WO2012041004A1 - 一种疏水支撑剂及其制备方法 - Google Patents

一种疏水支撑剂及其制备方法 Download PDF

Info

Publication number
WO2012041004A1
WO2012041004A1 PCT/CN2011/001558 CN2011001558W WO2012041004A1 WO 2012041004 A1 WO2012041004 A1 WO 2012041004A1 CN 2011001558 W CN2011001558 W CN 2011001558W WO 2012041004 A1 WO2012041004 A1 WO 2012041004A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic
resin
proppant
coating resin
mixture
Prior art date
Application number
PCT/CN2011/001558
Other languages
English (en)
French (fr)
Inventor
秦升益
胡宝苓
Original Assignee
北京仁创砂业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京仁创砂业科技有限公司 filed Critical 北京仁创砂业科技有限公司
Priority to JP2013530527A priority Critical patent/JP5917525B2/ja
Priority to EP11827902.5A priority patent/EP2623579B1/en
Priority to US13/877,243 priority patent/US9434874B2/en
Priority to CA2821377A priority patent/CA2821377C/en
Priority to RU2013119445/03A priority patent/RU2559970C2/ru
Publication of WO2012041004A1 publication Critical patent/WO2012041004A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures

Definitions

  • the present invention relates to an oil and gas well proppant in the field of oil field opening, and particularly to a hydrophobic proppant and a preparation method thereof.
  • Hydraulic fracturing technology is the main means to improve the yield of low permeability and ultra low permeability oil and gas fields.
  • the proppant is a solid particle used in petroleum hydraulic fracturing to support cracks without reclosing the cracks. During the fracturing process, the proppant forms a medium for supporting the fracture, so that the fracture remains supported and provides a conductive passage for the extraction of oil and gas. Therefore, the choice of proppant is essential for oil and gas field stimulation.
  • the proppants widely used at home and abroad mainly include natural quartz sand, sintered ceramsite and resin coating proppant.
  • Quartz sand generally refers to natural silica sand. It is mainly used for fracturing operations in shallow low-closed pressure wells. Its shape is similar to spherical shape, so it has a certain fluidity. Quartz sand has relatively low strength and poor crushing resistance.
  • the sintered ceramsite is mostly obtained by high-temperature calcination (1 380 ⁇ 1420 °C) using bauxite, silicon oxide and other ores. It is mainly used for medium-deep well fracturing process.
  • the ceramsite proppant has high energy consumption and limited resources. Low cost, high density and other shortcomings. These two kinds of proppants will have a large amount of debris and fine silt due to the large impact force and closing stress during use. These materials will block the cracks and reduce the conductivity of the cracks, so it is difficult to meet the increasing pressure. Crack process technology requirements.
  • the resin film proppant is generally prepared by using an epoxy resin, a phenol resin, a furan resin or a combination of these resins as a binder, and coating the outer layer of quartz sand, ceramsite or walnut shell.
  • Different functional resin film proppants can be obtained by modifying the binder.
  • Selective oil-permeable water-blocking proppant is a chemical method to introduce a low surface energy hydrophobic group into the resin molecular chain, so that the resin film has better The hydrophobicity thus enhances the water blocking performance of the proppant, resulting in a functional proppant having oil and water barrier properties.
  • CN101531893A provides a functional pre-cured resin film proppant which reacts with a resin by adding an organosilicon compound having a reactive group and a hydrophobic group during curing of the resin film to form an organosilicon compound
  • the molecule is attached to the resin film cross-linking network. Since the organosilicon compound is a low surface energy substance, the hydrophobic group is coated on the outer surface of the resin so that the solid-liquid phase contact surface is contacted on the outer surface. Angle 0 > 90.
  • the hydrophobic structure is formed, so that the outer surface of the resin coating proppant has the characteristics of hydrophobic and lipophilic, the separation effect of oil and water is improved, and the oil recovery cost is reduced; and the good hydrophobicity of the resin film makes the proppant have a better Good water resistance, proppant crushing resistance is improved, and the flow guiding effect is better.
  • the technical problem to be solved by the present invention is to solve the problem that the water-repellent effect of the proppant is reduced and the applicable working condition is limited due to the smooth outer surface structure of the resin film of the coating resin proppant in the prior art, and the present invention provides a A hydrophobic proppant is constructed by constructing a micro-nano structure on the surface of a hydrophobic resin.
  • the present method adopts the following technical solutions: a hydrophobic proppant, characterized in that: the hydrophobic proppant comprises aggregate particles, and a film-coated resin is cured outside the aggregate particles; the coating resin comprises a hydrophobic resin and nanoparticles uniformly distributed in the hydrophobic resin; the nanoparticles occupying 5 to 60% by weight of the coating resin; the aggregate particles and the coating The weight ratio of the resin is 60-95: 3-30.
  • the nanoparticles are one or a mixture of nano silica, nano alumina, nano zinc oxide and nano calcium.
  • the nanoparticles have a particle size ranging from 50 to 150 nm.
  • the hydrophobic proppant further includes a silane coupling agent, and the ratio by weight of the silane coupling agent to the coating resin is from 0.1 to 1:100.
  • the hydrophobic resin is a resin obtained by modifying a resin with an organosilicon compound having a hydrophobic group in a side chain or a fluorine-containing compound having a hydrophobic group in a side chain.
  • the organosilicon compound is tricarboxy polydiphenylsiloxane, ⁇ , ⁇ -dihydroxypolydisiloxane, triaminopolydidecylsiloxane, polysiloxane triol, tricarboxyl a mixture of one or more of polydimethoxysiloxane and tricarboxysiloxy-indenylsilsesquioxane;
  • the fluorine-containing compound is tetrafluoroethylene, vinylidene fluoride, and chlorotrifluoroethylene or One or a mixture of several of the fluorine-containing carboxylic acids.
  • R, 3 Si—Ot ⁇ i—O—fe—Si— ( 2 ) 3 wherein R 1 and R 2 are one or more of an amino group, a hydroxyl group, a carboxyl group, and an alkoxy group, and R 3 and R 4 may be an alkane.
  • R 1 and R 2 are one or more of an amino group, a hydroxyl group, a carboxyl group, and an alkoxy group, and R 3 and R 4 may be an alkane.
  • n is an integer of 4 to 200.
  • the silane coupling agent is ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -(mercapto acryloxy)propyltri
  • methoxysilane ( ⁇ 570) ⁇ - ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane
  • vinyltris( ⁇ -decyloxyethoxy)silane kind of mixture.
  • the invention also provides a method for preparing a hydrophobic proppant, characterized in that it consists of the following steps:
