を図1に示す。処理は以下のように行った。
 まず、廃リチウムイオン電池に粉砕および篩い分け処理を施して、筐体、パッキン・安全弁、回路素子類、セパレータ、集電体などをあらかじめ除去した後に、鉱酸を用いてリチウムイオン電池を構成している有価金属類を酸滲出(溶解)する。本実施例で用いたLi選択滲出液を図1に示す。室温で、1時間攪拌した後、遠心分離機で、15000rpm、20℃、15分間、遠心分離して上澄みと残渣に分けて滲出反応を停止させ、上澄み液を回収する。
 本実施例では、コバルト酸リチウム等の正極活物質からのLi滲出反応を簡便に停止させるための固液分離処理として、遠心分離を使用した。
 滲出液に用いる酸としては硝酸、硫酸、塩酸を用いた。これらの酸に、メタノール、過酸化水素などの酸化還元電位調節剤を添加した。酸化還元電位調節剤を添加しておくことにより、酸滲出が安定し、回収量が増大する効果がある。滲出時間は、最長でも2時間以下が望ましく、さらに好ましくは、約1時間程度である。1時間を大きく下回る短時間、たとえば15分間の滲出では、回収率が少なくなりやすい。リチウムイオンが滲出除去された正極活物質の結晶構造は、強酸に対して安定ではないため、2時間を超えた長時間の滲出処理を行うと、正極活物質の結晶が崩壊して、コバルトの滲出が始まる。その結果として、酸滲出反応におけるLi選択性が低下する。また、非特許文献1に記載された非選択滲出(完全滲出)で採用されている80℃~90℃に到達しないように滲出液の温度を十分に注意する。本実施例では、室温(15℃~30℃)が最も好ましいが、最高でも50℃以下とする。50℃を大きく超えると滲出反応においてLi選択性が低下しやすくなる傾向があった。
 図1は、各溶解条件で、20℃(温水除く)1時間滲出反応を行った結果である。図1に示すように、正極材(LiCoO2)を完全に滲出させた場合(完全溶解)の酸滲出液のLi/Co濃度比は約0.2であった。硫酸のみの場合は、Li/Co濃度比は約1.2、硝酸のみの場合はLi/Co濃度比は約0.8となる。硫酸:過酸化水素=1:1を酸滲出液として選択滲出させたとき、Li/Co濃度比は約1.7となる。上記の選択滲出によって得られる回収液(A)には、Liの他、酸滲出の際に過剰に添加した酸も同時に回収されている。
 本実施例では、上記の滲出処理が終了した後の残渣は、負極活物質および正極活物質のうちの遷移金属成分である。酸性溶液、負極活物質、正極活物質は、比重が異なることを利用すれば容易に分離できる(図2(S104))。具体的には、滲出液を遠心分離することで分離回収できる。本実施例では、遠心分離法を採用して、15000rpmで、15分処理することにより分離回収したが、回転数はさらに高い方が上澄みの酸性溶液(回収液、Li)、負極活物質(C:カーボン)、正極活物質(Co)の分離が容易である。また、比重差の利用以外で分離回収する方法として、滲出液をろ過することで、上澄み液と残渣(負極活物質及び正極活物質)とに分離回収できる。この場合、さらに残渣を負極活物質と正極活物質とに分離する工程を行うこととなる。
 Liを含有する上澄み液は、陰イオン交換膜を用いた拡散透析処理や、圧力透析処理、イオン交換樹脂、などの処理を単独、または組み合わせて、または多段階で実施し、さらにLi、Coを分離してもよい。また、陰イオン選択透過膜を用いた透析処理や、溶媒抽出法、アシッドリターデーション法などを用いてさらにLiとCoを分離することもできる。これらの残液から、それぞれの元素毎に分離回収するにはさまざまな方法が使用できるが、隔膜電解法、中和(pH=6~9)による水酸化物沈殿回収、あるいはこれらを組み合わせた方法を用いることができる。これらの方法を行えば、さらにLi/Coの濃度比を高くすることができる。
 上記のようにして得たLiの含有割合が大きい回収液(A)をナトリウムを含まない炭酸塩で中和処理すれば、高純度なLiが回収できる(S105)。
 具体的には、炭酸カルシウムやナトリウムを含まない炭酸塩として添加して炭酸リチウムとして沈殿回収できる。他に電気透析しながらCOガスを吹き込む、などの方法がある。本実施例では遷移金属成分(B)は上記比重差を活用した遠心分離工程によって、Li含有液(A)から分離回収できる(S106)。
