WO2012029766A1 - 撮像素子、及び撮像装置 - Google Patents

撮像素子、及び撮像装置 Download PDF

Info

Publication number
WO2012029766A1
WO2012029766A1 PCT/JP2011/069584 JP2011069584W WO2012029766A1 WO 2012029766 A1 WO2012029766 A1 WO 2012029766A1 JP 2011069584 W JP2011069584 W JP 2011069584W WO 2012029766 A1 WO2012029766 A1 WO 2012029766A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
connection terminal
pixel
terminals
imaging device
Prior art date
Application number
PCT/JP2011/069584
Other languages
English (en)
French (fr)
Inventor
一彦 末延
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201180037122.2A priority Critical patent/CN103039069B/zh
Priority to US13/819,532 priority patent/US9438838B2/en
Publication of WO2012029766A1 publication Critical patent/WO2012029766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an imaging element and an imaging apparatus.
  • This application claims priority based on Japanese Patent Application No. 2010-194889 filed on Aug. 31, 2010, the contents of which are incorporated herein by reference.
  • CMOS Complementary Metal Oxide Semiconductor
  • Some imaging devices have a plurality of pixels combined with a plurality of imaging elements (semiconductor devices) to capture a high-definition image (see, for example, Patent Document 1).
  • a signal processing unit including an analog-digital converter (column ADC) and a preamplifier is provided in the same semiconductor substrate for each column of the pixel array unit, and performs high-speed processing. .
  • the structure of the pixel array unit can be simplified by forming the pixel array unit integrally instead of combining a plurality of imaging elements (semiconductor devices) including the pixel array unit.
  • the amount of image information to be output increases in the pixel array section that has been formed into a single pixel by integrating them. Therefore, it is necessary to increase the transfer rate of image information in a signal processing unit that outputs a signal from the pixel array unit.
  • the transfer speed is increased. Therefore, the power consumption of the image sensor increases.
  • the pixel array unit and the signal processing unit that processes the signal of the pixel array unit are separated and configured as different semiconductor devices. May be. Thereby, the power consumption of the pixel array unit and the signal processing unit can be distributed for each semiconductor device.
  • the imaging device including the pixel array unit transfers high-definition image information to the semiconductor device including the signal processing unit.
  • the pixel array portion included in the image sensor has a matrix structure with rows and columns. For this reason, when transferring the image information, the image sensor is required to output the image information from the multi-pixel array unit through a number of signal lines provided in parallel.
  • An object of an aspect of the present invention is to provide an imaging device and an imaging device that can arrange a plurality of signal output terminals provided corresponding to the pixel columns of the pixel array at intervals wider than the intervals of the pixel columns of the pixel array. It is to provide.
  • An aspect of the present invention provides a pixel array in which a plurality of pixels are arranged in a two-dimensional matrix, and a plurality of signal outputs that are provided corresponding to the pixel columns of the pixel array and that output signals of pixels in the pixel columns
  • a plurality of signal output terminals are arranged as a set of signal output terminals in the column direction of the pixel array, and the set of signal output terminals of the pixel array It is an imaging device characterized by being arranged in a row direction.
  • an imaging apparatus comprising: the above-described imaging device; and a first connection terminal provided corresponding to the connection terminal and connected to the connection terminal. It is.
  • an imaging device and an imaging apparatus capable of arranging a plurality of signal output terminals provided corresponding to the pixel columns of the pixel array at intervals wider than the intervals of the pixel columns of the pixel array. Can be provided.
  • an optical sensor unit pixel
  • a digital signal processing unit that processes a signal converted by the optical sensor unit.
  • Each needs to have an optimal configuration.
  • For optimizing the optical sensor unit it is necessary to increase the power supply voltage in order to widen the dynamic range with low noise.
  • a digital circuit capable of high-speed operation using a fine transistor with a low power supply voltage is required to realize high-speed processing and low power consumption. If they are to be realized by one chip and the same process, complicated manufacturing process steps and process control are required. This may lead to high cost and difficulty in realizing the chip.
  • the performance of the digital signal processing unit is degraded or high-speed processing is performed. Therefore, there is a problem that a fine process required for the process cannot be selected, which leads to an increase in the area of the digital signal processor and an increase in power consumption.
  • a multi-chip module configured by combining a plurality of semiconductors.
  • semiconductor chips manufactured by different processes can be mounted on the same substrate in a bare chip state. Therefore, in the multichip module, the overall performance can be improved by utilizing the characteristics of each process.
  • FIG. 1A and 1B are configuration diagrams of an imaging apparatus according to the present embodiment.
  • 1A is a front view of the imaging apparatus
  • FIG. 1B is a side view of the imaging apparatus.
  • An imaging apparatus 1 shown in FIGS. 1A and 1B includes a signal processing chip 2, a signal processing chip 3, a sensor chip 4, and a glass substrate 21.
  • the signal processing chip 2 is disposed above the sensor chip 4 and the signal processing chip 3 is disposed below the sensor chip 4 in a state where the surface of the glass substrate 21 of the imaging device 1 is viewed from the front.
  • the sensor array unit provided in the sensor chip 4 has a horizontal direction as a row direction and a vertical direction (a direction perpendicular to the row direction in the drawing) with respect to the arrangement direction of the pixels arranged in two dimensions.
  • the glass substrate 21 is formed of a material that transmits light (a transparent material), and wiring for connecting the signal processing chip 2, the signal processing chip 3, the sensor chip 4 and the like is provided on the surface thereof. .
  • the signal processing chip 2, the signal processing chip 3, and the sensor chip 4 are bonded to connection terminals provided on the surface of the glass substrate 21 in the bonding region 22.
  • the junction region 22 includes a junction region 22N having a high connection terminal arrangement density and a junction region 22W having a low connection terminal arrangement density.
  • the signal processing chip 2 and the sensor chip 4 are connected, and the signal processing chip 3 and the sensor chip 4 are connected.
  • the bonding region 22 ⁇ / b> W the signal processing chip 2 is connected to the wiring member 23, and the signal processing chip 3 is connected to the wiring member 23.
  • the wiring member 23 is a flexible wiring member (FPC) for wiring that inputs and outputs signals to the glass substrate 21.
  • the sensor chip 4 is arranged with the surface on which the pixel array is provided facing the glass substrate 21. The pixel array receives incident light transmitted through the glass substrate 21.
  • FIG. 2 is a block diagram showing a schematic circuit configuration of the imaging apparatus according to the embodiment of the present invention.
  • the imaging device 1 includes a signal processing chip 2, a signal processing chip 3, and a sensor chip 4.
  • the signal processing chip 2, the signal processing chip 3, and the sensor chip 4 are respectively connected to connection terminals provided on the surface of the glass substrate 21.
  • the signal processing chip 2 includes an ADC array 5, a digital output bus 6, a digital small amplitude differential output circuit 7, their control circuit 8, and a bias circuit 9 for each circuit.
  • the ADC array 5 includes a plurality of analog-digital converters (ADCs), and each ADC performs parallel processing.
  • ADCs analog-digital converters
  • the configuration of the circuit block provided in the signal processing chip 3 is the same as that of the signal processing chip 2 and is different from the signal processing chip 2 in that the control circuit 10 is provided as will be described later.
  • the sensor chip 4 includes a pixel array 11 in which pixels are two-dimensionally arranged, a pixel drive driver 12, a column preamplifier 13 arranged above and below the pixel array 11 in FIG. 2, a drive control bus 14 for the pixel drive driver 12, A sensor bias circuit 20 for supplying a bias voltage and current to each circuit is provided.
  • the pixel array 11 is controlled according to a control signal generated in one or both of the control circuit 8 mounted on the signal processing chip 2 and the control circuit 10 mounted on the signal processing chip 3. .
  • a control signal from one or both of the control circuit 8 and the control circuit 10 is supplied from the drive control bus 14 to the pixel drive driver 12.
  • the pixel driver 12 has a plurality of row lines connected to the output terminal, and outputs a selection signal for selecting a pixel corresponding to the row line to a row line selected according to the supplied control signal.
  • the pixel drive driver 12 selects a plurality of pixels connected to the same row line and supplied with the same selection signal for each line (one column).
  • the pixel selected for each column outputs a signal and supplies it to the column preamplifier 13 in parallel for each column.
  • the column preamplifier 13 corresponds to the number of column lines. For example, in FIG. 2, the column preamplifier 13 is disposed above the pixel array 11 in the odd-numbered column lines, and is disposed below the pixel array 11 in the even-numbered column lines. Is done.
  • the column preamplifier 13 amplifies a signal (pixel signal) from each pixel with a necessary gain.
  • the amplified pixel signal is output from the column preamplifier 13 of the sensor chip 4 to the signal processing chip 2 or the signal processing chip 3.