  • the coating resin is cured by adding a curing agent.
  • the curing agent is paraformaldehyde, hexamethylenetetramine, aliphatic amine, tertiary amine and salt thereof, aromatic amine and modified body thereof, imidazole, polymer prepolymer, peroxide acyl group or peroxidation One or a mixture of several of the esters; the ratio by weight of the curing agent to the coating resin is from 1 to 20:100.
  • the step 3) further includes a step
  • the lubricant is one or a mixture of polyethylene wax, oxidized polyethylene wax, stearic acid amide or calcium stearate; the weight ratio of the lubricant to the coating resin is 0.5-1.5: 100.
  • the stirring condition was stirred at 8000 Torr for 30 min.
  • the aggregate particles in the step 2) are heated to 200-220 °C.
  • the hydrophobic proppant of the present invention has the following advantages: by constructing a rough surface having a nano structure, that is, a micro-nano structure, on the surface of the existing hydrophobic resin, so that the solid is actually solidified
  • the contact surface of the liquid phase is larger than the apparent area of the apparent geometry.
  • the shape of the water droplet on the rough surface is close to a spherical shape, and the contact angle ⁇ is increased, so that the water droplet can roll freely on the surface, thereby greatly enhancing the hydrophobicity of the resin film, thus making
  • the water repellency of the coating proppant is greatly enhanced, and the contact angle ⁇ of the hydrophobic proppant of the present invention with water is 120. ⁇ 180 ⁇ 180°, the hydrophobic effect is greatly enhanced, and the working conditions are more extensive.
  • Aggregate particle quartz sand 200kg curing agent polyfurfural: 0.1kg, Silane coupling agent ⁇ -aminopropyltriethoxysilane: 0.1kg
  • Lubricant polyethylene wax 0.05kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles comprise 50% by weight of the coating resin, and the hydrophobic resin accounts for 50% by weight of the coating resin;
  • the nanoparticles are selected from nano-silica and have a particle size of 50-150 nm;
  • the hydrophobic resin is modified by a tricarboxy polydiphenylsiloxane to obtain a modification method. See Example 1 described in CN101531893A.
  • Lubricant oxidized polyethylene wax 0.9kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles occupy 0% by weight of the coating resin, and the hydrophobic resin accounts for 40% by weight of the coating resin;
  • the nanoparticles are selected from nano-alumina and have a particle size of 50-150 nm;
  • the hydrophobic resin is modified from an epoxy resin by ⁇ , ⁇ -dihydroxypolydimethylsiloxane.
  • modification method see Example 1 described in CN101531893A.
  • Curing agent aliphatic amine 4kg
  • Silane coupling agent ⁇ -(Mercaptoacryloyloxy)propyltrimethoxysilane: 0.06kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles comprise 20% by weight of the coating resin, and the hydrophobic resin accounts for 80% by weight of the coating resin;
  • the nanoparticles are selected from nano zinc oxide and have a particle size of 50-150 nm;
  • the hydrophobic resin is modified from a furan resin by triaminopolydithiosiloxane, and the modification method thereof is shown in Example 1 of CN101531893A.
  • Curing agent aliphatic tertiary amine 2.4kg
  • Lubricant calcium stearate 0.3kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles comprise 5% by weight of the coating resin, and the hydrophobic resin accounts for 95% by weight of the coating resin;
  • the nanoparticle is selected from nanometer carbonic acid, and has a particle diameter of 50-150 nm;
  • the hydrophobic resin is modified from a furan resin by a polysiloxane triol to obtain a modification method. See Example 1 described in CN101531893A.
  • Lubricant polyethylene wax 0.2kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles comprise 30% by weight of the coating resin, and the hydrophobic resin accounts for 70% by weight of the coating resin;
  • the nano particles are mixed with nano silica and nano alumina, and the particle diameter is 50-150 nm; the hydrophobic resin is modified by phenol case resin modified by tricarboxy polydithiosiloxane. See Example 1 described in CN101531893A.
  • Silane coupling agent 0.12kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles comprise 40% by weight of the coating resin, and the hydrophobic resin accounts for 60% by weight of the coating resin;
  • the nanoparticle is selected from one or a mixture of nano silica, nano alumina, nanometer oxidation and nanocarbon 4, and the particle diameter is 50-150 nm;
  • the hydrophobic resin is modified from tetrafluoroethylene by a phenol resin, and the modification method thereof is shown in Example 1 of CN101531893A.
  • the curing agent is polyfurfural, hexamethylenetetramine, aliphatic amine, tertiary amine and salt thereof, aromatic amine and modified body thereof, imidazole, polymer prepolymer, peroxide acyl group or One or a mixture of several of the peroxyesters.
  • the silane coupling agent is a silane coupling agent, and ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -(A) can be selected.
  • the lubricant is one or a mixture of polyethylene wax, oxidized polyethylene wax, stearic acid amide or calcium stearate.
  • the aggregate particles are ceramsite.
  • Curing agent polyfurfural 0.1kg 9 Silane coupling agent ⁇ -aminopropyltriethoxysilane: 0.1kg
  • Lubricant polyethylene wax 0.05kg
  • the coating resin is a hydrophobic resin, and the hydrophobic resin is modified by a tricarboxy polydiphenylsiloxane to obtain a modification method. See Example 1 of CN101531893A.
  • Curing agent aliphatic tertiary amine 2.4kg
  • Lubricant calcium stearate 0.3kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles occupy 1% by weight of the coating resin, and the hydrophobic resin accounts for 99% by weight of the coating resin;
  • the nanoparticle is selected from nanocarbonate 4, and has a particle diameter of 50-150 nm;
  • the hydrophobic resin is modified from ⁇ , ⁇ -dihydroxypolydiphenylsiloxane by a furan resin, and the modification method thereof is shown in Example 1 of CN101531893A.
  • Lubricant oxidized polyethylene wax 0.9kg
  • the coating resin comprises a hydrophobic resin and nanoparticles, the nanoparticles comprise 70% by weight of the coating resin, and the hydrophobic resin accounts for 30% by weight of the coating resin;
  • the nanoparticles are selected from nano-alumina and have a particle size of 50-150 nm;
  • the hydrophobic resin is modified by a polysiloxane triol to obtain a modification method. See Example 1 described in CN101531893A.
  • the prepared proppant has a contact angle of 120 ° ⁇ ⁇ 180 ° and has strong hydrophobic properties.
  • the organosilicon compound tricarboxysiloxy-indenyl silsesquioxane; the fluorine-containing compound may also be selected from one or a mixture of vinylidene fluoride and chlorotrifluoroethylene or a fluorine-containing carboxylic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Lubricants (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