 一方でCoが選択分離された酸滲出液からのCo回収には、まず、S104で分離したものから正極活性材を回収する(S107)。そして、正極材を酸性溶液に浸漬し、コバルトイオンを滲出(または溶出)させる。コバルトイオンが滲出した溶液に、pH調整によって水酸化物としてコバルトを沈殿させ回収する沈殿回収法が使用できる(S108)。遷移金属成分(B)をそれぞれの金属種類別に分別回収するためには、遷移金属成分(B)を酸溶解した後にそれぞれの金属元素の水酸化物の溶解特性差を利用する処理、基本的にはpH調整→沈殿回収の繰り返しによって遷移金属元素種類毎に分別回収できる。正極活物質がLiCoO以外のリチウム化合物を含有する場合、例えば、LiNiO、LiMnO、Li(Ni1/3Co1/3Mn1/3)O、LiCoPO、LiFePO、LiCoPOF、LiFePOF等のオリビン系正極材などの場合も液のpH調整によってCo、Ni、Mn、Feを水酸化物として分別して沈殿回収できる。
 図4に、実施例2における金属回収方法のフローチャートを示す。
 S201~S202は、実施例1のS101~S102と同じである。S203において、実施例1と同様に正極材を酸滲出した後、上澄み液と残渣に分ける。上澄み液は、リチウムイオンとコバルトイオンとが滲出しLi/Coの比が高い酸性溶液であり、残渣は、負極活性材とイオンが滲出した正極活性材である。これらを遠心分離や濾過などの方法により、上澄み液と残渣に分離する。
 S204において、残渣をさらに酸性溶液に溶解させることにより、残渣中の正極活性材に含まれているコバルト及びリチウムをイオン化させて酸性溶液中に溶解させる。ここで目的となるのはコバルトとリチウムであるので、炭素からなる負極活性材は溶解前に取り除き、正極活性材のみを溶解させてもよい。こうして、Li/Coの比が低い酸性溶液が生成する。
 S205においては、S203で得られた上澄み液のリチウムイオンとコバルトイオンとを分離する。分離の方法としては、以下のものがある。
 陰イオン選択透過膜(透析膜)を用いることにより、リチウムイオンとコバルトイオンとを分離することができる。陰イオン選択透過膜は陰イオンを透過させる膜であるが、リチウムイオンは陽イオンであるにもかかわらず陰イオン選択透過膜を透過する現象が起こる。そのため、陰イオン選択透過膜の面の一方にS203にてイオンを滲出させた酸性溶液を流し、他方の面にリチウムイオンを回収するための回収液(例えば純水)を流すと、酸性溶液からリチウムイオンが透析膜を透過して回収液中に移動する。このとき、コバルトイオンは透析膜を透過せず、酸性溶液中に留まる。このようにして、リチウムイオンを回収液中に、コバルトイオンを酸性溶液中に分離することができる。
 また、イオン交換樹脂を用いることにより、リチウムイオンとコバルトイオンとを分離することができる。酸性溶液をイオン交換樹脂に通すと、先に酸の塩が溶出し、その後に遅れて酸が溶出するアシッドリターデーションが知られている。このとき、酸の塩としてリチウムイオンとコバルトイオンとを含む場合、最初にコバルトイオンが溶出し、その後にリチウムイオンが溶出し、最後に酸が溶出する。溶出する液体を時間ごとに分ければ、最初に溶出した溶液はコバルトイオン濃度が大きく、その後に溶出した溶液はリチウムイオンが大きくなり、リチウムイオンとコバルトイオンの分離をすることができる。
 このようにして、上澄み液を、Li/Coの濃度比が高いLi濃縮液と、Li/Coの濃度比が低いCo濃縮液とに分離することができる。
 S206においては、S204で得られた酸性溶液のリチウムイオンとコバルトイオンとを分離し、Li濃縮液とCo濃縮液とを得る。分離の方法としては、S205と同様の方法を適用可能である。
 S207においては、S204及びS205で得られたLi濃縮液を回収する。S208においては、S106と同様な方法で、Li濃縮液からリチウムを回収する。
 S209においては、S204及びS205で得られたCo濃縮液を回収する。S208においては、S108と同様な方法で、Li濃縮液からリチウムを回収する。
 実施例2では、このようにして、リチウム及びCoを回収する。実施例1に対して、リチウムとCoを分離する工程を加え、得られたLi濃縮液とCo濃縮液とをそれぞれ集めて回収することで、リチウム及びCoの回収率が向上する。

