RU2318856C1 - Проппант и способ его получения - Google Patents

Проппант и способ его получения Download PDF

Info

Publication number
RU2318856C1
RU2318856C1 RU2006120393/03A RU2006120393A RU2318856C1 RU 2318856 C1 RU2318856 C1 RU 2318856C1 RU 2006120393/03 A RU2006120393/03 A RU 2006120393/03A RU 2006120393 A RU2006120393 A RU 2006120393A RU 2318856 C1 RU2318856 C1 RU 2318856C1
Authority
RU
Russia
Prior art keywords
phenol
particles
proppant
granules
formaldehyde resin
Prior art date
Application number
RU2006120393/03A
Other languages
English (en)
Inventor
Евгений Анатольевич Прибытков
Сергей Юрьевич Плинер
Сергей Федорович Шмотьев
Вячеслав Михайлович Сычев
Евгений Васильевич Рожков
Original Assignee
Общество С Ограниченной Ответственностью "Форэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39280893&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2318856(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Общество С Ограниченной Ответственностью "Форэс" filed Critical Общество С Ограниченной Ответственностью "Форэс"
Priority to RU2006120393/03A priority Critical patent/RU2318856C1/ru
Application granted granted Critical
Publication of RU2318856C1 publication Critical patent/RU2318856C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно к производству проппантов, используемых как расклинивающие агенты. Технический результат - упрощение технологии, повышение экологичности производства проппанта, обеспечивающего образование в трещинах скважины монолитного каркаса при температурах 40-80°С, т.е. пригодного для использования на неглубоких скважинах. Проппант содержит керамические магнийсиликатные гранулы, на поверхности которых выполнены выступы высотой 5-30 мкм из того же состава или из состава с большей огнеупорностью в количестве 0,5-1,5% от их веса, и полимерное покрытие из эпоксидной смолы ЭС, содержащее смесь частиц гексаметилентетрамина и фенолформальдегидной смолы ФФС размером 5-100 мкм при соотношении ФФС и ЭС 1:5-5:1. Способ изготовления этого проппанта исуществляется путем формования гранул, формирования на их поверхности выступов, обжига, нанесения указанного полимерного покрытия из ЭС с отвердителем - полиэтилентетрамином и смеси указанных частиц, отверждения до получения полимерной пленки. Изобретения развиты в зависимых пунктах. 2 н. и 6 з.п. ф-лы, 5 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, а более конкретно, к производству пропантов, используемых в качестве расклинивающих агентов при добыче нефти и газа методом гидравлического разрыва пласта.
Для восстановления нефтеотдачи нефтяных скважин производят гидравлический разрыв пласта (ГРП) с использованием частиц расклинивающего агента (скатанный песок, стеклянные или керамические шарики и др.) для поддержания трещин в расклиненном состоянии. При этом нефть через пустоты между расклинивателями вновь начинает поступать в скважину.
При гидравлическом разрыве проппанты вследствие высокого давления смыкания трещин подвержены разрушению с образованием мелочи, которая перемещается и закупоривает каналы в расклиненной трещине, поэтому для гидроразрыва наиболее перспективны высокопрочные керамические проппанты, обладающие оптимальным соотношением цены и качества.
В процессе эксплуатации восстановленных гидроразрывом с использованием проппантов скважин весьма вероятен их вынос из скважин вместе с нефтью. Для предотвращения такого нежелательного явления проппанты покрывают полимерной смолой, которая после проведения гидроразрыва полимеризуются, и проппанты, слипаясь, создают монолитный каркас с сохранением около 40% по объему сквозных каналов, сквозь которые нефть поступает в скважину и выдавливается на поверхность без захвата проппантов.
В зависимости от глубины скважины температура пласта может колебаться от 30 до 150°С, поэтому для получения слипающихся покрытий используют различные виды полимерных материалов.
Известен способ получения проппантов, включающий формирование двухслойного полимерного покрытия на керамических гранулах, нагретых до 150-250°С (патент США №5422183 от 06.06.1995 г.):
- при перемешивании добавляют фенолформальдегидную смолу с гексаметилентетрамином;
- до полимеризации смолы добавляют при перемешивании пылевидный напонитель (кварцевую муку, тальк или полимерный порошок);
- перемешивают материал до полной полимеризации слоя;
- вновь добавляют фенолформальдегидную смолу с последующим ее оплавлением, а затем вливают водный раствор гексаметилентетрамина для быстрого охлаждения и неполной полимеризации внешнего покрытия.