说 明 书
一种疏水支撑剂及其制备方法 技术领域 本发明属于油田开釆领域中的油、 气井支撑剂, 具体涉及一种疏水支撑 剂及其制备方法。 背景技术 水力压裂技术是提高低渗、 特低渗油气田釆收率的主要手段, 支撑剂是 在石油水力压裂中用来支撑裂缝不使裂缝再重新闭合的一种固体颗粒。 在压 裂过程中, 支撑剂形成了一个用于支撑裂缝的介质, 使裂缝保持被支撑状态, 为油气的引出提供传导通道, 因此选择支撑剂对油气田增产至关重要。 目前 国内外广泛使用的支撑剂主要有天然石英砂、 烧结陶粒和树脂覆膜支撑剂。
石英砂一般指来自天然的硅砂, 主要应用于浅层低闭合压力井的压裂作 业, 外形类似于球形, 因此具有一定的流动性, 石英砂强度相对低, 抗破碎 能力较差。 烧结陶粒多采用铝矾土、 硅的氧化物和其它矿石通过高温煅烧(1 380 ~ 1420°C )获得, 主要用于中深井压裂工艺, 陶粒支撑剂存在能耗大、 资 源有限、 成本高、 密度大等缺点。 这两种支撑剂由于在使用过程中需要承受 较大的冲击力和闭合应力, 会产生大量碎片和细粉砂, 这些物质会堵塞裂缝 从而降低裂缝的导流能力, 因此难以满足日益增长的压裂工艺技术的要求。
树脂覆膜支撑剂一般采用环氧树脂、 酚醛树脂、 呋喃树脂或这几种树脂 的组合作为粘结剂, 包覆于石英砂、 陶粒或核桃壳外层制备得到。 通过对粘 结剂的改性可以得到不同功能树脂覆膜支撑剂。 选择性透油阻水支撑剂就是 通过化学方法将低表面能的疏水基团引入树脂分子链中, 使树脂膜具有较好 的疏水性从而提高了支撑剂的阻水性能, 得到具有透油阻水性能的功能性支 撑剂。
CN101531893A提供一种功能型预固化树脂覆膜支撑剂,该支撑剂在树脂 覆膜固化的过程中, 添加了带有活性基团和疏水基团的有机硅化合物与树脂 进行反应, 将有机硅化合物分子连接到树脂膜交联网上, 由于有机硅化合物 属于低表面能物质, 其带有的疏水基团包覆于树脂的外表面, 使得在该外表 面上固液相相接触面时, 其接触角 0 > 90。, 形成了疏水结构, 使得该树脂覆 膜支撑剂的外表面具有疏水亲油性的特性, 提高了油气同水的分离效果, 降 低了采油成本;同时该树脂膜良好的疏水性使支撑剂具有较好的耐水性, 支撑 剂抗破碎能力得到提高, 导流效果较好。
但该现有技术依然存在以下缺点: 上述疏水支撑剂是通过添加低表面能: 的材料有机硅类化合物改性树脂以提高支撑剂的阻水效果, 但是由于该树脂 膜的外表面是光滑的, 而通常低表面能材料修复光滑固体的表面, 其水接触 角最大也仅为 120。, 因此对于在中深井油层或高驱替压力的油层的压裂工艺 中, 当在支撑剂的外表面处固液相接触角可能大于 120。时, 该支撑剂的阻水 效果将大大降低, 甚至阻水效果失效, 使得该现有技术中所述的支撑剂的应 用工况受到限制, 因此为了提高透油阻水支撑剂的阻水效果, 使其使用于各 种压裂工艺的工况, 需要对覆膜材料的结构进行改进。 发明内容 本发明所要解决的技术问题在于现有技术中覆膜树脂支撑剂的树脂膜 外表面结构光滑导致的支撑剂阻水效果降低、适用工况受限的问题, 为此本 发明提供了一种通过在疏水树脂的表面构建微-纳结构的疏水支撑剂。 为实现上述发明目的, 本法采用如下技术方案: 一种疏水支撑剂, 其特征在于: 所述疏水支撑剂包括骨料颗粒、 在骨料颗粒外固化有覆膜树脂; 所述覆 膜树脂包括疏水树脂和均匀分布于所述疏水树脂中的纳米粒子; 所述纳米粒子占所述覆膜树脂重量的 5-60%; 所述骨料颗粒与所述覆膜 树脂的重量份比为 60-95: 3-30。
所述的纳米粒子为纳米二氧化硅、 纳米氧化铝、 纳米氧化锌及纳米^ ^酸 钙中的一种或其中几种的混合物。
所述纳米粒子的粒径范围为 50-150nm。
所述疏水支撑剂还包括硅烷偶联剂, 所述硅烷偶联剂与所述覆膜树脂的: 重量份比为 0.1-1 : 100。
所述的疏水树脂是由侧链为疏水基团的有机硅化合物或侧链为疏水基团 的含氟化合物对树脂改性而得的树脂。 所述的有机硅化合物为三羧基聚二苯 基硅氧烷、 α,ω—二羟基聚二曱基硅氧烷、 三氨基聚二曱基硅氧烷、 聚硅氧烷 三醇、 三羧基聚二曱基硅氧烷和三羧基硅氧-曱基硅倍半氧烷中的一种或其 中几种的混合物; 所述含氟化合物为四氟乙烯、 偏氟乙烯和三氟氯乙烯或含 氟羧酸中的一种或其中几种的混合物。
所述侧链的疏水基团的结构式为,
3
(R,)3— Si— O-t^i— O-fe-Si— ( 2)3 其中 Rl、 R2为氨基、 羟基、 羧基、 烷氧基中的一种或多种, R3、 R4可 以为烷基或芳烃基的一种或者多种, n为 4-200的整数。
所述硅烷偶联剂为 γ-氨丙基三乙氧基硅烷, γ-(2,3-环氧丙氧) 丙基三曱氧 基硅烷 , γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷(ΚΗ570 ),Ν-β- (氨乙基) -γ- 氨丙基三曱氧基硅烷, 乙烯基三(β-曱氧基乙氧基)硅烷中的一种或其中几种 的混合物。 本发明还提一种疏水支撑剂的制备方法, 其特征在于, 由如下步骤组成:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 搅拌, 冷却至室温, 得 到纳米粒子均匀分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热, 加入步骤 1 )制备得到的覆膜树脂以及硅烷偶联剂, 搅拌 10-60秒混勾, 使所述覆膜树脂均勾包覆在所述骨料颗粒表面;
3 )使所述覆膜树脂固化。 所述步骤 3 ) 中通过添加固化剂使所述覆膜树脂固化。
所述固化剂为多聚甲醛、 六次甲基四胺、 脂肪族胺、 叔胺及其盐、 芳香 族胺及其改性体、 咪唑、 高分子预聚体、 过氧化酰类或过氧化酯中的一种或 其中几种的混合物; 所述固化剂与所述覆膜树脂的重量份数比为 1-20: 100。
所述步骤 3 )之后还包括步骤
4 ) 添加润滑剂, 搅拌均勾, 冷却, 过筛。
所述润滑剂为聚乙烯蜡、 氧化聚乙烯蜡、 硬脂酸酰胺或硬脂酸钙中的一 种或其中几种的混合物; 所述润滑剂与所述覆膜树脂的重量份数比为 0.5-1.5: 100。
所述步骤 1 ) 中搅拌条件为 8000r下搅拌 30min。 所述步驟 2 ) 中骨料颗粒加热至 200-220°C。