  • the amplified pixel signal output from the sensor chip 4 is an analog signal converted based on the amount of light detected in each pixel.
  • the amplified pixel signals are input in parallel to the columns in the signal processing chip 2 in the bonding region 22N on the glass substrate 21 and in the signal processing chip 3 in the bonding region 22N, respectively.
  • the “amplified pixel signal” output for each column is analog-digital converted by the ADC array 5 in accordance with the control signal generated by the control circuit 8 (10).
  • the ADC array 5 is controlled in accordance with a predetermined order controlled by the control circuit 8 (10), and outputs the converted digital signal through the digital output bus 6.
  • a digital small amplitude differential output circuit 7 outputs the digital pixel signal output from the ADC array 5.
  • one (one lane) digital small-amplitude differential output circuit 7 is arranged on the signal processing chip 2 (3).
  • a plurality (multiple lanes) may be arranged according to a required pixel output speed.
  • the plurality of digital small amplitude differential output circuits 7 are controlled to switch the output order by the control circuit 8 (10), and a signal is output from each of the digital small amplitude differential output circuits 7.
  • the signal processing chips 2 and 3 include not only analog-to-digital conversion but also signal processing circuits that perform higher-level digital operations as necessary, and add data offset values. It is possible to perform subtraction correction of fixed pattern noise (FPN) and calculation for correcting variations in conversion errors of a plurality of ADCs in the ADC array 5.
  • FPN fixed pattern noise
  • FIG. 3 is a schematic block diagram showing connections between a plurality of signal processing chips.
  • the control circuit 8 in the signal processing chip 2 includes a system controller 71 that receives an input of a dedicated control signal 25 (a signal from the dedicated control line 25), an ADC controller 73, and a pixel array timing controller 75.
  • the control circuit 10 in the signal processing chip 3 includes a system controller 72 that receives an input of a dedicated control signal 26 (a signal from the dedicated control line 26), an ADC controller 74, and a pixel array timing controller 76.
  • the pixel array timing controllers 75 and 76 are connected to the drive control bus 14 via the synchronization signal line 15.
  • the control circuit 8 and the control circuit 10 have a common circuit block, and perform different operations depending on the settings of the dedicated control lines 25 and 26 connected to the respective inputs.
  • the system controllers 71 and 72, the ADC controllers 73 and 74, and the pixel array timing controllers 75 and 76 can function in accordance with the settings by selecting the master mode and the slave mode. For example, it is assumed that each part of the control circuit 8 in the signal processing chip 2 is set to the master mode by the dedicated control line 25, and each part of the control circuit 10 in the signal processing chip 3 is set to the slave mode.
  • the drive control bus 14 is controlled by the pixel array timing controller 75 in the control circuit 8 set to the master mode.
  • the pixel array timing controller 75 controls the synchronization signal line 15.
  • the ADC controller 73 outputs an ADC array control signal (Cont.ADC_N) in synchronization with the clock in the dedicated signal line 25 in accordance with the command from the system controller 71 and the timing control from the pixel array timing controller 75, and the ADC array. Control.
  • the system controller 71 generates a control signal (Cont.Output_N) synchronized with a clock supplied via the dedicated signal line 25 according to the timing control by the pixel array timing controller 75.
  • the system controller 71 controls the digital output bus 6 and the digital small amplitude differential output circuit 7 by the generated control signal (Cont.Output_N).
  • the pixel array timing controller 76 in the control circuit 10 set to the slave mode is controlled by the slave mode that receives a signal from the control bus 14 without outputting a signal to the control bus 14.
  • the pixel array timing controller 76 generates and outputs control signals for the ADC controller 74 and the system controller 72 in accordance with the control signal supplied from the control bus 14 and the synchronization signal supplied from the synchronization signal line 15.
  • the ADC controller 74 generates a DC array control signal (Cont.ADC_S) in phase with a clock supplied via the control signal line 25 under the control of the system controller 72 and the pixel array timing controller 76.
  • the system controller 71 controls the ADC array by the generated DC array control signal (Cont.ADC_S).
  • the system controller 72 generates a control signal (Cont.Output_S) whose phase is adjusted in synchronization with a clock supplied via the dedicated signal line 25 according to the timing control from the pixel array timing controller 76.
  • the system controller 71 controls the digital output bus 6 and the digital small amplitude differential output circuit 7 by the generated control signal (Cont.Output_S).
  • control circuit 8 is set to the master mode and the control circuit 10 is set to the slave mode.
  • the control method can be completely reversed, and the control circuit 10 can be operated in the master mode and the control circuit 8 can be operated in the slave mode.
  • each is operated in a master mode.
  • the circuit and the control relationship are complicated, it is possible to make each part of the control circuit 8 and the control circuit 10 separately a master and a slave.
  • FIGS. 4A to 7 when the imaging apparatus 1 shown above is divided into a plurality of signal processing chips 2 and 3 and a sensor chip 4, a plurality of signal processing chips 2 and 3 The structure of the connection part that connects the sensor chips 4 will be described.
  • each pixel provided in the pixel array in the sensor chip 4 is indicated by “ ⁇ ”.
  • Each pixel is two-dimensionally arranged, and an interval between the pixels arranged in the row direction is indicated by a pixel pitch “PP”.
  • PP pixel pitch
  • Each pixel outputs a signal to a corresponding column signal line.
  • the signal transfer direction is different for each column, so the number of signals output in the same direction can be half the number of pixels arranged in the column direction.
  • FIG. 4A shows a “single row arrangement” type arrangement in which the connection terminals are arranged in a line along the direction in which the column signal lines are arranged.
  • the connection terminal interval terminal pitch “CP1”
  • 2PP an interval twice the pixel pitch
  • FIG. 4B shows a “staggered arrangement” type arrangement in which the connection terminals are alternately arranged along the direction in which the column signal lines are arranged and arranged in two columns.
  • the interval between the connection terminals is four times the pixel pitch (4PP), that is, the terminal pitch CP1 in the case of the “single row arrangement” type arrangement. Can be ensured twice as long.
  • the distance between the connection terminals is limited by the limit of accuracy required for adjusting and arranging the glass substrate 21 and the sensor chip 4 arranged on the glass substrate 21 at a predetermined position.
  • the pixel pitch of the pixels arranged on the pixel array of the sensor chip 4 is restricted from being narrowed by a limit such as required accuracy of a semiconductor manufacturing process.
  • FIG. 5 is a bird's-eye view showing an aspect of the configuration of the connecting portion in the present embodiment.
  • FIG. 5 shows the signal processing chip 3 and the sensor chip 4 connected to the glass substrate 21.
  • the distance between the signal processing chip 3 and the sensor chip 4 with respect to the glass substrate 21 is shown enlarged.
  • a plurality of pixels are provided corresponding to the signal lines (plural signal lines) corresponding to the pixel columns of the pixel array in which the pixels are arranged in a two-dimensional matrix (matrix shape).
  • a signal output terminal 51 is shown.
  • the column direction of the pixels is substantially orthogonal to the row direction of the pixels.
  • a plurality of signal output terminals 51 for outputting signals from pixels provided corresponding to the same pixel column are provided at one end of the signal line.
  • the other end of the signal line (not shown) is provided with a pixel in the pixel array.
  • Each signal output terminal 51 is arranged to form a signal output terminal group 51G in which a predetermined number of signal output terminals 51 are grouped in the column direction of the pixel array.
  • each signal output terminal group 51 ⁇ / b> G includes four signal output terminals 51.
  • each signal output terminal group 51G four signal output terminals 51 are arranged side by side at intervals d along the column direction of the pixel array.
  • in one signal output terminal group 51G four signal output terminals 51 are arranged linearly along the column direction of the pixel array.
  • a plurality of signal output terminal groups 51G are arranged at predetermined intervals along the row direction of the pixel array.
  • the signal output terminal group 51G (a set of signal output terminals) is arranged in a predetermined number of sets in order along the row direction of the pixel array.
  • the predetermined number of sets is a result (quotient) obtained by dividing the number of signal lines provided corresponding to the signal output terminal 51G by the number of signal output terminals provided per set.
  • the signal output terminal group 51G is arranged in the row direction of the pixel array at intervals obtained by multiplying the pitch of the pixel columns by a predetermined number. Can do.
  • connection terminals 61 are provided corresponding to the signal output terminals 51, respectively. Each connection terminal 61 is connected to a corresponding signal output terminal 51. Each connection terminal 61 provided corresponding to the signal output terminal 51 included in the signal output terminal group 51G forms a set of connection terminals 61 corresponding to the signal output terminal group 51G. The set is shown as a connection terminal group 61G. Connection terminals 63 (second connection terminals) are provided corresponding to the connection terminals 61 (first connection terminals), respectively. The corresponding connection terminal 61 (first connection terminal) and connection terminal 63 (second connection terminal) are connected by a signal line 65.