Claims (7)

  1.  リチウムとコバルトを含むリチウムイオン電池の正極材からリチウムを抽出するリチウム抽出方法において、
     前記正極材を、酸性溶液に50℃以下で浸漬して前記溶液中にリチウムイオンを滲出させる工程と、
     前記正極材のリチウムの含有量が前記滲出工程前の前記正極材のリチウムの含有量の30%以上のときに、前記リチウムイオンの滲出を止める工程とを含むことを特徴とするリチウム抽出方法。
  2.  請求項1において、
     前記酸性溶液は、硫酸を含むことを特徴とするリチウム抽出方法。
  3.  請求項2において、
     前記酸性溶液は、濃硫酸であることを特徴とするリチウム抽出方法。
  4.  請求項1または請求項2において、
     前記酸性溶液は、酸化還元調整剤を有していることを特徴とするリチウム抽出方法。
  5.  請求項4において、
     前記酸化還元調整剤は、過酸化水素であることを特徴とするリチウム抽出方法。
  6.  請求項1乃至5のいずれかに記載のリチウム抽出方法で得られた前記リチウムイオンが滲出した溶液からリチウムを回収する工程と、
     請求項1乃至5のいずれかに記載のリチウム抽出方法に用いた正極材からCoを回収する工程とを含む金属回収方法。
  7.  請求項6において、
     前記リチウムイオンが滲出した溶液を、さらにリチウムイオンの含有割合が大きい溶液とCoイオンの含有割合が大きい溶液とに分離する工程を含み、
     当該分離されたリチウムイオンの含有割合が大きい溶液からリチウムを回収することを特徴とする金属回収方法。
PCT/JP2011/003995 2010-09-29 2011-07-13 リチウム抽出方法及び金属回収方法 WO2012042714A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/818,926 US20130206607A1 (en) 2010-09-29 2011-07-13 Lithium Extraction Method, and Metal Recovery Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218083A JP5501180B2 (ja) 2010-09-29 2010-09-29 リチウム抽出方法及び金属回収方法
JP2010-218083 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012042714A1 true WO2012042714A1 (ja) 2012-04-05

Family

ID=45892212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003995 WO2012042714A1 (ja) 2010-09-29 2011-07-13 リチウム抽出方法及び金属回収方法

Country Status (3)