本发明所述的疏水支撑剂与现有技术方案相比现有技术具有的优点为: 通过在现有的疏水树脂的表面构筑具有纳米结构的粗糙表面, 即微 -纳结构, 使得实际上固液相的接触面要大于表观几何上的观察到的面积。 通过本发明 制备的疏水支撑剂当其表面遇到水时, 有一些空气会被"关到"水与支撑剂表 面之间,导致水珠大部分与空气接触, 与支撑剂直接接触面积反而大大减小。 由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形, 其接触角 Θ增大, 因此水珠可以很自由地在表面滚动, 从而大大增强了该树脂膜的疏 水性, 因此使得该覆膜支撑剂的阻水性大大增强, 本发明所述疏水支撑剂与 水的接触角 Θ为 120。< Θ < 180°, 疏水效果大大增强, 适用工况更为广泛。 具体实施方式
实施例 1-6使用的环氧树脂、 呋喃树脂、 酚醛树脂均为市售产品。 实施例 1
用于制备疏水支撑剂的原料:
覆膜树脂: 10kg
骨料颗粒石英砂: 200kg 固化剂多聚曱醛: 0.1kg , 硅烷偶联剂 γ-氨丙基三乙氧基硅烷: 0.1kg
润滑剂聚乙烯蜡: 0.05kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 50%, 疏水树脂占覆膜树脂重量的 50%;
所述纳米粒子选用纳米二氧化硅, 粒径为 50-150nm;
所述疏水树脂是由环氧树脂经三羧基聚二苯基硅氧烷改性而得其改性方 法见 CN101531893A记载的实施例 1。
用于制备疏水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均勾分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混匀,使所述覆膜树脂均匀^:于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 实施例 2
用于制备疏水支撑剂的原料:
覆膜树脂: 30kg
骨料颗粒陶粒: 950kg
固化剂六次甲基四胺: 1.5kg
硅烷偶联剂 γ-(2,3-环氧丙氧) 丙基三曱氧基硅烷: 0.03kg
润滑剂氧化聚乙烯蜡: 0.9kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量 0%, 疏水树脂占覆膜树脂重量的 40%;
所述纳米粒子选用纳米氧化铝, 粒径为 50-150nm;
所述疏水树脂是由环氧树脂经 α,ω—二羟基聚二甲基硅氧烷改性而得其 改性方法见 CN101531893A记载的实施例 1。
用于制备 i^水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均勾分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述覆膜树脂均勾^:于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均勾, 冷却, 过筛, 即得。 实施例 3
用于制备疏水支撑剂的原料:
覆膜树脂: 20kg
骨料颗粒坚果壳: 40kg
固化剂脂肪族胺: 4kg
硅烷偶联剂 γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷: 0.06kg
润滑剂硬脂酸酰胺: 0.5kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 20%, 疏水树脂占覆膜树脂重量的 80%;
所述纳米粒子选用纳米氧化锌, 粒径为 50-150nm;
所述疏水树脂是由呋喃树脂经三氨基聚二曱基硅氧烷改性而得其改性方 法见 CN101531893A记载的实施例 1。
用于制备 i^f水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均匀分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使广 Γ述覆膜树脂均匀^ t于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 实施例 4
用于制备疏水支撑剂的原料:
覆膜树脂: 30kg
骨料颗粒玻璃球: 95kg
固化剂脂肪族叔胺: 2.4kg
硅烷偶联剂 Ν-β- (氨乙基) -γ-氨丙基三曱氧基硅烷: 0.15kg
润滑剂硬脂酸钙: 0.3kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 5%, 疏水树脂占覆膜树脂重量的 95%;
所述纳米粒子选用纳米碳酸 4丐, 粒径为 50-150nm;
所述疏水树脂是由呋喃树脂经聚硅氧烷三醇改性而得其改性方法见 CN101531893A记载的实施例 1。
用于制备疏水支撐剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均匀分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述覆膜树脂均勾 于所述骨料颗粒表
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 实施例 5
用于制备疏水支撑剂的原料:
覆膜树脂: 10kg 7 骨料颗粒石英砂: 75kg
固化剂咪唑: 1.5kg
硅烷偶联剂乙烯基三(β-曱氧基乙氧基)硅烷: 0.08kg
润滑剂聚乙烯蜡: 0.2kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 30%, 疏水树脂占覆膜树脂重量的 70%;
所述纳米粒子选用纳米二氧化硅与纳米氧化铝混合,粒径均为 50-150nm; 所述疏水树脂是由酚酪树脂经三羧基聚二曱基硅氧烷改性而得其改性方 法见 CN101531893A记载的实施例 1。
用于制备疏水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均勾分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述覆膜树脂均勾分散于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 实施例 6