Таким образом, получают частично отвержденное покрытие, которое может дополимеризовываться в скважине, тем самым создавая монолитный каркас.
Недостатком данного покрытия следует признать высокую температуру деполимеризации проппанта (свыше 80°С) с образованием монолитного каркаса.
Наиболее близким по технической сущности является проппант с многослойным полимерным покрытием из эпоксидной смолы (см. патент США №5609207 от 22.12.1995 г.), согласно которому проппант на скважине покрывают эпоксидной смолой с отвердителем и производят гидроразрыв. Преимущество полимерного проппанта с неотвержденным покрытием в том, что создание монолитного каркаса происходит в широком интервале температур, т.е. на скважинах любой глубины. Вместе с тем, в реальных условиях (отрицательные температуры, технические возможности) использование такого материала затруднительно, а порой невозможно.
Недостатком данного покрытия следует признать высокую температуру деполимеризации проппанта (свыше 80°С) с образованием монолитного каркаса, либо очень длительные выдержки с сохранением давления гидроразрыва при более низких температурах, что усложняет процесс восстановления скважин. Поскольку большинство скважин имеет температуру нефтяного пласта 40-70°С, более перспективным является полимерное покрытие на проппанте, имеющее более низкую температуру полимеризации с образованием монолитного каркаса. Кроме того, известное покрытие является сложным в процессе его нанесения при громоздкости аппаратурного оформления, а также экологической вредности процесса, т.к. при высоких температурах происходит испарение фенола и формальдегида.
Технической задачей, на решение которой направлено заявляемое изобретение, является создание на поверхности проппанта слипающегося покрытия, обеспечивающего образование в трещинах скважины монолитного каркаса при температурах 40-80°С т.е. пригодного для использования на большинстве неглубоких скважин, а так же упрощение технологии нанесения слипающегося покрытия при условии повышении экологичности производства.
Указанный результат достигается тем, что в известном проппанте, содержащем керамические гранулы с полимерным покрытием из отвержденной эпоксидной смолы, на поверхности керамической магнийсиликатной гранулы выполнены выступы высотой 5-30 мкм каждый из того же состава или из состава с большей огнеупорностью в количестве 0,5-1,5% от ее веса, полимерное покрытие выполнено в один слой, в котором вкраплена смесь частиц гексаметилентетрамина и фенолформальдегидной смолы размером 5-100 мкм при их соотношении от 1:5 до 5:1 соответственно и соотношении фенолформальдегидной смолы и эпоксидной смолы от 1:5 до 5:1.
Смесь частиц фенолформальдегидной смолы и гексаметилентетрамина дополнительно содержит неорганический модификатор в количестве 0,5-20 мас.% от массы фенолформальдегидной смолы.
В способе изготовления проппанта, содержащем керамические гранулы с полимерным покрытием из отвержденной эпоксидной смолы, включающем формование керамических гранул, формирование на их поверхности указанных выступов, обжиг, нанесение полимерного покрытия из эпоксидной смолы с отвердителем - полиэтиленполиамином-ПЭПА и смеси указанных частиц с последующим отверждением до получения полимерной пленки нанесение полимерного покрытия осуществляют путем перемешивания суспензии указанных частиц в эпоксидной смоле и ПЭПА с указанными гранулами, или растворителе с указанными гранулами, на которые предварительно нанесена эпоксидная смола. Нанесение полимерного покрытия осуществляют путем опудривания указанными частицами указанных гранул со свеженанесенной эпоксидной смолой с ПЭПА. Кроме того, смесь частиц фенолформальдегидной смолы и гексаметилентетрамина дополнительно содержит неорганический модификатор в количестве 0,5-20 мас.% от массы фенолформальдегидной смолы, а указанное отверждение эпоксидной смолы до получения пленки осуществляют при температуре 5-30°С.
Толщина покрытия, получаемого на поверхности проппантов, зависит от тонкости помола фенолформальдегидной смолы и гексаметилентетрамина, количества наносимого материала и в среднем составляет 20-100 мкм.
