WO2012026087A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2012026087A1
WO2012026087A1 PCT/JP2011/004576 JP2011004576W WO2012026087A1 WO 2012026087 A1 WO2012026087 A1 WO 2012026087A1 JP 2011004576 W JP2011004576 W JP 2011004576W WO 2012026087 A1 WO2012026087 A1 WO 2012026087A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal processing
clock
signal
control
chip
Prior art date
Application number
PCT/JP2011/004576
Other languages
English (en)
French (fr)
Inventor
正博 壽圓
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US13/813,515 priority Critical patent/US9210337B2/en
Priority to CN201180040931.9A priority patent/CN103069792B/zh
Publication of WO2012026087A1 publication Critical patent/WO2012026087A1/ja
Priority to US14/936,035 priority patent/US9743028B2/en
Priority to US15/654,338 priority patent/US10375339B2/en
Priority to US16/454,122 priority patent/US10721428B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • H04N25/69SSIS comprising testing or correcting structures for circuits other than pixel cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an imaging apparatus.
  • a digital video camera or a digital camera is equipped with a CMOS type imaging device or a CCD type imaging device.
  • a CMOS-type imaging device has a sensor chip that converts an image of a subject into an electrical signal, a signal processing chip that processes a signal output from the sensor chip, and the like.
  • the sensor chip and the signal processing chip are connected to each other by wire bonding or the like.
  • the sensor chip has, for example, a pixel array in which a plurality of pixels are arranged in a two-dimensional matrix, and sequentially outputs an analog electric signal generated by each pixel to the signal processing chip.
  • the signal processing chip has, for example, an A / D converter, and sequentially converts an analog signal received from the sensor chip into a digital signal.
  • Patent Document 1 An imaging apparatus in which the function of a signal processing chip such as an A / D converter is provided in a sensor chip has been proposed (for example, Patent Document 1).
  • This type of sensor chip has, for example, an A / D converter for each column of the pixel array. Therefore, it is possible to increase the speed of the A / D conversion process as compared with the above-described conventional technique in which the analog pixel signal output from the pixel array is output to the signal processing chip in a serial format and converted into digital data. is there.
  • the manufacturing process suitable for increasing the speed of the signal processing unit is different, the manufacturing process of the imaging device is complicated. For example, in the sensor unit, by increasing the drive voltage (power supply voltage), the dynamic range is expanded and the influence of noise is reduced. On the other hand, in the signal processing unit, high-speed operation is realized by operating the fine transistor with a low power supply voltage.
  • the performance of the imaging apparatus is deteriorated.
  • the transistor of the signal processing unit is not sufficiently miniaturized, resulting in an increase in the area of the signal processing unit and an increase in power consumption.
  • the withstand voltage of the transistors in the sensor unit is reduced, and thus the dynamic range is narrowed.
  • An object of the present invention is to speed up the operation of the imaging apparatus while reducing the manufacturing cost.
  • the imaging device has a sensor chip and a signal processing chip.
  • the sensor chip has a pixel array in which a plurality of pixels are arranged in a two-dimensional matrix, and a data output terminal group including a plurality of data output terminals that output analog signals of pixels for each pixel column of the pixel array. is doing.
  • the signal processing chip includes a data input terminal group electrically connected to the data output terminal group, and a plurality of A / Ps that convert the analog signal of the pixel received at the data input terminal group into a digital signal for each pixel column of the pixel array. It has a D converter and a controller that controls the operation of the plurality of A / D converters.
  • a plurality of control signals for controlling the drive timing of the sensor chip 30 are collectively referred to as a drive control signal CNTP.
  • FIG. 1 shows an embodiment of the present invention.
  • FIG. 1 shows an outline of the imaging apparatus 10 viewed from the side opposite to the light incident surface.
  • the imaging device 10 of this embodiment is, for example, a CMOS type imaging device and is mounted on a digital video camera, a digital camera, or the like.
  • the imaging device 10 includes a glass substrate 20 on which a wiring pattern is formed, a sensor chip 30, and a plurality of signal processing chips 40 (40a, 40b), and is formed with a COG (Chip On Glass) structure. .
  • COG Chip On Glass
  • the sensor chip 30 and a plurality of signal processing chips 40a and 40b are mounted on the glass substrate 20.
  • the signal processing chips 40a and 40b are arranged above and below the figure with the sensor chip 30 interposed therebetween.
  • a flexible printed circuit board FPC is connected to the glass substrate 20.
  • signals are input to and output from the imaging device 10 via wiring formed on the flexible printed circuit board FPC and the glass substrate 20.
  • the sensor chip 30 has, for example, a plurality of data output terminal groups DOTG each constituted by a plurality of data output terminals DOT arranged in the horizontal direction in the figure.
  • the plurality of data output terminal groups DOTG are provided corresponding to the plurality of signal processing chips 40, respectively.
  • two data output terminal groups DOTG are arranged on the signal processing chips 40a and 40b side of the sensor chip 30, respectively.
  • the sensor chip 30 has the same number of data output terminal groups DOTG as the number of signal processing chips 40. Since the data output terminal DOT is disposed on the glass substrate 20 side of the sensor chip 30, it is indicated by a broken line in FIG.
  • Each signal processing chip 40 has, for example, a data input terminal group DITG composed of a plurality of data input terminals DIT arranged in the horizontal direction in the figure, and a synchronization control terminal SYNS. Since the data input terminal DIT and the synchronization control terminal SYNS are arranged on the glass substrate 20 side of the signal processing chip 40, they are indicated by broken lines in FIG. Hereinafter, the same symbols as the signal names are used for terminals other than the data output terminal DOT and the data input terminal DIT.
  • the data input terminals DIT of the signal processing chips 40a and 40b receive a signal (a signal of a pixel PX shown in FIG. 3 described later) output from the data output terminal DOT of the sensor chip 30. That is, the data input terminal group DITG is electrically connected to the data output terminal group DOTG.
  • the data input terminal groups DITG of the signal processing chips 40 a and 40 b are respectively connected to the two data output terminal groups DOTG of the sensor chip 30 by wiring patterns formed on the glass substrate 20.
  • the synchronization control terminals SYNS of the signal processing chips 40a and 40b are connected to each other by a wiring pattern or the like formed on the glass substrate 20. Thereby, for example, the synchronization control signal SYNS described in FIG. 4 is transmitted to the synchronization control terminal SYNS of each signal processing chip 40.
  • the wiring connecting the synchronization control terminals SYNS of the signal processing chips 40 a and 40 b may pass through the sensor chip 30.
  • the wiring that connects between the synchronization control terminals SYNS of the signal processing chips 40 a and 40 b may include a wiring pattern formed on the glass substrate 20 and a wiring pattern formed in the sensor chip 30.
  • FIG. 2 shows an outline of the side surface of the imaging apparatus 10 shown in FIG.
  • the imaging device 10 is formed with, for example, a COG structure as described above.
  • the sensor chip 30, the signal processing chips 40a and 40b, and the flexible printed circuit board FPC are bonded to the surface of the glass substrate 20 opposite to the attachment reference surface REF.
  • the sensor chip 30 and the plurality of signal processing chips 40a and 40b are electrically connected to the glass substrate 20 by, for example, joints CT such as solder and bumps.
  • joints CT such as solder and bumps.
  • the glass substrate 20 side of the joint portion CT is bonded to a wiring pattern formed on the glass substrate 20.
  • the sensor chip 30 side of the joint portion CT is joined to the terminal of the sensor chip 30, and the signal processing chip 40 side of the joint portion CT is joined to the terminal of the signal processing chip 40.
  • the light OPT enters the sensor chip 30 through the glass substrate 20.
  • FIG. 3 shows an outline of the sensor chip 30 and the signal processing chip 40 shown in FIG. Note that the double circles in FIG. 3 indicate some of the terminals of the sensor chip 30 and the signal processing chip 40.
  • the drive control terminals CNTP of the signal processing chips 40a and 40b are respectively connected to the two drive control terminals CNTP of the sensor chip 30 by a wiring pattern or the like formed on the glass substrate 20 shown in FIG.
  • the sensor chip 30 includes a plurality of terminals including a data output terminal DOT, a pixel array 32, a driver 34, an amplifier array 36 arranged in two, and a bias circuit 38.
  • the pixel array 32 has a plurality of pixels PX arranged in a two-dimensional matrix.
  • the pixel PX has a photoelectric conversion unit that photoelectrically converts incident light to generate charges, and generates an electrical signal corresponding to the incident light.
  • the electrical signal generated by the pixel PX is an analog signal.
  • the driver 34 receives a drive control signal CNTP from the signal processing chip 40 via the drive control terminal CNTP. Then, the driver 34 controls the pixels PX of the pixel array 32 for each row based on the drive control signal CNTP.
  • the amplifier array 36 is arranged above and below the figure with the pixel array 32 in between, for example.
  • one of the two amplifier arrays 36 (the amplifier array 36 disposed on the upper side in FIG. 3) has a column amplifier AP provided for each odd-numbered column of the pixel array 32.
  • the other of the two amplifier arrays 36 (the amplifier array 36 disposed on the lower side in FIG. 3) has a column amplifier AP provided for each even-numbered column of the pixel array 32.
  • the column amplifier AP arranged for each column of the pixel array 32 receives the signal of the pixel PX in the row selected by the driver 34 and amplifies the received signal with a predetermined amplification factor. Then, the column amplifier AP outputs the amplified signal to the signal processing chip 40 via the data output terminal DOT. That is, the amplifier array 36 outputs the signal of the pixel PX in the row selected by the driver 34 to the signal processing chip 40 in parallel via the data output terminal DOT.
  • the signals of the pixels PX in the odd-numbered columns of the pixel array 32 are output in parallel from the plurality of data output terminals DOT arranged on the upper side of the sensor chip 30 to the plurality of data input terminals DIT of the signal processing chip 40a. Is done.
  • the signals of the pixels PX in the even-numbered columns of the pixel array 32 are transferred from the plurality of data output terminals DOT arranged on the lower side of the sensor chip 30 to the plurality of data input terminals DIT of the signal processing chip 40b. Output in parallel.
  • the column amplifier AP as an amplifier is formed of, for example, a switched capacitor circuit.
  • the signals of the pixels PX for one row are output in parallel from the sensor chip 30 to the signal processing chip 40, the signals of the pixels PX for one row are between the chips (sensor chip 30 and The transfer time between the signal processing chips 40) can be shortened.
  • a signal read operation per pixel PX for example, pixel reset and column amplifier Reset, charge transfer to the floating diffusion, signal amplification of the column amplifier, and the like can be performed at a low speed. In this case, a sufficient stabilization time can be taken, so that the operation of each part is stabilized.
  • the bias circuit 38 receives the reference voltage VR10 from the outside of the sensor chip 30 via the reference voltage terminal VR10.
  • the bias circuit 38 generates a power supply voltage to be supplied to the pixel array 32, the driver 34, and the amplifier array 36 based on the reference voltage VR10.
  • the configuration of the signal processing chips 40a and 40b is the same in this embodiment. Therefore, the signal processing chip 40a will be described below.
  • the signal processing chip 40a includes a plurality of terminals including a data input terminal DIT and the like, a control unit 42a, an A / D conversion unit 44, a data bus circuit 46, a differential output circuit 48, and a bias circuit 50.
  • the control unit 42a controls operations of the A / D conversion unit 44, the data bus circuit 46, and the like.
  • the control unit 42a is a master mode that controls the operation of another control unit 42 (for example, the control unit 42b), and a slave mode that is operated based on control from another control unit 42 (for example, the control unit 42b).
  • the control unit 42a is set to either the master mode or the slave mode by the control signal CNTa received from the outside of the signal processing chip 40a via the control terminal CNTa.
  • the control unit 42a when set to the master mode, the control unit 42a outputs a drive control signal CNTP for controlling the drive timing of the sensor chip 30 to the sensor chip 30 through the drive control terminal CNTP. Further, the control unit 42a outputs a synchronization control signal SYNS for synchronizing the operation of the control unit 42a in the master mode and the operation of the control unit 42b in the slave mode to the signal processing chip 40b via the synchronization control terminal SYNS. To do. That is, the control unit 42a set to the master mode transmits the synchronization control signal SYNS for synchronizing the operations of the control units 42a and 42b of the plurality of signal processing chips 40a and 40b to the control units 42b of the other signal processing chips 40b. And a drive control signal CNTP is output to the sensor chip 30.
  • the control unit 42a receives the synchronization control signal SYNS from the signal processing chip 40b via the synchronization control terminal SYNS. Furthermore, the control unit 42a in the slave mode receives, for example, the drive control signal CNTP output from the control unit 42b in the master mode to the sensor chip 30 via the drive control terminal CNTP.
  • the A / D converter 44 is, for example, a plurality of A / D converter ADCs (hereinafter also referred to as column A / D converter ADCs) provided corresponding to the plurality of data input terminals DIT of the signal processing chip 40a.
  • the plurality of column A / D converters ADC output analog signals of the pixels PX in the odd-numbered columns of the pixel array 32 via the vertical signal lines provided for the respective columns of the pixel array 32.
  • Each receives and converts the received analog signal into a digital signal.
  • Each A / D converter ADC differentially outputs, for example, a signal of the pixel PX converted to a digital signal to the data bus circuit 46.
  • the plurality of column A / D converters ADC operate in parallel based on the control of the control unit 42a.
  • the A / D conversion unit 44 is included in the processing unit that processes the signal of the pixel PX received by the data input terminal group DITG.
  • the plurality of column A / D converters ADC of the A / D conversion unit 44 operate in parallel, the time for converting the analog signals of the pixels PX for one row into digital signals can be shortened.
  • the conversion operation per A / D converter ADC may be made slower than the configuration in which the signals of the pixels PX for one row are sequentially output from the sensor chip 30 to the signal processing chip 40. Is possible. As a result, an increase in the area of the A / D converter ADC and an increase in power consumption can be suppressed.
  • the data bus circuit 46 has, for example, a bus connecting the A / D converter ADC and the differential output circuit 48, and operates based on the control of the control unit 42a. For example, the data bus circuit 46 sequentially transfers the signal of the pixel PX output differentially from the A / D converter ADC to the differential output circuit 48 based on the control of the control unit 42a. Further, for example, the data bus circuit 46 performs a bus reset or the like based on the control of the control unit 42a.
  • the differential output circuit 48 outputs a low-amplitude differential signal using, for example, an LVDS (Low Voltage Differential Signaling) interface.
  • LVDS Low Voltage Differential Signaling
  • the differential output circuit 48 sequentially receives from the data bus circuit 46 the signals of the pixels PX that have been converted into differential digital signals by the A / D converter ADC, and receives the received differential signals as low-amplitude differential signals. It outputs sequentially as digital pixel signals Da, / Da.
  • the differential output circuit 48 may use a digital interface compatible with high-speed transfer other than the LVDS interface.