用于制备疏水支撑剂的原料:
覆膜树脂: 20kg
骨料颗粒: 85kg
固化剂: 2.4kg
硅烷偶联剂: 0.12kg
润滑剂: 0.3kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 40%, 疏水树脂占覆膜树脂重量的 60%; 所述纳米粒子选用纳米二氧化硅、 纳米氧化铝、 纳米氧化辞以及纳米碳 酸 4弓中的一种或其中几种的混合物, 粒径均为 50-150nm;
所述疏水树脂是由酚醛树脂经四氟乙烯改性而得其改性方法见 CN101531893A记载的实施例 1。
所述的固化剂为多聚曱醛、 六次甲基四胺、 脂肪族胺、 叔胺及其盐、 芳 香族胺及其改性体、 咪唑、 高分子预聚体、 过氧化酰类或过氧化酯中的一种 或其中几种的混合物。
所述的硅烷偶联剂为硅烷偶联剂, 可以选择 γ-氨丙基三乙氧基硅烷, γ-(2,3-环氧丙氧) 丙基三曱氧基硅烷, γ- (甲基丙烯酰氧) 丙基三曱氧基硅烷, Ν-β- (氨乙基)卞氨丙基三曱氧基硅烷, 乙烯基三(β-曱氧基乙氧基)硅烷中 的一种或其中几种的混合物。
所述的润滑剂为聚乙烯蜡、 氧化聚乙烯蜡、 硬脂酸酰胺或硬脂酸钙中的 一种或其中几种的混合物。
所述骨料颗粒为陶粒。
用于制备 i f水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均勾分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220 °C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述覆膜树脂均勾^:于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 对比例 1
用于制备疏水支撑剂的原料:
覆膜树脂: 10kg
骨料颗粒石英砂: 200kg
固化剂多聚曱醛: 0.1kg 9 硅烷偶联剂 γ-氨丙基三乙氧基硅烷: 0.1kg
润滑剂聚乙烯蜡: 0.05kg
其中覆膜树脂为疏水树脂 , 所述疏水树脂是由环氧树脂经三羧基聚二苯 基硅氧烷改性而得其改性方法见 CN101531893A记载的实施例 1。
用于制备疏水支撑剂的方法:
1 )制备得到所需疏水树脂;
2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的疏水树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述疏水树脂均勾^于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 对比例 2
用于制备疏水支撑剂的原料:
覆膜树脂: 30kg
骨料颗粒玻璃球: 95kg
固化剂脂肪族叔胺: 2.4kg
硅烷偶联剂 Ν-β- (氨乙基) -γ-氨丙基三甲氧基硅烷: 0.15kg
润滑剂硬脂酸钙: 0.3kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 1%, 疏水树脂占覆膜树脂重量的 99%;
所述纳米粒子选用纳米碳酸 4弓, 粒径为 50-150nm;
所述疏水树脂是由呋喃树脂经 α,ω—二羟基聚二曱基硅氧烷改性而得其 改性方法见 CN101531893A记载的实施例 1。
用于制备疏水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均匀分布于所述疏水树脂中的覆膜树脂; 2 )将骨料颗粒加热至 200-220°C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述覆膜树脂均勾^:于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 对比例 3
用于制备疏水支撑剂的原料:
覆膜树脂: 30kg
骨料颗粒陶粒: 950kg
固化剂六次曱基四胺: 1.5kg
硅烷偶联剂 γ-(2,3-环氧丙氧) 丙基三曱氧基硅烷: 0.03kg
润滑剂氧化聚乙烯蜡: 0.9kg
其中覆膜树脂包括疏水树脂和纳米粒子, 纳米粒子占覆膜树脂重量的 70%, 疏水树脂占覆膜树脂重量的 30%;
所述纳米粒子选用纳米氧化铝, 粒径为 50-150nm;
所述疏水树脂是由环氧树脂经聚硅氧烷三醇改性而得其改性方法见 CN101531893A记载的实施例 1。
用于制备疏水支撑剂的方法:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 8000r下搅拌 30min, 冷 却至室温, 得到纳米粒子均勾分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热至 200-220 °C时, 加入步骤 1 )制备得到的覆膜树脂和 硅烷偶联剂,搅拌 10-60秒混勾,使所述覆膜树脂均勾分散于所述骨料颗粒表 面;
3 )将固化剂加入上述制备得到的混合物中, 混匀, 固化 15-120秒;
4 )将润滑剂加入固化好的混合物中, 搅拌均匀, 冷却, 过筛, 即得。 使用 OCA 15EC视频光学接触角测量仪测量各实施例及对比例中制得的疏 水性支撑剂的接触角, 并加以对比, 对比结果见下表。
表 1 添加不同含量纳米粒子的接触角对比
Figure imgf000014_0001
通过对比可见, 当纳米粒子占所述覆膜树脂的含量在 5%-60%时, 所制备 的到的支撑剂的接触角 120° < Θ 180°, 具备较强的疏水性能。
除上述实施例外, 有机硅化合物三羧基硅氧-曱基硅倍半氧烷; 含氟化 合物还可以选择偏氟乙烯和三氟氯乙烯或含氟羧酸中的一种或其中几种的混 合物。 显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式 的限定。对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做 出其它不同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷 举。 而由此所引伸出的显而易见的变化或变动仍处于发明的保护范围之中。