  • connection terminal 63 (second connection terminal) is connected to the signal terminal 53 in the corresponding signal processing chip 3 provided.
  • Each connection terminal 63 forms a set corresponding to the signal terminal group 53G including the signal terminal 53 provided correspondingly.
  • the set is shown as a connection terminal group 63G.
  • the connection terminal 63 (second connection terminal) can be arranged similarly to the connection terminal 61 (first connection terminal).
  • Each signal line 65 is disposed between adjacent connection terminal groups 61G (first connection terminal group).
  • Each signal line 65 is disposed between adjacent connection terminal groups 63G (second connection terminal group).
  • FIG. 6 is a diagram illustrating an aspect of the arrangement of connection terminals in the present embodiment.
  • the same components as those shown in FIG. FIG. 6 shows connection terminals and wiring patterns in plan view of the surface of the glass substrate 21.
  • the connection terminal group 61G and the connection terminal group 63G are provided in correspondence with each other, and are connected to each other by a signal line 65, respectively.
  • Corresponding connection terminal group 61G and connection terminal group 63G are arranged at positions offset in the row direction, respectively.
  • the connection terminal group 61G includes four connection terminals 61 each.
  • the connection terminal group 63G includes four connection terminals 63 each. In FIG. 6, four sets of the connection terminal group 61G and the connection terminal group 63G are arranged in the row direction.
  • connection terminals 61 in the connection terminal group 61G are distinguished as connection terminals 61a, b, c, and d.
  • Each connection terminal 63 in the connection terminal group 63G is distinguished as connection terminals 63a, b, c, and d.
  • the connection terminal 61a is connected to the connection terminal 63a by a signal line 65a.
  • the connection terminal 61b is connected to the connection terminal 63b and the signal line 65b.
  • the connection terminal 61c is connected to the connection terminal 63c by a signal line 65c.
  • the connection terminal 61d is connected to the connection terminal 63d by a signal line 65d.
  • connection terminal group 61G and the connection terminal group 63G are provided corresponding to the sensor chip 4 and the signal processing chip 3, respectively.
  • the connection terminal 61d is disposed at a position closest to the signal processing chip 3.
  • the connection terminals 61c, b, and a are sequentially spaced apart by a distance d in a direction away from the connection terminal 61d.
  • the connection terminal 63a is disposed at a position closest to the sensor chip 4.
  • connection terminals 63b, c, and d are arranged at intervals d in order in a direction away from the connection terminal 63a.
  • the connection terminals 63 corresponding to the connection terminals 61 are sequentially arranged in the direction in which the connection terminals 61 are arranged in accordance with the order in which the connection terminals 61 are arranged. They are arranged side by side.
  • the signal lines 65 are arranged in parallel and arranged between the adjacent connection terminal groups 61G and between the connection terminal groups 63G.
  • the signal line 65 is disposed through a gap in which the corresponding connection terminal group 61G and connection terminal group 63G are disposed offset in the row direction.
  • each signal line 65 has the same wiring length from the connection terminal 61 to the connection terminal 63 connected to each other.
  • FIG. 7 is a diagram illustrating an arrangement of connection terminals in the present embodiment.
  • each pixel provided in the pixel array in the sensor chip 4 is indicated by “ ⁇ ”.
  • Each pixel is two-dimensionally arranged, and an interval between the pixels arranged in the row direction is indicated by a pixel pitch “PP”.
  • Each pixel outputs a signal to a corresponding column signal line.
  • the direction in which signals are transferred is different for each column, and the case where signals are supplied to different signal processing chips is taken as an example. Therefore, the number of signals output in the same direction is aligned in the column direction. It can be half the number of pixels.
  • FIG. 7 shows the relationship between the pixel interval and the signal output terminal interval in the sensor chip 4 when the connection terminals shown in FIGS. 5 and 6 are arranged.
  • the interval between the connection terminals in the row direction (terminal pitch “CP3”), an interval of 8 times the pixel pitch (8PP) can be secured.
  • the plurality of signal output terminals 51 provided corresponding to the pixel columns of the pixel array 11 may be arranged at an interval wider than the interval of the pixel columns of the pixel array 11. it can.
  • connection is possible.
  • the interval between the connection terminals in the row direction in the region 22N can be increased with respect to the pixel pitch.
  • the signal output terminals 51 in the sensor chip 4 imaging device
  • the pixel signal output from the sensor chip 4 can be supplied to the signal processing chips 2 and 3, and the imaging device 1 formed as a multichip module can be provided.
  • FIG. 8 is a diagram illustrating an aspect of the arrangement of connection terminals in the present embodiment.
  • the same components as those shown in FIG. 5 are denoted by the same reference numerals, and the connection terminal group 61GB is connected to the connection terminal group 61G (FIG. 5), the connection terminal group 63GB is connected to the connection terminal group 63G (FIG. 5), The lines 65B correspond to the signal lines 65 (FIG. 5), respectively.
  • FIG. 8 shows connection terminals and wiring patterns in plan view of the surface of the glass substrate 21.
  • the connection terminal group 61GB and the connection terminal group 63GB are provided corresponding to each other and are connected to each other by a signal line 65B.
  • Corresponding connection terminal group 61GB and connection terminal group 63GB are respectively arranged at positions offset in the row direction.
  • the connection terminal group 61GB includes eight connection terminals 61 each.
  • the connection terminal group 63GB includes eight connection terminals 63 each.
  • FIG. 8 shows three sets of connection terminal group 61GB and connection terminal group 63GB arranged in the row direction.
  • connection terminal group 61GB and the connection terminal group 63GB each include eight connection terminals 61 and 63, which are included in the connection terminal group 61GB and the connection terminal group 63GB, respectively.
  • the number of connecting terminals to be connected is different, it is the same as in the case of FIG.
  • the distance CP4 between the connection terminals in the row direction can be increased to twice the distance CP3 shown in FIG. 5, that is, 16 times the pixel pitch PP (16PP). it can.
  • the same effects as those of the first embodiment can be obtained, and in the case of this embodiment, the interval between the connection terminals in the row direction can be increased.
  • the circuit configuration can be simplified by setting the number of connection terminals to a power of two.
  • FIG. 9 is a diagram showing an aspect of the arrangement of connection terminals in the present embodiment.
  • the same components as those shown in FIG. 5 are denoted by the same reference numerals, the connection terminal group 61GC is connected to the connection terminal group 61G (FIG. 5), the connection terminal group 63GC is connected to the connection terminal group 63G (FIG. 5), The lines 65C correspond to the signal lines 65 (FIG. 5), respectively.
  • FIG. 9 shows connection terminals and wiring patterns in plan view of the surface of the glass substrate 21.
  • the connection terminal group 61GC and the connection terminal group 63GC are provided in correspondence with each other, and are connected to each other by a signal line 65C.
  • Corresponding connection terminal group 61GC and connection terminal group 63GC are respectively arranged at positions offset in the row direction.
  • the connection terminal group 61GC includes four connection terminals 61 each.
  • the connection terminal group 63G includes four connection terminals 63 each. In FIG. 9, four sets of the connection terminal group 61GC and the connection terminal group 63G are shown side by side in the row direction.
  • Each signal line 65C is provided with an impedance reduction unit 67C for reducing impedance between the connection terminal 61 in the connection terminal group 61GC and the connection terminal 63 in the connection terminal group 63GC.
  • the impedance reduction unit 67C is an impedance reduction unit 67a, 67b, 67c, 67d provided corresponding to each of the signal lines 65C (65a, 65b, 65c, 65d), and is arranged side by side along the row direction.
  • connection terminal group 61GC and the connection terminal group 63GC are transmitted as analog signals, it is possible to ensure a wide frequency band of signals that can be transmitted.
  • the sensor chip 4 and the imaging device 1 can be configured as separate semiconductor devices by separating the pixel array unit 11 having multiple pixels from the signal processing chips 2 and 3. 4 can be mounted efficiently.
  • the same effects as those of the first embodiment can be obtained. Furthermore, in the case of the present embodiment, the output image signal can be made wider.
  • the present invention is not limited to the above-described embodiments, and can be changed without departing from the spirit of the present invention.
  • the number of pixels, the number of signals, and the number of connection terminals shown in the image pickup device and the image pickup apparatus shown in the embodiment of the present invention are merely one embodiment, and may be appropriately determined as necessary predetermined values. it can.
  • the signal output from the sensor chip 4 has been described.
  • the same arrangement of connection terminals is provided when the control signal and timing signal for controlling the sensor chip 4 are supplied to the sensor chip 4. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 撮像素子は、複数の画素が2次元行列状に配置された画素アレイ(11)と、前記画素アレイ(11)の画素列に対応して設けられ、前記画素列内の画素の信号を出力する複数の信号出力端子(51)と、を備える。前記複数の信号出力端子(51)は、前記画素アレイの列方向において所定数の信号出力端子(51)を組として配置されている。前記所定数の信号出力端子の組は、前記画素アレイ(11)の行方向に配置される。

