WO2012035959A1 - 複数組電池のセル電圧均等化装置 - Google Patents

複数組電池のセル電圧均等化装置 Download PDF

Info

Publication number
WO2012035959A1
WO2012035959A1 PCT/JP2011/069292 JP2011069292W WO2012035959A1 WO 2012035959 A1 WO2012035959 A1 WO 2012035959A1 JP 2011069292 W JP2011069292 W JP 2011069292W WO 2012035959 A1 WO2012035959 A1 WO 2012035959A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
cell
remaining amount
output
equalization
Prior art date
Application number
PCT/JP2011/069292
Other languages
English (en)
French (fr)
Inventor
鈴木 慎吾
西郷 勉
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP11824967.1A priority Critical patent/EP2618454B1/en
Priority to CN201180044824.3A priority patent/CN103119828B/zh
Publication of WO2012035959A1 publication Critical patent/WO2012035959A1/ja
Priority to US13/796,770 priority patent/US9444267B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a cell voltage equalizing device for equalizing the output voltage of each cell of a plurality of assembled batteries that output a desired voltage by connecting a plurality of cells in series.
  • a high voltage battery is provided as a drive power source for the motor.
  • Such a high-voltage battery obtains a high voltage by connecting a plurality of cells of secondary batteries (storage battery) such as nickel / hydrogen batteries and lithium batteries in series.
  • a plurality of (for example, 55) cells are divided into, for example, 5 blocks (that is, 1 block of 11 cells), and the voltage of each block is for voltage detection provided for each block. The voltage is measured in real time by the IC.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-189490
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-101565
  • the above-described conventional cell voltage equalization apparatus equalizes the output voltage of each cell based on the output voltage of the cell detected by the voltage detection IC. For this reason, the value used as the equalization reference voltage varies depending on the accuracy with which the voltage detection IC detects the output voltage of the cell. For this reason, there has been a problem that the output voltages of the cells cannot be equalized with high accuracy.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to equalize the cell voltages of a plurality of assembled batteries capable of equalizing the output voltage of each cell with high accuracy. It is in providing a conversion apparatus.
  • a cell voltage equalization for equalizing an output voltage of each cell of a plurality of battery packs that output a desired voltage by connecting a plurality of cells in series.
  • a voltage measuring means for measuring the output voltage of each cell, and a discharging means provided for each cell, energizing between the positive electrode and the negative electrode of the cell, and discharging the output voltage of the cell, Based on an output voltage of at least one cell measured by the voltage measuring means, a voltage remaining amount of the plurality of assembled batteries is obtained, and a region in which the voltage remaining amount is equal to or less than a preset first threshold value (change in voltage remaining amount) Voltage residual amount measuring means for determining whether or not the predetermined residual amount is a region in which the sensitivity of the output voltage is good and the voltage variation of the cell is likely to expand), and each of the voltage measured by the voltage measuring means Cell
  • a difference value calculation means for obtaining a difference value obtained by subtract
  • an equalization control means for equalizing the output voltage of each cell by discharging with the discharge means provided in the cell, and the equalization control means is measured by the voltage residual amount measurement means. If the voltage remaining amount to be applied is not the predetermined remaining amount, the equalization processing of each cell is executed on the condition that a first waiting time set in advance from the previous equalization processing has elapsed, and the voltage If the remaining amount is the predetermined remaining amount, the equalization process for each cell is performed on the condition that a second waiting time shorter than the first waiting time has elapsed since the previous equalization process. It is characterized by performing . When the voltage remaining amount is the predetermined remaining amount, and the equalization target cell is also equal to or smaller than the first threshold, the equalization time of the target cell may be shortened. Alternatively, the discharge current may be reduced.
  • the equalization process can be executed using the output voltage of the cell detected with high accuracy as a reference voltage. For this reason, the value of the reference voltage serving as a reference for the equalization process does not differ depending on the accuracy with which the voltage measuring means detects the cell output voltage.
  • the output voltage of each cell is equalized with higher accuracy. Can do.
  • FIG. 1 is a block diagram showing a configuration of a cell voltage equalizing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a detailed configuration of the cell voltage equalizing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a discharge circuit of the cell voltage equalizing apparatus according to the embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing the relationship between the remaining voltage of the secondary battery and the output voltage according to the embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing the relationship between time and output voltage and voltage variations when the output voltage of the cell according to the embodiment of the present invention is discharged.
  • FIG. 6 is a diagram showing a conventional equalization execution area.
  • FIG. 7 is a diagram illustrating an equalization implementation region of the cell voltage equalization apparatus according to the embodiment of the present invention.
  • FIG. 8 is a flowchart showing equalization processing of the cell voltage equalization apparatus according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a cell voltage equalizing apparatus 10 according to an embodiment of the present invention and a secondary battery (multiple battery pack) 13 including a plurality of cells BT1 to BT55.
  • the secondary battery 13 according to the present embodiment is, for example, a lithium battery that is a storage battery, and is a high-voltage battery that is mounted on an electric vehicle, a plug-in hybrid vehicle, or the like to drive a motor for driving the vehicle. Used.
  • the cell voltage equalizing apparatus 10 As shown in FIG. 1, the cell voltage equalizing apparatus 10 according to the embodiment of the present invention is separated into a high-voltage side apparatus 11 and a low-voltage side apparatus 12 via an insulation interface 32.
  • the high-voltage side device 11 includes five voltage detection ICs (voltage measurement means), that is, a first voltage detection IC (21-1) to a fifth voltage detection IC (21-5). Then, the first voltage detection IC (21-1) measures the output voltages of the eleven cells BT1 to BT11 partitioned as the first block 61-1.
  • the second voltage detection IC (21-2) measures the output voltage of the eleven cells BT12 to BT22 divided as the second block 61-2
  • the third voltage detection IC (21 -3) measures the output voltage of the 11 cells BT23 to BT33 partitioned as the third block 61-3
  • the fourth voltage detection IC (21-4) partitions as the fourth block 61-4.
  • the output voltages of the eleven cells BT34 to BT44 are measured
  • the fifth voltage detection IC (21-5) calculates the output voltages of the eleven cells BT45 to BT55 divided as the fifth block 61-5. taking measurement. That is, the voltage detection ICs (21-1) to (21-5) function as voltage measuring means for measuring the output voltages of the cells BT1 to BT55.
  • Each of the voltage detection ICs (21-1) to (21-5) includes an A / D converter 26 (see FIG. 2 described later, described as “ADC”), and the A / D converter 26 using the reference voltage output from the reference power supplies 71-1 to 71-5 (see FIG. 1) for 26 (the IC incorporating the reference voltage uses the built-in reference voltage).
  • the voltage signal detected for each of the first block to the fifth block is converted into a digital voltage signal.
  • the low voltage side device 12 is provided with a regulator 52 that outputs a DC voltage of 5V.
  • the regulator 52 generates a stable DC voltage of 5 V from a voltage (for example, 12 V) output from a battery (power source) 51 mounted on the vehicle and supplies it to the main microcomputer 33.
  • the main microcomputer 33 determines the remaining voltage of the secondary battery 13 based on the output voltage of at least one of the cells BT1 to BT55 measured by the voltage detection ICs (21-1) to (21-5). And functions as voltage residual amount measuring means for determining whether or not the voltage residual amount is a predetermined residual amount set in advance.
  • each cell is based on the voltage detection signal.
  • a difference value obtained by subtracting a preset reference voltage for example, a value obtained by adding a predetermined voltage value (for example, 0.02 V) to the lowest output voltage (for example, 3 V)) from the output voltages of BT1 to BT55 is obtained. That is, the main microcomputer 33 determines a predetermined reference voltage (for example, the highest) from the output voltages of the cells BT1 to BT55 measured by the voltage detection ICs (21-1) to (21-5). It functions as a difference value calculation means for obtaining a difference value obtained by subtracting a predetermined voltage value (for example, 0.02 V) from a low output voltage (for example, 3 V).
  • the main microcomputer 33 has a discharge circuit 40 (FIGS. 2 and 3) provided in this cell.
  • an equalization process for equalizing the output voltages of the cells BT1 to BT55 is executed. That is, when there is a cell whose difference value is equal to or greater than the first voltage threshold, the main microcomputer 33 discharges the cells BT1 to BT55 by discharging with the discharge circuit 40 provided in the cell. It functions as an equalization control means for equalizing the output voltage.
  • the equalization process ends the equalization process for each of the cells BT1 to BT55 on condition that all the difference values are equal to or lower than the second voltage threshold (for example, 0.5 V).
  • the main microcomputer 33 is on condition that a first waiting time (for example, 1 hour) set in advance from the previous equalization process has elapsed. Then, the equalization process of each cell BT1 to BT55 is executed.
  • a first waiting time for example, 1 hour
  • FIG. 2 is a block diagram showing an internal configuration of the first voltage detection IC (21-1) according to the embodiment of the present invention.
  • the second voltage detection IC to the fifth voltage detection IC (21-2) to (21-5) have substantially the same configuration as that of the first voltage detection IC 21-1, and thus detailed description thereof is omitted. To do.
  • the first voltage detection IC 21-1 receives the discharge circuit 40 provided for each of the cells BT1 to BT11 and the power output from the cells BT1 to BT11, and generates a predetermined voltage.
  • the power supply circuit 23 is connected to the cells BT1 to BT11 provided in the block 61-1 via the discharge circuit 40.
  • the cell voltage input unit 22 for detecting these output voltages and the cell voltage input unit 22 output the voltage.
  • a multiplexer 25 that converts the voltage signal of each cell into a time-series signal of one system, and an A / D converter 26 that converts the voltage signal of each unit cell output from the multiplexer 25 into a digital signal. I have.