  • the signal processing chip 40a receives digital pixel signals Da and / Da corresponding to the pixels PX in the odd-numbered columns of the pixel array 32 from the digital pixel output terminals Da and / Da. Can output at high speed.
  • a digital interface such as an LVDS interface
  • the bias circuit 50 receives the reference voltage VR20 from the outside of the signal processing chip 40a via the reference voltage terminal VR20.
  • the bias circuit 50 generates a power supply voltage to be supplied to the control unit 42a, the A / D conversion unit 44, the data bus circuit 46, and the differential output circuit 48 based on the reference voltage VR20.
  • the wiring for supplying a voltage from the bias circuit 50 to the control unit 42 a and the data bus circuit 46 is omitted for easy understanding of the drawing.
  • the operation of the signal processing chip 40b is performed by replacing the reference numerals 40a, 40b, 42a, 42b, CNTa, Da, / Da with reference numerals 40b, 40a, 42b, 42a, CNTb, Db, / Db, respectively. This is explained by replacing “PX” with “even-numbered columns of pixels PX”.
  • the signal processing chip 40b outputs the digital pixel signals Db and / Db corresponding to the pixels PX in the even-numbered columns of the pixel array 32 from the digital pixel output terminals Db and / Db to the outside.
  • the digital pixel signals D and / D are output in parallel from the plurality of signal processing chips 40 (40a, 40b).
  • the A / D conversion processing for one frame and the transfer time of the digital pixel signals D and / D can be shortened.
  • the sensor chip 30 and the signal processing chip 40 can be manufactured by different manufacturing processes, the sensor chip 30 and the signal processing chip 40 can be manufactured by a manufacturing process suitable for each characteristic.
  • the signal is generated by a manufacturing process suitable for increasing the speed of the signal processing unit such as the A / D converter ADC.
  • the processing chip 40 can be manufactured. Therefore, in this embodiment, it is possible to speed up the operation of the imaging device 10 while reducing the manufacturing cost of the imaging device 10.
  • the signal processing chip 40 may include a signal processing circuit that performs digital computation and the like in addition to the A / D conversion unit 44.
  • the signal processing chip 40 may include a circuit that corrects variation in conversion characteristics among a plurality of column A / D converters ADC, a circuit that removes fixed pattern noise, and the like.
  • FIG. 4 shows an example of the control unit 42 shown in FIG. In FIG. 4, the description of the differential output circuit 48, the bias circuit 50, etc. shown in FIG. 3 is omitted. Since the control units 42a and 42b have the same configuration, the control unit 42a will be described.
  • the control unit 42a includes a system controller SYSCNT that receives the control signal CNTa, an A / D conversion control circuit ADCCNT that controls the operation of the A / D converter ADC, and a timing generator TG.
  • the system controller SYSCNT operates in either the master mode or the slave mode based on the control signal CNTa.
  • the system controller SYSCNT controls the A / D conversion control circuit ADCCNT and the timing generator TG of the control unit 42a so that the control unit 42a operates in the mode set by the control signal CNTa. That is, the operation of the control unit 42a differs between the master mode and the slave mode.
  • control unit 42a is set to the master mode and the control unit 42b is set to the slave mode.
  • the timing generator TG generates a drive control signal CNTP, and outputs the generated drive control signal CNTP to the timing generator TG of the control unit 42b and the driver 34 of the sensor chip 30 shown in FIG. Further, the timing generator TG outputs, for example, a timing control signal based on the drive control signal CNTP to the system controller SYSCNT and the A / D conversion control circuit ADCCNT.
  • the timing generator TG outputs a synchronization control signal SYNS to the timing generator TG of the control unit 42b.
  • the synchronization control signal SYNS includes a clock in the control signal CNTa.
  • the timing generator TG receives a clock in the control signal CNTa via, for example, the system controller SYSCNT. Note that the timing generator TG may receive the clock in the control signal CNTa without going through the system controller SYSCNT.
  • the system controller SYSCNT generates the output control signal CNTOUTa based on the timing control signal from the timing generator TG, and outputs the output control signal CNTOUTa to the data bus circuit 46 in synchronization with the clock in the control signal CNTa.
  • the output control signal CNTOUTa is a signal for controlling the operation of the data bus circuit 46.
  • the system controller SYSCNT may control the operation of the differential output circuit 48 illustrated in FIG. 3 using the output control signal CNTOUTa, for example.
  • the A / D conversion control circuit ADCCNT generates the A / D conversion control signal CNTADCa based on the timing control signal from the timing generator TG, and synchronizes with the clock in the control signal CNTa, and the A / D conversion control signal CNTADCa. Is output to the A / D converter 44.
  • the A / D conversion control circuit ADCCNT receives the clock in the control signal CNTa via the system controller SYSCNT.
  • the A / D conversion control circuit ADCCNT may receive the clock in the control signal CNTa without passing through the system controller SYSCNT.
  • the A / D conversion control signal CNTADCa is a signal for controlling the operation of the A / D conversion unit 44.
  • the timing generator TG receives, for example, the synchronization control signal SYNS including the clock in the control signal CNTa from the timing generator TG of the control unit 42a. Then, the timing generator TG transfers the clock in the control signal CNTa transferred by the synchronization control signal SYNS to the system controller SYSCNT and the A / D conversion control circuit ADCCNT.
  • the timing generator TG generates a timing control signal based on the drive control signal CNTP received from the timing generator TG of the control unit 42a, and outputs the generated timing control signal to the system controller SYSCNT and the A / D conversion control circuit ADCCNT. To do. Note that the timing generator TG operating in the slave mode does not output the drive control signal CNTP to the sensor chip 30 shown in FIG.
  • the system controller SYSCNT generates the output control signal CNTOUTb based on, for example, the timing control signal from the timing generator TG. Then, the system controller SYSCNT outputs the output control signal CNTOUTb to the data bus circuit 46 in synchronization with the clock in the control signal CNTa received from the timing generator TG.
  • the A / D conversion control circuit ADCCNT generates the A / D conversion control signal CNTADCb based on the timing control signal from the timing generator TG, for example.
  • the A / D conversion control circuit ADCCNT outputs an A / D conversion control signal CNTADCb to the A / D conversion unit 44 in synchronization with the clock in the control signal CNTa received from the timing generator TG.
  • the synchronization clock transferred by the synchronization control signal SYNS may be a clock obtained by dividing the clock in the control signal CNTa, or may be a clock obtained by multiplying the clock in the control signal CNTa.
  • the synchronization clock transferred by the synchronization control signal SYNS may be a plurality of clocks. For example, when the clock used when outputting the output control signal CNTOUTa and the clock used when outputting the A / D conversion control signal CNTADCa are different from each other, both clocks are transferred by the synchronization control signal SYNS. May be.
  • control unit 42b set to the slave mode operates in synchronization with the clock used by the control unit 42a set to the master mode. That is, the control units 42a and 42b operate in synchronization with each other.
  • the operation timings of the sensor chip 30 and the plurality of signal processing chips 40a and 40b can be matched with each other.
  • the error between the digital pixel signals Da, / Da and the digital pixel signals Db, / Db is caused by, for example, a difference in operation timing of the A / D conversion unit 44 and a difference in operation timing of the data bus circuit 46. Caused by.
  • a difference in operation timing between the A / D conversion unit 44 of the signal processing chip 40a and the A / D conversion unit 44 of the signal processing chip 40b may cause a shift in the acquisition timing of analog data.
  • the acquisition timing of the analog data is shifted between the signal processing chips 40a and 40b, for example, the data after A / D conversion for the signals of the pixels PX at the same level is greatly different between the signal processing chips 40a and 40b.
  • the control units 42a and 42b operate in synchronization with each other, it is possible to prevent the analog data acquisition timing from deviating between the signal processing chips 40a and 40b. As a result, it is possible to prevent a large error from occurring between the data after A / D conversion of the signal processing chip 40a and the data after A / D conversion of the signal processing chip 40b.
  • the difference in operation timing between the data bus circuit 46 of the signal processing chip 40a and the data bus circuit 46 of the signal processing chip 40b is the difference between the digital outputs of the signal processing chips 40a and 40b (digital pixel signals Da, /).
  • the phase difference is large, the phase margin for data capture on the image processing IC side that receives the digital pixel signals Da, / Da, Db, / Db is small, and the probability of data loss is high.
  • the control units 42a and 42b operate in synchronization with each other, it is possible to prevent the phase difference between the digital outputs of the signal processing chips 40a and 40b from increasing. As a result, the phase margin for data capture on the image processing IC side that receives the digital pixel signals Da, / Da, Db, / Db can be increased, and the probability of data loss can be reduced.
  • control unit 42a When the control unit 42a is set to the slave mode and the control unit 42b is set to the master mode, the operations of the control units 42a and 42b described above are reversed.
  • the imaging device 10 includes the sensor chip 30 and the plurality of signal processing chips 40a and 40b that operate in synchronization with each other.
  • the operation timings of the sensor chip 30 and the plurality of signal processing chips 40a and 40b can be synchronized with each other by using the synchronization control signal SYNS.
  • the sensor chip 30 and the signal processing chip 40 can be manufactured by a manufacturing process suitable for each characteristic. For this reason, in this embodiment, it is possible to speed up the operation of the imaging device 10 while reducing the manufacturing cost of the imaging device 10.
  • the signal processing chips 40a and 40b have the same configuration, design man-hours such as layout design and design verification can be reduced.
  • the control unit 42 is set to either the master mode or the slave mode by the control signal CNT. Therefore, in this embodiment, the power consumption of the imaging device 10 can be reduced compared to a configuration in which the plurality of control units 42 perform the same processing as in the master mode.
  • the signal processing chip 40 can be tested alone by setting the control unit 42 to the master mode. Thereby, in this embodiment, it can prevent that the defective signal processing chip 40 is mounted in the glass substrate 20 shown in FIG. As a result, the manufacturing cost of the imaging device 10 can be reduced.
  • a test control signal may be input to the sensor chip 30 from the drive control terminal CNTP.
  • the sensor chip 30 may be provided with test terminals and wirings for inputting test control signals.
  • the present invention is not limited to this configuration.
  • a configuration in which the signal processing chip 40 is divided into two a configuration in which the synchronization control signal SYNS is not used
  • the same effect as the above-described embodiment can be obtained in that the sensor chip 30 and the signal processing chip 40 can be manufactured by a manufacturing process suitable for each characteristic.
  • manufacturing variations among the plurality of control units 42 are arranged in one chip. It tends to be larger than the configuration.
  • FIG. 5 shows an example of the control units 52 and 53 of the imaging apparatus 10 according to another embodiment.
  • the same elements as those described in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the signal processing chips 40a and 40b is different from the embodiment described with reference to FIGS.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the description of the differential output circuit 48 and the bias circuit 50 shown in FIG. 3 is omitted.
  • the signal processing chip 40a of this embodiment is provided with a control unit 52 and an A / D conversion control terminal CNTADC2 in place of the control unit 42a and the synchronization control terminal SYNS shown in FIG.
  • the signal processing chip 40b of this embodiment is provided with a control unit 53 and an A / D conversion control terminal CNTADC2 instead of the control unit 42b and the synchronization control terminal SYNS shown in FIG.
  • Other configurations of the signal processing chips 40a and 40b of this embodiment are the same as those of the embodiment described with reference to FIGS.
  • the control parts 52 and 53 are mutually different structures. Therefore, the signal processing chips 40a and 40b are provided with control units 52 and 53 having different configurations, respectively.
  • control unit 52 provided in the signal processing chip 40a will be described.
  • the control unit 52 includes, for example, a system controller SYSCNT2 that receives the control signal CNTa, an A / D conversion control circuit ADCCNT2 that controls the operation of the A / D converter ADC, and a simple timing generator STG.
  • the control unit 52 has a test mode for testing the signal processing chip 40a alone. For example, the control unit 52 is set to the test mode by the control signal CNTa.
  • the simple timing generator STG receives the drive control signal CNTP from the timing generator TG2 of the control unit 53.
  • the simple timing generator STG generates a timing control signal based on the drive control signal CNTP and outputs the generated timing control signal to the system controller SYSCNT2 and the A / D conversion control circuit ADCCNT2.
  • the simple timing generator STG When the control unit 52 is set to the test mode, the simple timing generator STG generates a minimum timing control signal necessary for testing the A / D converter ADC and the data bus circuit 46, for example. Then, the simple timing generator STG outputs the generated timing control signal to the system controller SYSCNT2 and the A / D conversion control circuit ADCCNT2.
  • the simple timing generator STG does not generate the drive control signal CNTP. Therefore, in this embodiment, the configuration of the simple timing generator STG can be simplified compared to the timing generator TG2 of the control unit 53 and the timing generator TG shown in FIG. In this embodiment, since the simple timing generator STG does not generate the drive control signal CNTP, the power consumption of the signal processing chip 40a can be reduced.
  • the system controller SYSCNT2 generates the output control signal CNTOUTa based on the timing control signal from the simple timing generator STG, and outputs the output control signal CNTOUTa to the data bus circuit 46 in synchronization with the clock in the control signal CNTa.
  • the system controller SYSCNT2 may control the operation of the differential output circuit 48 shown in FIG. 3 using the output control signal CNTOUTa, for example.
  • the A / D conversion control circuit ADCCNT2 generates an A / D conversion control signal CNTADCa based on the timing control signal from the simple timing generator STG, and synchronizes with the clock in the control signal CNTa.
  • CNTADCa is output to the A / D converter 44.
  • the A / D conversion control circuit ADCCNT2 receives the clock in the control signal CNTa via the system controller SYSCNT2. Note that the A / D conversion control circuit ADCCNT2 may receive the clock in the control signal CNTa without going through the system controller SYSCNT2.
  • the A / D conversion control circuit ADCCNT2 outputs an A / D conversion control signal CNTADC2 to the simple A / D conversion control circuit SADCCNT of the control unit 53.
  • the A / D conversion control signal CNTADC2 includes an A / D conversion control signal CNTADCa and a clock in the control signal CNTa. That is, the synchronization control signal SYNS of the above-described embodiment is included in the A / D conversion control signal CNTADC2.
  • control unit 53 provided in the signal processing chip 40b will be described.
  • the control unit 53 includes, for example, a system controller SYSCNT3 that receives the control signal CNTb, a simple A / D conversion control circuit SADCCNT, and a timing generator TG2.
  • the control unit 53 has a test mode for testing the signal processing chip 40b alone. For example, the control unit 53 is set to the test mode by the control signal CNTb.
  • the timing generator TG2 generates a drive control signal CNTP, and outputs the generated drive control signal CNTP to the simple timing generator STG of the control unit 52 and the driver 34 of the sensor chip 30 shown in FIG.
  • the timing generator TG2 outputs a timing control signal based on, for example, the drive control signal CNTP to the system controller SYSCNT3 and the simple A / D conversion control circuit SADCCNT.