Description

撮像素子、及び撮像装置
 本発明は、撮像素子及び撮像装置に関する。
 本願は、2010年8月31日に出願された日本特許出願2010-194889号に基づき優先権を主張し、その内容をここに援用する。
 CMOS(Complementary Metal Oxide Semiconductor)型の撮像素子(CMOSセンサ)を備えた撮像装置では、高精細画像を撮像することが必要とされている。撮像装置において、高精細画像を撮像するために複数の撮像素子(半導体装置)を組み合わせて多画素化されたものがある(たとえば、特許文献1参照)。そのような撮像素子においては、画素アレイ部のカラム(列)ごとにアナログデジタル変換器(カラムADC)とプリアンプなどを含む信号処理部を同一の半導体基板内に備え、高速処理を行うものがある。
特開平9-32479号公報
 このような撮像装置において、画素アレイ部を備える複数の撮像素子(半導体装置)を組み合わせて構成するのではなく、画素アレイ部を一体化して形成することにより、画素アレイ部の構造を簡素化できる。その反面、一体化して形成することにより多画素化された画素アレイ部では、出力する画像情報の情報量が増加する。そのため、画素アレイ部からの信号を出力する信号処理部では、画像情報の転送速度を高速化することが必要である。このように、画素アレイ部を一体化して形成した場合には、転送速度が高速化されることになる。そのため、撮像素子の消費電力が増大する。
 なお、一体化して形成した撮像素子における半導体装置あたりの消費電力を低減させるために、画素アレイ部と、画素アレイ部の信号を処理する信号処理部とに分離して、それぞれ異なる半導体装置として構成してもよい。これにより、画素アレイ部と信号処理部の消費電力を、半導体装置ごとに分散することができる。
 このように、画素アレイ部と信号処理部とを分離している場合、画素アレイ部を備えている撮像素子は、信号処理部を備えている半導体装置に高精細の画像情報を転送することになる。ここで、撮像素子が備える画素アレイ部が、行と列によるマトリクス構造を有するものである。そのため、撮像素子は、その画像情報を転送する場合、多画素化された画素アレイ部から、並列に設けられている多くの信号線を通じて画像情報を出力することが必要とされる。
 しかしながら、画素アレイ部から、並列に設けられている多くの信号線を通じて画像情報を出力するために、比較的多くの各信号の信号出力端子が必要である。撮像素子の限られた大きさでは、配置可能な信号出力端子の数に制限が生じる場合がある。あるいは、撮像素子における信号出力端子の配置間隔が狭くなる場合がある。このように、撮像素子において、多画素化された画素アレイ部を分離して構成すると、信号出力端子の配置が困難になるという問題がある。
 本発明の態様における目的は、画素アレイの画素列に対応して設けられている複数の信号出力端子を、画素アレイの画素列の間隔より広い間隔で配置することができる撮像素子及び撮像装置を提供することにある。
 本発明の態様は、複数の画素が2次元行列状に配置された画素アレイと、前記画素アレイの画素列に対応して設けられ、前記画素列内の画素の信号を出力する複数の信号出力端子と、を備え、前記複数の信号出力端子は、前記画素アレイの列方向において所定数の信号出力端子を組として配置されており、前記所定数の信号出力端子の組は、前記画素アレイの行方向に配置される、ことを特徴とする撮像素子である。
 本発明の別の態様は、上に記載の撮像素子と、前記接続用端子に対応して設けられ、前記接続用端子にそれぞれ接続される第1接続端子とを備えることを特徴とする撮像装置である。
 本発明の態様によれば、画素アレイの画素列に対応して設けられている複数の信号出力端子を、画素アレイの画素列の間隔より広い間隔で配置することができる撮像素子及び撮像装置を提供できる。
本発明の実施形態に係る撮像装置の構成図である。 本発明の実施形態に係る撮像装置の構成図である。 本実施形態における撮像装置の概略回路構成を示すブロック図である。 信号処理チップ間の接続を示す概略ブロック図である。 従来型の接続端子の配列を示す図である。 従来型の接続端子の配列を示す図である。 本実施形態における接続部の構成の一態様を示す鳥瞰図である。 本実施形態における接続端子の配列の一態様を示す図である。 本実施形態における接続端子の配列を示す図である。 本実施形態における接続端子の配列の一態様を示す図である。 本実施形態における接続端子の配列の一態様を示す図である。
 (撮像装置に要求される性能と機能分割)
 まず、本実施形態の撮像装置に必要とされる性能及び機能分割の一例について説明する。
 たとえば、動画像の撮影処理、或いは、高速撮影処理に適用可能なCMOSセンサを実現するためには、光センサ部(画素)と、光センサ部で変換した信号を処理するデジタル信号処理部とをそれぞれ最適な構成とする必要がある。この場合、光センサ部及びデジタル信号処理部に対して定められる異なる要求性能に対応させて、それぞれを最適化することが必要となる。光センサ部の最適化については、ローノイズでダイナミックレンジを広くするために電源電圧を高めることが必要になる。デジタル信号処理部の最適化については、高速処理と低消費電力を実現するために電源電圧を低くした微細なトランジスタを使用した高速動作が可能なデジタル回路が必要になる。それらを1チップかつ同一プロセスで実現しようとすると、複雑な製造プロセス工程とプロセス制御とを必要とする。これは、チップの高価格化及び実現困難性を招く可能性がある。
 1チップかつ同一プロセスで構成する場合、いずれか一方の要求性能を優先させることが必要になる。
 例えば、1チップかつ同一プロセスを採用し、光センサ部の性能を確保することをデジタル信号処理部の性能を確保することより優先した場合には、デジタル信号処理部の性能の低下や、高速処理に必要とされる微細なプロセスを選択できないという問題が発生し、デジタル信号処理部の面積増大、消費電力増大を招くことになる。
 ところで、複数の半導体を組み合わせて構成したマルチチップモジュールとする技術がある。マルチチップモジュールにおいては、異なるプロセスでつくられた半導体チップを同一基板上にベアチップの状態で実装することができる。それゆえ、マルチチップモジュールでは、それぞれのプロセスの特徴を生かして、全体の性能を向上させることができる。
 以下、本実施形態では、マルチチップモジュールの採用により、撮像装置の高画素化・処理の高速化を実現する一態様を示す。
 (第1実施形態)
 以下、本実施形態による撮像装置について、図面を参照して説明する。
 図1A及び図1Bは、本実施形態に係る撮像装置の構成図である。
 図1Aは、撮像装置の正面図であり、図1Bは、撮像装置の側面図である。
 図1A及び1Bに示される撮像装置1は、信号処理チップ2、信号処理チップ3、センサチップ4、及び、ガラス基板21を備えている。
 この図1Aにおいて、撮像装置1のガラス基板21の表面を正面視した状態で、信号処理チップ2は、センサチップ4の上方に配置され、信号処理チップ3は、センサチップ4の下方に配置される。
 また、図1Aにおいて、センサチップ4に設けられるセンサアレイ部は、2次元に配列される画素の配置方向について、左右方向を行方向とし、上下方向(紙面内で行方向と直交する方向)を列方向とする。
 ガラス基板21は、光を透過する材質(透過性の材質)で形成されており、その表面には、信号処理チップ2、信号処理チップ3、センサチップ4などを接続する配線が設けられている。
 信号処理チップ2、信号処理チップ3、センサチップ4は、接合領域22において、それぞれ、ガラス基板21表面に設けられた接続端子に接合される。接合領域22は、接続端子の配置密度が高い接合領域22Nと、接続端子の配置密度が低い接合領域22Wとを備える。接合領域22Nでは、信号処理チップ2とセンサチップ4とが、また、信号処理チップ3とセンサチップ4とが接続される。接合領域22Wでは、信号処理チップ2から配線部材23に接続され、信号処理チップ3から配線部材23に接続される。この配線部材23は、ガラス基板21に信号を入出力する配線用のフレキシブル配線部材(FPC)などである。
 また、センサチップ4は、画素アレイが設けられている面を、ガラス基板21に向けて配置されている。画素アレイは、ガラス基板21を透過した入射光を受光する。
 図2は、本発明の実施形態に係る撮像装置の概略回路構成を示すブロック図である。図1A及び1Bと同じ構成には、同じ符号を附す。
 撮像装置1は、信号処理チップ2,信号処理チップ3、センサチップ4を備えている。
 信号処理チップ2と信号処理チップ3とセンサチップ4は、それぞれガラス基板21の表面に設けられた接続端子に接続されている。
 信号処理チップ2は、ADCアレイ5、デジタル出力バス6、デジタル小振幅差動出力回路7、それらの制御回路8、各部回路のバイアス回路9を備える。
 ADCアレイ5は、複数のアナログデジタル変換器(ADC)を備え、それぞれのADCが並列処理をする。
 信号処理チップ3が備える回路ブロックの構成は、信号処理チップ2と同様であり、後で説明するように制御回路10を備えている点が信号処理チップ2と異なっている。
 センサチップ4は、2次元に画素が配置された画素アレイ11、画素駆動ドライバ12、この図2おいて画素アレイ11の上下に配置されたカラムプリアンプ13、画素駆動ドライバ12の駆動制御バス14、各部回路へのバイアス電圧、電流を供給するセンサバイアス回路20を備えている。
 以下、実際の撮像動作に沿って、各部の動作を説明する。
 画素アレイ11は、信号処理チップ2に搭載される制御回路8と、信号処理チップ3に搭載される制御回路10との内のいずれか、もしくは両方において生成される制御信号に応じて制御される。画素アレイ11は、制御回路8と制御回路10とのいずれか、もしくは両方からの制御信号が駆動制御バス14から画素駆動ドライバ12に供給される。画素駆動ドライバ12は、複数の行線が出力端子に接続されており、供給された制御信号に応じて選択される行線に、その行線に対応する画素を選択する選択信号を出力する。画素駆動ドライバ12は、同じ行線に接続され、同じ選択信号が供給される複数の画素を、1ライン(1列)ごとに選択する。列ごとに選択された画素は、それぞれ信号を出力し、それぞれの列ごとに並列にカラムプリアンプ13に供給する。