Отвердитель используется для отверждения эпоксидной смолы и может быть выбран из основной группы аминов, кислот и кислотных ангидридов, жирных масел и кислот, фенопластов и аминопластов. Подходящие основные отвердители: триэтилентриамин диэтилентриамин, этилендиамин, триэтилентетрамин, передин, диметиламинопропиламин, диэтиламинопропиламин, метандиамин, триэтиламин, бензилдиэтилен-детиламинофенол, детриметиламиноэтилфенол, А-метилбензил-диметиламин, метафенилендиамин, 4,4-метилендиамилин, полиэтиленполиамин, диаминодифенилсульфон изофорондиамин и смеси таких аминов. Кроме того, могут быть использованы кислотные отвердители, включающие щавелевую кислоту, фталевую кислоту, пиромеллитовую кислоту, пиромеллитовый диангидрид, малеиновый ангидрид, изометилтетрагидрофталевый ангидрид, тетрагидрофталевый ангидрид.
С целью снижения вязкости эпоксидной смолы для более качественного и удобного нанесения в нее можно вводить растворитель, в качестве которого можно использовать бутил-глицидиловый эфир, фенил-глицидиловый эфир, крезил-глицидиловый эфир, децил-глицидиловый эфир, диоксид винилциклогексена, 1, 4-бутадинол-диглицидиловый эфир, дибутилфталат, ароматические фракции углеводородного масла, ацетон, трихлорэтилен, ксилол, этилцеллозольв.
В полимерное покрытие из отвержденной эпоксидной смолы с вкрапленными в нее частицами фенолформальдегидной смолы и гексаметилентетрамина вводят неорганический модификатор в количестве от 0,5% до 20% от массы фенолформальдегидной смолы. В качестве модификатора могут быть использованы соединения: ZnO, CaO, MgO, борная кислота, стеарат кальция и другие в количестве 0,5-20% от массы фенолформальдегидной смолы для повышения стабильности покрытия при высоких температурах. Например, для скважин:
- 40-50°С: СФ:ГМТА - 1:1, модификатор 0,1-5%;
- 50-60°С: СФ:ГМТА - 2:1, модификатор 5-10%;
- 60-70°С: СФ:ГМТА - 3:1, модификатор 10-15%;
- 70-85°С: СФ:ГМТА - 5:1, модификатор 15-20%.
Обязательным условием формирования предлагаемого однослойного гетерогенного термореактивного полимерного покрытия является температура отверждения, которая должна быть в пределах 5-30°С, т.к. при более высоких температурах значительная доля частиц фенолформальдегидной смолы взаимодействует с эпоксидной смолой и не образует в дальнейшем низкотемпературного термореактивного покрытия. Процесс отверждения эпоксидной смолы в составе термореактивного полимерного покрытия сильно зависит от условий окружающей среды. Это влияние определяется зависимостью времени отверждения эпоксидной смолы от температуры, для которой справедливы следующие значения:
- при 25-30°С время = 20 часов;
- при 20-25°С время = 24 часа;
- при 10-20°С время = 30 часов;
- при 5-10°С время = 40 часов;
- при температуры ниже 5°С время = более 50 часов;
Неожиданным является тот факт, что процесс формирования монолитного каркаса, т.е. полимеризации фенолформальдегидной смолы, происходит при столь низких температурах, что противоречит техническим характеристикам применяемых смол. По-видимому, механизм низкомолекулярной полимеризации заключатся в том, что в процессе отверждения эпоксидная смола и продукты ее поликонденсации вступают в реакцию с частицами фенолформальдегидной смолы, изменяя их структуры. Возможность протекания такой реакции используется при отверждении эпоксидных клеев феноло-формальдегидными смолами, но они используются при горячем отверждении при 140-300°С, без присутствия воды.
Дополнительным условием формирования предлагаемого покрытия следует отметить крупность частиц фенолформальдегидной смолы и гексаметилентетрамина: их необходимо совместно диспергировать в сухом виде в искрозащищенной мельнице до среднемедианного размера частиц менее 20 мкм. При более грубом помоле процесс формирования монолитного каркаса становится слишком длительным и не соответствует существующей технологии гидроразрыва.
Практически реализация предлагаемого однослойного гетерогенного покрытия на проппантах может быть осуществлена в многолопастном смесителе несколькими путями:
- перемешивание суспензии частиц фенолформальдегидной смолы и гексаметилентетрамина в эпоксидной смоле и отвердителе с проппантами;
- перемешивание суспензии частиц фенолформальдегидной смолы и гексаметилентетрамина в отвердителе и разбавителя с проппантами, на которые предварительно нанесли покрытие из эпоксидной смолы или наоборот;
- опудривание поверхности проппантов со свеженанесенной эпоксидной смолой с отвердителем, частицами фенолформальдегидной смолы и гексаметилентетрамином.
Условием получения однослойного гетерогенного термореактивного полимерного покрытия на керамических проппантах является состояние поверхности последних. В патенте США 5422183 для упрочнения частично отвержденного покрытия вводят упрочняющий наполнитель, например кварцевую пыль.