  • the system controller SYSCNT3 generates the output control signal CNTOUTb based on, for example, the timing control signal from the timing generator TG2. Then, the system controller SYSCNT3 outputs the output control signal CNTOUTb to the data bus circuit 46 in synchronization with the clock in the control signal CNTa transferred by the A / D conversion control signal CNTADC2. For example, the system controller SYSCNT3 receives the clock in the control signal CNTa via the simple A / D conversion control circuit SADCCNT. The system controller SYSCNT3 may receive the clock in the control signal CNTa from the timing generator TG2 or from the A / D conversion control terminal CNTADC2.
  • the system controller SYSCNT3 When the control unit 53 is set to the test mode, the system controller SYSCNT3 outputs the output control signal CNTOUTb to the data bus circuit 46 in synchronization with the clock in the control signal CNTb.
  • the simple A / D conversion control circuit SADCCNT receives the A / D conversion control signal CNTADC2 from the A / D conversion control circuit ADCCNT2 of the control unit 52. Then, the simple A / D conversion control circuit SADCCNT transfers the clock in the control signal CNTa transferred by the A / D conversion control signal CNTADC2 to the system controller SYSCNT3. The simple A / D conversion control circuit SADCCNT may transfer the clock in the control signal CNTa transferred by the A / D conversion control signal CNTADC2 to the timing generator TG2.
  • the simple A / D conversion control circuit SADCCNT generates the A / D conversion control signal CNTADCb based on the A / D conversion control signal CNTADCa transferred by the A / D conversion control signal CNTADC2.
  • the simple A / D conversion control circuit SADCCNT generates the A / D conversion control signal CNTADCb by adjusting the timing of the A / D conversion control signal CNTADCa based on the timing control signal from the timing generator TG2.
  • the simple A / D conversion control circuit SADCCNT outputs the A / D conversion control signal CNTADCb to the A / D conversion unit 44 in synchronization with the clock in the control signal CNTa transferred by the A / D conversion control signal CNTADC2. To do.
  • the simple A / D conversion control circuit SADCCNT when the control unit 53 is set to the test mode, the simple A / D conversion control circuit SADCCNT outputs, for example, the minimum test signal necessary for the test of the A / D converter ADC to the timing from the timing generator TG2. Generated based on the control signal. Then, the simple A / D conversion control circuit SADCCNT outputs a test signal to the A / D conversion unit 44 in synchronization with the clock in the control signal CNTb.
  • the simple A / D conversion control circuit SADCCNT generates the A / D conversion control signal CNTADCb by adjusting the timing of the A / D conversion control signal CNTADCa transferred by the A / D conversion control signal CNTADC2. .
  • the configuration of the simple A / D conversion control circuit SADCCNT can be simplified as compared with the A / D conversion control circuit ADCCNT2 of the control unit 52 and the A / D conversion control circuit ADCCNT shown in FIG.
  • the power consumption of the signal processing chip 40b can be reduced.
  • control parts 52 and 53 are not limited to this example.
  • the timing generator TG2 may be provided in the control unit 52, and the simple timing generator STG may be provided in the control unit 53.
  • the simple A / D conversion control circuit SADCCNT may be provided in the control unit 52 and the A / D conversion control circuit ADCCNT2 may be provided in the control unit 53.
  • the control unit 52 may be provided in the signal processing chip 40b, and the control unit 53 may be provided in the signal processing chip 40a.
  • the operations of the control units 52 and 53 are not limited to this example.
  • the synchronization clock transferred by the A / D conversion control signal CNTADC2 may be a clock obtained by dividing the clock in the control signal CNTa or a clock obtained by multiplying the clock in the control signal CNTa.
  • the synchronization clock transferred by the A / D conversion control signal CNTADC2 may be a plurality of clocks. For example, when the clock used when outputting the output control signal CNTOUTa and the clock used when outputting the A / D conversion control signal CNTADCa are different from each other, both clocks are A / D conversion control signals CNTADC2. May be transferred.
  • the simple timing generator STG is provided in the control unit 52, and the simple A / D conversion control circuit SADCCNT is provided in the control unit 53.
  • the overall circuit scale of the plurality of control units 52 and 53 is reduced. Therefore, in this embodiment, the circuit scale of the signal processing chips 40a and 40b can be reduced, and the chip area can be reduced. In this embodiment, the power consumption of the imaging device 10 can be reduced by reducing the circuit scale.
  • FIG. 6 shows an example of the signal processing chips 40a and 40b of the imaging device 10 according to another embodiment.
  • the same elements as those described in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the signal processing chips 40a and 40b is different from the embodiment described with reference to FIGS.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the description of the A / D converter 44, the data bus circuit 46, the differential output circuit 48, the bias circuit 50, and the like shown in FIG. 3 is omitted.
  • the signal processing chip 40 of this embodiment is provided with a control unit 43 and a clock terminal CLK10 instead of the control unit 42 and the synchronization control terminal SYNS shown in FIG. Furthermore, in this embodiment, the synchronous clock generator SCG10, the clock terminal CLK20, and the delay control terminal CNTDL are added to the signal processing chip 40a shown in FIG. 4, and the synchronous clock generator SCG20 and the clock terminal CLK30 are shown in FIG. It is added to the signal processing chip 40b. That is, in this embodiment, the synchronous clock generators SCG10 and SCG20 are provided in the signal processing chips 40a and 40b that make a pair with each other. Other configurations of the signal processing chips 40a and 40b of this embodiment are the same as those of the embodiment described with reference to FIGS.
  • the signal processing chip 40a includes a synchronous clock generation unit SCG10 and a control unit 43a in addition to the A / D conversion unit 44, the data bus circuit 46, the differential output circuit 48, and the bias circuit 50 shown in FIG. .
  • the synchronous clock generation unit SCG10 includes a buffer unit BUF10, a delay circuit DLC, and a buffer unit BUF12.
  • the buffer unit BUF10 receives a clock in the control signal CNTa from the outside of the signal processing chip 40a via the control terminal CNTa. Then, the buffer unit BUF10 outputs the received clock (clock in the control signal CNTa) as the clock CLK10 to the delay circuit DLC and the signal processing chip 40b.
  • the clock terminal CLK10 of the signal processing chip 40a is connected to the clock terminal CLK10 of the signal processing chip 40b by, for example, a wiring pattern formed on the glass substrate 20 shown in FIG. That is, the clock terminal CLK10 corresponds to the synchronization control signal SYNS of the embodiment described with reference to FIGS.
  • the delay circuit DLC receives the clock CLK10 from the buffer unit BUF10 and receives the delay control signal CNTDL from the outside of the signal processing chip 40a via the delay control terminal CNTDL. Then, the delay circuit DLC outputs the delayed clock DCLK obtained by delaying the clock CLK10 to the buffer unit BUF12. Note that the delay circuit DLC generates the delay clock DCLK by delaying the clock CLK10 by a delay amount based on the delay control signal CNTDL.
  • the buffer unit BUF12 receives the delay clock DCLK from the delay circuit DLC. Then, the buffer unit BUF12 outputs the delay clock DCLK as the clock CLK20 to the system controller SYSCNT or the like. Thereby, the clock CLK20 is supplied to each part in the signal processing chip 40a as an internal clock of the signal processing chip 40a. Furthermore, the buffer unit BUF12 outputs the clock CLK20 to the outside of the signal processing chip 40a via the clock terminal CLK20.
  • the control unit 43a includes, for example, a system controller SYSCNT, an A / D conversion control circuit ADCCNT, and a timing generator TG3. That is, the control unit 43a is provided with a timing generator TG3 instead of the timing generator TG shown in FIG. Other configurations of the control unit 43a are the same as those of the control unit 42a shown in FIG. The configuration and operation of the timing generator TG3 are the same as those of the timing generator TG except that the synchronization control signal SYNS described with reference to FIG. 4 is not transferred.
  • the operations of the system controller SYSCNT and the A / D conversion control circuit ADCCNT of the control unit 43a are the same as the operations described in FIG. 4 except that they operate in synchronization with the clock CLK20 output from the synchronous clock generation unit SCG10. is there.
  • the system controller SYSCNT of the control unit 43a outputs the output control signal CNTOUTa to the data bus circuit 46 shown in FIG. 4 in synchronization with the clock CLK20.
  • the A / D conversion control circuit ADCCNT of the control unit 43a outputs an A / D conversion control signal CNTADCa to the A / D conversion unit 44 shown in FIG. 4 in synchronization with the clock CLK20.
  • the signal processing chip 40b includes a synchronous clock generation unit SCG20 and a control unit 43b in addition to the A / D conversion unit 44, the data bus circuit 46, the differential output circuit 48, and the bias circuit 50 shown in FIG. .
  • the synchronous clock generation unit SCG20 includes a buffer unit BUF20, a switch unit SW, and a buffer unit BUF22.
  • the buffer unit BUF20 receives a clock in the control signal CNTb from the outside of the signal processing chip 40b via the control terminal CNTb. Then, the buffer unit BUF20 outputs the received clock (clock in the control signal CNTb) as the clock CLK12 to the switch unit SW.
  • the switch unit SW receives the clock CLK12 from the buffer unit BUF20, and receives the clock CLK10 (clock in the control signal CNTa) from the signal processing chip 40a via the clock terminal CLK10. Then, the switch unit SW outputs either the clock CLK10 or CLK12 to the buffer unit BUF22 based on the control signal CNTb, for example. For example, when the signal processing chips 40a and 40b operate in synchronization with each other, the switch unit SW outputs the clock CLK10 to the buffer unit BUF22. For example, when the signal processing chip 40b operates independently, the switch unit SW outputs the clock CLK12 to the buffer unit BUF22.
  • the buffer unit BUF22 outputs the clock received from the switch unit SW as the clock CLK30 to the system controller SYSCNT or the like. Thereby, the clock CLK30 is supplied to each part in the signal processing chip 40b as an internal clock of the signal processing chip 40b. Further, the buffer unit BUF22 outputs the clock CLK30 to the outside of the signal processing chip 40b via the clock terminal CLK30.
  • the clocks CLK20 and CLK30 output to the outside of the signal processing chips 40a and 40b are used to adjust the delay amount of the delay circuit DLC. That is, the clocks CLK20 and CLK30 are used to adjust the delay amount indicated by the delay control signal CNTDL.
  • the delay amount indicated by the delay control signal CNTDL is adjusted so that the phase difference between the clock CLK20 and the clock CLK30 falls within a predetermined error range by calculation of a CPU such as a digital camera in which the imaging device 10 is mounted.
  • the delay amount indicated by the delay control signal CNTDL may be manually set by the user.
  • the operation timing of the signal processing chip 40a is accurately adjusted to the operation timing of the signal processing chip 40b. Can be matched well.
  • the configuration of the control unit 43b is the same as that of the control unit 43a.
  • the operation of the control unit 43b is the same as the operation of the control unit 43a except that it operates in synchronization with the clock CLK30 output from the synchronous clock generation unit SCG20.
  • the system controller SYSCNT of the control unit 43b outputs the output control signal CNTOUTb to the data bus circuit 46 shown in FIG. 4 in synchronization with the clock CLK30.
  • the A / D conversion control circuit ADCCNT of the control unit 43b outputs an A / D conversion control signal CNTADCb to the A / D conversion unit 44 shown in FIG. 4 in synchronization with the clock CLK30.
  • the drive control signal CNTP is output from, for example, one timing generator TG3 of the control units 43a and 43b.
  • the configuration of the signal processing chips 40a and 40b is not limited to this example.
  • the synchronous clock generation units SCG10 and SCG20 may be provided in the system controllers SYSCNT of the signal processing chips 40a and 40b, respectively, or may be provided in the timing generator TG3 of the signal processing chips 40a and 40b, respectively.
  • the synchronous clock generation units SCG10 and SCG20 may be provided in the A / D conversion control circuit ADCCNT of the signal processing chips 40a and 40b, respectively.
  • the synchronous clock generation unit SCG10 may be provided in the signal processing chip 40b, and the synchronous clock generation unit SCG20 may be provided in the signal processing chip 40a.
  • the synchronous clock generation units SCG10 and SCG20 may be provided in the signal processing chips 40a and 40b shown in FIG.
  • the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Furthermore, in this embodiment, since the phase difference between the clock CLK20 and the clock CLK30 is adjusted to be within a predetermined error range, the operation timings of the sensor chip 30 and the plurality of signal processing chips 40a and 40b are matched with each other with high accuracy. be able to.
  • FIG. 7 shows an example of the signal processing chips 40a and 40b of the imaging device 10 according to another embodiment.
  • the same elements as those described in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the imaging apparatus 10 of this embodiment is different from the embodiment described with reference to FIG. 6 in the configuration of the signal processing chip 40a.
  • Other configurations are the same as those of the embodiment described with reference to FIG.
  • the description of the A / D converter 44, the data bus circuit 46, the differential output circuit 48, the bias circuit 50, and the like shown in FIG. 3 is omitted.
  • the signal processing chip 40a of this embodiment is provided with a synchronous clock generation unit SCG12 instead of the synchronous clock generation unit SCG10 shown in FIG. Furthermore, in this embodiment, the clock terminal CLK30 is added to the signal processing chip 40a shown in FIG. 6, and the clock terminal CLK20 and the delay control terminal CNTDL are omitted from the signal processing chip 40a shown in FIG.
  • the other configuration of the signal processing chip 40a of this embodiment is the same as that of the embodiment described in FIG. Note that the clock terminal CLK30 of the signal processing chip 40a is connected to the clock terminal CLK30 of the signal processing chip 40b by, for example, a wiring pattern formed on the glass substrate 20 shown in FIG.
  • the synchronous clock generation unit SCG12 includes a buffer unit BUF10, a delay circuit DLC, a buffer unit BUF12, a phase comparator PHC, an integration circuit INTC, and an attenuator ATT. That is, the synchronous clock generation unit SCG12 includes a phase comparator PHC, an integration circuit INTC, and an attenuator ATT added to the synchronous clock generation unit SCG10.
  • the operations of the buffer unit BUF10, the delay circuit DLC, and the buffer unit BUF12 are the same as the operations of the buffer unit BUF10, the delay circuit DLC, and the buffer unit BUF12 of the synchronous clock generation unit SCG10 described in FIG.
  • the phase comparator PHC receives the clock CLK20 (internal clock of the signal processing chip 40a) from the buffer unit BUF12 and receives the clock CLK30 (internal clock of the signal processing chip 40b) from the signal processing chip 40b via the clock terminal CLK30.
  • the phase comparator PHC detects the phase difference between the clock CLK20 and the clock CLK30 by comparing the phase of the clock CLK20 and the phase of the clock CLK30 with each other. For example, the phase comparator PHC outputs the detected phase difference to the integration circuit INTC.