 カラムプリアンプ13は、カラム(列)線の個数に対応し、たとえば、図2において、奇数番目のカラム線では画素アレイ11の上方に配置され、偶数番目のカラム線では画素アレイ11の下方に配置される。
 カラムプリアンプ13は、各画素からの信号(画素信号)を必要なゲインにより増幅する。増幅された画素信号が、センサチップ4のカラムプリアンプ13から、信号処理チップ2又は信号処理チップ3に出力される。センサチップ4から出力される増幅された画素信号は、各画素において検出された光量に基づいて変換されたアナログ信号である。
 また、増幅された画素信号は、ガラス基板21にある接合領域22Nにおいて信号処理チップ2に、接合領域22Nにおいて信号処理チップ3に、それぞれカラムに対して並列に入力される。
 信号処理チップ2(3)では、制御回路8(10)によって生成された制御信号に従って、上記のカラムごとに出力された「増幅された画素信号」は、ADCアレイ5によってアナログデジタル変換される。ADCアレイ5は、制御回路8(10)によって制御される予め定められた順番に従って制御され、デジタル出力バス6を通じて変換したデジタル信号を出力する。ADCアレイ5から出力されたデジタル画素信号を、デジタル小振幅差動出力回路7が出力する。
 この図2において、デジタル小振幅差動出力回路7は、信号処理チップ2(3)に1個(1レーン)配置されている。代替的に、必要な画素出力速度に応じて複数個(複数レーン)配置されていてもよい。その場合、複数個配置されたデジタル小振幅差動出力回路7は、制御回路8(10)によって、出力順を切り替える制御が行われ、それぞれのデジタル小振幅差動出力回路7から信号が出力される。
 代替的及び/又は追加的に、信号処理チップ2、3は、アナログデジタル変換のみでなく必要に応じて、より高度なデジタル演算を実行する信号処理回路を内蔵し、データのオフセット値の付加、フィキストパターンノイズ(FPN)の減算補正、ADCアレイ5内の複数ADCの変換誤差のばらつきを補正する演算を施すことができる。
 次に、図3を参照し、複数の信号処理チップの連動動作の例を説明する。
 図3は、複数の信号処理チップ間の接続を示す概略ブロック図である。
 信号処理チップ2内の制御回路8は、専用制御信号25(専用制御線25からの信号)の入力を受けるシステムコントローラ71、ADCコントローラ73、画素アレイタイミングコントローラ75を備える。
 また、信号処理チップ3内の制御回路10は、専用制御信号26(専用制御線26からの信号)の入力を受けるシステムコントローラ72、ADCコントローラ74、画素アレイタイミングコントローラ76を備える。
 画素アレイタイミングコントローラ75、76は駆動制御バス14と同期信号線15で接続されている。
 制御回路8、制御回路10は、共通する回路ブロックを備えており、それぞれの入力に接続される専用制御線25、26の設定よって、それぞれ別の動作をする。
 たとえば、システムコントローラ71、72、ADCコントローラ73,74、画素アレイタイミングコントローラ75、76は、マスターモードとスレイブモードを選択する設定により、それぞれの設定に応じて機能することができる。
 たとえば、専用制御線25によって、信号処理チップ2内の制御回路8の各部はマスターモードに設定され、信号処理チップ3内の制御回路10の各部はスレイブモードに設定されているとする。
 その場合、駆動制御バス14は、マスターモードに設定されている制御回路8における画素アレイタイミングコントローラ75によって制御される。それと同時に画素アレイタイミングコントローラ75が同期信号線15を制御する。ADCコントローラ73は、システムコントローラ71からの指令と画素アレイタイミングコントローラ75からのタイミング制御に従って、専用信号線25内のクロックに同期してADCアレイ制御信号(Cont.ADC_N)を出力し、ADCアレイを制御する。システムコントローラ71は、画素アレイタイミングコントローラ75によるタイミング制御に従って、専用信号線25を介して供給されるクロックに同期させた制御信号(Cont.Output_N)を生成する。システムコントローラ71は、生成した制御信号(Cont.Output_N)によってデジタル出力バス6、デジタル小振幅差動出力回路7を制御する。
 また、スレイブモードに設定されている制御回路10における画素アレイタイミングコントローラ76は、制御バス14には信号を出力せず、制御バス14から信号の供給を受けるスレイブモードによって制御される。画素アレイタイミングコントローラ76は、制御バス14から供給される制御信号と同期信号線15から供給される同期信号とに従って、ADCコントローラ74とシステムコントローラ72の制御信号を生成して出力する。ADCコントローラ74は、システムコントローラ72と画素アレイタイミングコントローラ76の制御に従って、制御信号線25を介して供給されるクロックに位相をあわせてDCアレイ制御信号(Cont.ADC_S)を生成する。システムコントローラ71は、生成したDCアレイ制御信号(Cont.ADC_S)によりADCアレイを制御する。システムコントローラ72は、同じく画素アレイタイミングコントローラ76からのタイミング制御に従って、専用信号線25を介して供給されるクロックに同期させて位相を調整した制御信号(Cont.Output_S)を生成する。システムコントローラ71は、生成した制御信号(Cont.Output_S)によってデジタル出力バス6、デジタル小振幅差動出力回路7を制御する。
 以上の説明では、制御回路8がマスターモード、制御回路10がスレイブモードに設定する場合を説明した。動作モードの設定を入れ替えることにより、制御方法を全く逆にすることができ、制御回路10をマスターモード、制御回路8をスレイブモードとして動作させることも可能である。
 また、検査などでチップ単体の動作をさせるときには、それぞれをマスターモードで単体動作させる。
 また、回路や制御関係は複雑になるが、制御回路8、制御回路10の各部を別々にマスターとスレイブにすることも可能である。
 次に、図4Aから図7を参照し、以上に示した撮像装置1を複数の信号処理チップ2,3とセンサチップ4に分割して構成する場合において、複数の信号処理チップ2,3とセンサチップ4の間を接続する接続部の構成について説明する。
 最初に、従来型のセンサチップにおける画素の間隔と信号線の間隔について説明する。
 図4A及び図4Bは、従来型の接続端子の配列を示す図である。
 この図4A及び4Bにはセンサチップ4において画素アレイに設けられている各画素を「○」印で示す。各画素は、2次元に配列されており、行方向に沿って並べて配置される間隔を画素ピッチ「PP」で示す。各画素は、それぞれに対応して設けられている列信号線に信号を出力する。ここでは、1列ごとに信号を転送する方向が異なる場合を例としているので、同一方向に出力する信号数は、列方向に並んだ画素の数の半分にすることができる。
 図4Aでは、接続端子を、列信号線が並べて配置される方向に沿って一列に並べて配置した「単列配置」型の配置を示している。この図に示されるように、接続端子の間隔(端子ピッチ「CP1」)としては,画素ピッチの2倍(2PP)の間隔を確保することができる。
 図4Bでは、接続端子を、列信号線が並べて配置される方向に沿って交互にずらして、2列に並べて配置した「千鳥配列」型の配置を示している。この図に示されるように、接続端子の間隔(端子ピッチ「CP2」)としては,画素ピッチの4倍(4PP)の間隔を、すなわち、「単列配置」型の配置の場合の端子ピッチCP1の2倍の間隔を確保することができる。
 接続端子の間隔は、ガラス基板21と、ガラス基板21上に配置するセンサチップ4などを定められた位置に調整して配置する要求精度などの限界により、間隔を狭めることが制限される。
 一方、センサチップ4の画素アレイ上に配置される画素の画素ピッチは、半導体の製造プロセスの要求精度などの限界により、間隔を狭めることが制限される。
 さらに、センサチップ4が出力する画像を高精細化するには、多画素化が必要とされる。センサチップ4の面積を拡大することが困難である場合、限られた面積の中で多画素化することが必要とされる。そのため、センサチップ4では、さらに画素ピッチを狭めることが必要とされる。このような要求に対して、上記の「単列配置」型や「千鳥配列」型の配置方法では、センサチップ4などを取り付ける位置の要求精度を満たすことが困難である。
 このように、従来の構成のままでは、センサチップ4をさらに多画素化することにより、得られる画像を高精細化することが困難な状況となっている。以下、上記に示したような画像の高精細化に対応する実施態様について説明する。
 図5は、本実施形態における接続部の構成の一態様を示す鳥瞰図である。
 この図5には、ガラス基板21に接続される信号処理チップ3とセンサチップ4とが示されている。また、この図5では、説明のために、ガラス基板21に対する信号処理チップ3とセンサチップ4の間隔を拡大して示している。
 センサチップ4において、複数の画素が2次元行列状(マトリクス状)に配置された画素アレイの画素列に対応する信号線(複数の信号線)と、その信号線に対応して設けられている信号出力端子51とが示されている。画素の列方向は、画素の行方向に対して実質的に直交する。 その信号線の一端には、同じ画素列に対応して設けられている画素からの信号を出力する複数の信号出力端子51がそれぞれ設けられている。また、その信号線の図示されていない他端には、画素アレイにおける画素がそれぞれ対応して設けられている。
 各信号出力端子51は、画素アレイの列方向において所定数の信号出力端子51を組とする信号出力端子群51Gを形成して配置されている。
 この図5に示される場合では、各信号出力端子群51Gは、4個の信号出力端子51をそれぞれ備えている。各信号出力端子群51Gでは、4個の信号出力端子51が画素アレイの列方向に沿って、間隔dずつ隔てて並べて配置される。本実施形態において、1つの信号出力端子群51Gにおいて、画素アレイの列方向に沿って直線状に4つの信号出力端子51が並ぶ。
 また、画素アレイの行方向に沿って複数の信号出力端子群51Gが所定間隔で並ぶ。本実施形態において、信号出力端子群51G(信号出力端子の組)は、画素アレイの行方向に沿って、所定の組数が順に並べて配置される。その所定の組数は、信号出力端子51Gに対応して設ける信号線の数を、組あたりに設けられる信号出力端子の数で除算した結果(商)になる。このように、信号出力端子群51G(信号出力端子の組)を形成することにより、信号出力端子群51Gを、画素列のピッチを所定数で乗算した間隔で画素アレイの行方向に配列することができる。