Claims

权 利 要 求 书
1、 一种疏水支撑剂, 其特征在于: 所述疏水支撑剂包括骨料颗粒、 在骨料颗粒外固化有覆膜树脂; 所述 覆膜树脂包括疏水树脂和均勾分布于所述疏水树脂中的纳米粒子; 所述纳米粒子占所述覆膜树脂重量的 5-60%; 所述骨料颗粒与所述覆 膜树脂的重量份比为 60-95: 3-30。
1、 根据权利要求 1所述的疏水支撑剂, 其特征在于:
所述的纳米粒子为纳米二氧化硅、 纳米氧化铝、 纳米氧化锌及纳米碳 酸 4丐中的一种或其中几种的混合物。
3、 根据权利要求 1所述的疏水支撑剂, 其特征在于:
所述纳米粒子的粒径范围为 50-150nm。
4、 根据权利要求 1所述的疏水支撑剂, 其特征在于:
所述疏水支撑剂还包括硅烷偶联剂, 所述硅烷偶联剂与所述覆膜树脂 的重量份比为 0.1-1 : 100。
5、 根据权利要求 1所述的疏水支撑剂, 其特征在于:
所述的疏水树脂是由侧链为疏水基团的有机硅化合物或侧链为疏水基 团的含氟化合物对树脂改性而得的树脂。
6、 根据权利要求 1-5任一所述的疏水支撑剂, 其特征在于:
所述的有机硅化合物为三羧基聚二苯基硅氧烷、 α,ω—二羟基聚二曱基 硅氧烷、 三氨基聚二曱基硅氧烷、 聚硅氧烷三醇、 三羧基聚二曱基硅氧烷 和三羧基硅氧-曱基硅倍半氧烷中的一种或其中几种的混合物; 所述含氟 化合物为四氟乙烯、 偏氟乙烯和三氟氯乙烯或含氟羧酸中的一种或其中几 种的混合物。
7、 根据权利要求 6所述的疏水支撑剂, 其特征在于:
所述侧链的疏水基团的结构式为, 3
(R|)「Si— 0~( —OtSi ~" ( 2)3 其中 Rl、 R2为氨基、 羟基、 羧基、 烷氧基中的一种或多种, R3、 R4 可以为烷基或芳烃基的一种或者多种, n为 4-200的整数。
8、 根据权利要求 4所述的疏水支撑剂, 其特征在于:
所述硅烷偶联剂为 γ-氨丙基三乙氧基硅烷, γ-(2,3-环氧丙氧) 丙基三曱 氧基硅烷, γ- (曱基丙烯酰氧)丙基三甲氧基硅烷, Ν-β- (氨乙基) -γ-氨丙基 三甲氧基硅烷, 乙烯基三(β-曱氧基乙氧基)硅烷中的一种或其中几种的混 合物。
9、 根据权利要求 1-8任一项所述的疏水支撑剂的制备方法, 其特征在 于, 由如下步骤组成:
1 )将疏水树脂加热至熔融状态, 加入纳米粒子, 搅拌, 冷却至室温, 得到纳米粒子均匀分布于所述疏水树脂中的覆膜树脂;
2 )将骨料颗粒加热, 加入步骤 1 )制备得到的覆膜树脂以及硅烷偶联 剂, 搅拌 10-60秒混勾, 使所述覆膜树脂均勾包覆在所述骨料颗粒表面;
3 )使所述覆膜树脂固化。
10、 根据权利要求 9所述的制备方法, 其特征在于:
所述步骤 3 ) 中通过添加固化剂使所述覆膜树脂固化。
11、 根据权利要求 10所述的制备方法, 其特征在于:
所述固化剂为多聚曱醛、 六次曱基四胺、 脂肪族胺、 叔胺及其盐、 芳 香族胺及其改性体、 咪唑、 高分子预聚体、 过氧化酰类或过氧化酯中的一 种或其中几种的混合物; 所述固化剂与所述覆膜树脂的重量份数比为 1-20: 100。
12、 根据权利要求 9所述的制备方法, 其特征在于:
所述步骤 3 )之后还包括步骤
4 ) 添加润滑剂, 搅拌均勾, 冷却, 过筛。
13、 根据权利要求 12所述的制备方法, 其特征在于:
所述润滑剂为聚乙烯蜡、 氧化聚乙烯蜡、 硬脂酸酰胺或硬脂酸钙中的 一种或其中几种的混合物; 所述润滑剂与所述覆膜树脂的重量份数比为 0.5-3: 100。
14、 根据权利要求 9-13任一项所述的制备方法, 其特征在于: 所述步骤 1 ) 中搅拌条件为 8000r下搅拌 30min。
15、 根据权利要求 9-13任一项所述的制备方法, 其特征在于: 所述步骤 2 ) 中骨料颗粒加热至 200-220 °C。
PCT/CN2011/001558 2010-09-30 2011-09-14 一种疏水支撑剂及其制备方法 WO2012041004A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013530527A JP5917525B2 (ja) 2010-09-30 2011-09-14 疎水性プロッパント及びその調製方法
EP11827902.5A EP2623579B1 (en) 2010-09-30 2011-09-14 Hydrophobic proppant and preparation method thereof
US13/877,243 US9434874B2 (en) 2010-09-30 2011-09-14 Hydrophobic proppant and preparation method thereof
CA2821377A CA2821377C (en) 2010-09-30 2011-09-14 Hydrophobic proppant and preparation method thereof
RU2013119445/03A RU2559970C2 (ru) 2010-09-30 2011-09-14 Гидрофобный проппант и способ его получения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010500399.1 2010-09-30
CN201010500399.1A CN102443387B (zh) 2010-09-30 2010-09-30 一种疏水支撑剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2012041004A1 true WO2012041004A1 (zh) 2012-04-05

Family

ID=45891852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001558 WO2012041004A1 (zh) 2010-09-30 2011-09-14 一种疏水支撑剂及其制备方法

Country Status (7)

Country Link
US (1) US9434874B2 (zh)
EP (1) EP2623579B1 (zh)
JP (1) JP5917525B2 (zh)
CN (1) CN102443387B (zh)
CA (1) CA2821377C (zh)
RU (1) RU2559970C2 (zh)
WO (1) WO2012041004A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012088A1 (ja) * 2013-07-26 2015-01-29 住友ベークライト株式会社 被覆粒子、注入剤および充填方法
WO2015012320A1 (ja) * 2013-07-26 2015-01-29 住友ベークライト株式会社 樹脂組成物、注入剤および充填方法
CN113399227A (zh) * 2021-06-07 2021-09-17 百腾科技(苏州)有限公司 一种适用于电池包防水疏水的复合膜层及其制备方法
CN113999369A (zh) * 2021-11-18 2022-02-01 江苏科技大学 一种具有疏水性质的改性环氧树脂及其制备方法和应用