  • the integration circuit INTC calculates the average of the phase differences between the clock CLK20 and the clock CLK30 by integrating the signal indicating the phase difference received from the phase comparator PHC. Then, the integration circuit INTC outputs a signal indicating the average of the phase difference between the clock CLK20 and the clock CLK30 to the attenuator ATT.
  • the attenuator ATT generates the delay control signal CNTDL based on the signal received from the integration circuit INTC (the signal indicating the average phase difference between the clock CLK20 and the clock CLK30). Then, the attenuator ATT outputs the generated delay control signal CNTDL to the delay circuit DLC. As described above, the integration circuit INTC and the attenuator ATT function as a delay control unit that generates the delay control signal CNTDL based on the phase difference detected by the phase comparator PHC.
  • the attenuator ATT sets the delay amount corresponding to half the average of the phase difference between the clock CLK20 and the clock CLK30 to the delay control signal CNTDL. Is set to the delay amount indicated by.
  • the delay amount of the delay circuit DLC is set to a delay amount that is half the delay amount of the clock CLK10 that reciprocates between the signal processing chips 40a and 40b.
  • the delay amount of the delay circuit DLC set by the delay control signal CNTDL is the delay amount until the clock CLK10 is transmitted from the signal processing chip 40a to the signal processing chip 40b (hereinafter, the delay between the signal processing chips 40a and 40b). (Also referred to as a quantity).
  • the delay amount of the clock CLK20 with respect to the clock CLK10 output from the buffer unit BUF10 is the same as the delay amount of the clock CLK30 with respect to the clock CLK10 output from the buffer unit BUF10.
  • the operation timing of the signal processing chip 40a can be automatically and accurately matched to the operation timing of the signal processing chip 40b.
  • the delay amount between the signal processing chips 40a and 40b is calculated by the following calculation.
  • the delay amount between the signal processing chips 40a and 40b is a delay amount corresponding to half of the average phase difference between the clock CLK20 and the clock CLK30, and a delay amount half of the delay amount already set in the delay circuit DLC. It is calculated by adding. This calculation may be performed in the attenuator ATT or in the delay circuit DLC.
  • the operations of the phase comparator PHC, the integration circuit INTC, and the attenuator ATT may be stopped.
  • the power consumption of the signal processing chip 40a can be reduced.
  • the delay circuit DLC operates with a preset delay amount. Also in this case, the operations of the phase comparator PHC, the integration circuit INTC, and the attenuator ATT may be stopped.
  • the configuration of the signal processing chips 40a and 40b is not limited to this example.
  • the synchronous clock generation units SCG12 and SCG20 may be provided in the system controllers SYSCNT of the signal processing chips 40a and 40b, respectively, or may be provided in the timing generator TG3 of the signal processing chips 40a and 40b, respectively.
  • the synchronous clock generation units SCG12 and SCG20 may be provided in the A / D conversion control circuit ADCCNT of the signal processing chips 40a and 40b, respectively.
  • the synchronous clock generation unit SCG12 may be provided in the signal processing chip 40b, and the synchronous clock generation unit SCG20 may be provided in the signal processing chip 40a.
  • the synchronous clock generation units SCG12 and SCG20 may be provided in the signal processing chips 40a and 40b shown in FIG.
  • the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Further, in this embodiment, since the phase of the clock CLK20 and the phase of the clock CLK30 are automatically adjusted to each other, the operation timings of the sensor chip 30 and the plurality of signal processing chips 40a and 40b are mutually accurate. Can be matched well.
  • FIG. 8 shows an outline of the digital camera 100 using the imaging device 10 of the above-described embodiment.
  • the digital camera 100 includes, for example, an imaging device 10, a photographing lens 110, a CPU 120, a buffer unit 130, an image processing unit 140, a storage medium 150, a monitor 160, and an operation unit 170.
  • the imaging device 10, the CPU 120, the buffer unit 130, the image processing unit 140, the storage medium 150, and the monitor 160 are connected to a bus BUS, for example.
  • the photographing lens 110 forms an image of the subject on the light receiving surface of the imaging device 10.
  • the CPU 120 is, for example, a microprocessor, and controls the operation of the imaging device 10 and the operation of the photographing lens 110 and the like based on a program (not shown). For example, the CPU 120 performs autofocus control, aperture control, exposure control to the imaging apparatus 10, recording of image data, and the like.
  • the buffer unit 130 is a built-in memory formed of, for example, DRAM (Dynamic RAM), SRAM (Static RAM), or the like, and temporarily stores image data of an image captured by the imaging device 10.
  • the image processing unit 140 performs image processing such as color interpolation processing, white balance processing, contour compensation processing, gamma processing, and noise reduction processing on the image data stored in the buffer unit 130.
  • the storage medium 150 stores image data of captured images.
  • the monitor 160 is, for example, a liquid crystal display, and displays captured images, images stored in the storage medium 150, menu screens, and the like.
  • the operation unit 170 includes a release button and other various switches, and is operated by the user in order to operate the digital camera 100.
  • the example in which the A / D converter ADC is provided for each column has been described.
  • the present invention is not limited to such an embodiment.
  • two A / D converter ADCs may be provided in one row.
  • the interleaving operation of the A / D converter ADC can be realized, and for example, the time for converting the analog signals of the pixels PX for two rows into digital signals can be shortened.
  • the conversion operation per A / D converter ADC can be slowed down. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the signal processing chip 40a receives the signals of the pixels PX in the odd-numbered columns of the pixel array 32.
  • the present invention is not limited to such an embodiment.
  • the signal processing chip 40 a may receive signals from the pixels PX in the even-numbered columns of the pixel array 32.
  • the signal processing chip 40 b receives the signals of the pixels PX in the odd-numbered columns of the pixel array 32.
  • the signal processing chip 40a receives the signal of the pixel PX corresponding to the green incident light, and the signal of the pixel PX corresponding to the red incident light and the blue incident
  • the signal processing chip 40b may receive a signal of the pixel PX corresponding to light.
  • a switch for switching the connection side on the input side of the column amplifier AP for each row is provided in the amplifier array 36. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the synchronization clock transferred by the synchronization control signal SYNS may be a clock based on the oscillator clock of the signal processing chip 40a.
  • the control units 42a and 42b operate in synchronization with a clock based on the clock of the oscillator of the signal processing chip 40a.
  • 5 may be a clock based on the clock of the oscillator of the signal processing chip 40a.
  • 6 and 7 may be a clock based on the clock of the oscillator of the signal processing chip 40a. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the setting of the master mode and the slave mode is performed for each control unit 42 .
  • the present invention is not limited to such an embodiment.
  • the setting of the master mode and the slave mode may be performed for each of the timing generator TG, the system controller SYSCNT, and the A / D conversion control circuit ADCCNT of the control unit 42. Also in this case, the same effect as that of the embodiment described with reference to FIGS.