 ガラス基板21の表面には、接続端子61(第1接続端子)が信号出力端子51に対応してそれぞれ設けられる。各接続端子61は、対応して設けられた信号出力端子51にそれぞれ接続される。また、信号出力端子群51Gに含まれる信号出力端子51に対応して設けられた各接続端子61は、信号出力端子群51Gに対応して、接続端子61の組を形成する。その組を接続端子群61Gとして示す。
 また、接続端子63(第2接続端子)が、接続端子61(第1接続端子)に対応してそれぞれ設けられる。それぞれ対応する接続端子61(第1接続端子)と接続端子63(第2接続端子)とが、信号線65によって接続される。
 接続端子63(第2接続端子)は、対応して設けられる信号処理チップ3における信号端子53とそれぞれ接続される。
 また、各接続端子63は、対応して設けられた信号端子53を含む信号端子群53Gに対応する組を形成する。その組を接続端子群63Gとして示す。
 たとえば、接続端子63(第2接続端子)は、接続端子61(第1接続端子)と同様な配置構成とすることができる。
 各信号線65は、隣接する接続端子群61G(第1接続端子の組)の間を通して配置される。また、各信号線65は、隣接する接続端子群63G(第2接続端子の組)の間を通して配置される。
 図6は、本実施形態における接続端子の配列の一態様を示す図である。図5に示した構成と同じ構成には同じ符号を附す。
 この図6には、ガラス基板21の表面を平面視した接続端子と配線パタンが示されている。
 接続端子群61Gと接続端子群63Gは、それぞれ対応して設けられており、それぞれ信号線65によって互いに接続されている。対応する接続端子群61Gと接続端子群63Gとは、それぞれ行方向にオフセットされた位置に配置される。
 接続端子群61Gは、4個ずつ接続端子61を備える。接続端子群63Gは、4個ずつ接続端子63を備える。この図6には、接続端子群61G及び接続端子群63Gが、行方向に並べて4組示されている。
 この図では、接続端子群61Gにおける各接続端子61は、接続端子61a,b,c,dとして区別する。接続端子群63Gにおける各接続端子63は、接続端子63a,b,c,dとして区別する。
 接続端子61aは、接続端子63aと信号線65aによって接続される。接続端子61bは、接続端子63bと信号線65bによって接続される。接続端子61cは、接続端子63cと信号線65cによって接続される。接続端子61dは、接続端子63dと信号線65dによって接続される。
 接続端子群61Gと接続端子群63Gは、それぞれセンサチップ4と信号処理チップ3に対応して設けられており、接続端子群61Gにおける接続端子61a,b,c,dの中では、接続端子61dが、信号処理チップ3に最も近い位置に配置される。接続端子61c,b,aは、接続端子61dから遠ざかる方向に順にそれぞれ間隔dずつ隔てて配置される。
 接続端子群63Gにおける接続端子63a,b,c,dの中では、接続端子63aが、センサチップ4に最も近い位置に配置される。接続端子63b,c,dは、接続端子63aから遠ざかる方向に順にそれぞれ間隔dずつ隔てて配置される。
 このように、接続端子群61Gと接続端子群63Gとの接続において、各接続端子61を並べた順に応じて、接続端子61をそれぞれ並べた方向に、接続端子61に対応する接続端子63を順に並べた状態に形成されている。
 信号線65は、並行に配置され、隣接する接続端子群61Gの間及び接続端子群63Gの間を通して配置される。
 信号線65は、対応する接続端子群61Gと接続端子群63Gとが、行方向にオフセットされて配置されている隙間を通して配置される。
 このような接続形態をとることにより、各信号線65は、互いに接続されている接続端子61から接続端子63までの配線長がそれぞれ等しくなるようになっている。
 図7は、本実施形態における接続端子の配列を示す図である。
 この図7にはセンサチップ4において画素アレイに設けられている各画素を「○」印で示す。各画素は、2次元に配列されており、行方向に沿って並べて配置される間隔を画素ピッチ「PP」で示す。各画素は、それぞれ対応して設けられている列信号線に信号を出力する。本実施形態においては、1列ごとに信号を転送する方向が異なっており、異なる信号処理チップに信号を供給する場合を例としているので、同一方向に出力する信号数は、列方向に並んだ画素の数の半分にすることができる。
 図7では、図5、図6に示した接続端子を配置した場合の、センサチップ4における画素の間隔と信号出力端子の間隔との関係について示している。
 この図に示されるように、行方向の接続端子の間隔(端子ピッチ「CP3」)としては,画素ピッチの8倍(8PP)の間隔を確保することができる。
 以上に示したように、本実施形態では、画素アレイ11の画素列に対応して設けられている複数の信号出力端子51を、画素アレイ11の画素列の間隔より広い間隔で配置することができる。
 また、多画素化された画素アレイ11と、画素アレイ11の信号を処理する信号処理部(信号処理チップ)2、3とを分離して別の半導体装置として構成した場合であっても、接続領域22Nにおける行方向の接続端子の間隔を画素ピッチに対して広くすることができる。これにより、センサチップ4(撮像素子)における信号出力端子51を、画素アレイ11の画素列の間隔より広い間隔で配置することが可能となる。
 また、センサチップ4から出力される画素信号を信号処理チップ2、3に供給することができ、マルチチップモジュールとして形成される撮像装置1を提供することが可能となる。
 (第2実施形態)
 図8を参照し本実施形態の異なる態様(第2実施形態)について説明する。
 図8は、本実施形態における接続端子の配列の一態様を示す図である。図5に示した構成と同じ構成には同じ数の符号を附し、接続端子群61GBが接続端子群61G(図5)に、接続端子群63GBが接続端子群63G(図5)に、信号線65Bが信号線65(図5)にそれぞれ対応する。
 この図8には、ガラス基板21の表面を平面視した接続端子と配線パタンが示されている。
 接続端子群61GBと接続端子群63GBは、それぞれ対応して設けられそれぞれ信号線65Bによって互いに接続されている。対応する接続端子群61GBと接続端子群63GBとは、それぞれ行方向にオフセットされた位置に配置される。
 接続端子群61GBは、8個ずつ接続端子61を備える。接続端子群63GBは、8個ずつ接続端子63を備える。この図8には、接続端子群61GBと接続端子群63GBが、行方向に並べて3組示されている。
 このように、本実施形態では、接続端子群61GBと接続端子群63GBでは、それぞれ8個ずつ接続端子61と接続端子63を備えることを特徴とし、接続端子群61GBと接続端子群63GBにそれぞれ含まれる接続端子の数が異なるが、前述の図5の場合と同様である。接続端子の数を4個から8個にしたことにより、行方向の接続端子の間隔CP4を、図5に示した間隔CP3の倍、すなわち画素ピッチPPの16倍(16PP)まで広くすることができる。
 また、本実施形態の場合においても、第1実施形態と同様の効果を奏することができ、さらに、本実施形態の場合では、行方向の接続端子の間隔を拡大することができる。
 なお、接続端子の数を、2のべき乗とすることにより、回路の構成を簡素化することができる。
 (第3実施形態)
 図9を参照し本実施形態の異なる態様(第3実施形態)について説明する。
 図9は、本実施形態における接続端子の配列の一態様を示す図である。図5に示した構成と同じ構成には同じ数の符号を附し、接続端子群61GCが接続端子群61G(図5)に、接続端子群63GCが接続端子群63G(図5)に、信号線65Cが信号線65(図5)にそれぞれ対応する。
 この図9には、ガラス基板21の表面を平面視した接続端子と配線パタンが示されている。
 接続端子群61GCと接続端子群63GCは、それぞれ対応して設けられ、それぞれ信号線65Cによって互いに接続されている。対応する接続端子群61GCと接続端子群63GCとは、それぞれ行方向にオフセットされた位置に配置される。
 接続端子群61GCは、4個ずつ接続端子61を備える。接続端子群63Gは、4個ずつ接続端子63を備える。この図9においては、接続端子群61GC及び接続端子群63Gが、行方向に並べて4組示されている。
 また、それぞれ信号線65Cには、接続端子群61GCにおける接続端子61と接続端子群63GCにおける接続端子63との間に、インピーダンスを低減させるインピーダンス低減部67Cが設けられている。
 インピーダンス低減部67Cは、信号線65C(65a,65b,65c,65d)のそれぞれに対応して設けられたインピーダンス低減部67a、67b、67c、67dであり、行方向に沿って並べて配置される。
 このように、インピーダンス低減部67Cを設けることにより、微細化された信号線65Cにおけるインピーダンスの上昇を低減することができる。そして、接続端子群61GCと接続端子群63GC間をアナログ信号により伝送する場合、伝送可能な信号の周波数帯域を広く確保することが可能となる。
 以上に示した実施形態において、センサチップ4及び撮像装置1は、多画素化された画素アレイ部11を信号処理チップ2、3と分離して別の半導体装置として構成することができ、センサチップ4における信号出力端子51を効率よく実装することが可能となる。
 また、本実施形態の場合においても、第1実施形態と同様の効果を奏することができる。さらに、本実施形態の場合では、出力する画像信号を、より広帯域化することができる。
 なお、本発明は、上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。本発明の実施形態に示した撮像素子及び撮像装置において示された、画素数、信号数、接続端子数は、一実施態様を示したものに過ぎず、必要な所定の値に適宜定めることができる。
 また、本実施形態では、センサチップ4から出力される信号について説明したが、センサチップ4を制御する制御信号及びタイミング信号について、センサチップ4に供給する場合についても、同様な接続端子の配置を行うことが可能となる。
 1…撮像装置、4…センサチップ、11…画素アレイ、
 51…信号出力端子、51G…信号出力端子群