  • the control unit 27 discharges the output voltage of the cell for which the discharge start command is issued by the discharge circuit 40.
  • the discharge by the discharge circuit 40 is ended.
  • FIG. 3 is a circuit diagram of a discharge circuit provided in the cells BT1 to BT3 according to the embodiment of the present invention.
  • the cells BT4 to BT55 have the same circuit configuration as the cells BT1 to BT3, and thus detailed description thereof is omitted.
  • the control unit 27 turns on the switch SW1 provided in the cell BT1. Then, the discharge of the output voltage of the cell BT1 is started.
  • the main microcomputer 33 measures the time during which the cell BT1 is discharged by a timer (not shown). Then, when a predetermined time (for example, 3 minutes) has elapsed from the start of discharge, a discharge end command signal of the cell BT1 is transmitted, and the control unit 27 turns off the switch SW1 provided in the cell BT1. The discharge of the output voltage of the cell BT1 is terminated.
  • a predetermined time for example, 3 minutes
  • FIG. 4 is a characteristic diagram showing the relationship between the remaining voltage of the secondary battery and the output voltage according to the embodiment of the present invention.
  • FIG. 5A is a characteristic diagram showing the relationship between the output voltage and the voltage variation and the time when the output voltage of the cell according to the embodiment of the present invention is discharged.
  • FIG. 5B is an enlarged view enlarging the vicinity of the end of discharge shown in FIG.
  • FIG. 6 is a diagram showing a conventional equalization execution area.
  • FIG. 7 is a diagram illustrating an equalization implementation region in the cell voltage equalization apparatus according to the embodiment of the present invention.
  • the remaining voltage amount (for example, when the fully charged state is 100% and the fully discharged state is 0%, the amount of battery that can actually be used) is 20% (first threshold) or less, and the remaining voltage amount Is 80% (second threshold) or more, the output voltage changes sensitively to the change in the residual voltage.
  • the curve L1 indicating the relationship between the voltage remaining amount and the output voltage has a large slope near the full charge and near the end of discharge (the change rate of the output voltage with respect to the voltage remaining amount is large).
  • FIGS. 5A and 5B when the cells BT1 to BT55 of the secondary battery 13 are discharged (FIGS. 5A and 5B show the case where seven cells are discharged).
  • the voltage variation the difference between the output voltages of the cells BT1 to BT55, the difference between the highest output voltage and the lowest output voltage
  • the secondary battery 13 is likely to be overcharged or overdischarged.
  • a secondary battery that is conventionally mounted on a hybrid vehicle and used as a high voltage battery for driving a vehicle driving motor is used when the voltage remaining amount is in an intermediate region (see FIG. 4). Is done. For this reason, the equalization process is executed only when the voltage remaining amount is in the intermediate region (equalization execution region in FIG. 6). Therefore, the equalization process cannot be performed near full charge and near the end of discharge where the sensitivity of the output voltage with respect to the change in the residual voltage becomes good, especially near the end of discharge where the voltage variation increases, so a highly accurate cell Voltage detection accuracy was required.
  • the output voltages of the cells BT1 to BT55 are equalized based on the output voltages of the cells BT1 to BT55 detected by the voltage detection ICs (21-1) to (21-5). Yes.
  • the voltage detection ICs (21-1) to (21-5) output the output voltages of the cells BT1 to BT55.
  • the value used as a reference voltage for equalization differs depending on the accuracy of detecting.
  • the cell voltage equalization apparatus 10 is equal in the vicinity of the full charge and the discharge end where the sensitivity of the output voltage is good with respect to the change in the voltage remaining amount, particularly in the vicinity of the discharge end where the voltage variation increases.
  • the output voltages of the cells BT1 to BT55 are equalized with high accuracy.
  • the sensitivity of the output voltage with respect to the change in the voltage residual amount is good, and the voltage residual amount in which the voltage variation increases is 20% (first threshold) or less (the equalization execution region in FIG. 7). And the equalization process is executed even in a region (equalization execution region in FIG. 7) in which the voltage residual amount with good output voltage sensitivity to the change in the voltage residual amount is 80% (second threshold) or more.
  • each cell BT1 is provided on the condition that a second waiting time (for example, 30 minutes) shorter than the first waiting time has elapsed since the previous equalization process. ⁇ Equalization processing of BT55 is executed.
  • the voltage The sensitivity of the output voltage with respect to the remaining amount is good, and furthermore, in the region where the voltage remaining amount is 20% (first threshold) or less, the voltage variation increases. Therefore, by repeating the equalization process in a short time, each cell can be accurately performed.
  • the output voltages of BT1 to BT55 can be equalized.
  • the voltage remaining amount is a region where the voltage remaining amount is equal to or less than a first threshold value (for example, 20%) (a region where the sensitivity of the output voltage is good with respect to the change in the voltage remaining amount and the voltage variation increases), or the second
  • a first threshold value for example, 20%
  • the threshold value 80%
  • the output voltages of the cells BT1 to BT55 detected with high accuracy are used as reference voltages. An equalization process can be performed.
  • the cell voltage equalizing apparatus 10 for the secondary battery 13 that can equalize the output voltages of the cells BT1 to BT55 with high accuracy.
  • FIG. 8 is a flowchart showing equalization processing of the cell voltage equalization apparatus according to the embodiment of the present invention.
  • the main microcomputer 33 stops its operation for a certain period until the output voltages of the cells BT1 to BT55 of the secondary battery 13 are stabilized (step S1).
  • the main microcomputer 33 outputs an initial voltage detection command signal to each of the voltage detection ICs (21-1) to (21-5) (step S2).
  • the voltage detection ICs (21-1) to (21-5) instructed by the main microcomputer 33 detect the output voltages of the cells BT1 to BT55 of each block, and the detected voltage signals of the cells BT1 to BT55. Is transmitted to the main microcomputer 33 via the communication I / F 35a, 35b.
  • the main microcomputer 33 acquires initial voltage detection signals from the voltage detection ICs (21-1) to (21-5) (step S3).
  • the main microcomputer 33 calculates the voltage remaining amount (step S4).
  • the voltage remaining amount is calculated based on the voltage detection signal acquired in step S3. Specifically, among the output voltages of the cells BT1 to BT55, the remaining voltage of the secondary battery 13 based on the lowest output voltage (for example, when the fully charged state is 100% and the fully discharged state is 0%) The amount of battery that can actually be used) is calculated.
  • the main microcomputer 33 calculates an initial difference value (step S5).
  • a predetermined voltage value for example, 0.02V
  • the output voltage of each cell BT1 to BT55 becomes an output voltage value lower than the lowest voltage value. It is possible to prevent the secondary battery 13 from being overdischarged.
  • the main microcomputer 33 determines whether or not the initial difference value is greater than or equal to the first voltage threshold (step S6). That is, it is determined whether or not there is a cell whose initial difference value calculated in step S5 is greater than or equal to a first voltage threshold (for example, 1.5 V).
  • a first voltage threshold for example, 1.5 V
  • step S6 NO
  • the main microcomputer 33 determines that there is no cell whose initial difference value is equal to or greater than the first voltage threshold (step S6: NO)
  • the main microcomputer 33 proceeds to step S15. That is, it is determined that the voltage variation (difference between the output voltages of the cells BT1 to BT55, the difference between the highest output voltage and the lowest output voltage) is small, and the discharge circuit 40 determines the output voltage of the cells (BT1 to BT55).
  • the discharging process for discharging (the process of step S7 to step S14) is not executed.
  • step S6 when the main microcomputer 33 determines that there is a cell having an initial difference value equal to or greater than the first voltage threshold (step S6: YES), the main microcomputer 33 discharges to the voltage detection ICs (21-1) to (21-5). A start command signal is output (step S7).
  • a first voltage threshold value for example, 1.5 V
  • the output voltages of the cells BT1 to BT55 vary greatly (each cell BT1 to It is determined that the difference in the output voltage of BT55 is large (the difference between the highest output voltage and the lowest output voltage is large), and the switch SW of the discharge circuit 40 provided in the cell whose initial difference value is equal to or higher than the first voltage threshold value ( A signal for turning ON (see FIG. 3) is output.
  • Each of the voltage detection ICs (21-1) to (21-5) instructed from the main microcomputer 33 has a switch SW (see FIG. 3) of the discharge circuit 40 provided in the cell instructed to start the discharge. Turn ON to start discharging the cell output voltage.
  • step S8 determines that the predetermined time has elapsed (step S8: YES)
  • the main microcomputer 33 outputs a discharge end command signal to the voltage detection ICs (21-1) to (21-5) (step S8). S9). That is, the main microcomputer 33 measures the time during which the cell output voltage is discharged by a timer (not shown). Then, when a predetermined time (for example, 3 minutes) has elapsed since the start of discharge, a discharge end command signal is transmitted.
  • a predetermined time for example, 3 minutes
  • Each of the voltage detection ICs (21-1) to (21-5) instructed by the main microcomputer 33 turns off the switch SW (see FIG. 3) of the discharge circuit 40 provided in the discharging cell. Thus, the discharge of the cell output voltage is completed.
  • the main microcomputer 33 stops its operation for a certain period until the output voltages of the cells BT1 to BT55 of the secondary battery 13 are stabilized (step S10).
  • the main microcomputer 33 outputs a voltage detection command signal to each of the voltage detection ICs (21-1) to (21-5) (step S11).
  • the voltage detection ICs (21-1) to (21-5) instructed by the main microcomputer 33 detect the output voltages of the cells BT1 to BT55 of each block, and the detected voltage signals of the cells BT1 to BT55. Is transmitted to the main microcomputer 33 via the communication I / F 35a, 35b.
  • the main microcomputer 33 acquires a voltage detection signal from each of the voltage detection ICs (21-1) to (21-5) (step S12).
  • the main microcomputer 33 calculates a difference value (step S13).
  • a predetermined voltage value for example, 0.02V
  • the main microcomputer 33 determines whether or not the difference value is equal to or less than the second voltage threshold (step S14). That is, it is determined whether or not all the difference values calculated in step S12 are equal to or lower than the second voltage threshold value (for example, 0.5 V) set to be smaller than the first voltage threshold value (for example, 1.5 V) ( It is determined whether or not all the difference values obtained by subtracting the reference voltage from the cells BT1 to BT55 are equal to or less than the second threshold value).