  • the timing generator TG of the control unit 42b set to the slave mode generates the timing control signal based on the drive control signal CNTP received from the timing generator TG of the control unit 42a.
  • An example to do is described.
  • the present invention is not limited to such an embodiment.
  • the timing generator TG of the control unit 42b set to the slave mode may generate the timing control signal by the same process as the process when the master mode is set. In this case, the control unit 42b set to the slave mode may not receive the drive control signal CNTP from the control unit 42a.
  • the system controller SYSCNT and the A / D conversion control circuit ADCCNT of the control unit 42b operate in synchronization with the clock in the control signal CNTa. Therefore, also in this case, the same effect as that of the embodiment described with reference to FIGS.
  • the synchronization control signal SYNS may be transferred between the system controllers SYSCNT of the signal processing chips 40a and 40b, or may be transferred between the A / D conversion control circuits ADCCNT of the signal processing chips 40a and 40b. Also in this case, the same effect as that of the embodiment described with reference to FIGS.
  • the synchronization clock may be transferred between the simple timing generator STG and the timing generator TG2 by the synchronization control signal SYNS shown in FIG. 4, or transferred between the system controller SYSCNT2 and the system controller SYSCNT3. May be. Also in this case, the same effect as that of the embodiment described with reference to FIG. 5 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 撮像装置は、センサチップおよび信号処理チップを有している。センサチップは、複数の画素が2次元行列状に配置された画素アレイと、画素アレイの画素列毎に画素のアナログ信号を出力する複数のデータ出力端子により構成されるデータ出力端子群とを有している。信号処理チップは、データ出力端子群に電気的に接続されるデータ入力端子群と、データ入力端子群で受けた画素のアナログ信号を画素アレイの画素列毎にデジタル信号へ変換する複数のA/D変換器と、複数のA/D変換器の動作を制御する制御部とを有している。この結果、製造コストを削減しつつ、撮像装置の動作を高速化できる。

Description

撮像装置
 本発明は、撮像装置に関する。
 一般に、デジタルビデオカメラやデジタルカメラには、CMOS型の撮像装置やCCD型の撮像装置が搭載される。例えば、CMOS型の撮像装置は、被写体の像を電気信号に変換するセンサチップ、センサチップから出力された信号を処理する信号処理チップ等を有している。センサチップおよび信号処理チップは、ワイヤボンディング等により互いに接続されている。
 センサチップは、例えば、複数の画素が2次元行列状に配置された画素アレイを有し、各画素により生成されたアナログの電気信号を信号処理チップに順次出力する。信号処理チップは、例えば、A/D変換器を有し、センサチップから受けたアナログ信号をデジタル信号に順次変換する。
 近年、A/D変換器等の信号処理チップの機能をセンサチップ内に設けた撮像装置が提案されている(例えば、特許文献1)。この種のセンサチップは、例えば、画素アレイの列毎にA/D変換器を有している。そのため、画素アレイから出力されるアナログの画素信号をシリアル形式で信号処理チップへ出力し、デジタルデータに変換する上記従来技術に比較して、A/D変換処理の高速化を図ることが可能である。
特開2008-48313号公報
 しかしながら、A/D変換器等の信号処理チップの機能をセンサチップ内に設けた構成(1チップ構成)では、画素アレイ等のセンサ部の高性能化に適した製造プロセスとA/D変換器等の信号処理部の高速化に適した製造プロセスとが異なるため、撮像装置の製造プロセスが複雑になる。例えば、センサ部では、駆動電圧(電源電圧)を高くすることにより、ダイナミックレンジが拡大され、ノイズの影響が低減する。一方、信号処理部では、微細トランジスタを低電源電圧で動作させることにより、高速動作が実現される。したがって、高電源電圧で動作するセンサ部と低電源電圧で動作する微細トランジスタを使用した信号処理部とを1チップで製造するためには、複雑なプロセス制御が必要になり、製造プロセスが複雑になる。このため、撮像装置の製造コストが増加する。
 なお、製造コストを削減するために、センサ部および信号処理部の一方に適した製造プロセスを用いてセンサ部および信号処理部を1チップで製造した場合、撮像装置の性能が低下する。例えば、センサ部の高性能化を優先した製造プロセスを用いた場合、信号処理部のトランジスタの微細化が不十分になり、信号処理部の面積の増加および消費電力の増加を招く。あるいは、信号処理部のトランジスタの微細化を優先した製造プロセスを用いた場合、センサ部のトランジスタ等の耐圧が低くなるため、ダイナミックレンジが狭くなる。
 本発明の目的は、製造コストを削減しつつ、撮像装置の動作を高速化することである。
 撮像装置は、センサチップおよび信号処理チップを有している。センサチップは、複数の画素が2次元行列状に配置された画素アレイと、画素アレイの画素列毎に画素のアナログ信号を出力する複数のデータ出力端子により構成されるデータ出力端子群とを有している。信号処理チップは、データ出力端子群に電気的に接続されるデータ入力端子群と、データ入力端子群で受けた画素のアナログ信号を画素アレイの画素列毎にデジタル信号へ変換する複数のA/D変換器と、複数のA/D変換器の動作を制御する制御部とを有している。
一実施形態における撮像装置の概要を示す図である。 図1に示した撮像装置の側面の概要を示す図である。 図1に示したセンサチップおよび信号処理チップの概要を示す図である。 図3に示した制御部の一例を示す図である。 別の実施形態における撮像装置の制御部の一例を示す図である。 別の実施形態における撮像装置の信号処理チップの一例を示す図である。 別の実施形態における撮像装置の信号処理チップの一例を示す図である。 上述した実施形態の撮像装置を用いたデジタルカメラの概要を示す図である。
 以下、本発明の実施形態を図面を用いて説明する。図中の信号、信号線および端子は、複数のものを1つにまとめて示しているものもある。例えば、以降の説明では、センサチップ30の駆動タイミングを制御するための複数の制御信号を、まとめて駆動制御信号CNTPと称している。
 図1は、本発明の一実施形態を示している。なお、図1は、光の入射面と反対側から見た撮像装置10の概要を示している。この実施形態の撮像装置10は、例えば、CMOS型の撮像装置であり、デジタルビデオカメラやデジタルカメラ等に搭載される。例えば、撮像装置10は、配線パターンが形成されたガラス基板20と、センサチップ30と、複数の信号処理チップ40(40a、40b)とを有し、COG(Chip On Glass)構造で形成される。
 ガラス基板20には、センサチップ30および複数の信号処理チップ40a、40bが実装されている。例えば、信号処理チップ40a、40bは、センサチップ30を挟んで、図の上下に配置されている。また、ガラス基板20には、例えば、フレキシブルプリント基板FPCが接続されている。例えば、フレキシブルプリント基板FPCおよびガラス基板20に形成された配線を介して、撮像装置10に信号が入出力される。
 センサチップ30は、例えば、図の横方向に配列された複数のデータ出力端子DOTによりそれぞれ構成された複数のデータ出力端子群DOTGを有している。複数のデータ出力端子群DOTGは、複数の信号処理チップ40にそれぞれ対応して設けられる。例えば、2つの信号処理チップ40a、40bを有する撮像装置10では、2つのデータ出力端子群DOTGが、センサチップ30の信号処理チップ40a、40b側にそれぞれ配置される。このように、センサチップ30は、信号処理チップ40の数と同じ数のデータ出力端子群DOTGを有している。なお、データ出力端子DOTは、センサチップ30のガラス基板20側に配置されるため、図1では、破線で示している。
 各信号処理チップ40は、例えば、図の横方向に配列された複数のデータ入力端子DITにより構成されたデータ入力端子群DITGと、同期制御端子SYNSとを有している。データ入力端子DITおよび同期制御端子SYNSは、信号処理チップ40のガラス基板20側に配置されるため、図1では、破線で示している。以下、データ出力端子DOTおよびデータ入力端子DIT以外の端子には、信号名と同じ符号を使用する。
 信号処理チップ40a、40bのデータ入力端子DITは、センサチップ30のデータ出力端子DOTから出力された信号(後述する図3に示す画素PXの信号)を受ける。すなわち、データ入力端子群DITGは、データ出力端子群DOTGに電気的に接続されている。例えば、信号処理チップ40a、40bのデータ入力端子群DITGは、ガラス基板20に形成された配線パターン等により、センサチップ30の2つのデータ出力端子群DOTGにそれぞれ接続されている。
 また、信号処理チップ40a、40bの同期制御端子SYNSは、ガラス基板20に形成された配線パターン等により、互いに接続されている。これにより、各信号処理チップ40の同期制御端子SYNSには、例えば、図4で説明する同期制御信号SYNSが伝達される。なお、信号処理チップ40a、40bの同期制御端子SYNS間を接続する配線は、センサチップ30内を通過してもよい。例えば、信号処理チップ40a、40bの同期制御端子SYNS間を接続する配線は、ガラス基板20に形成された配線パターンおよびセンサチップ30内に形成された配線パターンを含んで構成されてもよい。
 図2は、図1に示した撮像装置10の側面の概要を示している。撮像装置10は、例えば、上述したように、COG構造で形成される。ガラス基板20の取り付け基準面REFと反対側の面には、センサチップ30、信号処理チップ40a、40bおよびフレキシブルプリント基板FPCが接合されている。センサチップ30および複数の信号処理チップ40a、40bは、例えば、半田やバンプ等の接合部CTにより、ガラス基板20に電気的に接続されている。例えば、接合部CTのガラス基板20側は、ガラス基板20に形成された配線パターンに接合されている。また、例えば、接合部CTのセンサチップ30側は、センサチップ30の端子に接合され、接合部CTの信号処理チップ40側は、信号処理チップ40の端子に接合されている。なお、センサチップ30には、ガラス基板20を介して、光OPTが入射する。
 図3は、図1に示したセンサチップ30および信号処理チップ40の概要を示している。なお、図3の二重丸は、センサチップ30および信号処理チップ40の端子の一部を示している。例えば、信号処理チップ40a、40bの駆動制御端子CNTPは、図1に示したガラス基板20に形成された配線パターン等により、センサチップ30の2つの駆動制御端子CNTPにそれぞれ接続されている。
 センサチップ30は、データ出力端子DOT等を含む複数の端子と、画素アレイ32と、ドライバ34と、2つに分けて配置されたアンプアレイ36と、バイアス回路38とを有している。画素アレイ32は、2次元行列状に配置された複数の画素PXを有している。例えば、画素PXは、入射光を光電変換して電荷を生成する光電変換部を有し、入射光に応じた電気信号を生成する。例えば、画素PXにより生成される電気信号は、アナログ信号である。ドライバ34は、信号処理チップ40から駆動制御端子CNTPを介して、駆動制御信号CNTPを受ける。そして、ドライバ34は、駆動制御信号CNTPに基づいて、画素アレイ32の画素PXを行毎に制御する。
 アンプアレイ36は、例えば、画素アレイ32を挟んで、図の上下に配置されている。例えば、2つのアンプアレイ36の一方(図3では、上側に配置されたアンプアレイ36)は、画素アレイ32の奇数番目の列毎に設けられたカラムアンプAPを有している。また、例えば、2つのアンプアレイ36の他方(図3では、下側に配置されたアンプアレイ36)は、画素アレイ32の偶数番目の列毎に設けられたカラムアンプAPを有している。
 画素アレイ32の列毎に配置されたカラムアンプAPは、ドライバ34により選択された行の画素PXの信号を受け、受けた信号を所定の増幅率で増幅する。そして、カラムアンプAPは、増幅した信号を、データ出力端子DOTを介して信号処理チップ40に出力する。すなわち、アンプアレイ36は、ドライバ34により選択された行の画素PXの信号を、データ出力端子DOTを介して、信号処理チップ40に並列に出力する。例えば、画素アレイ32の奇数番目の列の画素PXの信号は、センサチップ30における図の上側に配置された複数のデータ出力端子DOTから信号処理チップ40aの複数のデータ入力端子DITに並列に出力される。また、例えば、画素アレイ32の偶数番目の列の画素PXの信号は、センサチップ30における図の下側に配置された複数のデータ出力端子DOTから信号処理チップ40bの複数のデータ入力端子DITに並列に出力される。なお、増幅器としてのカラムアンプAPは、例えば、スイッチトキャパシタ回路から構成される。
 このように、この実施形態では、1行分の画素PXの信号がセンサチップ30から信号処理チップ40に並列に出力されるため、1行分の画素PXの信号のチップ間(センサチップ30および信号処理チップ40間)の転送時間を短くできる。あるいは、この実施形態では、1行分の画素PXの信号をセンサチップ30から信号処理チップ40に順次出力する構成に比べて、1画素PXあたりの信号の読み出し動作、例えば、画素リセットおよびカラムアンプのリセット、フローティングディフュージョンへの電荷転送、カラムアンプの信号増幅等を低速にすることも可能になる。この場合、静定時間を十分に取ることができるので、各部の動作が安定する。
 バイアス回路38は、センサチップ30の外部から基準電圧端子VR10を介して基準電圧VR10を受ける。そして、バイアス回路38は、基準電圧VR10に基づいて、画素アレイ32、ドライバ34およびアンプアレイ36に供給する電源電圧等を生成する。
 信号処理チップ40a、40bの構成は、この実施形態では、互いに同じである。このため、以下、信号処理チップ40aについて説明する。信号処理チップ40aは、データ入力端子DIT等を含む複数の端子、制御部42a、A/D変換部44、データバス回路46、差動出力回路48およびバイアス回路50を有している。
 制御部42aは、A/D変換部44およびデータバス回路46等の動作を制御する。また、制御部42aは、他の制御部42(例えば、制御部42b)の動作を制御するマスタモードと、他の制御部42(例えば、制御部42b)からの制御に基づいて動作するスレーブモードとを有している。例えば、制御部42aは、信号処理チップ40aの外部から制御端子CNTaを介して受けた制御信号CNTaにより、マスタモードおよびスレーブモードのいずれかに設定される。
 例えば、制御部42aは、マスタモードに設定された場合、センサチップ30の駆動タイミングを制御するための駆動制御信号CNTPを、駆動制御端子CNTPを介してセンサチップ30に出力する。さらに、制御部42aは、マスタモードの制御部42aの動作とスレーブモードの制御部42bの動作とを互いに同期させるための同期制御信号SYNSを、同期制御端子SYNSを介して信号処理チップ40bに出力する。すなわち、マスタモードに設定された制御部42aは、複数の信号処理チップ40a、40bの制御部42a、42bの動作を互いに同期させるための同期制御信号SYNSを他の信号処理チップ40bの制御部42bに出力するとともに、駆動制御信号CNTPをセンサチップ30に出力する。
 また、制御部42aは、スレーブモードに設定された場合、同期制御信号SYNSを信号処理チップ40bから同期制御端子SYNSを介して受ける。さらに、スレーブモードの制御部42aは、例えば、マスタモードの制御部42bからセンサチップ30に出力された駆動制御信号CNTPを、センサチップ30から駆動制御端子CNTPを介して受ける。
 A/D変換部44は、例えば、信号処理チップ40aの複数のデータ入力端子DITにそれぞれ対応して設けられた複数のA/D変換器ADC(以下、カラムA/D変換器ADCとも称する)を有している。例えば、信号処理チップ40aでは、複数のカラムA/D変換器ADCは、画素アレイ32の列毎に設けられた垂直信号線を介して画素アレイ32の奇数番目の列の画素PXのアナログ信号をそれぞれ受け、受けたアナログ信号をデジタル信号に変換する。そして、各A/D変換器ADCは、例えば、デジタル信号に変換した画素PXの信号をデータバス回路46に差動出力する。なお、複数のカラムA/D変換器ADCは、制御部42aの制御に基づいて、並列に動作する。
 このように、A/D変換部44は、データ入力端子群DITGで受けた画素PXの信号を処理する処理部に含まれる。なお、この実施形態では、A/D変換部44の複数のカラムA/D変換器ADCが並列に動作するため、1行分の画素PXのアナログ信号をデジタル信号に変換する時間を短くできる。あるいは、この実施形態では、1行分の画素PXの信号をセンサチップ30から信号処理チップ40に順次出力する構成に比べて、A/D変換器ADC1個あたりの変換動作を低速にすることも可能である。その結果、A/D変換器ADCの面積の増大や、消費電力の増大を抑えることができる。