Country Link
US (1) US20130206607A1 (ja)
JP (1) JP5501180B2 (ja)
WO (1) WO2012042714A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474721A (zh) * 2013-08-30 2013-12-25 国家电网公司 一种LiFePO4电池负极材料的回收方法
JP2016500754A (ja) * 2012-10-10 2016-01-14 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH 使用済みガルバニ電池のリチウム遷移金属酸化物含有部分からの、湿式冶金法によるリチウム、ニッケル、コバルトの回収方法
CN106591578A (zh) * 2016-12-28 2017-04-26 江西合纵锂业科技有限公司 一种利用磷酸体系从锂云母中选择性浸出锂的方法
CN107275706A (zh) * 2017-06-19 2017-10-20 上海第二工业大学 一种采用机械活化法从废旧钴酸锂电池中回收钴和锂的工艺
CN109761250A (zh) * 2019-04-11 2019-05-17 天齐锂业资源循环技术研发(江苏)有限公司 一种利用废旧锂离子电池制备锂离子筛的方法
CN111036651A (zh) * 2019-12-26 2020-04-21 甘肃睿思科新材料有限公司 一种锂电池正极废弃浆料的回收系统
CN115369264A (zh) * 2022-09-05 2022-11-22 山西大学 一种从含锂废渣酸性体系中分离锂离子的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898021B2 (ja) * 2012-09-11 2016-04-06 株式会社日立製作所 リチウムイオン電池の再資源化方法、およびその装置
US9677153B2 (en) * 2012-10-10 2017-06-13 Rockwood Lithium GmbH Method for the hydrometallurgical recovery of lithium from the fraction of used galvanic cells containing lithium, iron and phosphate
KR101497921B1 (ko) * 2013-06-28 2015-03-03 한국생산기술연구원 폐리튬이온전지로부터 ncm계 양극활물질의 재생방법과 이 방법에 의해 제조된 ncm계 양극활물질
KR101601918B1 (ko) * 2013-09-17 2016-03-09 울산과학기술원 리튬 이차 전지 및 리튬 이차 전지 시스템
JP6363459B2 (ja) * 2014-09-30 2018-07-25 Jx金属株式会社 金属の浸出方法及びそれを用いた金属の回収方法
KR101746189B1 (ko) * 2015-11-23 2017-06-27 재단법인 포항산업과학연구원 유가 금속 회수방법
JP6817840B2 (ja) * 2017-02-16 2021-01-20 三洋化成工業株式会社 リチウムイオン電池
CN107022683A (zh) * 2017-03-29 2017-08-08 华南师范大学 一种锂离子电池钴酸锂正极材料的回收方法
KR20200096965A (ko) * 2017-12-19 2020-08-14 바스프 에스이 금속 니켈을 사용한 침출물의 처리에 의한 배터리 재활용
DE102018102026A1 (de) 2018-01-30 2019-08-01 Duesenfeld Gmbh Verfahren zum Verwerten von Lithium-Batterien
CN108878866B (zh) * 2018-06-28 2020-11-17 山东理工大学 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
JP7217612B2 (ja) * 2018-10-31 2023-02-03 Jx金属株式会社 リチウムイオン二次電池の正極活物質廃棄物の処理方法
CN109848172A (zh) * 2018-12-26 2019-06-07 安徽万纬工程管理有限责任公司 一种石油化工废弃物处理方法
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
US11476510B2 (en) 2019-05-07 2022-10-18 Chang Dong Methods and green reagents for recycling of lithium-ion batteries
EP4004242A1 (de) * 2019-07-26 2022-06-01 Duesenfeld GmbH Verfahren zum verwerten von lithium-batterien
CN112310499B (zh) * 2019-07-31 2022-05-13 中国科学院过程工程研究所 一种废旧磷酸铁锂材料的回收方法、及得到的回收液
JP7229197B2 (ja) * 2020-04-24 2023-02-27 Jx金属株式会社 リチウム回収方法
EP4212068A1 (en) 2020-09-10 2023-07-19 APB Corporation Method for recycling lithium ion cells, recycling equipment, seat for conveyance vehicle, and method for manufacturing same
CN112143897B (zh) * 2020-09-11 2021-06-08 威海广泰空港设备股份有限公司 一种机场服务车中废旧锂电池的贵金属提取方法
CA3200156A1 (en) 2020-12-02 2022-06-09 Amit PATWARDHAN A lithium extraction process and apparatus
KR102650913B1 (ko) * 2021-09-07 2024-03-22 국립부경대학교 산학협력단 리튬철인 산화물로부터 리튬의 선택적인 회수 방법
CN114606386B (zh) * 2022-03-31 2023-04-28 东北大学 一种废弃锂电池磨浸回收钴和锂的工艺
DE102022004722A1 (de) 2022-12-15 2024-06-20 Tadios Tesfu Mehrstufiges Recyclingverfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115218A (ja) * 1999-10-15 2001-04-24 Dowa Mining Co Ltd リチウム遷移金属含有酸化物を含むスクラップからの金属抽出方法
JP2007122885A (ja) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd リチウムイオン電池からの有価金属回収方法
JP2009193778A (ja) * 2008-02-13 2009-08-27 Nippon Mining & Metals Co Ltd Co,Ni,Mn含有リチウム電池滓からの有価金属回収方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492222B2 (ja) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 リチウム電池処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115218A (ja) * 1999-10-15 2001-04-24 Dowa Mining Co Ltd リチウム遷移金属含有酸化物を含むスクラップからの金属抽出方法
JP2007122885A (ja) * 2005-10-25 2007-05-17 Sumitomo Metal Mining Co Ltd リチウムイオン電池からの有価金属回収方法
JP2009193778A (ja) * 2008-02-13 2009-08-27 Nippon Mining & Metals Co Ltd Co,Ni,Mn含有リチウム電池滓からの有価金属回収方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500754A (ja) * 2012-10-10 2016-01-14 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH 使用済みガルバニ電池のリチウム遷移金属酸化物含有部分からの、湿式冶金法によるリチウム、ニッケル、コバルトの回収方法
CN103474721A (zh) * 2013-08-30 2013-12-25 国家电网公司 一种LiFePO4电池负极材料的回收方法
CN106591578A (zh) * 2016-12-28 2017-04-26 江西合纵锂业科技有限公司 一种利用磷酸体系从锂云母中选择性浸出锂的方法
CN106591578B (zh) * 2016-12-28 2018-11-13 宜春科丰新材料有限公司 一种利用磷酸体系从锂云母中选择性浸出锂的方法
CN107275706A (zh) * 2017-06-19 2017-10-20 上海第二工业大学 一种采用机械活化法从废旧钴酸锂电池中回收钴和锂的工艺
CN109761250A (zh) * 2019-04-11 2019-05-17 天齐锂业资源循环技术研发(江苏)有限公司 一种利用废旧锂离子电池制备锂离子筛的方法
CN111036651A (zh) * 2019-12-26 2020-04-21 甘肃睿思科新材料有限公司 一种锂电池正极废弃浆料的回收系统
CN115369264A (zh) * 2022-09-05 2022-11-22 山西大学 一种从含锂废渣酸性体系中分离锂离子的方法
CN115369264B (zh) * 2022-09-05 2023-09-22 山西大学 一种从含锂废渣酸性体系中分离锂离子的方法