  • the second voltage threshold value for example, 0.5 V
  • the first voltage threshold value for example, 1.5 V
  • step S14 NO
  • the main microcomputer 33 determines that all the difference values are not equal to or less than the specific threshold (step S14: NO)
  • the main microcomputer 33 returns to the process of step S7. That is, the discharge circuit 40 repeats the discharge process (steps S7 to S14) for discharging the output voltages of the cells (BT1 to BT55) until all the difference values are equal to or lower than the second voltage threshold (difference value). Is repeatedly discharged in the discharge circuit 40 provided in the cell having the second voltage threshold or more).
  • the main microcomputer 33 determines in the process in step S6 that there is no cell whose difference value is equal to or greater than the first voltage threshold (step S6: NO), or in the process in step S14. Is determined to be less than or equal to the second voltage threshold (step S14: YES), it is determined whether or not the remaining voltage is equal to or less than the first threshold or greater than or equal to the second threshold (step S15). That is, the voltage remaining amount of the secondary battery 13 calculated in step S4 is good in sensitivity of the output voltage with respect to the change in the voltage remaining amount, and the voltage remaining amount in which the voltage variation increases is equal to or less than the first threshold (for example, 20%). Or a region where the voltage remaining amount with good output voltage sensitivity to the change in the voltage remaining amount is a second threshold value (for example, 80%) or more (see FIG. 7). To do.
  • the determination as to whether the voltage remaining amount is equal to or less than the first threshold value or equal to or greater than the second threshold value is a value that changes the slope of the curve L1 indicating the relationship between the voltage remaining amount and the output voltage based on the characteristics of the secondary battery 13. (The value with a large change rate of the output voltage with respect to the voltage remaining amount, see FIG. 4) is stored in advance in a memory (not shown) as a threshold value (first threshold value and second threshold value), and the main microcomputer 33 The determination is made based on threshold values (first threshold value and second threshold value), which are values with a large change rate of the output voltage with respect to the quantity.
  • step S15 determines whether or not the first waiting time has elapsed. That is, if the voltage remaining amount is not near the full charge or near the end of discharge where the sensitivity of the output voltage with respect to the change in the voltage remaining amount is not near, whether or not the first waiting time (for example, 1 hour) has elapsed is determined. judge.
  • step S16 determines that the first waiting time has elapsed (step S16: YES)
  • the main microcomputer 33 returns to the process of step S2. That is, the equalization process of each cell BT1 to BT55 is executed on the condition that the first waiting time has elapsed from the previous equalization process (the process of steps S2 to S14).
  • step S15 determines whether the second waiting time has elapsed (step S15). S17). That is, whether the second waiting time shorter than the first waiting time has elapsed when the voltage remaining amount is near the full charge and near the discharge end where the sensitivity of the output voltage with respect to the change in the voltage remaining amount is good. Determine whether.
  • step S17 NO
  • the main microcomputer 33 determines that the second waiting time has not elapsed (step S17: NO)
  • it waits until the second waiting time elapses.
  • step S17 YES
  • the main microcomputer 33 determines that the second waiting time has elapsed (step S17: YES)
  • the main microcomputer 33 returns to the process of step S2. That is, the equalization process for each cell BT1 to BT55 is executed on the condition that a second waiting time shorter than the first waiting time has elapsed since the previous equalization process (the process of steps S2 to S14). .
  • the cell voltage equalization apparatus 10 connects the plurality of cells BT1 to BT55 in series and outputs the desired voltage of each cell BT1 to BT55.
  • a cell voltage equalizing apparatus 10 for equalizing an output voltage, each of the voltage detection ICs (21-1) to (21-5) for measuring the output voltage of each of the cells BT1 to BT55, and each of the cells BT1 to BT55
  • a discharge circuit 40 provided for each of the cells BT1 to BT55 and energizing between the positive and negative electrodes of the cells BT1 to BT55 to discharge the output voltage of the cells BT1 to BT55, and each of the voltage detection ICs (21-1) to (21- Based on the output voltage of at least one cell measured by 5) (for example, the lowest output voltage value among the cells BT1 to BT55), the voltage remaining amount of the secondary battery 13 is obtained.
  • Each cell measured by each of the voltage detection ICs (21-1) to (21-5) is determined whether or not the predetermined remaining amount is equal to or less than a predetermined first threshold value (for example, 20%).
  • a predetermined first threshold value for example, 20%.
  • a difference value obtained by subtracting a predetermined reference voltage for example, a value obtained by adding a predetermined voltage value (for example, 0.02 V) to the lowest output voltage (for example, 3 V)
  • a predetermined reference voltage for example, a value obtained by adding a predetermined voltage value (for example, 0.02 V) to the lowest output voltage (for example, 3 V)
  • a first voltage threshold value for example, 1.5 V
  • the cells BT1 to BT55 are discharged by the discharge circuit 40 provided in the cell.
  • a main microcomputer 33 for equalizing the output voltages.
  • the main microcomputer 33 is configured to change the output voltage of each cell BT1 to BT55 from a reference voltage (for example, the lowest output voltage (for example, 3V)) to a predetermined voltage.
  • a second voltage threshold for example, 0.5 V, for example
  • all the difference values obtained by subtracting a value for example, a value obtained by adding 0.02 V
  • the first voltage threshold for example, 1.5 V.
  • the voltage remaining amount of the secondary battery 13 is a 1st threshold value (for example, 20%) or less area
  • region the output with respect to the change of voltage remaining amount
  • the voltage remaining amount of the secondary battery 13 is a region where the voltage remaining amount is equal to or less than a first threshold value (for example, 20%) (a region in which the sensitivity of the output voltage with respect to the change in the voltage remaining amount is good and the voltage variation increases).
  • a second waiting time for example, 30 minutes
  • the first waiting time for example, 1 hour
  • equalization processing of each cell BT1 to BT55 is executed. For this reason, when the voltage remaining amount of the secondary battery 13 is a voltage remaining amount that can be equalized with high accuracy, the equalization process is performed again within a short time from the previous equalization process.
  • the output voltages of the cells BT1 to BT55 can be equalized with high accuracy.
  • the voltage remaining amount of the secondary battery 13 is a region where the voltage remaining amount is equal to or less than a first threshold value (for example, 20%) (a region in which the sensitivity of the output voltage with respect to the change in the voltage remaining amount is good and the voltage variation increases).
  • a first threshold value for example, 20%
  • the equalization process can be executed using the output voltages of the cells BT1 to BT55 detected with high accuracy as the reference voltage.
  • the reference voltage for example, the lowest output voltage (for example, the lowest output voltage (for example, for example)
  • 3V is not different from a predetermined voltage value (for example, a value obtained by adding 0.02 V).
  • the cell voltage equalizing apparatus 10 for the secondary battery 13 that can equalize the output voltages of the cells BT1 to BT55 with high accuracy.
  • the voltage remaining amount of the secondary battery 13 is sensitive to the output voltage with respect to the change in the voltage remaining amount, and the voltage remaining amount in which the voltage variation increases is not more than a first threshold value (for example, 20%) (FIG. 7).
  • a first threshold value for example, 20%
  • the predetermined remaining amount is set. Equalization processing (processing in steps S2 to S14) is executed. Therefore, the output voltages of the cells BT1 to BT55 can be equalized with higher accuracy.
  • the sensitivity of the output voltage with respect to the change in the voltage residual amount is good, and the voltage residual amount in which the voltage variation expands is less than the first threshold (see FIG. 7), or the sensitivity of the output voltage with respect to the voltage residual amount change.
  • the output voltages of the cells BT1 to BT55 can be made highly accurate without using a highly accurate voltage detection IC. Can be equalized.
  • a highly accurate voltage detection IC is unnecessary, the cost of the voltage monitoring system can be reduced.
  • the use of a high-accuracy voltage detection IC to improve the accuracy of detecting the output voltage of the cell has a problem in that there are many components and the number of steps for managing the components increases, resulting in an increase in manufacturing cost. As compared with the case where a highly accurate voltage detection IC is used, the number of components can be reduced and the weight can be reduced.
  • the sensitivity of the output voltage with respect to the change in the voltage residual amount is good, and the voltage residual amount in which the voltage variation increases is a region where the voltage residual amount is not more than the first threshold (see FIG. 7), or the sensitivity of the output voltage with respect to the change in the voltage residual amount.
  • the present invention is not limited to this, and the average value of the output voltage Or may be calculated based on a specific cell.
  • the reference voltage is a value obtained by adding a predetermined voltage value (for example, 0.02 V) to the lowest output voltage (for example, 3 V) among the output voltages of the cells BT1 to BT55 (for example, for example, The case where 3.02V) is set has been described.
  • the present invention is not limited to this, and the reference voltage may be the lowest output voltage (not adding a predetermined voltage value) among the output voltages of the cells BT1 to BT55. It may be an average value of output voltages of BT1 to BT55.
  • the present invention is not limited to this, and the time during which the control unit 27 is discharging by a timer or the like may be measured, and the switch of the discharge circuit 40 may be turned off after a predetermined time has elapsed.
  • the present invention is extremely useful in providing a cell voltage equalizing apparatus for a plurality of assembled batteries that can equalize the output voltage of each cell with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 各セルの出力電圧を測定する電圧検出用ICと、各セル毎に設けられセルの出力電圧を放電する放電回路(40)と、電圧検出用ICにより測定されるセルの出力電圧に基づいて二次電池(13)の電圧残存量を求め、この電圧残存量が所定の残存量であるか否かを判定し、電圧検出用ICにて測定された各セルの出力電圧から、所定の基準電圧を減算した差分値を求め、差分値が第1の電圧閾値以上であるセルが存在する場合に放電回路(40)により出力電圧を均等化するメインマイクロコンピュータ(33)と、を有し、メインマイクロコンピュータ(33)は、電圧残存量が所定の残存量でない場合には、前回の均等化処理から第1の待ち時間経過後、均等化処理を実行し、電圧残存量が所定の残存量である場合には、前回の均等化処理から第2の待ち時間経過後、均等化処理を実行する。