 データバス回路46は、例えば、A/D変換器ADCおよび差動出力回路48間を接続するバスを有し、制御部42aの制御に基づいて動作する。例えば、データバス回路46は、制御部42aの制御に基づいて、A/D変換器ADCから差動で出力された画素PXの信号を差動出力回路48に順次転送する。また、例えば、データバス回路46は、制御部42aの制御に基づいて、バスのリセット等を実施する。
 差動出力回路48は、例えば、LVDS(Low Voltage Differential Signaling)インターフェースを用いて、低振幅差動信号を出力する。例えば、差動出力回路48は、A/D変換器ADCにより差動のデジタル信号に変換された画素PXの信号をデータバス回路46から順次受け、受けた差動信号を低振幅差動信号のデジタル画素信号Da、/Daとして順次出力する。なお、差動出力回路48は、LVDSインターフェース以外の高速転送に対応したデジタルインターフェースを用いてもよい。LVDSインターフェース等のデジタルインターフェースを用いることにより、信号処理チップ40aは、画素アレイ32の奇数番目の列の画素PXに対応するデジタル画素信号Da、/Daを、デジタル画素出力端子Da、/Daから外部に高速に出力できる。
 バイアス回路50は、信号処理チップ40aの外部から基準電圧端子VR20を介して基準電圧VR20を受ける。そして、バイアス回路50は、基準電圧VR20に基づいて、制御部42a、A/D変換部44、データバス回路46および差動出力回路48に供給する電源電圧等を生成する。なお、図3では、図を見やすくするために、バイアス回路50から制御部42aおよびデータバス回路46に電圧を供給するための配線の記載を省略している。
 信号処理チップ40bの動作は、符号40a、40b、42a、42b、CNTa、Da、/Daを符号40b、40a、42b、42a、CNTb、Db、/Dbにそれぞれ読み替え、“奇数番目の列の画素PX”を“偶数番目の列の画素PX”に読み替えることで説明される。例えば、信号処理チップ40bは、画素アレイ32の偶数番目の列の画素PXに対応するデジタル画素信号Db、/Dbを、デジタル画素出力端子Db、/Dbから外部に出力する。
 このように、この実施形態では、複数の信号処理チップ40(40a、40b)からデジタル画素信号D、/D(“Da、/Da”、“Db、/Db”)が並列に出力されるため、1フレーム分のA/D変換処理およびデジタル画素信号D、/Dの転送時間を短くできる。また、この実施形態では、センサチップ30と信号処理チップ40とを互いに異なる製造プロセスで製造できるため、センサチップ30および信号処理チップ40をそれぞれの特性に適した製造プロセスで製造できる。例えば、画素アレイ32等のセンサ部の高性能化に適した製造プロセスでセンサチップ30を製造したときにも、A/D変換器ADC等の信号処理部の高速化に適した製造プロセスで信号処理チップ40を製造できる。したがって、この実施形態では、撮像装置10の製造コストを削減しつつ、撮像装置10の動作を高速化できる。
 なお、信号処理チップ40は、A/D変換部44の他に、デジタル演算等を実施する信号処理回路を有してもよい。例えば、信号処理チップ40は、複数のカラムA/D変換器ADC間の変換特性のばらつきを補正する回路や固定パターンノイズを除去する回路等を有してもよい。
 図4は、図3に示した制御部42の一例を示している。なお、図4では、図3に示した差動出力回路48やバイアス回路50等の記載を省略している。制御部42a、42bは、互いに同じ構成であるため、制御部42aについて説明する。
 制御部42aは、制御信号CNTaを受けるシステムコントローラSYSCNTと、A/D変換器ADCの動作を制御するA/D変換制御回路ADCCNTと、タイミングジェネレータTGとを有している。システムコントローラSYSCNTは、制御信号CNTaに基づいて、マスタモードおよびスレーブモードのいずれかで動作する。そして、システムコントローラSYSCNTは、制御信号CNTaにより設定されたモードで制御部42aが動作するように、制御部42aのA/D変換制御回路ADCCNTおよびタイミングジェネレータTGを制御する。すなわち、制御部42aの動作は、マスタモードとスレーブモードとで異なる。
 以下、制御部42aがマスタモードに設定され、制御部42bがスレーブモードに設定されたものとして、制御部42aのタイミングジェネレータTG、システムコントローラSYSCNTおよびA/D変換制御回路ADCCNTの動作を説明する。
 タイミングジェネレータTGは、駆動制御信号CNTPを生成し、生成した駆動制御信号CNTPを制御部42bのタイミングジェネレータTGおよび図3に示したセンサチップ30のドライバ34に出力する。また、タイミングジェネレータTGは、例えば、駆動制御信号CNTPに基づくタイミング制御信号を、システムコントローラSYSCNTおよびA/D変換制御回路ADCCNTに出力する。
 さらに、タイミングジェネレータTGは、同期制御信号SYNSを制御部42bのタイミングジェネレータTGに出力する。例えば、同期制御信号SYNSは、制御信号CNTa内のクロックを含んでいる。タイミングジェネレータTGは、例えば、システムコントローラSYSCNTを介して、制御信号CNTa内のクロックを受ける。なお、タイミングジェネレータTGは、システムコントローラSYSCNTを介さずに、制御信号CNTa内のクロックを受けてもよい。
 システムコントローラSYSCNTは、例えば、タイミングジェネレータTGからのタイミング制御信号に基づいて出力制御信号CNTOUTaを生成し、制御信号CNTa内のクロックに同期して出力制御信号CNTOUTaをデータバス回路46に出力する。例えば、出力制御信号CNTOUTaは、データバス回路46の動作を制御するための信号である。なお、システムコントローラSYSCNTは、例えば、出力制御信号CNTOUTaを用いて、図3に示した差動出力回路48の動作を制御してもよい。
 A/D変換制御回路ADCCNTは、例えば、タイミングジェネレータTGからのタイミング制御信号に基づいてA/D変換制御信号CNTADCaを生成し、制御信号CNTa内のクロックに同期してA/D変換制御信号CNTADCaをA/D変換部44に出力する。例えば、A/D変換制御回路ADCCNTは、システムコントローラSYSCNTを介して、制御信号CNTa内のクロックを受ける。なお、A/D変換制御回路ADCCNTは、システムコントローラSYSCNTを介さずに、制御信号CNTa内のクロックを受けてもよい。ここで、例えば、A/D変換制御信号CNTADCaは、A/D変換部44の動作を制御するための信号である。
 次に、スレーブモードに設定された制御部42bのタイミングジェネレータTG、システムコントローラSYSCNTおよびA/D変換制御回路ADCCNTの動作を説明する。
 タイミングジェネレータTGは、例えば、制御信号CNTa内のクロックを含む同期制御信号SYNSを、制御部42aのタイミングジェネレータTGから受ける。そして、タイミングジェネレータTGは、同期制御信号SYNSにより転送された制御信号CNTa内のクロックを、システムコントローラSYSCNTおよびA/D変換制御回路ADCCNTに転送する。
 また、タイミングジェネレータTGは、制御部42aのタイミングジェネレータTGから受けた駆動制御信号CNTPに基づいてタイミング制御信号を生成し、生成したタイミング制御信号をシステムコントローラSYSCNTおよびA/D変換制御回路ADCCNTに出力する。なお、スレーブモードで動作するタイミングジェネレータTGは、駆動制御信号CNTPを図3に示したセンサチップ30に出力しない。
 システムコントローラSYSCNTは、例えば、タイミングジェネレータTGからのタイミング制御信号に基づいて出力制御信号CNTOUTbを生成する。そして、システムコントローラSYSCNTは、タイミングジェネレータTGから受けた制御信号CNTa内のクロックに同期して、出力制御信号CNTOUTbをデータバス回路46に出力する。
 A/D変換制御回路ADCCNTは、例えば、タイミングジェネレータTGからのタイミング制御信号に基づいてA/D変換制御信号CNTADCbを生成する。そして、A/D変換制御回路ADCCNTは、タイミングジェネレータTGから受けた制御信号CNTa内のクロックに同期して、A/D変換制御信号CNTADCbをA/D変換部44に出力する。
 なお、制御部42の動作は、この例に限定されない。例えば、同期制御信号SYNSにより転送される同期用のクロックは、制御信号CNTa内のクロックを分周したクロックでもよいし、制御信号CNTa内のクロックを逓倍したクロックでもよい。あるいは、同期制御信号SYNSにより転送される同期用のクロックは、複数のクロックでもよい。例えば、出力制御信号CNTOUTaを出力する際に使用されるクロックと、A/D変換制御信号CNTADCaを出力する際に使用されるクロックとが互いに異なる場合、両方のクロックが同期制御信号SYNSにより転送されてもよい。
 このように、スレーブモードに設定された制御部42bは、マスタモードに設定された制御部42aで使用されるクロックに同期して動作する。すなわち、制御部42a、42bは、互いに同期して動作する。これにより、この実施形態では、センサチップ30および複数の信号処理チップ40a、40bの動作タイミングを互いに合わせることができる。この結果、この実施形態では、例えば、信号処理チップ40aのデジタル画素信号Da、/Daと信号処理チップ40bのデジタル画素信号Db、/Dbとの間で誤差が発生することを防止できる。ここで、デジタル画素信号Da、/Daとデジタル画素信号Db、/Dbとの間の誤差は、例えば、A/D変換部44の動作タイミングの差およびデータバス回路46の動作タイミングの差等に起因して発生する。
 例えば、信号処理チップ40aのA/D変換部44と信号処理チップ40bのA/D変換部44との間の動作タイミングの差は、アナログデータの取得タイミングのずれとなる可能性がある。信号処理チップ40a、40b間でアナログデータの取得タイミングがずれた場合、例えば、互いに同じレベルの画素PXの信号に対するA/D変換後のデータが信号処理チップ40a、40b間で大きく異なる。なお、この実施形態では、制御部42a、42bが互いに同期して動作するため、信号処理チップ40a、40b間でアナログデータの取得タイミングがずれることを防止できる。この結果、信号処理チップ40aのA/D変換後のデータと信号処理チップ40bのA/D変換後のデータと間に大きな誤差が発生することを防止できる。
 また、例えば、信号処理チップ40aのデータバス回路46と信号処理チップ40bのデータバス回路46との間の動作タイミングの差は、信号処理チップ40a、40bのデジタル出力間(デジタル画素信号Da、/DaとDb、/Dbとの間)の位相差を大きく発生させる可能性がある。位相差が大きい場合、デジタル画素信号Da、/Da、Db、/Dbを受ける画像処理IC側のデータ取り込みの位相マージンが小さくなり、データの取りこぼし確立が高くなる。なお、この実施形態では、制御部42a、42bが互いに同期して動作するため、信号処理チップ40a、40bのデジタル出力間の位相差が大きくなることを防止できる。この結果、デジタル画素信号Da、/Da、Db、/Dbを受ける画像処理IC側のデータ取り込みの位相マージンを大きくでき、データの取りこぼし確立を低くできる。
 なお、制御部42aがスレーブモードに設定され、制御部42bがマスタモードに設定された場合、上述の制御部42a、42bの動作は、互いに逆になる。
 以上、この実施形態では、撮像装置10は、互いに同期して動作するセンサチップ30および複数の信号処理チップ40a、40bを有している。例えば、この実施形態では、同期制御信号SYNSを用いることにより、センサチップ30および複数の信号処理チップ40a、40bの動作タイミングを互いに合わせることができる。また、この実施形態では、センサチップ30および信号処理チップ40をそれぞれの特性に適した製造プロセスで製造できる。このため、この実施形態では、撮像装置10の製造コストを削減しつつ、撮像装置10の動作を高速化できる。また、この実施形態では、信号処理チップ40a、40bが互いに同じ構成であるため、レイアウト設計や設計検証等の設計工数を削減できる。
 さらに、この実施形態では、制御部42は、制御信号CNTにより、マスタモードおよびスレーブモードのいずれかに設定される。したがって、この実施形態では、複数の制御部42がマスタモードと同様の処理を実施する構成に比べて、撮像装置10の消費電力を削減できる。また、例えば、製造時のテスト工程では、制御部42をマスタモードに設定することにより、信号処理チップ40を単体でテストできる。これにより、この実施形態では、不良品の信号処理チップ40が図1に示したガラス基板20に実装されることを防止できる。この結果、撮像装置10の製造コストを削減できる。なお、センサチップ30を単体でテストする際には、駆動制御端子CNTPからテスト用の制御信号をセンサチップ30に入力すればよい。あるいは、テスト用の制御信号を入力するためのテスト端子や配線をセンサチップ30に設けてもよい。
 また、この実施形態では、複数の信号処理チップ40a、40bが同期制御信号SYNSにより互いに同期して動作する構成を説明したが、この構成に限定されない。例えば、信号処理チップ40を2つに分けただけの構成(同期制御信号SYNSを用いない構成)を採用してもよい。この場合、センサチップ30および信号処理チップ40をそれぞれの特性に適した製造プロセスで製造できる点で、上述した実施形態と同様の効果を得られる。しかしながら、複数の制御部42が互いに異なる複数の信号処理チップ40にそれぞれ形成される構成では、例えば、複数の制御部42間の製造ばらつきは、複数の制御部42が1つのチップ内に配置される構成に比べて、大きくなる傾向にある。したがって、同期制御信号SYNSを用いない構成では、複数の信号処理チップ40間の製造ばらつきにより、複数の信号処理チップ40内のクロックのタイミングが互いに異なるおそれがある。そのため、複数の信号処理チップ40間の製造ばらつきによる影響を回避する必要のあるときは、複数の信号処理チップ40a、40bを同期制御信号SYNSにより互いに同期して動作させる構成が好ましい。
 図5は、別の実施形態における撮像装置10の制御部52、53の一例を示している。上述した実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の撮像装置10は、信号処理チップ40a、40bの構成が図1-図4で説明した実施形態と相違する。その他の構成は、図1-図4で説明した実施形態と同じである。なお、図5では、図3に示した差動出力回路48やバイアス回路50等の記載を省略している。
 この実施形態の信号処理チップ40aは、図4に示した制御部42aおよび同期制御端子SYNSの代わりに、制御部52およびA/D変換制御端子CNTADC2がそれぞれ設けられている。また、この実施形態の信号処理チップ40bは、図4に示した制御部42bおよび同期制御端子SYNSの代わりに、制御部53およびA/D変換制御端子CNTADC2がそれぞれ設けられている。この実施形態の信号処理チップ40a、40bのその他の構成は、図1-図4で説明した実施形態と同じである。なお、制御部52、53は、互いに異なる構成である。したがって、信号処理チップ40a、40bには、互いに異なる構成の制御部52、53がそれぞれ設けられる。
 先ず、信号処理チップ40aに設けられた制御部52について説明する。
 制御部52は、例えば、制御信号CNTaを受けるシステムコントローラSYSCNT2と、A/D変換器ADCの動作を制御するA/D変換制御回路ADCCNT2と、簡易タイミングジェネレータSTGとを有している。また、制御部52は、信号処理チップ40aを単体でテストするためのテストモードを有している。例えば、制御部52は、制御信号CNTaにより、テストモードに設定される。
 簡易タイミングジェネレータSTGは、制御部53のタイミングジェネレータTG2から駆動制御信号CNTPを受ける。そして、簡易タイミングジェネレータSTGは、駆動制御信号CNTPに基づいてタイミング制御信号を生成し、生成したタイミング制御信号をシステムコントローラSYSCNT2およびA/D変換制御回路ADCCNT2に出力する。
 また、制御部52がテストモードに設定された場合、簡易タイミングジェネレータSTGは、例えば、A/D変換器ADCおよびデータバス回路46のテストに必要な最低限のタイミング制御信号を生成する。そして、簡易タイミングジェネレータSTGは、生成したタイミング制御信号をシステムコントローラSYSCNT2およびA/D変換制御回路ADCCNT2に出力する。
 このように、簡易タイミングジェネレータSTGは、駆動制御信号CNTPを生成しない。このため、この実施形態では、簡易タイミングジェネレータSTGの構成を、制御部53のタイミングジェネレータTG2や図4に示したタイミングジェネレータTGに比べて、簡易にできる。また、この実施形態では、簡易タイミングジェネレータSTGが駆動制御信号CNTPを生成しないため、信号処理チップ40aの消費電力を削減できる。
 システムコントローラSYSCNT2は、例えば、簡易タイミングジェネレータSTGからのタイミング制御信号に基づいて出力制御信号CNTOUTaを生成し、制御信号CNTa内のクロックに同期して出力制御信号CNTOUTaをデータバス回路46に出力する。なお、システムコントローラSYSCNT2は、例えば、出力制御信号CNTOUTaを用いて、図3に示した差動出力回路48の動作を制御してもよい。
 A/D変換制御回路ADCCNT2は、例えば、簡易タイミングジェネレータSTGからのタイミング制御信号に基づいてA/D変換制御信号CNTADCaを生成し、制御信号CNTa内のクロックに同期してA/D変換制御信号CNTADCaをA/D変換部44に出力する。例えば、A/D変換制御回路ADCCNT2は、システムコントローラSYSCNT2を介して、制御信号CNTa内のクロックを受ける。なお、A/D変換制御回路ADCCNT2は、システムコントローラSYSCNT2を介さずに、制御信号CNTa内のクロックを受けてもよい。
 さらに、A/D変換制御回路ADCCNT2は、A/D変換制御信号CNTADC2を制御部53の簡易A/D変換制御回路SADCCNTに出力する。例えば、A/D変換制御信号CNTADC2は、A/D変換制御信号CNTADCaと、制御信号CNTa内のクロックとを含んでいる。すなわち、上述した実施形態の同期制御信号SYNSは、A/D変換制御信号CNTADC2に含まれる。
 次に、信号処理チップ40bに設けられた制御部53について説明する。
 制御部53は、例えば、制御信号CNTbを受けるシステムコントローラSYSCNT3と、簡易A/D変換制御回路SADCCNTと、タイミングジェネレータTG2とを有している。また、制御部53は、信号処理チップ40bを単体でテストするためのテストモードを有している。例えば、制御部53は、制御信号CNTbにより、テストモードに設定される。
 タイミングジェネレータTG2は、駆動制御信号CNTPを生成し、生成した駆動制御信号CNTPを制御部52の簡易タイミングジェネレータSTGおよび図3に示したセンサチップ30のドライバ34に出力する。また、タイミングジェネレータTG2は、例えば、駆動制御信号CNTPに基づくタイミング制御信号を、システムコントローラSYSCNT3および簡易A/D変換制御回路SADCCNTに出力する。