Also Published As

Publication number Publication date
JP2012074247A (ja) 2012-04-12
JP5501180B2 (ja) 2014-05-21
US20130206607A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5501180B2 (ja) リチウム抽出方法及び金属回収方法
JP5618913B2 (ja) 滲出液および金属回収方法
KR101497921B1 (ko) 폐리튬이온전지로부터 ncm계 양극활물질의 재생방법과 이 방법에 의해 제조된 ncm계 양극활물질
JP5568414B2 (ja) 金属回収方法及び金属回収装置
KR101497041B1 (ko) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
JP5422495B2 (ja) 金属回収方法及び透析装置
Li et al. A green and cost-effective method for production of LiOH from spent LiFePO4
US20210324495A1 (en) Process for the recycling of spent lithium ion cells
KR101325176B1 (ko) 삼원계 양극활물질로부터 화학이산화망간의 제조방법, 그 제조방법에 의하여 제조된 화학이산화망간 및 화학이산화망간을 포함하는 이차전지
KR20150094412A (ko) 폐 리튬 이온전지의 양극물질로부터 유가 금속을 회수하는 방법
CN109167118B (zh) 磷酸铁锂电池电极材料的综合利用方法
JP7271833B2 (ja) リチウムの回収方法
JP2013095951A (ja) リチウム回収方法
JP2013001951A (ja) 透析促進剤および金属回収方法
KR20220079922A (ko) Li-이온 배터리를 재활용하는 방법
EP4152476A1 (en) Method for recovering cathode material
JP2023516663A (ja) リン酸鉄リチウムバッテリーの処理方法
US20240145805A1 (en) A method for target metal removal via sulphide precipitation
EP4095983A1 (en) Method for selectively removing aluminum from waste electrode and method for recovering metal component from waste electrode using same
KR102188889B1 (ko) 폐 리튬이차전지의 유가물질 회수 방법
JP2013001950A (ja) 透析促進剤および金属回収方法
KR20150075247A (ko) 리튬 전지 폐기물로부터 망간을 회수 하는 방법
WO2023188489A1 (ja) 金属浸出方法及び金属回収方法
JP7349592B1 (ja) 金属浸出方法及び金属回収方法
KR20230111606A (ko) 리튬 인산철 배터리 재활용 공정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13818926

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11828283

Country of ref document: EP

Kind code of ref document: A1