Description

複数組電池のセル電圧均等化装置
 本発明は、複数のセルを直列に接続して所望の電圧を出力する複数組電池の、各セルの出力電圧を均等化するセル電圧均等化装置に関する。
 電気自動車やハイブリッド車両では、モータの駆動電源として、高電圧バッテリを備えている。このような高電圧バッテリは、ニッケル・水素電池やリチウム電池などの二次電池(蓄電式電池)のセルを複数個、直列に接続することにより、高電圧を得ている。
 また、全ての二次電池を同じ電力で充電、或いは放電するため、各々の二次電池の劣化する状態が異なる場合、二次電池は過充電状態、或いは過放電状態になりやすくなる。そこで、二次電池が過充電状態、或いは過放電状態とならないように、各セル毎の充電状態を確認する必要がある。そのため、複数個(例えば、55個)のセルを、例えば、5個のブロックに分割し(即ち、11個のセルで1ブロック)、各ブロックの電圧を各ブロック毎に設けられた電圧検出用ICにより、リアルタイムで電圧を測定している。
 更に、高電圧バッテリの充放電を繰り返して長時間使用した場合や、高電圧バッテリを長期間放置した場合には、二次電池の電圧残存量が不均一になることがある。このような場合には、高電圧バッテリの使用容量が減少することになり、高電圧バッテリから十分な電力を得ることができなくなる。そこで、特開2003-189490号公報(特許文献1)及び特開2002-101565号公報(特許文献2)に記載されているように、各セルの出力電圧を均等化するセル電圧均等化装置が提案されている。
 このようなセル電圧均等化装置では、電気自動車やハイブリット車等に搭載される二次電池の各セルの出力電圧を均等にするため、イグニッションがオフのときに各セルの出力電圧を検出し、最も出力電圧の低いセルと一致するように出力電圧の高いセルの出力電圧を放電している(特開2003-189490号公報参照)。
特開2003-189490号公報 特開2002-101565号公報
 しかしながら、上述した従来のセル電圧均等化装置では、電圧検出用ICにより検出したセルの出力電圧に基づいて各セルの出力電圧を均等化している。このため、電圧検出用ICがセルの出力電圧を検出する精度によって均等化の基準電圧となる値が異なる場合が生ずる。このため、高精度にセルの出力電圧を均等化することができないという問題があった。
 本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、高精度に各セルの出力電圧を均等化することが可能な複数組電池のセル電圧均等化装置を提供することにある。
 上記目的を達成するため、本発明の第1のアスペクトは、複数のセルを直列に接続して所望の電圧を出力する複数組電池の、前記各セルの出力電圧を均等化するセル電圧均等化装置において、前記各セルの出力電圧を測定する電圧測定手段と、前記各セル毎に設けられ、セルのプラス極、マイナス極間を通電して、当該セルの出力電圧を放電する放電手段と、前記電圧測定手段により測定される少なくとも一つのセルの出力電圧に基づいて、前記複数組電池の電圧残存量を求め、この電圧残存量が予め設定した第1閾値以下の領域(電圧残存量の変化に対する、出力電圧の感度が良く、セルの電圧バラツキが拡大しやすい領域)となる所定の残存量であるか否かを判定する電圧残存量測定手段と、前記電圧測定手段にて測定された各セルの出力電圧から、予め設定した所定の基準電圧を減算した差分値を求める差分値演算手段と、前記差分値演算手段により求められた差分値が第1の電圧閾値以上であるセルが存在する場合に、このセルに設けられる前記放電手段にて放電することにより、各セルの出力電圧を均等化する均等化制御手段と、を有し、前記均等化制御手段は、前記電圧残存量測定手段で測定される電圧残存量が前記所定の残存量でない場合には、前回の均等化処理から予め設定した第1の待ち時間が経過したことを条件として、前記各セルの均等化処理を実行し、電圧残存量が前記所定の残存量である場合には、前回の均等化処理から前記第1の待ち時間よりも短い第2の待ち時間が経過したことを条件として、前記各セルの均等化処理を実行することを特徴とする。電圧残存量が前記所定の残存量である場合、かつ均等化対象のセルも第1閾値以下の場合、対象セルの均等化時間を短くしてもよい。または、放電電流を小さくしてもよい。
 前記複数組電池のセル電圧均等化装置において、前記複数組電池の電圧残存量が前記第1閾値以下である場合に加え、前記第1閾値よりも大きく設定した第2閾値以上の領域(電圧残存量の変化に対する、出力電圧の感度が良く、セルの電圧バラツキが拡大しやすい領域)である場合を前記所定の残存量としても良い。
 前記複数組電池のセル電圧均等化装置において、前記均等化制御手段は、前記差分値演算手段にて各セルの出力電圧から前記基準電圧を減算した差分値の全てが、前記第1の電圧閾値よりも小さく設定した第2の電圧閾値以下であることを条件として、前記各セルの均等化処理を終了しても良い。
 発明の第1のアスペクトによれば、電圧残存量が第1閾値以下である所定の残存量である場合には、前回の均等化処理から第1の待ち時間よりも短い第2の待ち時間が経過したことを条件として各セルの均等化処理を実行する。このため、所定の電圧残存量の場合には、前回の均等化処理から短い時間内で再度均等化処理を実行することとなる。また、第1閾値以下の領域は電圧残存量の変化に対する出力電圧の感度が良いため、高精度に各セルの出力電圧を均等化することができる。
 さらに、電圧残存量が所定の残存量の場合に均等化処理を行うことにより、高精度に検出したセルの出力電圧を基準電圧として均等化処理を実行することができる。このため、電圧測定手段がセルの出力電圧を検出する精度によって均等化処理の基準となる基準電圧の値が異なることがない。
 従って、高精度に各セルの出力電圧を均等化することが可能な複数組電池のセル電圧均等化装置を提供することができる。
 また、電圧残存量が第1の閾値以下である場合に加え、第2の閾値以上である場合を所定の残存量とした場合には、より高精度に各セルの出力電圧を均等化することができる。
 また、各セルの出力電圧から基準電圧を減算した差分値の全てが、第2の電圧閾値以下であることを条件として、各セルの均等化処理を終了する場合には、複数組電池の過放電状態を防止して、高精度に各セルの出力電圧を均等化することができる。
図1は、本発明の実施形態に係るセル電圧均等化装置の構成を示すブロック図である。 図2は、本発明の実施形態に係るセル電圧均等化装置の詳細な構成を示すブロック図である。 図3は、本発明の実施形態に係るセル電圧均等化装置の放電回路を示す図である。 図4は、本発明の実施形態に係る二次電池の電圧残存量と出力電圧との関係を示す特性図である。 図5は、本発明の実施形態に係るセルの出力電圧を放電した場合の出力電圧及び電圧のバラツキと時間との関係を示す特性図である。 図6は、従来における均等化実施領域を示す図である。 図7は、本発明の実施形態に係るセル電圧均等化装置の均等化実施領域を示す図である。 図8は、本発明の実施形態に係るセル電圧均等化装置の均等化処理を示すフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。はじめに、図1を参照して、本発明の実施形態に係るセル電圧均等化装置について説明する。本発明の実施形態に係るセル電圧均等化装置は、複数のセルを直列に接続して所望の電圧を出力する複数組電池の各セルの出力電圧を均等化する装置である。
 図1は、本発明の実施形態に係るセル電圧均等化装置10、及び複数のセルBT1~BT55からなる二次電池(複数組電池)13を示すブロック図である。本実施形態に係る二次電池13は、例えば、蓄電式電池であるリチウム電池等であって、電気自動車やプラグインハイブリット車両等に搭載して車両駆動用のモータを駆動するための高圧バッテリとして用いられる。
 図1に示すように、本発明の実施形態に係るセル電圧均等化装置10は、絶縁インターフェース32を介して、高電圧側装置11と低電圧側装置12に分離されている。
 高電圧側装置11は、5個の電圧検出用IC(電圧測定手段)、即ち、第1電圧検出用IC(21-1)~第5電圧検出用IC(21-5)を備えている。そして、第1電圧検出用IC(21-1)は、第1ブロック61-1として区切られた11個のセルBT1~BT11の出力電圧を測定する。
 また、第2電圧検出用IC(21-2)は、第2ブロック61-2として区切られた11個のセルBT12~BT22の出力電圧を測定し、同様に、第3電圧検出用IC(21-3)は、第3ブロック61-3として区切られた11個のセルBT23~BT33の出力電圧を測定し、第4電圧検出用IC(21-4)は、第4ブロック61-4として区切られた11個のセルBT34~BT44の出力電圧を測定し、第5電圧検出用IC(21-5)は、第5ブロック61-5として区切られた11個のセルBT45~BT55の出力電圧を測定する。すなわち、電圧検出用IC(21-1)~(21-5)は、各セルBT1~BT55の出力電圧を測定する電圧測定手段として機能する。
 電圧検出用IC(21-1)~(21-5)は、それぞれ放電回路(放電手段)40(後述する図2及び図3参照)を備えている。この放電回路40は、各セルBT1~BT55毎に設けられ、セルBT1~BT55のプラス極とマイナス極との間を通電して、セルBT1~BT55の出力電圧を放電する。すなわち、放電回路40は、各セルBT1~BT55毎に設けられ、セルBT1~BT55のプラス極、マイナス極間を通電して、セルBT1~BT55の出力電圧を放電する放電手段として機能する。
 また、電圧検出用IC(21-1)~(21-5)は、それぞれ、A/D変換器26(後述する図2参照、「ADC」と記載)を備えており、A/D変換器26用の基準電源71-1~71-5(図1参照)より出力される基準電圧を用いて(基準電圧を内蔵しているICは、内蔵の基準電圧を用いる。)、各ブロック(第1ブロック~第5ブロック)毎に検出した電圧信号をディジタルの電圧信号に変換する。
 さらに、第2~第5電圧検出用IC(21-2)~(21-5)は、通信線31を介して、第1電圧検出用IC(21-1)と接続され、この第1電圧検出用IC(21-1)は、絶縁インターフェース32を介して、低電圧側装置12側に設けられているメインマイクロコンピュータ(電圧残存量測定手段、差分値演算手段、均等化制御手段)33に接続されている。すなわち、メインマイクロコンピュータ33と、各電圧検出用IC(21-1)~(21-5)は、絶縁インターフェース32を介し、デイジーチェーン通信で接続されている。
 低電圧側装置12には、5Vの直流電圧を出力するレギュレータ52が設けられる。このレギュレータ52は、車両に搭載されるバッテリ(電源)51より出力される電圧(例えば、12V)から、安定した5Vの直流電圧を生成してメインマイクロコンピュータ33に供給する。
 本発明の実施形態に係るセル電圧均等化装置10のメインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)に電圧検出指令信号を出力して電圧検出信号を取得すると、少なくとも一つのセルの出力電圧(例えば、セルBT1~BT55のうち最も低い出力電圧)に基づいて、二次電池13のSOC(State of Charge、以下、電圧残存量と称する)を求める。そして、この電圧残存量が所定の残存量(第1閾値以下又は第2閾値以上)であるか否かを判定する。すなわち、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)により測定される少なくとも一つのセルBT1~BT55の出力電圧に基づいて、二次電池13の電圧残存量を求め、この電圧残存量が予め設定した所定の残存量であるか否かを判定する電圧残存量測定手段として機能する。
 また、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)に電圧検出指令信号を出力して電圧検出信号を取得すると、この電圧検出信号に基づいて、各セルBT1~BT55の出力電圧から予め設定した基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)を減算した差分値を求める。すなわち、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)にて測定された各セルBT1~BT55の出力電圧から、予め設定した所定の基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)を減算した差分値を求める差分値演算手段として機能する。
 そして、メインマイクロコンピュータ33は、求めた差分値が第1の電圧閾値以上(例えば、1.5V以上)であるセルが存在する場合に、このセルに設けられる放電回路40(図2及び図3参照)にて放電することにより、各セルBT1~BT55の出力電圧を均等化する均等化処理を実行する。すなわち、メインマイクロコンピュータ33は、求められた差分値が第1の電圧閾値以上であるセルが存在する場合に、このセルに設けられる放電回路40にて放電することにより、各セルBT1~BT55の出力電圧を均等化する均等化制御手段として機能する。均等化処理は、差分値の全てが、第2の電圧閾値以下(例えば、0.5V)であることを条件として、各セルBT1~BT55の均等化処理を終了する。
 また、メインマイクロコンピュータ33は、求めた電圧残存量が所定の残存量でない場合には、前回の均等化処理から予め設定した第1の待ち時間(例えば、1時間)が経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。
 一方、求めた電圧残存量が所定の残存量である場合には、前回の均等化処理から第1の待ち時間(例えば、1時間)よりも短い第2の待ち時間(例えば、30分)が経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。詳細については後述する。