 システムコントローラSYSCNT3は、例えば、タイミングジェネレータTG2からのタイミング制御信号に基づいて、出力制御信号CNTOUTbを生成する。そして、システムコントローラSYSCNT3は、A/D変換制御信号CNTADC2により転送された制御信号CNTa内のクロックに同期して、出力制御信号CNTOUTbをデータバス回路46に出力する。例えば、システムコントローラSYSCNT3は、簡易A/D変換制御回路SADCCNTを介して、制御信号CNTa内のクロックを受ける。なお、システムコントローラSYSCNT3は、制御信号CNTa内のクロックを、タイミングジェネレータTG2から受けてもよいし、A/D変換制御端子CNTADC2から受けてもよい。
 また、制御部53がテストモードに設定された場合、システムコントローラSYSCNT3は、制御信号CNTb内のクロックに同期して、出力制御信号CNTOUTbをデータバス回路46に出力する。
 簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADC2を制御部52のA/D変換制御回路ADCCNT2から受ける。そして、簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADC2により転送された制御信号CNTa内のクロックを、システムコントローラSYSCNT3に転送する。なお、簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADC2により転送された制御信号CNTa内のクロックを、タイミングジェネレータTG2に転送してもよい。
 また、簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADC2により転送されたA/D変換制御信号CNTADCaに基づいて、A/D変換制御信号CNTADCbを生成する。例えば、簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADCaのタイミングをタイミングジェネレータTG2からのタイミング制御信号に基づいて調整することにより、A/D変換制御信号CNTADCbを生成する。そして、簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADC2により転送された制御信号CNTa内のクロックに同期して、A/D変換制御信号CNTADCbをA/D変換部44に出力する。
 なお、制御部53がテストモードに設定された場合、簡易A/D変換制御回路SADCCNTは、例えば、A/D変換器ADCのテストに必要な最低限のテスト信号を、タイミングジェネレータTG2からのタイミング制御信号に基づいて生成する。そして、簡易A/D変換制御回路SADCCNTは、制御信号CNTb内のクロックに同期して、テスト信号をA/D変換部44に出力する。
 このように、簡易A/D変換制御回路SADCCNTは、A/D変換制御信号CNTADC2により転送されたA/D変換制御信号CNTADCaのタイミングを調整することにより、A/D変換制御信号CNTADCbを生成する。これにより、この実施形態では、制御部52のA/D変換制御回路ADCCNT2や図4に示したA/D変換制御回路ADCCNTに比べて、簡易A/D変換制御回路SADCCNTの構成を簡易にでき、信号処理チップ40bの消費電力を削減できる。
 なお、制御部52、53の構成は、この例に限定されない。例えば、タイミングジェネレータTG2が制御部52に設けられ、簡易タイミングジェネレータSTGが制御部53に設けられてもよい。また、例えば、簡易A/D変換制御回路SADCCNTが制御部52に設けられ、A/D変換制御回路ADCCNT2が制御部53に設けられてもよい。あるいは、制御部52が信号処理チップ40bに設けられ、制御部53が信号処理チップ40aに設けられてもよい。
 また、制御部52、53の動作は、この例に限定されない。例えば、A/D変換制御信号CNTADC2により転送される同期用のクロックは、制御信号CNTa内のクロックを分周したクロックでもよいし、制御信号CNTa内のクロックを逓倍したクロックでもよい。あるいは、A/D変換制御信号CNTADC2により転送される同期用のクロックは、複数のクロックでもよい。例えば、出力制御信号CNTOUTaを出力する際に使用されるクロックと、A/D変換制御信号CNTADCaを出力する際に使用されるクロックとが互いに異なる場合、両方のクロックがA/D変換制御信号CNTADC2により転送されてもよい。
 以上、この実施形態においても、図1-図4で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、簡易タイミングジェネレータSTGが制御部52に設けられ、簡易A/D変換制御回路SADCCNTが制御部53に設けられている。これにより、複数の制御部52、53全体の回路規模が削減される。したがって、この実施形態では、信号処理チップ40a、40bの回路規模を削減でき、チップ面積を小さくできる。また、この実施形態では、回路規模の削減により、撮像装置10の消費電力を削減できる。
 図6は、別の実施形態における撮像装置10の信号処理チップ40a、40bの一例を示している。上述した実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の撮像装置10は、信号処理チップ40a、40bの構成が図1-図4で説明した実施形態と相違する。その他の構成は、図1-図4で説明した実施形態と同じである。なお、図6では、図3に示したA/D変換部44、データバス回路46、差動出力回路48およびバイアス回路50等の記載を省略している。
 この実施形態の信号処理チップ40は、図4に示した制御部42および同期制御端子SYNSの代わりに、制御部43およびクロック端子CLK10がそれぞれ設けられている。さらに、この実施形態では、同期クロック生成部SCG10、クロック端子CLK20および遅延制御端子CNTDLが図4に示した信号処理チップ40aに追加され、同期クロック生成部SCG20およびクロック端子CLK30が図4に示した信号処理チップ40bに追加されている。すなわち、この実施形態では、互いに対をなす信号処理チップ40a、40bに同期クロック生成部SCG10、SCG20がそれぞれ設けられている。この実施形態の信号処理チップ40a、40bのその他の構成は、図1-図4で説明した実施形態と同じである。
 信号処理チップ40aは、図3に示したA/D変換部44、データバス回路46、差動出力回路48およびバイアス回路50の他に、同期クロック生成部SCG10および制御部43aを有している。
 同期クロック生成部SCG10は、バッファ部BUF10、遅延回路DLCおよびバッファ部BUF12を有している。バッファ部BUF10は、例えば、制御信号CNTa内のクロックを、信号処理チップ40aの外部から制御端子CNTaを介して受ける。そして、バッファ部BUF10は、受けたクロック(制御信号CNTa内のクロック)をクロックCLK10として、遅延回路DLCおよび信号処理チップ40bに出力する。なお、信号処理チップ40aのクロック端子CLK10は、例えば、図1に示したガラス基板20に形成された配線パターン等により、信号処理チップ40bのクロック端子CLK10に接続されている。すなわち、クロック端子CLK10は、図1-図4で説明した実施形態の同期制御信号SYNSに対応する。
 遅延回路DLCは、クロックCLK10をバッファ部BUF10から受けるとともに、遅延制御信号CNTDLを、信号処理チップ40aの外部から遅延制御端子CNTDLを介して受ける。そして、遅延回路DLCは、クロックCLK10を遅延させた遅延クロックDCLKを、バッファ部BUF12に出力する。なお、遅延回路DLCは、クロックCLK10を遅延制御信号CNTDLに基づく遅延量で遅延させることにより、遅延クロックDCLKを生成する。
 バッファ部BUF12は、遅延回路DLCから遅延クロックDCLKを受ける。そして、バッファ部BUF12は、遅延クロックDCLKをクロックCLK20として、システムコントローラSYSCNT等に出力する。これにより、クロックCLK20は、信号処理チップ40aの内部クロックとして、信号処理チップ40a内の各部に供給される。さらに、バッファ部BUF12は、クロックCLK20を、クロック端子CLK20を介して信号処理チップ40aの外部に出力する。
 制御部43aは、例えば、システムコントローラSYSCNT、A/D変換制御回路ADCCNTおよびタイミングジェネレータTG3を有している。すなわち、制御部43aは、図4に示したタイミングジェネレータTGの代わりにタイミングジェネレータTG3が設けられている。制御部43aのその他の構成は、図4に示した制御部42aと同じである。タイミングジェネレータTG3の構成および動作は、図4で説明した同期制御信号SYNSの転送を実施しないことを除いて、タイミングジェネレータTGと同じである。
 制御部43aのシステムコントローラSYSCNTおよびA/D変換制御回路ADCCNTの動作は、同期クロック生成部SCG10から出力されたクロックCLK20に同期して動作することを除いて、図4で説明した動作と同じである。例えば、制御部43aのシステムコントローラSYSCNTは、クロックCLK20に同期して、出力制御信号CNTOUTaを図4に示したデータバス回路46に出力する。制御部43aのA/D変換制御回路ADCCNTは、クロックCLK20に同期して、A/D変換制御信号CNTADCaを図4に示したA/D変換部44に出力する。
 信号処理チップ40bは、図3に示したA/D変換部44、データバス回路46、差動出力回路48およびバイアス回路50の他に、同期クロック生成部SCG20および制御部43bを有している。
 同期クロック生成部SCG20は、バッファ部BUF20、スイッチ部SWおよびバッファ部BUF22を有している。バッファ部BUF20は、例えば、制御信号CNTb内のクロックを、信号処理チップ40bの外部から制御端子CNTbを介して受ける。そして、バッファ部BUF20は、受けたクロック(制御信号CNTb内のクロック)をクロックCLK12として、スイッチ部SWに出力する。
 スイッチ部SWは、クロックCLK12をバッファ部BUF20から受けるとともに、クロックCLK10(制御信号CNTa内のクロック)を信号処理チップ40aからクロック端子CLK10を介して受ける。そして、スイッチ部SWは、例えば、制御信号CNTbに基づいて、クロックCLK10、CLK12のいずれかをバッファ部BUF22に出力する。例えば、信号処理チップ40a、40bが互いに同期して動作するとき、スイッチ部SWは、クロックCLK10をバッファ部BUF22に出力する。また、例えば、信号処理チップ40bが独立動作するとき、スイッチ部SWは、クロックCLK12をバッファ部BUF22に出力する。
 バッファ部BUF22は、スイッチ部SWから受けたクロックをクロックCLK30として、システムコントローラSYSCNT等に出力する。これにより、クロックCLK30は、信号処理チップ40bの内部クロックとして、信号処理チップ40b内の各部に供給される。さらに、バッファ部BUF22は、クロックCLK30を、クロック端子CLK30を介して信号処理チップ40bの外部に出力する。
 ここで、信号処理チップ40a、40bの外部に出力されたクロックCLK20、CLK30は、遅延回路DLCの遅延量を調整するために使用される。すなわち、クロックCLK20、CLK30は、遅延制御信号CNTDLが示す遅延量を調整するために使用される。例えば、遅延制御信号CNTDLが示す遅延量は、撮像装置10が実装されるデジタルカメラ等のCPUの演算により、クロックCLK20とクロックCLK30との位相差が所定の誤差範囲になるように調整される。なお、遅延制御信号CNTDLが示す遅延量は、ユーザにより手動で設定されてもよい。このように、この実施形態では、クロックCLK20とクロックCLK30との位相差が所定の誤差範囲になるように調整されるため、信号処理チップ40aの動作タイミングを、信号処理チップ40bの動作タイミングに精度よく合わせることができる。
 制御部43bの構成は、制御部43aと同じである。また、制御部43bの動作は、同期クロック生成部SCG20から出力されたクロックCLK30に同期して動作することを除いて、制御部43aの動作と同じである。例えば、制御部43bのシステムコントローラSYSCNTは、クロックCLK30に同期して、出力制御信号CNTOUTbを図4に示したデータバス回路46に出力する。制御部43bのA/D変換制御回路ADCCNTは、クロックCLK30に同期して、A/D変換制御信号CNTADCbを図4に示したA/D変換部44に出力する。なお、駆動制御信号CNTPは、例えば、制御部43a、43bのうちの一方のタイミングジェネレータTG3から出力される。
 なお、信号処理チップ40a、40bの構成は、この例に限定されない。例えば、同期クロック生成部SCG10、SCG20は、信号処理チップ40a、40bのシステムコントローラSYSCNT内にそれぞれ設けられてもよいし、信号処理チップ40a、40bのタイミングジェネレータTG3内にそれぞれ設けられてもよい。あるいは、同期クロック生成部SCG10、SCG20は、信号処理チップ40a、40bのA/D変換制御回路ADCCNT内にそれぞれ設けられてもよい。また、同期クロック生成部SCG10が信号処理チップ40bに設けられ、同期クロック生成部SCG20が信号処理チップ40aに設けられてもよい。さらに、同期クロック生成部SCG10、SCG20は、図5に示した信号処理チップ40a、40bにそれぞれ設けられてもよい。
 以上、この実施形態においても、図1-図4で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、クロックCLK20とクロックCLK30との位相差が所定の誤差範囲になるように調整されるため、センサチップ30および複数の信号処理チップ40a、40bの動作タイミングを互いに精度よく合わせることができる。
 図7は、別の実施形態における撮像装置10の信号処理チップ40a、40bの一例を示している。上述した実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の撮像装置10は、信号処理チップ40aの構成が図6で説明した実施形態と相違する。その他の構成は、図6で説明した実施形態と同じである。なお、図7では、図3に示したA/D変換部44、データバス回路46、差動出力回路48およびバイアス回路50等の記載を省略している。
 この実施形態の信号処理チップ40aは、図6に示した同期クロック生成部SCG10の代わりに同期クロック生成部SCG12が設けられている。さらに、この実施形態では、クロック端子CLK30が図6に示した信号処理チップ40aに追加され、クロック端子CLK20および遅延制御端子CNTDLが図6に示した信号処理チップ40aから省かれている。この実施形態の信号処理チップ40aのその他の構成は、図6で説明した実施形態と同じである。なお、信号処理チップ40aのクロック端子CLK30は、例えば、図1に示したガラス基板20に形成された配線パターン等により、信号処理チップ40bのクロック端子CLK30に接続されている。
 同期クロック生成部SCG12は、バッファ部BUF10、遅延回路DLC、バッファ部BUF12、位相比較器PHC、積分回路INTCおよび減衰器ATTを有している。すなわち、同期クロック生成部SCG12は、位相比較器PHC、積分回路INTCおよび減衰器ATTが同期クロック生成部SCG10に追加されている。バッファ部BUF10、遅延回路DLCおよびバッファ部BUF12の動作は、図6で説明した同期クロック生成部SCG10のバッファ部BUF10、遅延回路DLCおよびバッファ部BUF12の動作と同じである。
 位相比較器PHCは、クロックCLK20(信号処理チップ40aの内部クロック)をバッファ部BUF12から受けるとともに、クロックCLK30(信号処理チップ40bの内部クロック)を信号処理チップ40bからクロック端子CLK30を介して受ける。そして、位相比較器PHCは、クロックCLK20の位相とクロックCLK30の位相とを互いに比較することにより、クロックCLK20とクロックCLK30との位相差を検出する。例えば、位相比較器PHCは、検出した位相差を積分回路INTCに出力する。
 積分回路INTCは、位相比較器PHCから受けた位相差を示す信号を積分することにより、クロックCLK20とクロックCLK30との位相差の平均を算出する。そして、積分回路INTCは、クロックCLK20とクロックCLK30との位相差の平均を示す信号を、減衰器ATTに出力する。
 減衰器ATTは、積分回路INTCから受けた信号(クロックCLK20とクロックCLK30との位相差の平均を示す信号)に基づいて、遅延制御信号CNTDLを生成する。そして、減衰器ATTは、生成した遅延制御信号CNTDLを遅延回路DLCに出力する。このように、積分回路INTCおよび減衰器ATTは、位相比較器PHCにより検出された位相差に基づいて遅延制御信号CNTDLを生成する遅延制御部として機能する。
 例えば、遅延回路DLCの初期の遅延量が“0”に設定されているとき、減衰器ATTは、クロックCLK20とクロックCLK30との位相差の平均の半分に相当する遅延量を、遅延制御信号CNTDLが示す遅延量に設定する。これにより、遅延回路DLCの遅延量は、信号処理チップ40a、40b間を往復したクロックCLK10の遅延量の半分の遅延量に設定される。
 すなわち、遅延制御信号CNTDLにより設定される遅延回路DLCの遅延量は、信号処理チップ40aから信号処理チップ40bにクロックCLK10が伝達されるまでの遅延量(以下、信号処理チップ40a、40b間の遅延量とも称する)に調整される。これにより、バッファ部BUF10から出力されたクロックCLK10に対するクロックCLK20の遅延量は、バッファ部BUF10から出力されたクロックCLK10に対するクロックCLK30の遅延量と同じになる。この結果、この実施形態では、信号処理チップ40aの動作タイミングを、信号処理チップ40bの動作タイミングに精度よく自動的に合わせることができる。
 なお、例えば、位相比較器PHCが位相差を検出する際に、遅延回路DLCに既に遅延量が設定されている場合、信号処理チップ40a、40b間の遅延量は、以下の演算により算出される。例えば、信号処理チップ40a、40b間の遅延量は、クロックCLK20とクロックCLK30との位相差の平均の半分に相当する遅延量と、遅延回路DLCに既に設定された遅延量の半分の遅延量とを加算することにより算出される。この演算は、減衰器ATT内で実施されてもよいし、遅延回路DLC内で実施されてもよい。
 ここで、例えば、遅延回路DLCの遅延量が信号処理チップ40a、40b間の遅延量に設定された後、位相比較器PHC、積分回路INTCおよび減衰器ATTの動作は、停止してもよい。この場合、信号処理チップ40aの消費電力を削減できる。なお、例えば、信号処理チップ40aが独立動作するとき、遅延回路DLCは、予め設定された遅延量で動作する。この場合にも、位相比較器PHC、積分回路INTCおよび減衰器ATTの動作は、停止してもよい。