Авторы настоящего изобретения заявляют, что более эффективным упрочнителем покрытия является наличие на поверхности пропантов припеченных при обжиге гранул, частиц того же или более огнеупорного состава, что проппанты, размером 5-30 мкм в количестве 0,5-1,5% от веса гранул. Реализация процесса нанесения таких частиц осуществляется регулированием помола исходного сырья, либо опудриванием гранул до обжига специально приготовленным материалом в процессе их грануляции. Процесс прилипания частиц реализуется одновременно с обжигом проппантов при температуре 1240-1280°С (для магний - силикатных проппантов), для проппантов другого состава, например алюмосиликатных, температура обжига составляет 1350-1550°С и, соответственно, огнеупорность материала выступов должна быть выше 1550°С. Припеченные частицы служат в качестве арматуры для удержания покрытия при транспортировании пропантов и их нагреве в скважине (коэффициент термического расширения материала покрытия на порядок выше, чем коэффициент термического керамического материала самого проппанта).
Припеченные частицы также препятствуют деформации покрытия при гидроразрыве и дальнейшем расклинивании трещины, что повышает проницаемость монолитного каркаса и, как следствие, увеличивает нефтеотдачу.
Повышение доли припеченных частиц свыше 1,5% препятствует равномерному растеканию покрытия при нанесении и снижает прочность монолитного каркаса. Снижение доли припеченных частиц менее 0,5% резко снижает их эффективность как армирующих покрытие выступов.
Выступы на поверхности керамических гранул, формируемые припеканием при обжиге частиц размером 5-30 мкм, могут иметь тот же состав, что и керамические гранулы, или более огнеупорный состав, предохраняющий гранулы от слипания при обжиге, но припекающиеся к гранулам. В качестве материала выступа с большей огнеупорностью могут быть использованы оливин, кордиерит, кварц, глинозем и другие материалы с температурой плавления выше 1350°С для магний - силикатных проппантов.
Заявляемая сущность подтверждается следующими примерами.
Для нанесения покрытия использовали магнийсиликатные проппанты производства ООО «Форэс» размером 10/14 (1,4-2,0 мм), полученные, например, по патентам РФ №2235702, 2235703, или проппанты, изготовленные из алюмосиликатного и высокоглиноземистого сырья.
Для формирования покрытия использовали следующие материалы:
эпоксидную смолу ЭД-16, полиэтиленполиамин, гексаметилентетрамин, фенолформальдегидную смолу СФ-010, порошок ZnO.
Фенолформальдегидную смолу и гексаметилентетрамин (ГМТА) размалывали в искрозащищенной мельнице до среднемедианного размера частиц 9,6 мкм (прибор «Shimadzu»), использовали соотношение фенолформальдегидной смолы, гексаметилентетрамин и оксида цинка в соотношениях, приведенных в таблице 1.
Таблица 1
Составы при различном соотношении фенолформальдегидной смолы, гексаметилентетрамин и оксида цинка
Параметры Примеры составов
1 2 3 4 5 6 7 8 9 10
Фенолформальдегидная смола СФ-010: ГМТА 1:5 1:3 1:1 2:1 3:1 5:1 1:3 1:1 2:1 3:1
Оксид цинка, % от массы фенолформальдегидной смолы 0 0 0 0 0 0 5 10 15 20
Температура полимеризации проппанта, °С 40 50 55 65 75 85 45 55 65 75
В скоростной смеситель для вязких жидкостей загружали 12 кг эпоксидной смолы, 12 кг порошкообразной массы, приготовленной для каждого состава (таблица 1). Перемешивание производили течение 20 минут, далее полученную суспензию сливали в многолопастный смеситель с загруженными 980 кг проппантов. В данной серии примеров использовали проппант с размером припеченных на их поверхности частиц 15 мкм, в количестве 1,0%. Перемешивание производилось в течение 10 минут, по прошествии этого времени в смеситель добавили 3 кг полиэтиленполиамина и продолжили перемешивание в течение еще 10 минут. По завершении общего времени перемешивания, которое составляет 20 минут, проппанты выгружали из смесителя в металлическую емкость и отправляли на площадку деполимеризации. По результатам, приведенным в таблице 1, видно, что с изменением соотношения между ГМТА и фенолформальдегидной смолой изменялась и температура полимеризации проппанта с однослойным гетерогенным покрытием. Повышение содержания ГМТА в смеси понижает температуру полимеризации, а добавка оксида цинка не влияет на нее. Для составов №3 и №8 по таблице 1 время отверждения эпоксидной смолы в зависимости от условий окружающей среды представлено в таблице 2.
Таблица 2
Зависимость времени отверждения эпоксидной смолы от температуры окружающей среды
Состав Время отверждения, ч
30°С 25°С 20°С 15°С 10°С 5°С 0°С