 次に、図2を参照して、本発明の実施形態に係る電圧検出用ICの詳細な構成について説明する。図2は、本発明の実施形態に係る第1電圧検出用IC(21-1)の内部構成を示すブロック図である。なお、第2電圧検出用IC~第5電圧検出用IC(21-2)~(21-5)は、第1電圧検出用IC21-1と略同一の構成であるので、詳細な説明を省略する。
 図2に示すように、第1電圧検出用IC21-1は、セルBT1~BT11毎に設けられた放電回路40と、セルBT1~BT11より出力される電力を入力して、所定の電圧を生成する電源回路23と、ブロック61-1に設けられる各セルBT1~BT11と放電回路40を介して接続されて、これらの出力電圧検出するセル電圧入力部22と、セル電圧入力部22より出力される各セルの電圧信号を、1系統の時系列的な信号に変換するマルチプレクサ25と、マルチプレクサ25より出力される各単位セルの電圧信号をディジタル信号に変換するA/D変換器26と、を備えている。
 A/D変換器26は、基準電源71-1(図1参照)より出力される基準電圧を用いて、アナログ信号をディジタル信号に変換する。また、第1電圧検出用IC21-1は、コントロール部27と、2つの通信I/F35a、35bと、を備えている(第1電圧検出用IC21-1は、通信I/F35aのみでも良い)。
 コントロール部27は、第1電圧検出用IC(21-1)を総括的に制御する。特に、図1に示したメインマイクロコンピュータ33より、セル電圧の電圧検出指令信号が送信された場合には、セル電圧入力部22で検出したセルBT1~BT11の出力電圧を通信I/F35a、35bを経由して、メインマイクロコンピュータ33に送信する。
 また、コントロール部27は、図1に示したメインマイクロコンピュータ33より、セルの放電開始指令信号が送信された場合には、放電回路40による放電開始の指令がなされたセルの出力電圧の放電を開始し、セルの放電終了指令信号が送信された場合には、放電回路40による放電を終了する。
 次に、図3を参照して、本発明の実施形態に係る放電回路について説明する。図3は、本発明の実施形態に係るセルBT1~BT3に設けられた放電回路の回路図である。なお、セルBT4~BT55は、セルBT1~BT3と同一の回路構成であるので、詳細な説明を省略する。
 図3に示すように、放電回路40は、各セルBT1~セルBT3毎に設けられ、セルBT1~セルBT3のプラス極、マイナス極間を通電してセルの出力電圧を放電する。放電回路40は、それぞれスイッチSW(スイッチSW1~スイッチSW3)と、抵抗R(抵抗R1~抵抗R4)と、を備えている。そして、図1に示したメインマイクロコンピュータ33より送信された放電開始指令信号又は放電終了指令信号に基づいて、スイッチSW(スイッチSW1~スイッチSW3)をON、OFF制御することによりセルBT1~BT3の出力電圧の放電を制御する。
 例えば、図1に示したメインマイクロコンピュータ33より、セルBT1の放電開始指令信号が送信された場合には、コントロール部27は(図2参照)、セルBT1に設けられるスイッチSW1をONすることにより、セルBT1の出力電圧の放電を開始する。
 放電を開始すると、メインマイクロコンピュータ33ではタイマー(図示省略)によりセルBT1を放電している時間を計時する。そして、放電を開始してから所定時間(例えば、3分)経過したときに、セルBT1の放電終了指令信号を送信し、コントロール部27は、セルBT1に設けられるスイッチSW1をOFFすることにより、セルBT1の出力電圧の放電を終了する。
 次に、本発明の実施形態に係る二次電池の電圧残存量について説明する。図4は、本発明の実施形態に係る二次電池の電圧残存量と出力電圧との関係を示す特性図である。図5(a)は、本発明の実施形態に係るセルの出力電圧を放電した場合の出力電圧及び電圧のバラツキと時間との関係を示す特性図である。図5(b)は、図5(a)に示した放電終止付近を拡大した拡大図である。図6は、従来における均等化実施領域を示す図である。図7は、本発明の実施形態に係るセル電圧均等化装置における均等化実施領域を示す図である。
 図4に示すように、二次電池13が十分に電荷が蓄えられた状態の満充電付近や、二次電池13が蓄積した電荷を失う放電終止付近になると、電圧残存量(SOC)の変化に対する出力電圧の感度が良くなるため、少しの電圧残存量の変化で大きく出力電圧が変化する。
 つまり、電圧残存量(例えば、満充電の状態を100%、完全放電状態を0%とした場合、実際に使用できる電池の量)が20%(第1閾値)以下の領域と、電圧残存量が80%(第2閾値)以上の領域では、電圧残存量の変化に対して出力電圧が敏感に変化する。このため、電圧残存量と出力電圧との関係を示す曲線L1は、満充電付近及び放電終止付近では傾きが大きくなる(電圧残存量に対する出力電圧の変化率が大きい)。
 一方、電圧残存量が20%以上であって、80%以下の電圧残存量の中間領域では、電圧残存量の変化に対して出力電圧が敏感に変化しない。このため、電圧残存量と出力電圧との関係を示す曲線L1は、電圧残存量の中間領域では傾きが小さく一定となる。つまり、中間領域では、電圧残存量と出力電圧との関係を示す曲線L1は直線状となる(図4の中間領域参照)。
 図5(a)及び図5(b)に示すように、二次電池13のセルBT1~BT55を放電すると(図5(a)及び図5(b)は、7つのセルを放電した場合の図)、放電終止付近では、電圧のバラツキ(各セルBT1~BT55の出力電圧の差、最も高い出力電圧と最も低い出力電圧との差)が拡大する。電圧のバラツキが拡大している場合、二次電池13は過充電状態、或いは過放電状態になりやすくなる。
 図6に示すように、従来、ハイブリット車両に搭載して車両駆動用のモータを駆動するための高圧バッテリとして用いられる二次電池は、電圧残存量が中間領域(図4参照)のときに使用される。このため、電圧残存量が中間領域(図6の均等化実施領域)にあるときにのみ均等化処理を実行している。そのため、電圧残存量の変化に対する出力電圧を感度が良くなる満充電付近及び放電終止付近、特に、電圧のバラツキが拡大する放電終止付近において均等化処理を実行することができないため、高精度なセル電圧検出精度が求められた。
 つまり、均等化処理を実行する際、電圧検出用IC(21-1)~(21-5)により検出したセルBT1~BT55の出力電圧に基づいて各セルBT1~BT55の出力電圧を均等化している。このため、電圧残存量の変化に対して出力電圧が敏感に変化しない中間領域(図4参照)では、電圧検出用IC(21-1)~(21-5)がセルBT1~BT55の出力電圧を検出する精度によって均等化の基準電圧となる値が異なる場合が生ずる。
 特に、電気自動車やプラグインハイブリット車両等は、二次電池の使用領域が中間領域(図4参照)のみならず、満充電付近及び放電終止付近(図4参照)であっても使用することができるため、二次電池を使用する領域が広くなる。
 そこで、本発明の実施形態に係るセル電圧均等化装置10は、電圧残存量の変化に対する出力電圧の感度が良い満充電付近及び放電終止付近、特に、電圧のバラツキが拡大する放電終止付近において均等化処理を実行することにより、高精度に各セルBT1~BT55の出力電圧を均等化する。
 つまり、図7に示すように、電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する電圧残存量が20%(第1閾値)以下の領域(図7の均等化実施領域)と、電圧残存量の変化に対する出力電圧の感度が良い電圧残存量が80%(第2閾値)以上の領域(図7の均等化実施領域)においても均等化処理を実行する。
 そして、本発明の実施形態に係るセル電圧均等化装置10は、図6に示す均等化実施領域の範囲では、前回の均等化処理から予め設定した第1の待ち時間(例えば、1時間)が経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。
 また、図7に示す均等化実施領域の範囲では、前回の均等化処理から第1の待ち時間よりも短い第2の待ち時間(例えば、30分)が経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。
 このように、図7に示す均等化実施領域の範囲、つまり、電圧残存量が20%(第1閾値)以下の領域と、電圧残存量が80%(第2閾値)以上の領域では、電圧残存量に対する出力電圧の感度が良く、さらに、電圧残存量が20%(第1閾値)以下の領域では電圧のバラツキが拡大するため、短い時間で均等化処理を繰り返すことにより、精度よく各セルBT1~BT55の出力電圧を均等化することができる。
 また、電圧残存量が、電圧残存量が第1閾値(例えば、20%)以下の領域(電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する領域)、又は、第2閾値(80%)以上の領域(電圧残存量の変化に対する出力電圧の感度が良い領域)の場合に均等化処理を行うことにより、高精度に検出したセルBT1~BT55の出力電圧を基準電圧として均等化処理を実行することができる。このため、電圧検出用IC(21-1)~(21-5)がセルBT1~BT55の出力電圧を検出する精度によって均等化処理の基準となる基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)の値が異なることがない。
 従って、高精度に各セルBT1~BT55の出力電圧を均等化することが可能な二次電池13のセル電圧均等化装置10を提供することができる。
 次に、上記のように構成された本発明の実施形態に係るセル電圧均等化装置10の動作について説明する。図8は、本発明の実施形態に係るセル電圧均等化装置の均等化処理を示すフローチャートである。
 はじめに、メインマイクロコンピュータ33は、二次電池13のセルBT1~BT55の出力電圧が安定するまでの一定期間、作動を停止する(ステップS1)。
 次に、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)に初期電圧検出指令信号を出力する(ステップS2)。メインマイクロコンピュータ33より指示された各電圧検出用IC(21-1)~(21-5)は、各ブロックのセルBT1~BT55の出力電圧を検出し、検出した各セルBT1~BT55の電圧信号を通信I/F35a、35bを経由して、メインマイクロコンピュータ33に送信する。
 次に、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)から初期電圧検出信号を取得する(ステップS3)。
 次に、メインマイクロコンピュータ33は、電圧残存量を算出する(ステップS4)。電圧残存量は、ステップS3において取得した電圧検出信号に基づいて算出する。具体的には、セルBT1~BT55の出力電圧のうち、最も低い出力電圧に基づいて二次電池13の電圧残存量(例えば、満充電の状態を100%、完全放電状態を0%とした場合、実際に使用できる電池の量)を算出する。
 次に、メインマイクロコンピュータ33は、初期差分値を算出する(ステップS5)。初期差分値は、ステップS3において取得した電圧検出信号に基づいて算出する。具体的には、セルBT1~BT55の出力電圧のうち、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した基準電圧(例えば、3V+0.02V=3.02V)を設定し、各セルBT1~BT55から基準電圧を減算した差分値を求める。
 このように、最も低い電圧値に所定の電圧値を加算した基準電圧を設定することにより、各セルBT1~BT55の出力電圧が最も低い電圧値よりも低い出力電圧値になること、すなわち、二次電池13が過放電状態になることを防ぐことができる。
 次に、メインマイクロコンピュータ33は、初期差分値は第1の電圧閾値以上か否かを判定する(ステップS6)。つまり、ステップS5において算出した初期差分値が第1の電圧閾値(例えば、1.5V)以上であるセルが存在するか否かを判定する。
 メインマイクロコンピュータ33は、初期差分値が第1の電圧閾値以上であるセルが存在しないと判定したときには(ステップS6:NO)、処理をステップS15に移る。つまり、電圧のバラツキ(各セルBT1~BT55の出力電圧の差、最も高い出力電圧と最も低い出力電圧との差)が小さいと判定し、放電回路40にてセル(BT1~BT55)の出力電圧を放電する放電処理(ステップS7~ステップS14の処理)を実行しない。
 一方、メインマイクロコンピュータ33は、初期差分値が第1の電圧閾値以上のセルが存在すると判定したときには(ステップS6:YES)、電圧検出用IC(21-1)~(21-5)に放電開始指令信号を出力する(ステップS7)。つまり、ステップS5において算出した初期差分値が第1の電圧閾値(例えば、1.5V)以上であるセルが存在する場合には、セルBT1~BT55の出力電圧にバラツキが大きい(各セルBT1~BT55の出力電圧の差が大きい、最も高い出力電圧と最も低い出力電圧との差が大きい)と判定し、初期差分値が第1の電圧閾値以上のセルに設けられる放電回路40のスイッチSW(図3参照)をONにするための信号を出力する。
 メインマイクロコンピュータ33より指示された各電圧検出用IC(21-1)~(21-5)は、放電開始の指示がなされたセルに設けられた放電回路40のスイッチSW(図3参照)をONにし、セルの出力電圧の放電を開始する。
 次に、メインマイクロコンピュータ33は、所定時間が経過したか否かを判定する(ステップS8)。メインマイクロコンピュータ33は、所定時間が経過していないと判定したときには(ステップS8:NO)、所定の時間が経過するまで待機する。
 一方、メインマイクロコンピュータ33は、所定の時間が経過したと判定したときには(ステップS8:YES)、電圧検出用IC(21-1)~(21-5)に放電終了指令信号を出力する(ステップS9)。つまり、メインマイクロコンピュータ33は、タイマー(図示省略)により、セルの出力電圧を放電している時間を計時する。そして、放電を開始してから所定時間(例えば、3分)経過したときに、放電終了指令信号を送信する。