Claims (16)

  1.  複数の画素が2次元行列状に配置された画素アレイと、
     前記画素アレイの画素列に対応して設けられ、前記画素列内の画素の信号を出力する複数の信号出力端子と、
     を備え、
     前記複数の信号出力端子は、前記画素アレイの列方向において所定数の信号出力端子を組として配置されており、
     前記所定数の信号出力端子の組は、前記画素アレイの行方向に配置される、
     ことを特徴とする撮像素子。
  2.  請求項1に記載の撮像素子において、
     前記所定数の信号出力端子の組は、前記画素列のピッチを前記所定数で乗算した間隔で前記画素アレイの行方向に配列される
     ことを特徴とする撮像素子。
  3.  前記所定数は、3以上である
     ことを特徴とする請求項2に記載の撮像素子。
  4.  請求項1から請求項3のいずれか1項に記載の撮像素子と、
     前記接続用端子に対応して設けられ、前記接続用端子にそれぞれ接続される第1接続端子と
     を備えることを特徴とする撮像装置。
  5.  前記撮像素子から出力される信号を処理する信号処理部と、
     前記第1接続端子に対応してそれぞれ設けられる第2接続端子と、
     前記第1接続端子と前記第2接続端子を接続する信号線と
     を備え、
     前記信号処理部は、
     前記第2接続端子を介して、それぞれ接続される
     ことを特徴とする請求項4に記載の撮像装置。
  6.  複数の前記信号線が、
     隣接する前記接続用端子の組にそれぞれ含まれる前記第1接続端子の間を通して配置される
     ことを特徴とする請求項5に記載の撮像装置。
  7.  複数の前記信号線が、
     隣接する前記接続用端子の組にそれぞれ含まれる前記第2接続端子の間を通して配置される
     ことを特徴とする請求項5又は請求項6に記載の撮像装置。
  8.  前記信号線は、
     前記第1接続端子から前記第2接続端子までの配線長がそれぞれ等しくなるようになっている
     ことを特徴とする請求項5から請求項7のいずれか1項に記載の撮像装置。
  9.  前記接続用端子の組内の前記接続用端子に対応する前記第1接続端子を並べた順に応じて、前記第1接続端子を並べた方向に、前記第1接続端子に対応する前記第2接続端子を順に並べる
     ことを特徴とする請求項5から請求項8のいずれか1項に記載の撮像装置。
  10.  前記信号線には、
     前記第1接続端子と前記第2接続端子との間に、インピーダンスを低減させるインピーダンス低減部が設けられている
     ことを特徴とする請求項5から請求項9のいずれか1項に記載の撮像装置。
  11.  前記画素列に対応する画素は、
     並列にそれぞれ出力した前記信号を前記信号処理部に供給する
     ことを特徴とする請求項5から請求項10のいずれか1項に記載の撮像装置。
  12.  前記撮像素子は、
     前記信号線に前記画素によって検出された光量の変換情報をアナログ信号として供給する
     ことを特徴とする請求項5から請求項11のいずれか1項に記載の撮像装置。
  13.  前記信号処理部は、
     前記撮像素子に対して複数設けられる
     ことを特徴とする請求項5から請求項12のいずれか1項に記載の撮像装置。
  14.  前記撮像素子は、
     前記画素列内の画素を選択する信号を入力する複数の信号入力端子
     を備え、
     前記複数の信号入力端子は、前記画素アレイの列方向において所定数の信号入力端子を組として配置されており、
     前記所定数の信号入力端子の組は、前記画素アレイの行方向に配置され、
     前記第1接続端子の一部の接続端子は、
     前記信号入力端子に対応して設けられている
     ことを特徴とする請求項5から請求項13のいずれか1項に記載の撮像装置。
  15.  前記第1接続端子は、
     透過性の材質で形成される基板の基板表面に形成され、
     前記撮像素子の画素アレイは、
     前記基板に向けて配置される
     ことを特徴とする請求項4から請求項14のいずれか1項に記載の撮像装置。
  16.  前記所定数は、2のべき乗の値である
     ことを特徴とする請求項3に記載の撮像素子。
     
PCT/JP2011/069584 2010-08-31 2011-08-30 撮像素子、及び撮像装置 WO2012029766A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180037122.2A CN103039069B (zh) 2010-08-31 2011-08-30 拍摄元件及拍摄装置
US13/819,532 US9438838B2 (en) 2010-08-31 2011-08-30 Imaging element and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194889A JP5671890B2 (ja) 2010-08-31 2010-08-31 撮像装置
JP2010-194889 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029766A1 true WO2012029766A1 (ja) 2012-03-08

Family

ID=45772849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069584 WO2012029766A1 (ja) 2010-08-31 2011-08-30 撮像素子、及び撮像装置

Country Status (4)

Country Link
US (1) US9438838B2 (ja)
JP (1) JP5671890B2 (ja)
CN (1) CN103039069B (ja)
WO (1) WO2012029766A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671890B2 (ja) * 2010-08-31 2015-02-18 株式会社ニコン 撮像装置
CN105528598B (zh) * 2014-09-29 2019-03-29 上海箩箕技术有限公司 光学指纹传感器
JP6550824B2 (ja) * 2015-03-20 2019-07-31 富士ゼロックス株式会社 画像読取基板、画像読取装置及び画像形成装置
US9692922B2 (en) * 2015-03-20 2017-06-27 Fuji Xerox Co., Ltd. Image reading substrate, image reading device, and image forming apparatus having equal distances of interconnects from output terminals to high-speed serial transmitting unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590559A (ja) * 1991-09-27 1993-04-09 Matsushita Electric Ind Co Ltd 密着型イメージセンサ
JPH06302792A (ja) * 1992-04-27 1994-10-28 Seiko Instr Inc 電子装置及びその製造方法
JP2008048313A (ja) * 2006-08-21 2008-02-28 Sony Corp 物理量検出装置、物理量検出装置の駆動方法及び撮像装置