№3 20 23 29 35 40 48 62
№8 18 21 22 34 40 48 62
Приведенные в таблице 2 данные отражают зависимость отверждения эпоксидной смолы в покрытии от температуры окружающей среды.
После окончания процесса полимеризации эпоксидной смолы проппанты рассеивают на инерционном грохоте и упаковывают в мягкий контейнер. В процессе упаковки отбирают пробу для определения величины прочности монолитного каркаса, получаемого на основе этих пропантов.
Для определения прочности сцепления термореактивного полимерного покрытия 30 грамм покрытых проппантов загружали в металлическую цилиндрическую форму диаметром 38 мм, в форму вставлялся пуансон, к которому прикладывалось давление 20 Н/мм2, при этом форму помещали в жидкостный термостат. В термостате в качестве теплоносителя использовали воду с рН 6,5-7,0. Следует отметить, что вода свободно могла циркулировать через набивку проппантов. Температура нагрева воды для каждого состава указана в таблице 1. Через 24 часа форму извлекают из термостата и достают цилиндр, образованный покрытыми проппантами. У цилиндров определяли прочностную характеристику, результаты испытаний приведены в таблице 3.
Таблица 3
Прочностные характеристики проппантов с термореактивным полимерным покрытием
Характеристик и Состав №, по таблице 1 Аналог
1 2 3 4 5 6 7 8 9 10 11 12 13
Температура полимеризации проппанта, °С 40 50 55 65 75 85 45 55 65 75 45 65 85
Прочность цилиндра, В/см2 15 48 54 58 64 35 49 57 62 69 0 4 48
В таблице 3 приведены прочности сцепления между гранулами проппанта после полимеризации покрытия на них полимерного слоя, эти результаты испытаний показали, что заявляемый проппант имеет более низкую температуру полимеризации, т.е. эффективное увеличение прочности у него начинается с температуры 45°С (в зависимости от состава применяемого покрытия), а у аналогов (Ceramax I, Фирмы Борден (США) эта температура составляет более 80°С.
Для определения влияния имеющихся на поверхности проппантов припеченных частиц того же состава в количестве были специально изготовлены несколько партий проппантов с характеристиками, приведенным ниже, в таблице 4, которые были покрыты с использование состава №4, таблица 1.
Для определения влияния соотношения фенолформальдегидной и эпоксидных смол были специально изготовлены несколько партий проппантов с характеристиками, приведенным в таблице 5, которые были покрыты с использование состава №4 и указаны в таблице 1.
Таблица 4
Зависимость прочности сцепления гранул покрытого проппанта от размера и количества припеченных частиц
Характеристики Состав №, по таблице 1
4 4 4 4 4 4 4 4 4 4 4
Температура полимеризации проппанта, °С 65 65 65 65 65 65 65 65 65 65 65
Размер припеченных частиц, мкм 2 5 5 5 5 5 15 20 30 40 50
Количество припеченных частиц, % 0,2 0,2 0,5 1,0 1,5 2,0 1,0 1,0 1,0 1,0 1,0
Прочность цилиндра, В/см2 20 21 38 50 55 22 58 56 52 30 10
По данным, приведенным в таблице 4, можно сделать следующий вывод:
- оптимальное количество припеченных частиц находится в интервале 1,0-1,5%;
- оптимальный размер припеченных частиц находится в интервале 5-30 мкм;
Таблица 5
Зависимость прочности сцепления гранул покрытого проппанта от соотношения фенолформальдегидной и эпоксидных смол
Характеристики Состав №, по таблице 1
4 4 4 4 4 4 4 4 4
Температура полимеризации проппанта, °С 65 65 65 65 65 65 65 65 65
Размер припеченных частиц, мкм 15 15 15 15 15 15 15 15 15
Количество припеченных частиц, % 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Соотношение фенолформальдегидной и эпоксидных смол 6:1 5:1 4:1 3:1 1:1 1:3 1:4 1:5 1:6
Прочность цилиндра, Н/см2 5 32 49 54 58 55 50 36 3
По результатам испытаний проппантов с различным соотношением эпоксидной и фенолформальдегидных смол, приведенных в таблице 5, очевидно, что сохранение эффективной прочности сцепления между гранулами проппанта сохраняется в интервале 5:1 до 1:5. Этот интервал показывает минимальное и максимальное соотношение между смолами для сохранения способности полимеризации при низких температурах.
Таким образом, предлагаемые проппанты с однослойным гетерогенным покрытием полимеризуются при температуре менее 80°С и обеспечивают предохранение скважин от выноса проппантов после гидроразрыва.
В марте 2006 года на производственной базе ООО «Форэс» было организовано опытно-промышленное производство предлагаемых проппантов с однослойным гетерогенным покрытием, которые были реализованы на нефтедобывающие предприятия Западной Сибири для использования в скважинах с температурой пласта 40-80°С.