 メインマイクロコンピュータ33より指示された各電圧検出用IC(21-1)~(21-5)は、放電しているセルに設けられた放電回路40のスイッチSW(図3参照)をOFFすることにより、セルの出力電圧の放電を終了する。
 次に、メインマイクロコンピュータ33は、二次電池13のセルBT1~BT55の出力電圧が安定するまでの一定期間、作動を停止する(ステップS10)。
 次に、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)に電圧検出指令信号を出力する(ステップS11)。メインマイクロコンピュータ33より指示された各電圧検出用IC(21-1)~(21-5)は、各ブロックのセルBT1~BT55の出力電圧を検出し、検出した各セルBT1~BT55の電圧信号を通信I/F35a、35bを経由して、メインマイクロコンピュータ33に送信する。
 次に、メインマイクロコンピュータ33は、各電圧検出用IC(21-1)~(21-5)から電圧検出信号を取得する(ステップS12)。
 次に、メインマイクロコンピュータ33は、差分値を算出する(ステップS13)。差分値は、ステップS12において取得した電圧検出信号に基づいて算出する。具体的には、セルBT1~BT55の出力電圧のうち、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した基準電圧(例えば、3V+0.02V=3.02V)を設定し、各セルBT1~BT55から基準電圧を減算した差分値を求める。
 次に、メインマイクロコンピュータ33は、差分値は第2の電圧閾値以下か否かを判定する(ステップS14)。つまり、ステップS12において算出した差分値の全てが第1の電圧閾値(例えば1.5V)よりも小さく設定した第2の電圧閾値(例えば、0.5V)以下であるか否かを判定する(各セルBT1~BT55から基準電圧を減算した差分値が全て第2の閾値以下であるか否かを判定する)。
 メインマイクロコンピュータ33は、差分値が全て特定の閾値以下ではないと判定したときには(ステップS14:NO)、ステップS7の処理に戻る。つまり、放電回路40にて、セル(BT1~BT55)の出力電圧を放電する放電処理(ステップS7~ステップS14の処理)を差分値の全てが第2の電圧閾値以下となるまで繰り返す(差分値が第2の電圧閾値以上のセルに設けられた放電回路40にて放電を繰り返す)。
 一方、メインマイクロコンピュータ33は、ステップS6に処理において、差分値が第1の電圧閾値以上であるセルが存在しないと判定したとき(ステップS6:NO)、又は、ステップS14の処理において、差分値が全て第2の電圧閾値以下であると判定したとき(ステップS14:YES)には、電圧残存量が第1閾値以下又は第2閾値以上であるか否かを判定する(ステップS15)。つまり、ステップS4において算出した二次電池13の電圧残存量が、電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する電圧残存量が第1閾値(例えば、20%)以下の領域(図7参照)、又は、電圧残存量の変化に対する出力電圧の感度が良い電圧残存量が第2閾値(例えば、80%)以上の領域(図7参照)であるか否かを判定する。
 電圧残存量が第1閾値以下又は第2閾値以上であるか否かの判断は、二次電池13の特性に基づいて、電圧残存量と出力電圧との関係を示す曲線L1の傾きが変わる値(電圧残存量に対する出力電圧の変化率が大きい値、図4参照)を閾値(第1閾値及び第2閾値)として予めメモリ(図示省略)に記憶しておき、メインマイクロコンピュータ33は、電圧残存量に対する出力電圧の変化率が大きい値である閾値(第1閾値及び第2閾値)に基づいて判定する。
 メインマイクロコンピュータ33は、電圧残存量が第1閾値以下又は第2閾値以上ではないと判定したときには(ステップS15:NO)、第1の待ち時間が経過したか否かを判定する(ステップS16)。つまり、電圧残存量が、電圧残存量の変化に対する出力電圧の感度が良い満充電付近及び放電終止付近ではない場合には、第1の待ち時間(例えば、1時間)が経過したか否かを判定する。
 メインマイクロコンピュータ33は、第1の待ち時間が経過していないと判定したときには(ステップS16:NO)、第1の待ち時間が経過するまで待機する。
 一方、メインマイクロコンピュータ33は、第1の待ち時間が経過したと判定したときには(ステップS16:YES)、ステップS2の処理に戻る。つまり、前回の均等化処理(ステップS2~ステップS14の処理)から第1の待ち時間を経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。
 一方、メインマイクロコンピュータ33は、電圧残存量が第1閾値以下又は第2閾値以上であると判定したときには(ステップS15:YES)、第2の待ち時間が経過したか否かを判定する(ステップS17)。つまり、電圧残存量が、電圧残存量の変化に対する出力電圧の感度が良い満充電付近及び放電終止付近である場合には、第1の待ち時間よりも短い第2の待ち時間が経過したか否かを判定する。
 メインマイクロコンピュータ33は、第2の待ち時間が経過していないと判定したときには(ステップS17:NO)、第2の待ち時間が経過するまで待機する。
 一方、メインマイクロコンピュータ33は、第2の待ち時間が経過したと判定したときには(ステップS17:YES)、ステップS2の処理に戻る。つまり、前回の均等化処理(ステップS2~ステップS14の処理)から第1の待ち時間よりも短い第2の待ち時間を経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。
 このようにして、本発明の実施形態に係るセル電圧均等化装置10は、複数のセルBT1~BT55を直列に接続して所望の電圧を出力する二次電池13の、各セルBT1~BT55の出力電圧を均等化するセル電圧均等化装置10であって、各セルBT1~BT55の出力電圧を測定する各電圧検出用IC(21-1)~(21-5)と、各セルBT1~BT55毎に設けられ、セルBT1~BT55のプラス極、マイナス極間を通電して、セルBT1~BT55の出力電圧を放電する放電回路40と、各電圧検出用IC(21-1)~(21-5)により測定される少なくとも一つのセルの出力電圧(例えば、セルBT1~BT55のうち、一番低い出力電圧値)に基づいて、二次電池13の電圧残存量を求め、この電圧残存量が予め設定した第1閾値(例えば、20%)以下となる所定の残存量であるか否かを判定し、各電圧検出用IC(21-1)~(21-5)にて測定された各セルBT1~BT55の出力電圧から、予め設定した所定の基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)を減算した差分値を求め、求められた差分値が第1の電圧閾値(例えば、1.5V)以上であるセルが存在する場合に、このセルに設けられる放電回路40にて放電することにより、各セルBT1~BT55の出力電圧を均等化するメインマイクロコンピュータ33と、を有する。そして、メインマイクロコンピュータ33は、電圧残存量が所定の残存量でない場合には、前回の均等化処理から予め設定した第1の待ち時間(例えば、1時間)が経過したことを条件として、各セルBT1~BT55の均等化処理を実行し、電圧残存量が所定の残存量である場合には、前回の均等化処理から第1の待ち時間よりも短い第2の待ち時間(例えば、30分)が経過したことを条件として、各セルBT1~BT55の均等化処理を実行する。
 また、本発明の実施形態に係るセル電圧均等化装置10は、二次電池13の電圧残存量が第1閾値(例えば、20%)以下である場合に加え、第1閾値よりも大きく設定した第2閾値(例えば、80%)以上である場合を所定の残存量とする。
 さらに、本発明の実施形態に係るセル電圧均等化装置10は、メインマイクロコンピュータ33は、各セルBT1~BT55の出力電圧から基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)を減算した差分値の全てが、第1の電圧閾値(例えば、1.5V)よりも小さく設定した第2の電圧閾値(例えば、0.5V)以下であることを条件として、各セルBT1~BT55の均等化処理を終了する。
 そして、本発明の実施形態に係るセル電圧均等化装置10によれば、二次電池13の電圧残存量が、第1閾値(例えば、20%)以下の領域(電圧残存量の変化に対する、出力電圧の感度が良く、セルの電圧バラツキが拡大しやすい領域)の場合に均等化処理を実行するため、高精度に均等化することができる。
 また、二次電池13の電圧残存量が、電圧残存量が第1閾値(例えば、20%)以下の領域(電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する領域)の場合には、前回の均等化処理(ステップS2~ステップS14の処理)から第1の待ち時間(例えば、1時間)よりも短い第2の待ち時間(例えば、30分)が経過したことを条件として各セルBT1~BT55の均等化処理を実行する。このため、二次電池13の電圧残存量が、高精度に均等化することができる電圧残存量の場合には、前回の均等化処理から短い時間内で再度均等化処理を実行することとなり、高精度に各セルBT1~BT55の出力電圧を均等化することができる。
 さらに、二次電池13の電圧残存量が、電圧残存量が第1閾値(例えば、20%)以下の領域(電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する領域)の場合に均等化処理(ステップS2~ステップS14の処理)を行うことにより、高精度に検出したセルBT1~BT55の出力電圧を基準電圧として均等化処理を実行することができる。このため、電圧検出用IC(21-1)~(21-5)がセルBT1~BT55の出力電圧を検出する精度によって均等化処理の基準となる基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)が異なることがない。
 従って、高精度に各セルBT1~BT55の出力電圧を均等化することが可能な二次電池13のセル電圧均等化装置10を提供することができる。
 また、二次電池13の電圧残存量が、電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する電圧残存量が第1閾値(例えば、20%)以下の領域(図7参照)である場合に加え、電圧残存量の変化に対する出力電圧の感度が良い電圧残存量が第2閾値(例えば、80%)以上の領域(図7参照)である場合を所定の残存量として均等化処理(ステップS2~ステップS14の処理)を実行する。このため、より高精度に各セルBT1~BT55の出力電圧を均等化することができる。
 さらに、電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する電圧残存量が第1閾値以下の領域(図7参照)、又は、電圧残存量の変化に対する出力電圧の感度が良い電圧残存量が第2閾値以上の領域(図7参照)で均等化処理を実行することにより、高精度な電圧検出用ICを使用しなくとも、セルBT1~BT55の出力電圧を高精度に均等化することができる。また、高精度な電圧検出用ICが不要なため、電圧監視システムのコストを低減することができる。
 また、各セルBT1~BT55の出力電圧から基準電圧(例えば、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値)を減算した差分値の全てが、第2の電圧閾値以下(例えば、0.5V)であることを条件として、各セルBT1~BT55の均等化処理を終了する。このため、二次電池13の過放電状態を防止して、高精度に各セルBT1~BT55の出力電圧を均等化することができる。
 さらに、セルの出力電圧を検出する精度を向上するために高精度な電圧検出用ICを使用することに伴い、構成部品が多く、構成部品を管理する工程が増え製造コストが高くなるという問題が生ずることがなく、高精度な電圧検出用ICを使用する場合と比較して、構成部品を減らして軽量化を図ることができる。
 また、電圧残存量の変化に対する出力電圧の感度が良く、電圧のバラツキが拡大する電圧残存量が第1閾値以下の領域(図7参照)、又は、電圧残存量の変化に対する出力電圧の感度が良い電圧残存量が第2閾値以上の領域(図7参照)で均等化処理を実行することにより、効率の良い均等化処理を実行することができる。このため、消費電力が少なくなり、無駄な充電を低減して電力を有効活用することができる。
 以上、本発明の二次電池のセル電圧均等化装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
 例えば、上記した実施形態では、二次電池13の電圧残存量は、最も低い出力電圧に基づいて算出する場合について説明したが、本発明はこれに限定されるものではなく、出力電圧の平均値に基づいて算出しても良いし、特定のセルに基づいて算出しても良い。
 また、上述した実施形態では、基準電圧は、セルBT1~BT55の出力電圧のうち、最も低い出力電圧(例えば、3V)に所定の電圧値(例えば、0.02V)を加算した値(例えば、3.02V)を設定する場合について説明した。しかし、本発明はこれに限定されるものではなく、基準電圧は、セルBT1~BT55の出力電圧のうち、最も低い出力電圧(所定の電圧値を加算しない)値であっても良いし、セルBT1~BT55の出力電圧の平均値であっても良い。
 さらに、上述した実施形態では、放電を開始すると、メインマイクロコンピュータ33がタイマーにより放電している時間を計時する場合について説明した。しかし、本発明はこれに限定されるものではなく、コントロール部27がタイマー等により放電している時間を計時し、所定時間経過後に、放電回路40のスイッチをOFFしても良い。
 本発明は、高精度に各セルの出力電圧を均等化することが可能な複数組電池のセル電圧均等化装置を提供する上で極めて有用である。