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
CA2849755C (en) 2011-09-30 2017-04-11 Momentive Specialty Chemicals Inc. Proppant materials and methods of tailoring proppant material surface wettability
CN104603230A (zh) * 2012-09-20 2015-05-06 旭硝子株式会社 矿井用支撑剂以及从含烃地层回收烃的方法
CN103172299B (zh) * 2012-09-21 2015-09-16 北京仁创科技集团有限公司 一种油水分离材料及其制备方法
CN102899018B (zh) * 2012-11-01 2015-04-01 宜兴市腾飞陶粒制造有限公司 一种高强度、高密度陶粒支撑剂及其制备方法
CN103849370B (zh) * 2012-11-30 2016-04-06 亿利资源集团有限公司 一种压裂支撑剂及其制备方法
CN103849371A (zh) * 2012-11-30 2014-06-11 亿利资源集团有限公司 一种压裂支撑剂及其制备方法
CN103254888B (zh) * 2013-05-21 2015-09-02 中国地质大学(武汉) 一种清水携带压裂支撑剂及其制备方法
BR102014022538A2 (pt) * 2013-09-12 2015-12-08 Halliburton Energy Services Inc método para tratar uma formação subterrânea, e, fluido de fraturamento
WO2015088515A1 (en) * 2013-12-11 2015-06-18 Halliburton Energy Services, Inc. Treating a subterranean formation with a composition having multiple curing stages
US10508231B2 (en) 2014-03-28 2019-12-17 Arr-Maz Products, L.P. Attrition resistant proppant composite and its composition matters
CN106255737B (zh) 2014-03-28 2020-06-09 阿尔-马兹制品公司 耐磨耗支撑剂复合物及其组合物质
US20160340571A1 (en) * 2014-04-03 2016-11-24 Halliburton Energy Services, Inc. Compositions and Methods for Hydrophobically Modifying Fracture Faces
CN105089594B (zh) * 2014-05-22 2018-09-18 中国石油化工股份有限公司 一种碳酸盐岩储层控水增效压裂方法
US10017688B1 (en) 2014-07-25 2018-07-10 Hexion Inc. Resin coated proppants for water-reducing application
CN105885819A (zh) * 2014-08-26 2016-08-24 王霆 一种超低密度球形硅树脂石油支撑剂及其制备方法
WO2016032478A1 (en) * 2014-08-28 2016-03-03 Halliburton Energy Services, Inc. Proppant suspension in hydraulic fracturing
EP3317366A1 (en) * 2015-06-30 2018-05-09 Dow Global Technologies LLC Coating for controlled release
MX2018000167A (es) * 2015-06-30 2018-03-26 Dow Global Technologies Llc Recubrimiento para capturar sulfuros.
WO2017003745A1 (en) * 2015-06-30 2017-01-05 Dow Global Technologies Llc Coating for capturing sulfides
AU2015409182A1 (en) 2015-09-15 2018-02-01 Halliburton Energy Services, Inc. Core-shell particles for treatment of subterranean formations
US11225600B2 (en) 2016-01-28 2022-01-18 Wacker Chemie Ag Modified reactive resin compositions and use thereof for coating propping agents
WO2017167396A1 (de) * 2016-04-01 2017-10-05 Wacker Chemie Ag Verfahren zur beschichtung von stützmitteln mit modifizierten reaktivharzzusammensetzungen, beschichtete stützmittel und verwendung der beschichteten stützmittel in fracking-förderverfahren
CN106147744B (zh) * 2016-06-30 2019-05-10 西南科技大学 一种包裹有超疏水高分子膜的支撑剂的制备方法
CN106277956B (zh) * 2016-07-25 2018-05-25 广西大学 一种地质聚合物压裂支撑剂的制备工艺
WO2018022554A1 (en) * 2016-07-26 2018-02-01 Board Of Regents, The University Of Texas System Microparticle carriers for aqueous compositions and methods of making
CN106367058A (zh) * 2016-08-29 2017-02-01 新疆贝肯能源工程股份有限公司 低密度防水覆膜支撑剂及制备方法
RU2719833C1 (ru) * 2016-09-30 2020-04-23 Ваккер Хеми Аг Снабженные покрытием расклинивающие агенты для метода гидроразыва пласта при добыче
US11008507B2 (en) * 2017-02-09 2021-05-18 Saudi Arabian Oil Company Nanoparticle-enhanced resin coated frac sand composition
CN107201221A (zh) * 2017-05-26 2017-09-26 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种co2干法压裂功能材料包覆支撑剂的方法
CN109575907B (zh) * 2017-09-28 2021-01-01 中国石油天然气股份有限公司 一种支撑剂及其制备方法
BR112020020514B1 (pt) 2018-04-10 2024-03-05 Baker Hughes Holdings Llc Método para conferir hidrofobicidade e/ou oleofobicidade a uma superfície de uma formação subterrânea durante a produção de hidrocarbonetos a partir da formação subterrânea
SG11202011098WA (en) 2018-05-14 2020-12-30 Saudi Arabian Oil Co Nanocomposite coated proppants and methods of making and use thereof
CN108976366B (zh) * 2018-08-13 2021-04-02 河南祥盛陶粒有限公司 一种疏水性覆膜支撑剂及其制备方法和应用
CN109777394B (zh) * 2019-02-28 2021-09-21 东北石油大学 一种自悬浮自降解支撑剂制备方法
CN109943316A (zh) * 2019-05-10 2019-06-28 中国石油天然气股份有限公司 一种适用于三元复合驱的耐碱覆膜支撑剂
CN110305670A (zh) * 2019-05-22 2019-10-08 同济大学 一种用于地表层蓄水的超疏水颗粒及其制备方法
JP2021017373A (ja) * 2019-07-17 2021-02-15 中國南玻集團股▲ふん▼有限公司 ガラス用自浄剤、自浄ガラス、これらの製造方法及び応用
US11473010B2 (en) 2019-08-22 2022-10-18 Saudi Arabian Oil Company Nanoparticle coated proppants and methods of making and use thereof
CN113999667A (zh) * 2021-12-02 2022-02-01 江苏臻诚能源科技有限公司 一种透油气阻水支撑剂的制备方法
CN115746823A (zh) * 2021-12-13 2023-03-07 中国石油天然气集团有限公司 一种环氧树脂基复合支撑剂及其制备方法
CN114032085B (zh) * 2021-12-23 2022-07-15 成都理工大学 一种压裂用高效气悬浮支撑剂及其制备方法
CN116162450A (zh) * 2023-04-21 2023-05-26 成都理工大学 一种控水压裂下沉剂及其制备方法
US11873447B1 (en) * 2023-07-17 2024-01-16 China University Of Petroleum (East China) Superhydrophobic nanoparticals and preparation method therefor, and superhydrophobic nanofluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036977A1 (en) * 2003-07-01 2007-02-15 Sinclair A R Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom
US20080283243A1 (en) * 2007-05-15 2008-11-20 Georgia-Pacific Chemicals Llc Reducing flow-back in well treating materials
CN101531893A (zh) 2009-04-28 2009-09-16 叶俊 一种功能型树脂覆膜支撑剂及其制备方法
WO2009129025A1 (en) * 2008-04-17 2009-10-22 Dow Global Technologies Inc. Powder coated proppant and method of making the same
CN101768431A (zh) * 2008-12-29 2010-07-07 北京仁创科技集团有限公司 一种耐磨损支撑剂