Claims (8)

1. Проппант, содержащий керамические гранулы с полимерным покрытием из отвержденной эпоксидной смолы, отличающийся тем, что на поверхности керамической магнийсиликатной гранулы выполнены выступы высотой 5-30 мкм каждый из того же состава или из состава с большей огнеупорностью в количестве 0,5-1,5% от ее веса, полимерное покрытие выполнено в один слой, в котором вкраплена смесь частиц гексаметилентетрамина и фенолформальдегидной смолы размером 5-100 мкм при соотношении фенолформальдегидной смолы и эпоксидной смолы от 1:5 до 5:1.
2. Проппант по п.1, отличающийся тем, что смесь частиц фенолформальдегидной смолы и гексаметилентетрамида дополнительно содержит неорганический модификатор в количестве 0,5-20 мас.% от массы фенолформальдегидной смолы.
3. Способ изготовления проппанта по п.1, включающий формование керамических гранул, формирование на их поверхности указанных выступов, обжиг, нанесение полимерного покрытия из эпоксидной смолы с отвердителем - полиэтилентетрамином - ПЭПА и смеси указанных частиц с последующим отверждением до получения полимерной пленки.
4. Способ по п.3, отличающийся тем, что нанесение полимерного покрытия осуществляют путем перемешивания суспензии указанных частиц в эпоксидной смоле и ПЭПА с указанными гранулами.
5. Способ по п.3, отличающийся тем, что нанесение полимерного покрытия осуществляют путем перемешивания суспензии указанных частиц в ПЭПА и растворителе с указанными гранулами, на которые предварительно нанесена эпоксидная смола.
6. Способ по п.3, отличающийся тем, что нанесение полимерного покрытия осуществляют путем опудривания указанными частицами указанных гранул со свеженанесенной смолой с ПЭПА.
7. Способ по любому из пп.3-6, отличающийся тем, что смесь частиц фенолформальдегидной смолы и гексаметилентетрамина дополнительно содержит неорганический модификатор в количестве 0,5-20 мас.% от массы фенолформальдегидной смолы.
8. Способ по любому из пп.3-7, отличающийся тем, что указанное отверждение эпоксидной смолы до получения пленки осуществляют при температуре 5-30°С.
RU2006120393/03A 2006-06-09 2006-06-09 Проппант и способ его получения RU2318856C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006120393/03A RU2318856C1 (ru) 2006-06-09 2006-06-09 Проппант и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006120393/03A RU2318856C1 (ru) 2006-06-09 2006-06-09 Проппант и способ его получения