Claims (3)

  1.  複数のセルを直列に接続して所望の電圧を出力する複数組電池の、前記各セルの出力電圧を均等化するセル電圧均等化装置において、
     前記各セルの出力電圧を測定する電圧測定手段と、
     前記各セル毎に設けられ、セルのプラス極、マイナス極間を通電して、当該セルの出力電圧を放電する放電手段と、
     前記電圧測定手段により測定される少なくとも一つのセルの出力電圧に基づいて、前記複数組電池の電圧残存量を求め、この電圧残存量が予め設定した第1閾値以下となる所定の残存量であるか否かを判定する電圧残存量測定手段と、
     前記電圧測定手段にて測定された各セルの出力電圧から、予め設定した所定の基準電圧を減算した差分値を求める差分値演算手段と、
     前記差分値演算手段により求められた差分値が第1の電圧閾値以上であるセルが存在する場合に、このセルに設けられる前記放電手段にて放電することにより、各セルの出力電圧を均等化する均等化制御手段と、を有し、
     前記均等化制御手段は、
     前記電圧残存量測定手段で測定される電圧残存量が前記所定の残存量でない場合には、前回の均等化処理から予め設定した第1の待ち時間が経過したことを条件として、前記各セルの均等化処理を実行し、
     電圧残存量が前記所定の残存量である場合には、前回の均等化処理から前記第1の待ち時間よりも短い第2の待ち時間が経過したことを条件として、前記各セルの均等化処理を実行することを特徴とする複数組電池のセル電圧均等化装置。
  2.  前記複数組電池の電圧残存量が前記第1閾値以下である場合に加え、前記第1閾値よりも大きく設定した第2閾値以上である場合を前記所定の残存量とすることを特徴とする請求項1に記載の複数組電池のセル電圧均等化装置。
  3.  前記均等化制御手段は、前記差分値演算手段にて各セルの出力電圧から前記基準電圧を減算した差分値の全てが、前記第1の電圧閾値よりも小さく設定した第2の電圧閾値以下であることを条件として、前記各セルの均等化処理を終了することを特徴とする請求項1又は請求項2に記載の複数組電池のセル電圧均等化装置。
PCT/JP2011/069292 2010-09-16 2011-08-26 複数組電池のセル電圧均等化装置 WO2012035959A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11824967.1A EP2618454B1 (en) 2010-09-16 2011-08-26 Device for averaging cell voltage of plurality of battery packs
CN201180044824.3A CN103119828B (zh) 2010-09-16 2011-08-26 多节电池组的单电池电压均衡处理装置
US13/796,770 US9444267B2 (en) 2010-09-16 2013-03-12 Cell voltage equalizer for multi-cell battery pack which determines the waiting time between equalization operations based on the voltage difference and the state of charge level

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010208108A JP5567956B2 (ja) 2010-09-16 2010-09-16 複数組電池のセル電圧均等化装置
JP2010-208108 2010-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/796,770 Continuation US9444267B2 (en) 2010-09-16 2013-03-12 Cell voltage equalizer for multi-cell battery pack which determines the waiting time between equalization operations based on the voltage difference and the state of charge level

Publications (1)

Publication Number Publication Date
WO2012035959A1 true WO2012035959A1 (ja) 2012-03-22

Family

ID=45831431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069292 WO2012035959A1 (ja) 2010-09-16 2011-08-26 複数組電池のセル電圧均等化装置

Country Status (5)

Country Link
US (1) US9444267B2 (ja)
EP (1) EP2618454B1 (ja)
JP (1) JP5567956B2 (ja)
CN (1) CN103119828B (ja)
WO (1) WO2012035959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356533A (zh) * 2015-10-29 2016-02-24 金龙联合汽车工业(苏州)有限公司 一种电池组的主动均衡方法和装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536007B2 (en) 2011-03-05 2020-01-14 Powin Energy Corporation Battery energy storage system and control system and applications thereof
US9614661B2 (en) * 2012-04-09 2017-04-04 Atmel Corporation Differential interface for inter-device communication in a battery management and protection system
US9209639B2 (en) * 2012-07-13 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Storage battery system and method of controlling the same
KR101816978B1 (ko) * 2012-11-19 2018-01-09 비와이디 컴퍼니 리미티드 배터리 어셈블리에 대한 보호 디바이스 및 보호 시스템
JP2014206453A (ja) * 2013-04-12 2014-10-30 三菱電機株式会社 電池監視装置
JP6056730B2 (ja) * 2013-10-16 2017-01-11 トヨタ自動車株式会社 蓄電システム
CN105406445A (zh) * 2014-09-12 2016-03-16 莱克电气股份有限公司 清洁机器人及其电池保护系统
US10263436B2 (en) * 2014-10-20 2019-04-16 Powin Energy Corporation Electrical energy storage unit and control system and applications thereof
US9847658B2 (en) * 2014-12-31 2017-12-19 Meridian Design, Inc. Systems and methods for performing battery management
WO2017000275A1 (zh) * 2015-07-01 2017-01-05 长园科技实业股份有限公司 储能电池供电系统
US10153521B2 (en) 2015-08-06 2018-12-11 Powin Energy Corporation Systems and methods for detecting a battery pack having an operating issue or defect
US10254350B2 (en) 2015-08-06 2019-04-09 Powin Energy Corporation Warranty tracker for a battery pack
US10122186B2 (en) 2015-09-11 2018-11-06 Powin Energy Corporation Battery management systems (BMS) having isolated, distributed, daisy-chained battery module controllers
US9923247B2 (en) 2015-09-11 2018-03-20 Powin Energy Corporation Battery pack with integrated battery management system
US9882401B2 (en) 2015-11-04 2018-01-30 Powin Energy Corporation Battery energy storage system
JP6883396B2 (ja) * 2016-08-25 2021-06-09 矢崎総業株式会社 急速充電装置
US10699278B2 (en) 2016-12-22 2020-06-30 Powin Energy Corporation Battery pack monitoring and warranty tracking system
JP6776904B2 (ja) * 2017-01-13 2020-10-28 株式会社デンソー 電池パック及び電源システム
JP2018117438A (ja) * 2017-01-17 2018-07-26 太陽誘電株式会社 リチウムイオンキャパシタを備えた電源モジュール
DE102017201622A1 (de) * 2017-02-01 2018-08-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Energiespeichersystems und Energiespeichersystem
JP6997955B2 (ja) * 2017-04-05 2022-01-18 株式会社Gsユアサ 蓄電装置および蓄電素子の制御方法
KR102150147B1 (ko) * 2017-05-24 2020-09-01 주식회사 엘지화학 배터리 모듈 균등화 장치 및 방법
KR102500690B1 (ko) * 2017-09-18 2023-02-17 삼성전자주식회사 배터리 상태를 기반으로 충전을 제어하는 방법 및 장치
CN107994278B (zh) * 2017-11-13 2024-04-09 深圳市道通智能航空技术股份有限公司 一种电池均衡装置、方法及无人机
CN108134417B (zh) * 2017-12-21 2021-07-13 江苏罗思韦尔电气有限公司 一种均衡电池内各单体电芯能量的方法
WO2019145997A1 (ja) * 2018-01-23 2019-08-01 Tdk株式会社 直流給電システム
JP6888733B2 (ja) * 2018-03-01 2021-06-16 株式会社村田製作所 組電池
JP6993911B2 (ja) * 2018-03-14 2022-02-03 日立建機株式会社 建設機械
CN108512280B (zh) * 2018-05-04 2023-06-30 厦门芯阳科技股份有限公司 一种串联电池组均衡充电控制方法
US10355496B1 (en) * 2018-07-26 2019-07-16 Kitty Hawk Corporation Inter-module battery balancing using minimum cell voltages to select battery sub-modules to power loads
US10608442B1 (en) * 2018-09-24 2020-03-31 Texas Instruments Incorporated Adaptive cell-balancing
US11084394B2 (en) * 2019-02-26 2021-08-10 Ford Global Technologies, Llc Electrified vehicle state of charge communication method and assembly
KR20200131621A (ko) 2019-05-14 2020-11-24 주식회사 엘지화학 배터리 관리 시스템
CN110323802B (zh) * 2019-06-06 2021-02-12 北京中宸泓昌科技有限公司 一种储能系统的充电均衡装置和方法
US11469605B2 (en) * 2019-07-12 2022-10-11 Emerson Electric Co. Systems and methods for selectable battery configuration in a portable device
JP7051776B2 (ja) * 2019-09-30 2022-04-11 矢崎総業株式会社 電池制御ユニットおよび電池システム
JP2023511469A (ja) * 2020-01-31 2023-03-20 エクシコム・テレ-システムズ・リミテッド バッテリパック内の複数のセルのバランスをとるためのシステムおよびその方法
CN111469712A (zh) * 2020-05-08 2020-07-31 广州小鹏汽车制造有限公司 一种电池均衡方法、装置和车辆
CN112467822A (zh) * 2020-10-15 2021-03-09 中船重工远舟(北京)科技有限公司 一种电池管理方法、装置以及系统
CN113162168A (zh) * 2021-04-14 2021-07-23 厦门芯阳科技股份有限公司 一种电池电量管理方法及系统
CN115556634B (zh) * 2022-11-09 2024-06-18 中车大连机车车辆有限公司 一种混合动力调车机车能量自适应控制方法
CN116559634B (zh) * 2023-07-11 2023-09-12 杭州华塑科技股份有限公司 电路故障检测方法、装置、存储介质和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101565A (ja) 2000-09-22 2002-04-05 Denso Corp 組電池の電圧調整装置及び組電池の電圧調整方法
JP2003189490A (ja) 2001-12-14 2003-07-04 Honda Motor Co Ltd 蓄電装置の残容量均等化装置
JP2003219572A (ja) * 2002-01-17 2003-07-31 Matsushita Electric Ind Co Ltd 組電池システム
JP2004080909A (ja) * 2002-08-19 2004-03-11 Honda Motor Co Ltd 組電池の残容量均等化装置
JP2010098866A (ja) * 2008-10-17 2010-04-30 Panasonic Corp 不均衡判定回路、不均衡低減回路、電池電源装置、及び不均衡判定方法