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732920A (en) * 1981-08-20 1988-03-22 Graham John W High strength particulates
MXPA06011762A (es) 2004-04-12 2007-04-13 Carbo Ceramics Inc Revestimiento y/o tratamiento de agentes de apoyo para la facturacion hidraulica para mejorar la humectabilidad, la lubricacion de agentes de apoyo y/o para la reduccion del dano por fluidos fracturantes y fluidos de deposito.
CN101432132B (zh) 2004-09-20 2012-11-28 迈图专业化学股份有限公司 用作支撑剂或用于砾石充填的颗粒,及其制造和使用方法
EP1856374B1 (en) * 2005-02-04 2011-11-02 Oxane Materials, Inc. A composition and method for making a proppant
US20070079965A1 (en) 2005-10-06 2007-04-12 Halliburton Energy Services, Inc. Methods for enhancing aqueous fluid recovery form subterranean formations
US7819192B2 (en) * 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
RU2318856C1 (ru) * 2006-06-09 2008-03-10 Общество С Ограниченной Ответственностью "Форэс" Проппант и способ его получения
CN101553529B (zh) * 2006-12-07 2012-09-05 3M创新有限公司 含有氟化硅氧烷的颗粒及其制备和使用方法
US7624802B2 (en) * 2007-03-22 2009-12-01 Hexion Specialty Chemicals, Inc. Low temperature coated particles for use as proppants or in gravel packs, methods for making and using the same
EA022413B1 (ru) * 2008-05-20 2015-12-30 Оксан Материалз, Инк. Способ использования функционального проппанта для определения геометрии подземной трещины
US20090298720A1 (en) * 2008-05-27 2009-12-03 Halliburton Energy Services, Inc. Methods for maintaining fracture conductivity
RU2395474C1 (ru) * 2008-12-26 2010-07-27 Общество С Ограниченной Ответственностью "Форэс" Проппант с полимерным покрытием
CN101768432B (zh) * 2008-12-29 2013-02-13 北京仁创科技集团有限公司 一种耐侵蚀支撑剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036977A1 (en) * 2003-07-01 2007-02-15 Sinclair A R Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom
US20080283243A1 (en) * 2007-05-15 2008-11-20 Georgia-Pacific Chemicals Llc Reducing flow-back in well treating materials
WO2009129025A1 (en) * 2008-04-17 2009-10-22 Dow Global Technologies Inc. Powder coated proppant and method of making the same
CN101768431A (zh) * 2008-12-29 2010-07-07 北京仁创科技集团有限公司 一种耐磨损支撑剂
CN101531893A (zh) 2009-04-28 2009-09-16 叶俊 一种功能型树脂覆膜支撑剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623579A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012088A1 (ja) * 2013-07-26 2015-01-29 住友ベークライト株式会社 被覆粒子、注入剤および充填方法
WO2015012320A1 (ja) * 2013-07-26 2015-01-29 住友ベークライト株式会社 樹脂組成物、注入剤および充填方法
CN113399227A (zh) * 2021-06-07 2021-09-17 百腾科技(苏州)有限公司 一种适用于电池包防水疏水的复合膜层及其制备方法
CN113999369A (zh) * 2021-11-18 2022-02-01 江苏科技大学 一种具有疏水性质的改性环氧树脂及其制备方法和应用
CN113999369B (zh) * 2021-11-18 2023-11-21 江苏科技大学 一种具有疏水性质的改性环氧树脂及其制备方法和应用

Also Published As

Publication number Publication date
JP2013545828A (ja) 2013-12-26
CN102443387B (zh) 2016-08-03
JP5917525B2 (ja) 2016-05-18
CA2821377C (en) 2018-06-19
EP2623579A1 (en) 2013-08-07
US20130225458A1 (en) 2013-08-29
US9434874B2 (en) 2016-09-06
EP2623579A4 (en) 2014-06-18
CN102443387A (zh) 2012-05-09
CA2821377A1 (en) 2012-04-05
RU2559970C2 (ru) 2015-08-20
RU2013119445A (ru) 2014-11-10
EP2623579B1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2012041004A1 (zh) 一种疏水支撑剂及其制备方法
US10590337B2 (en) High performance proppants
CN106147744B (zh) 一种包裹有超疏水高分子膜的支撑剂的制备方法
US9725645B2 (en) Proppant with composite coating
Chuang et al. Influences of surface modification of nano-silica by silane coupling agents on the thermal and frictional properties of cyanate ester resin
CA2921658C (en) Proppant with composite coating
US8163677B2 (en) Consolidation agents and the use thereof for consolidating molded bodies and geological formations consisting of porous or particulate materials
Zhou et al. Preparation of KH570-SiO 2 and their modification on the MF/PVA composite membrane
CN110205023A (zh) 具有疏水、防腐性能的复合纳米涂层材料及其制备方法和应用
US20230074622A1 (en) Methods of making nanoparticle coated proppants and use thereof
Ramezanzadeh et al. Enhancement of the physical/mechanical properties of an epoxy composite by addition of aluminum nanoparticles through modification with cerium oxides and functionalization by SiO2-NH2 thin films
WO2013044861A1 (zh) 一种压裂支撑剂的制备方法、压裂支撑剂及其应用
JP6317472B2 (ja) シアネート系樹脂に対する分散性に優れたシリカゾル組成物及びその製造方法
KR100791831B1 (ko) 콜로이달실리카를 이용한 폴리에폭시이미드-나노실리카유무기하이브리드 재료의 제조방법 및 그 재료
CN108349808B (zh) 用于制造表面处理的颗粒状无机材料的方法
CN105153750A (zh) 一种耐磨表面改性碳酸钙填料及其制备方法
CN1824702A (zh) 一种纳米无机粒子填充的环氧树脂减摩耐磨材料及其制备方法
CN109988442A (zh) 石墨烯水性硅酸锌涂料、其应用及防腐涂层
CN112625549A (zh) 一种耐磨超疏水复合陶瓷涂料的制备方法
US20080103067A1 (en) Hydrolytically and Hydrothermally Stable Consolidated Proppants and Method for the Production Thereof
CN112979221A (zh) 一种抗高温弹韧性防窜水泥浆体系及其制备方法
WO2022060657A1 (en) Methods of making hydraulic fracturing fluids and use thereof
CN112877048A (zh) 油田用固砂剂及其制备方法
WO2023208006A1 (zh) 改性纳米二氧化硅粒子的树脂分散液及其制备方法和应用
CN116410617A (zh) 一种表面改性玻璃微珠复合填料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11827902

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013530527

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011827902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013119445

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2821377

Country of ref document: CA