Publications (1)

Publication Number Publication Date
RU2318856C1 true RU2318856C1 (ru) 2008-03-10

Family

ID=39280893

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006120393/03A RU2318856C1 (ru) 2006-06-09 2006-06-09 Проппант и способ его получения

Country Status (1)

Country Link
RU (1) RU2318856C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447126C2 (ru) * 2010-03-17 2012-04-10 Общество с ограниченной ответственностью "НОРМИН" Проппант и способ его получения
RU2459852C1 (ru) * 2011-04-19 2012-08-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления керамического проппанта и проппант
RU2490300C2 (ru) * 2009-05-21 2013-08-20 Бейджин Ричсанд Сайенс Энд Текнолоджи Груп Ко., Лтд Частицы с пленочным покрытием для разработки нефти и способ разработки нефтяного месторождения при помощи частиц с пленочным покрытием
RU2493191C1 (ru) * 2012-02-08 2013-09-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления проппанта с полимерным покрытием
RU2507178C2 (ru) * 2008-04-28 2014-02-20 Шлюмберже Текнолоджи Б.В. Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)
RU2559970C2 (ru) * 2010-09-30 2015-08-20 БЕЙЖИНГ РИЧСЭНД СЭНД ИНДАСТРИ САЙЕНС ЭНД ТЕКНОЛОДЖИ Ко., ЛТД. Гидрофобный проппант и способ его получения
RU2607831C1 (ru) * 2015-11-06 2017-01-20 Общество С Ограниченной Ответственностью "Ника-Петротэк" Способ получения керамического проппанта с полимерным покрытием
RU2715115C1 (ru) * 2019-08-30 2020-02-25 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Способ гидравлического разрыва пласта
RU2732770C2 (ru) * 2018-10-31 2020-09-22 Общество с ограниченной ответственностью "Платинус" Способ получения магнийсиликатного проппанта с полимерным покрытием и магнийсиликатный проппант
RU2793763C1 (ru) * 2021-12-13 2023-04-05 Леонид Евгеньевич Агапеев Покрытый дисперсный материал и способы его получения