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464984A (en) * 1985-12-11 1995-11-07 General Imaging Corporation X-ray imaging system and solid state detector therefor
JP2569053B2 (ja) * 1987-06-26 1997-01-08 キヤノン株式会社 イメ−ジセンサ
JPS6410777A (en) * 1987-07-02 1989-01-13 Minolta Camera Kk Image input device
JP2777663B2 (ja) * 1989-09-29 1998-07-23 鐘淵化学工業株式会社 密着型リニアイメージセンサ
CA2052148A1 (en) * 1990-09-27 1992-03-28 Tadashi Sugiki Method of driving a solid-state imaging device
US5137618A (en) * 1991-06-07 1992-08-11 Foster Miller, Inc. Methods for manufacture of multilayer circuit boards
JP3356816B2 (ja) * 1992-03-24 2002-12-16 セイコーインスツルメンツ株式会社 半導体光電気変換装置
US5432358A (en) * 1994-03-24 1995-07-11 Motorola, Inc. Integrated electro-optical package
JP3545130B2 (ja) 1996-06-04 2004-07-21 浜松ホトニクス株式会社 固体撮像装置
EP1039788B1 (en) * 1999-03-26 2006-04-19 Seiko Epson Corporation Flexible printed wiring board, electro-optical device, and electronic equipment
JP3516608B2 (ja) * 1999-04-27 2004-04-05 沖電気工業株式会社 半導体装置
US7071980B2 (en) * 2000-07-27 2006-07-04 Canon Kabushiki Kaisha Image sensing apparatus
US6627999B2 (en) * 2000-08-31 2003-09-30 Micron Technology, Inc. Flip-chip with matched signal lines, ground plane and ground bumps adjacent signal bumps
JP2002217377A (ja) * 2001-01-18 2002-08-02 Hitachi Ltd 半導体集積回路装置およびその製造方法
US7286174B1 (en) * 2001-06-05 2007-10-23 Dalsa, Inc. Dual storage node pixel for CMOS sensor
JP2006528041A (ja) * 2003-06-12 2006-12-14 ザ・ユーエービー・リサーチ・ファウンデーション データを記録して分析するための又は組織を刺激するための多重電極配列及びシステム
JP2005027041A (ja) * 2003-07-02 2005-01-27 Renesas Technology Corp 固体撮像装置
EP1699081A4 (en) * 2003-12-18 2007-07-18 Matsushita Electric Ind Co Ltd TUBE-FREE IMAGING DEVICE, METHOD OF MANUFACTURING THEREOF, CAMERA WITH THE TUBE-FREE IMAGING DEVICE AND LIGHT RECEPTION CHIP
JP4161910B2 (ja) * 2004-01-28 2008-10-08 株式会社デンソー 距離画像データ生成装置及び生成方法,プログラム
CN101010944B (zh) * 2004-09-02 2010-06-16 索尼株式会社 摄像装置及摄像结果的输出方法
US7719583B1 (en) * 2004-09-07 2010-05-18 Melexis Tessenderlo Nv Active pixel image sensor with selectable source follower and common source amplifier modes
US7964926B2 (en) * 2005-02-02 2011-06-21 Samsung Electronics Co., Ltd. Image sensing devices including image sensor chips, image sensor package modules employing the image sensing devices, electronic products employing the image sensor package modules, and methods of fabricating the same
JP2006261566A (ja) * 2005-03-18 2006-09-28 Alps Electric Co Ltd 電子部品用ホルダ及び電子部品用保持シート、これらを用いた電子モジュール、電子モジュールの積層体、電子モジュールの製造方法並びに検査方法
TWI429066B (zh) * 2005-06-02 2014-03-01 Sony Corp Semiconductor image sensor module and manufacturing method thereof
JP4894477B2 (ja) * 2005-12-15 2012-03-14 ソニー株式会社 電気光学装置、実装構造体及び電子機器
US20080001246A1 (en) * 2006-05-24 2008-01-03 Dipak Sengupta Single package detector and digital converter integration
JP4404074B2 (ja) * 2006-06-30 2010-01-27 ソニー株式会社 固体撮像装置及びデータ伝送方法並びに撮像装置
US7361989B1 (en) * 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
US8446445B2 (en) * 2006-09-27 2013-05-21 Casio Computer Co., Ltd. Exposure device, image forming apparatus and method for operating exposure device
US8138461B2 (en) * 2007-12-20 2012-03-20 Canon Kabushiki Kaisha Integrated circuit device and imaging apparatus using integrated circuit device
JP2009283552A (ja) * 2008-05-20 2009-12-03 Panasonic Corp 固体撮像素子
JP2009290703A (ja) * 2008-05-30 2009-12-10 Panasonic Corp 固体撮像装置およびカメラ
US7704796B2 (en) * 2008-06-04 2010-04-27 Stats Chippac, Ltd. Semiconductor device and method of forming recessed conductive vias in saw streets
JP2010041460A (ja) * 2008-08-06 2010-02-18 Renesas Technology Corp 固体撮像装置
JP4891308B2 (ja) * 2008-12-17 2012-03-07 キヤノン株式会社 固体撮像装置及び固体撮像装置を用いた撮像システム
JP5228961B2 (ja) * 2009-02-06 2013-07-03 日本テキサス・インスツルメンツ株式会社 増幅回路及び撮像装置
JP5332041B2 (ja) * 2009-03-13 2013-11-06 ルネサスエレクトロニクス株式会社 固体撮像装置
JP4835710B2 (ja) * 2009-03-17 2011-12-14 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、固体撮像装置の駆動方法、及び電子機器
JP5272860B2 (ja) * 2009-04-08 2013-08-28 ソニー株式会社 固体撮像素子およびカメラシステム
JP2010251957A (ja) * 2009-04-14 2010-11-04 Sony Corp Ad変換装置、固体撮像素子、およびカメラシステム
JP5251777B2 (ja) * 2009-07-30 2013-07-31 ソニー株式会社 固体撮像素子およびカメラシステム
JP5251778B2 (ja) * 2009-08-03 2013-07-31 ソニー株式会社 固体撮像装置、固体撮像装置のアナログ−デジタル変換方法および電子機器
JP5521721B2 (ja) * 2009-08-28 2014-06-18 ソニー株式会社 撮像素子およびカメラシステム
KR101621241B1 (ko) * 2009-10-07 2016-05-16 삼성전자 주식회사 이미지 센서 및 그 제조 방법
US8411184B2 (en) * 2009-12-22 2013-04-02 Omnivision Technologies, Inc. Column output circuits for image sensors
TWI515885B (zh) 2009-12-25 2016-01-01 新力股份有限公司 半導體元件及其製造方法,及電子裝置
KR101077408B1 (ko) * 2010-02-05 2011-10-26 서강대학교산학협력단 Cmos 이미지 센서
US8605173B2 (en) * 2010-08-16 2013-12-10 SK Hynix Inc. Differential column ADC architectures for CMOS image sensor applications
JP5671890B2 (ja) * 2010-08-31 2015-02-18 株式会社ニコン 撮像装置
JP5581982B2 (ja) * 2010-11-10 2014-09-03 株式会社ニコン 撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590559A (ja) * 1991-09-27 1993-04-09 Matsushita Electric Ind Co Ltd 密着型イメージセンサ
JPH06302792A (ja) * 1992-04-27 1994-10-28 Seiko Instr Inc 電子装置及びその製造方法
JP2008048313A (ja) * 2006-08-21 2008-02-28 Sony Corp 物理量検出装置、物理量検出装置の駆動方法及び撮像装置

Also Published As

Publication number Publication date
US20130341488A1 (en) 2013-12-26
US9438838B2 (en) 2016-09-06
CN103039069A (zh) 2013-04-10
JP2012054712A (ja) 2012-03-15
CN103039069B (zh) 2016-10-12
JP5671890B2 (ja) 2015-02-18

Similar Documents

Publication Publication Date Title
JP6281304B2 (ja) 撮像素子、画像読取装置及び画像形成装置
US20190341416A1 (en) Semiconductor device, solid-state image sensor and camera system
JP6346740B2 (ja) 撮像装置
WO2012063912A1 (ja) 撮像装置
WO2012026087A1 (ja) 撮像装置
JP2008042239A (ja) 光電変換装置及びそれを用いた撮像システム
JP4968227B2 (ja) イメージセンサ及びその駆動方法
WO2012029766A1 (ja) 撮像素子、及び撮像装置
US20160057370A1 (en) Solid-state imaging device
JP2008103992A (ja) 固体撮像装置
JP6451811B2 (ja) 撮像素子、及び撮像装置
JP5904259B2 (ja) 半導体装置、固体撮像装置、およびカメラシステム
WO2014125859A1 (ja) 固体撮像装置
JP6743874B2 (ja) 撮像素子、及び撮像装置
JP6210119B2 (ja) 撮像素子、及び撮像装置
JP6011595B2 (ja) 撮像素子、及び撮像装置
JP2015062275A (ja) 固体撮像装置
JP5523131B2 (ja) 固体撮像装置
US20240080589A1 (en) Image sensor
JP6045379B2 (ja) 撮像装置
JP6485561B2 (ja) 撮像素子、画像読取装置及び画像形成装置
WO2016178287A1 (ja) 半導体装置
JP2013098656A (ja) 走査回路、固体撮像装置およびカメラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037122.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13819532

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11821782

Country of ref document: EP

Kind code of ref document: A1