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046801A (en) * 1962-04-30 1966-10-26 Secr Defence Brit A coulometric device
US3602794A (en) * 1970-06-25 1971-08-31 Lawrence A Westhaver Solid state charging circuitry using a loading coil
US3742327A (en) * 1971-01-15 1973-06-26 Johnson Service Co Proportional motor actuator circuit
US4302714A (en) * 1979-04-27 1981-11-24 Yefsky Sheldon A Rechargeable battery charger system for charging testing, rejuvenation and preventative maintenance
US4514694A (en) * 1981-07-23 1985-04-30 Curtis Instruments Quiescent battery testing method and apparatus
US5287286A (en) * 1989-07-31 1994-02-15 Kabushiki Kaisha Toshiba Low-battery state detecting system and method for detecting the residual capacity of a battery from the variation in battery voltage
US5280231A (en) * 1990-07-02 1994-01-18 Nippondenso Co., Ltd. Battery condition detecting apparatus and charge control apparatus for automobile
JP2846800B2 (ja) * 1993-09-21 1999-01-13 三洋電機株式会社 充電装置
US5504415A (en) * 1993-12-03 1996-04-02 Electronic Power Technology, Inc. Method and apparatus for automatic equalization of series-connected batteries
JP3389670B2 (ja) * 1994-03-11 2003-03-24 日産自動車株式会社 2次電池の直列接続回路
US5670861A (en) * 1995-01-17 1997-09-23 Norvik Tractions Inc. Battery energy monitoring circuits
JPH1010212A (ja) * 1996-06-24 1998-01-16 Sony Corp 電池評価方法及び電池評価装置
US6097172A (en) * 1996-08-15 2000-08-01 Advanced Charger Technology, Inc. Method and apparatus for determining when to terminate charging of a battery
US6040685A (en) * 1996-08-16 2000-03-21 Total Battery Management, Inc. Energy transfer and equalization in rechargeable lithium batteries
US5895440A (en) * 1996-12-23 1999-04-20 Cruising Equipment Company, Inc. Battery monitor and cycle status indicator
US5998968A (en) * 1997-01-07 1999-12-07 Ion Control Solutions, Llc Method and apparatus for rapidly charging and reconditioning a battery
US5889385A (en) * 1997-08-19 1999-03-30 Advanced Charger Technology, Inc. Equalization of series-connected cells of a battery using controlled charging and discharging pulses
US5828201A (en) * 1997-10-30 1998-10-27 Lockheed Martin Corporation Method for maintaining the charge capacity of traction battery modules of a hybrid electric vehicle
US6005370A (en) * 1998-01-26 1999-12-21 Physio-Control Manufacturing Corporation Automatic rate control for defibrillator capacitor charging
FR2800917B1 (fr) * 1999-11-10 2002-01-25 Cit Alcatel Electrode a support tridimentionnel utilisable dans un generateur secondaire a electrolyte alcalin
JP3876729B2 (ja) * 2001-03-08 2007-02-07 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動装置の制御方法及びそのプログラム
JP4187942B2 (ja) * 2001-03-21 2008-11-26 株式会社デンソー 充電状態制御装置
DE10128033A1 (de) * 2001-06-08 2002-12-12 Vb Autobatterie Gmbh Verfahren zur Vorhersage der äquilibierten Ruhespannung eines elektrochemischen Energiespeichers
JP4343173B2 (ja) * 2002-11-25 2009-10-14 ティアックス エルエルシー 直列接続された電気エネルギー貯蔵ユニット間の充電状態を均等化するバッテリーセル平衡化システム
US20070257642A1 (en) * 2003-06-19 2007-11-08 Sean Xiao Battery cell monitoring and balancing circuit
US20070216369A1 (en) * 2003-09-08 2007-09-20 Intersil Maximum Energy transfer through cell isolation and discharge
DE102004030037B4 (de) * 2003-11-19 2012-01-12 Milwaukee Electric Tool Corp. Akkumulator
US20070001651A1 (en) * 2004-07-02 2007-01-04 Harvey Troy A Distributed networks of electric double layer capacitor supervisory controllers and networks thereof
CN201174408Y (zh) * 2004-10-04 2008-12-31 布莱克和戴克公司 监视电池组电池的设备及在充电期间平衡电池电压的装置
JP2006166615A (ja) * 2004-12-08 2006-06-22 Fuji Heavy Ind Ltd 蓄電デバイスの電圧均等化制御システム
JP4400536B2 (ja) * 2004-12-27 2010-01-20 日産自動車株式会社 組電池の容量調整装置および容量調整方法
JP2007043788A (ja) * 2005-08-01 2007-02-15 Yazaki Corp 組電池の充電状態調整方法及びその装置
TWM289925U (en) * 2005-11-09 2006-04-21 Sino American Electronic Co Lt Smart-type battery charger with equalizer circuit
JP4591836B2 (ja) * 2006-05-22 2010-12-01 エルピーダメモリ株式会社 半導体記憶装置及びそのテスト方法
JP4866187B2 (ja) * 2006-09-05 2012-02-01 プライムアースEvエナジー株式会社 電池制御装置、電動車両、及び二次電池の充電状態を推定するための処理をコンピュータに実行させるためのプログラム
JP4359301B2 (ja) * 2006-10-04 2009-11-04 本田技研工業株式会社 充電装置
KR100778414B1 (ko) * 2006-10-12 2007-11-22 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
JP2010522525A (ja) * 2006-12-11 2010-07-01 テクティウム リミテッド 電池式装置のための充電方法
KR100839980B1 (ko) * 2006-12-22 2008-06-19 주식회사 에이티티알앤디 배터리팩의 충방전 제어 시스템 및 방법
CN100468911C (zh) * 2006-12-25 2009-03-11 苏州市三环技贸有限公司 串联动力锂电池组充放电自动均衡方法
WO2008095315A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery management system
JP4306746B2 (ja) * 2007-03-09 2009-08-05 株式会社デンソー 車両用電源装置
US20090079391A1 (en) * 2007-09-25 2009-03-26 O2Micro Inc. Systems and methods for cell balancing
US8461806B2 (en) * 2007-10-15 2013-06-11 O2Micro Inc Systems and methods for cell balancing
JP2009081981A (ja) * 2007-09-27 2009-04-16 Sanyo Electric Co Ltd 充電状態最適化装置及びこれを具えた組電池システム
JP5459946B2 (ja) * 2007-09-28 2014-04-02 株式会社日立製作所 車両用直流電源装置
JP5202918B2 (ja) * 2007-10-03 2013-06-05 矢崎総業株式会社 電池電圧調整装置
JP5279261B2 (ja) * 2007-12-27 2013-09-04 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
CN101471577B (zh) * 2007-12-29 2011-06-15 比亚迪股份有限公司 双节可充电电池电压平衡电路
JP5075741B2 (ja) * 2008-06-02 2012-11-21 パナソニック株式会社 不均衡判定回路、電源装置、及び不均衡判定方法
CN101609994B (zh) * 2008-06-17 2016-01-20 比亚迪股份有限公司 均衡充电装置及均衡充电方法
JP5180714B2 (ja) * 2008-07-17 2013-04-10 ルネサスエレクトロニクス株式会社 負荷短絡保護回路
JP5386872B2 (ja) * 2008-07-29 2014-01-15 株式会社デンソー 組電池監視制御装置
JP2010035392A (ja) * 2008-07-31 2010-02-12 Panasonic Corp 不均衡低減回路、電源装置、及び不均衡低減方法
KR101187766B1 (ko) * 2008-08-08 2012-10-05 주식회사 엘지화학 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
US8269469B2 (en) * 2008-08-12 2012-09-18 Ivus Industries, Llc Equalizing method and circuit for ultracapacitors
US8350528B2 (en) * 2009-02-04 2013-01-08 Samsung Sdi Co., Ltd. Battery pack and balancing method of battery cells
WO2010102287A2 (en) * 2009-03-06 2010-09-10 Asic Advantage, Inc. Battery charge and discharge controller
US9219293B2 (en) * 2009-06-30 2015-12-22 Cardiac Pacemakers, Inc. Controlling lithium deposition during manufacture of a battery
CN101777784A (zh) * 2010-03-17 2010-07-14 北汽福田汽车股份有限公司 均衡充电装置及均衡充电方法
US8638070B2 (en) * 2010-05-21 2014-01-28 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
JP5870590B2 (ja) * 2011-09-29 2016-03-01 ミツミ電機株式会社 電池状態計測方法及び電池状態計測装置
JP2013083612A (ja) * 2011-10-12 2013-05-09 Mitsumi Electric Co Ltd 電池状態計測方法及び電池状態計測装置
US9077181B2 (en) * 2013-01-11 2015-07-07 GM Global Technology Operations LLC Battery section balancing methods and systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101565A (ja) 2000-09-22 2002-04-05 Denso Corp 組電池の電圧調整装置及び組電池の電圧調整方法
JP2003189490A (ja) 2001-12-14 2003-07-04 Honda Motor Co Ltd 蓄電装置の残容量均等化装置
JP2003219572A (ja) * 2002-01-17 2003-07-31 Matsushita Electric Ind Co Ltd 組電池システム
JP2004080909A (ja) * 2002-08-19 2004-03-11 Honda Motor Co Ltd 組電池の残容量均等化装置
JP2010098866A (ja) * 2008-10-17 2010-04-30 Panasonic Corp 不均衡判定回路、不均衡低減回路、電池電源装置、及び不均衡判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618454A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356533A (zh) * 2015-10-29 2016-02-24 金龙联合汽车工业(苏州)有限公司 一种电池组的主动均衡方法和装置
CN105356533B (zh) * 2015-10-29 2017-10-27 金龙联合汽车工业(苏州)有限公司 一种电池组的主动均衡方法

Also Published As

Publication number Publication date
EP2618454A4 (en) 2016-05-11
EP2618454B1 (en) 2018-10-10
EP2618454A1 (en) 2013-07-24
US20130187611A1 (en) 2013-07-25
CN103119828B (zh) 2015-03-04
CN103119828A (zh) 2013-05-22
JP2012065469A (ja) 2012-03-29
JP5567956B2 (ja) 2014-08-06
US9444267B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
JP5567956B2 (ja) 複数組電池のセル電圧均等化装置
US8957636B2 (en) Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US10551443B2 (en) Battery deterioration determination device, battery deterioration determination method, and vehicle
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
JP6823162B2 (ja) バッテリーの充電状態をキャリブレーションするためのバッテリー管理装置及び方法
JP3867581B2 (ja) 組電池システム
US9755281B2 (en) Method for connecting battery cells in a battery, battery, and monitoring device
JP2011041452A (ja) 組電池装置及び車両
JP7067549B2 (ja) 蓄電素子管理装置及び蓄電素子管理方法
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
WO2012137456A1 (ja) 余寿命判定方法
EP1918728B1 (en) Lithium-ion battery diagnostic and prognostic techniques
CN103424708A (zh) 开路电压推断装置、状态推断装置及开路电压推断方法
WO2010010662A1 (ja) 不均衡判定回路、電源装置、及び不均衡判定方法
WO2015019875A1 (ja) 電池制御システム、車両制御システム
JP5328574B2 (ja) 複数組電池の電圧測定装置
JP6155743B2 (ja) 充電状態検出装置および充電状態検出方法
JP5131533B2 (ja) バッテリの充放電制御方法及び充放電制御装置
JP7207817B2 (ja) バッテリー管理方法、バッテリー装置、およびバッテリーを含む自動車
JP5561049B2 (ja) 電池電圧測定装置
JP5999409B2 (ja) 状態推定装置及び状態推定方法
JP3744833B2 (ja) 電動車両用二次電池の寿命判別方法
JP5525199B2 (ja) 組電池の電池容量制御装置
JP5413029B2 (ja) 電池劣化判定装置及び電池劣化判定方法
KR20230077409A (ko) 배터리의 상태 추정 방법 및 제어 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044824.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011824967

Country of ref document: EP