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507178C2 (ru) * 2008-04-28 2014-02-20 Шлюмберже Текнолоджи Б.В. Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)
RU2490300C2 (ru) * 2009-05-21 2013-08-20 Бейджин Ричсанд Сайенс Энд Текнолоджи Груп Ко., Лтд Частицы с пленочным покрытием для разработки нефти и способ разработки нефтяного месторождения при помощи частиц с пленочным покрытием
RU2447126C2 (ru) * 2010-03-17 2012-04-10 Общество с ограниченной ответственностью "НОРМИН" Проппант и способ его получения
RU2559970C2 (ru) * 2010-09-30 2015-08-20 БЕЙЖИНГ РИЧСЭНД СЭНД ИНДАСТРИ САЙЕНС ЭНД ТЕКНОЛОДЖИ Ко., ЛТД. Гидрофобный проппант и способ его получения
RU2459852C1 (ru) * 2011-04-19 2012-08-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления керамического проппанта и проппант
RU2493191C1 (ru) * 2012-02-08 2013-09-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления проппанта с полимерным покрытием
RU2607831C1 (ru) * 2015-11-06 2017-01-20 Общество С Ограниченной Ответственностью "Ника-Петротэк" Способ получения керамического проппанта с полимерным покрытием
RU2732770C2 (ru) * 2018-10-31 2020-09-22 Общество с ограниченной ответственностью "Платинус" Способ получения магнийсиликатного проппанта с полимерным покрытием и магнийсиликатный проппант
RU2715115C1 (ru) * 2019-08-30 2020-02-25 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Способ гидравлического разрыва пласта
RU2793763C1 (ru) * 2021-12-13 2023-04-05 Леонид Евгеньевич Агапеев Покрытый дисперсный материал и способы его получения

Similar Documents

Publication Publication Date Title
RU2318856C1 (ru) Проппант и способ его получения
US4443347A (en) Proppant charge and method
JP6865216B2 (ja) エポキシ官能性シランカップリング剤、表面改質された研磨粒子、及び結合研磨物品
US3935339A (en) Method for coating particulate material thereof
US4564459A (en) Proppant charge and method
US4664819A (en) Proppant charge and method
RU2441051C2 (ru) Легкосыпучие покрытые частицы, способ их получения и их применение
US3864426A (en) Thermal shock resistant epoxy compositions
US4553596A (en) Well completion technique
US8133587B2 (en) Proppant materials comprising a coating of thermoplastic material, and methods of making and using
AU2010258467B2 (en) Tackifying agent pre-coated particulates
EA002634B1 (ru) Композиционные частицы, способ их получения, способ обработки гидравлического разрыва, способ фильтрации воды
US20020058581A1 (en) Proppant composition for gas and oil well l fracturing
RU2004132149A (ru) Расклинивающие наполнители и способы их получения
RU2488612C1 (ru) Эпоксидная композиция для изготовления изделий из полимерных композиционных материалов методом вакуумной инфузии
MX2010011368A (es) Particulas recubiertas a baja temperatura para el uso como materiales de sosten o en rellenos de grava, metodos para la elaboracion y uso de los mismos.
TW201036935A (en) Ceramic product
CA1074044A (en) Spray-dried phenolic adhesives
RU2301241C2 (ru) Композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, применение ее
RU2395474C1 (ru) Проппант с полимерным покрытием
EA012705B1 (ru) Проппант и способ его получения
JP5376238B2 (ja) フェノール樹脂の製造方法
RU2618557C1 (ru) Эпоксидная композиция
RU2015128498A (ru) Композиция смолы, частицы с покрытием, инжекционный материал и способ введения инжекционного материала в трещину
RU2388787C1 (ru) Способ изготовления проппанта

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20121115

TC4A Change in inventorship

Effective date: 20160707

PD4A Correction of name of patent owner
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20190320

TC4A Change in inventorship

Effective date: 20190408

TC4A Change in inventorship

Effective date: 20190813

HE4A Change of address of a patent owner

Effective date: 20210722