 なお、信号処理チップ40a、40bの構成は、この例に限定されない。例えば、同期クロック生成部SCG12、SCG20は、信号処理チップ40a、40bのシステムコントローラSYSCNT内にそれぞれ設けられてもよいし、信号処理チップ40a、40bのタイミングジェネレータTG3内にそれぞれ設けられてもよい。あるいは、同期クロック生成部SCG12、SCG20は、信号処理チップ40a、40bのA/D変換制御回路ADCCNT内にそれぞれ設けられてもよい。また、同期クロック生成部SCG12が信号処理チップ40bに設けられ、同期クロック生成部SCG20が信号処理チップ40aに設けられてもよい。さらに、同期クロック生成部SCG12、SCG20は、図5に示した信号処理チップ40a、40bにそれぞれ設けられてもよい。
 以上、この実施形態においても、図1-図4で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、クロックCLK20の位相とクロックCLK30の位相とが互いに同じになるように自動的に調整されるため、センサチップ30および複数の信号処理チップ40a、40bの動作タイミングを互いに精度よく合わせることができる。
 図8は、上述した実施形態の撮像装置10を用いたデジタルカメラ100の概要を示している。デジタルカメラ100は、例えば、撮像装置10、撮影レンズ110、CPU120、バッファ部130、画像処理部140、記憶媒体150、モニタ160および操作部170を有している。撮像装置10、CPU120、バッファ部130、画像処理部140、記憶媒体150およびモニタ160は、例えば、バスBUSに接続されている。
 撮影レンズ110は、被写体の像を撮像装置10の受光面に結像する。CPU120は、例えば、マイクロプロセッサであり、図示しないプログラムに基づいて、撮像装置10の動作や撮影レンズ110等の動作を制御する。例えば、CPU120は、オートフォーカス制御、絞り制御、撮像装置10への露光制御および画像データの記録等を実施する。
 バッファ部130は、例えば、DRAM(Dynamic RAM)やSRAM(Static RAM)等で形成された内蔵メモリであり、撮像装置10により撮影された画像の画像データ等を一時的に記憶する。画像処理部140は、例えば、バッファ部130に記憶された画像データに対して、色補間処理、ホワイトバランス処理、輪郭補償処理、ガンマ処理、ノイズリダクション処理等の画像処理を実施する。
 記憶媒体150は、撮影された画像の画像データ等を記憶する。モニタ160は、例えば、液晶ディスプレイであり、撮影された画像、記憶媒体150に記憶された画像およびメニュー画面等を表示する。操作部170は、レリーズボタンおよびその他の各種スイッチを有し、デジタルカメラ100を動作させるために、ユーザにより操作される。
 なお、上述した実施形態では、A/D変換器ADCが列毎に設けられる例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、A/D変換器ADCは、1列に2つ設けられてもよい。この場合、A/D変換器ADCのインタリーブ動作を実現でき、例えば、2行分の画素PXのアナログ信号をデジタル信号に変換する時間を短くできる。あるいは、A/D変換器ADC1個あたりの変換動作を低速にできる。この場合にも、上述した実施形態と同様の効果を得ることができる。
 上述した実施形態では、信号処理チップ40aが画素アレイ32の奇数番目の列の画素PXの信号を受ける例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、信号処理チップ40aは、画素アレイ32の偶数番目の列の画素PXの信号を受けてもよい。この場合、例えば、信号処理チップ40bは、画素アレイ32の奇数番目の列の画素PXの信号を受ける。あるいは、例えば、画素アレイ32の画素PXがベイヤー配列の場合、緑の入射光に対応する画素PXの信号を信号処理チップ40aが受け、赤の入射光に対応する画素PXの信号および青の入射光に対応する画素PXの信号を信号処理チップ40bが受けてもよい。この場合、例えば、カラムアンプAPの入力側の接続先を行毎に切り替えるスイッチ等がアンプアレイ36に設けられる。この場合にも、上述した実施形態と同様の効果を得ることができる。
 上述した実施形態では、制御信号CNT内のクロックに基づくクロックが同期用のクロックに使用される例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、信号処理チップ40が発振器を有する構成では、同期制御信号SYNSにより転送される同期用のクロックは、信号処理チップ40aの発振器のクロックに基づくクロックでもよい。この場合、制御部42a、42bは、信号処理チップ40aの発振器のクロックに基づくクロックに同期して動作する。同様に、図5に示したA/D変換制御信号CNTADC2により転送される同期用のクロックは、信号処理チップ40aの発振器のクロックに基づくクロックでもよい。また、図6および図7に示したクロックCLK1は、信号処理チップ40aの発振器のクロックに基づくクロックでもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。
 上述した図1-図4で説明した実施形態では、マスタモードおよびスレーブモードの設定が制御部42毎に実施される例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、マスタモードおよびスレーブモードの設定は、制御部42のタイミングジェネレータTG、システムコントローラSYSCNTおよびA/D変換制御回路ADCCNT毎に実施されてもよい。この場合にも、上述した図1-図4で説明した実施形態と同様の効果を得ることができる。
 上述した図1-図4で説明した実施形態では、スレーブモードに設定された制御部42bのタイミングジェネレータTGが制御部42aのタイミングジェネレータTGから受けた駆動制御信号CNTPに基づいてタイミング制御信号を生成する例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、スレーブモードに設定された制御部42bのタイミングジェネレータTGは、マスタモードに設定されたときの処理と同様の処理により、タイミング制御信号を生成してもよい。この場合、スレーブモードに設定された制御部42bは、駆動制御信号CNTPを制御部42aから受けなくてもよい。この場合にも、制御部42bのシステムコントローラSYSCNTおよびA/D変換制御回路ADCCNTは、制御信号CNTa内のクロックに同期して動作する。したがって、この場合にも、上述した図1-図4で説明した実施形態と同様の効果を得ることができる。
 上述した図1-図4で説明した実施形態では、同期制御信号SYNSが信号処理チップ40a、40bのタイミングジェネレータTG間で転送される例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、同期制御信号SYNSは、信号処理チップ40a、40bのシステムコントローラSYSCNT間で転送されてもよいし、信号処理チップ40a、40bのA/D変換制御回路ADCCNT間で転送されてもよい。この場合にも、上述した図1-図4で説明した実施形態と同様の効果を得ることができる。
 上述した図5で説明した実施形態では、同期用のクロックがA/D変換制御信号CNTADC2により転送される例について述べた。本発明は、かかる実施形態に限定されるものではない。例えば、同期用のクロックは、図4に示した同期制御信号SYNSにより、簡易タイミングジェネレータSTGとタイミングジェネレータTG2との間で転送されてもよいし、システムコントローラSYSCNT2とシステムコントローラSYSCNT3との間で転送されてもよい。この場合にも、上述した図5で説明した実施形態と同様の効果を得ることができる。
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。
 撮像装置に利用できる。

Claims (12)

  1.  複数の画素が2次元行列状に配置された画素アレイと、前記画素アレイの画素列毎に前記画素のアナログ信号を出力する複数のデータ出力端子により構成されるデータ出力端子群とを備えるセンサチップと、
     前記データ出力端子群に電気的に接続されるデータ入力端子群と、前記データ入力端子群で受けた前記画素のアナログ信号を前記画素アレイの画素列毎にデジタル信号へ変換する複数のA/D変換器と、前記複数のA/D変換器の動作を制御する制御部とを備える信号処理チップと、
     を備えていることを特徴とする撮像装置。
  2.  請求項1記載の撮像装置において、
     前記センサチップは、前記画素アレイの画素列毎に設けられた複数の増幅器を備えていることを特徴とする撮像装置。
  3.  請求項1記載の撮像装置において、
     前記センサチップは、複数の前記データ出力端子群を備えており、
     前記データ出力端子群と同じ数の前記信号処理チップを備えていることを特徴とする撮像装置。
  4.  請求項1記載の撮像装置において、
     配線パターンが形成された基板を備えており、
     前記センサチップの前記データ出力端子群と、前記信号処理チップの前記データ入力端子群とは、前記配線パターンにより電気的に接続されることを特徴とする撮像装置。
  5.  センサチップと、複数の信号処理チップとを備え、
     前記センサチップは、
     2次元行列状に配置された複数の画素と、
     前記画素の信号を出力する複数のデータ出力端子によりそれぞれ構成され、前記信号処理チップの数と同じ数のデータ出力端子群とを備え、
     前記各信号処理チップは、
     前記データ出力端子群に電気的に接続されるデータ入力端子群と、
     前記データ入力端子群で受けた前記画素の信号を処理する処理部と、
     前記処理部の動作を制御する制御部とを備え、
     前記複数の信号処理チップの前記制御部は、互いに同期して動作することを特徴とする撮像装置。
  6.  請求項5記載の撮像装置において、
     前記複数の信号処理チップの前記制御部の少なくとも1つは、前記センサチップの駆動タイミングを制御するタイミングジェネレータを有し、前記処理部の動作を制御するとともに、前記センサチップの動作を制御することを特徴とする撮像装置。
  7.  請求項5記載の撮像装置において、
     前記処理部は、アナログ信号をデジタル信号に変換する複数のA/D変換器を備え、
     前記複数の信号処理チップの前記制御部の少なくとも1つは、前記複数のA/D変換器の動作を制御するA/D変換制御回路を備えていることを特徴とする撮像装置。
  8.  請求項7記載の撮像装置において、
     前記複数の信号処理チップの前記制御部の少なくとも1つは、前記センサチップの駆動タイミングを制御するタイミングジェネレータを有し、前記処理部の動作を制御するとともに、前記センサチップの動作を制御することを特徴とする撮像装置。
  9.  請求項8記載の撮像装置において、
     前記各信号処理チップの前記制御部は、前記A/D変換制御回路および前記タイミングジェネレータを備え、
     前記制御部は、他の制御部の動作を制御するマスタモードと、他の制御部からの制御に基づいて動作するスレーブモードとを有していることを特徴とする撮像装置。
  10.  請求項8記載の撮像装置において、
     前記信号処理チップを単体でテストするためのテスト信号を生成する簡易A/D変換制御回路および簡易タイミングジェネレータを備え、
     前記簡易A/D変換制御回路は、前記A/D変換制御回路を備えていない前記信号処理チップ内に設けられ、
     前記簡易タイミングジェネレータは、前記タイミングジェネレータを備えていない前記信号処理チップ内に設けられていることを特徴とする撮像装置。
  11.  請求項5記載の撮像装置において、
     互いに対をなす前記信号処理チップの一方の前記信号処理チップに設けられ、第1クロックを他方の前記信号処理チップに出力する第1同期クロック生成部と、
     前記他方の信号処理チップに設けられ、前記第1クロックを受ける第2同期クロック生成部とを備え、
     前記第1同期クロック生成部は、
     第2クロックと第3クロックとの位相差に基づいて生成される遅延制御信号を受け、前記第1クロックを前記遅延制御信号に基づいて遅延させ、遅延させた前記第1クロックを前記第2クロックとして出力する遅延回路を備え、
     前記第2同期クロック生成部は、
     前記第1クロックを含む複数のクロックを受け、前記互いに対をなす信号処理チップを互いに同期させて動作させるときに、前記第1クロックを前記第3クロックとして出力するスイッチ部を備え、
     前記一方の信号処理チップの前記制御部は、前記第2クロックに同期して動作し、
     前記他方の信号処理チップの前記制御部は、前記第3クロックに同期して動作することを特徴とする撮像装置。
  12.  請求項11記載の撮像装置において、
     前記第1同期クロック生成部は、
     前記第2クロックおよび前記第3クロックを受け、前記第2クロックと前記第3クロックとの位相差を検出する位相比較器と、
     前記位相比較器により検出された位相差に基づいて前記遅延制御信号を生成し、生成した前記遅延制御信号を前記遅延回路に出力する遅延制御部とをさらに備えていることを特徴とする撮像装置。
PCT/JP2011/004576 2010-08-24 2011-08-12 撮像装置 WO2012026087A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/813,515 US9210337B2 (en) 2010-08-24 2011-08-12 Imaging device
CN201180040931.9A CN103069792B (zh) 2010-08-24 2011-08-12 拍摄装置
US14/936,035 US9743028B2 (en) 2010-08-24 2015-11-09 Imaging device
US15/654,338 US10375339B2 (en) 2010-08-24 2017-07-19 Imaging device
US16/454,122 US10721428B2 (en) 2010-08-24 2019-06-27 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-186888 2010-08-24
JP2010186888A JP2012049597A (ja) 2010-08-24 2010-08-24 撮像装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/813,515 A-371-Of-International US9210337B2 (en) 2010-08-24 2011-08-12 Imaging device
US14/936,035 Continuation US9743028B2 (en) 2010-08-24 2015-11-09 Imaging device

Publications (1)

Publication Number Publication Date
WO2012026087A1 true WO2012026087A1 (ja) 2012-03-01

Family

ID=45723109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004576 WO2012026087A1 (ja) 2010-08-24 2011-08-12 撮像装置

Country Status (4)

Country Link
US (4) US9210337B2 (ja)
JP (1) JP2012049597A (ja)
CN (3) CN107509049B (ja)
WO (1) WO2012026087A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009550B2 (en) 2013-02-21 2021-05-18 Advantest Corporation Test architecture with an FPGA based test board to simulate a DUT or end-point

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603946B (zh) * 2012-07-20 2017-10-27 株式会社尼康 拍摄单元、拍摄装置、及拍摄单元的制造方法
KR102006386B1 (ko) * 2012-12-03 2019-08-02 삼성전자주식회사 분리된 버스 세그먼트들을 포함하는 이미지 센서의 데이터 전송 회로와 이를 포함하는 휴대용 전자 장치
KR101444014B1 (ko) * 2013-03-07 2014-09-23 주식회사 동부하이텍 이미지 센서의 구동 회로 및 구동 방법
US9578267B2 (en) * 2013-12-23 2017-02-21 Alexander Krymski Cameras and methods with data processing, memories, and an image sensor with multiple data ports
JP6334946B2 (ja) * 2014-02-19 2018-05-30 キヤノン株式会社 撮像装置及びその制御方法
KR102384463B1 (ko) * 2015-10-30 2022-04-07 삼성전자주식회사 디지털 전송을 이용한 데이터 전송회로와 이를 포함하는 이미지 센서
JP6919154B2 (ja) 2016-03-31 2021-08-18 ソニーグループ株式会社 固体撮像素子、撮像装置、および電子機器
JPWO2017195613A1 (ja) * 2016-05-11 2019-03-14 ソニー株式会社 固体撮像素子、および電子機器
JP6885246B2 (ja) * 2017-07-18 2021-06-09 株式会社リコー 光電変換装置、撮像装置、光電変換方法
KR102382860B1 (ko) * 2017-12-13 2022-04-06 삼성전자주식회사 이미지 센싱 시스템 및 이의 동작 방법
JP2019176334A (ja) * 2018-03-28 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、テストシステム、および、固体撮像素子の制御方法
CN109031331A (zh) * 2018-08-07 2018-12-18 上海炬佑智能科技有限公司 飞行时间测距传感芯片及传感装置、电子设备
WO2020155067A1 (zh) 2019-01-31 2020-08-06 深圳市汇顶科技股份有限公司 图像传感器及其制造方法和电子设备
WO2021066064A1 (ja) * 2019-09-30 2021-04-08 株式会社ニコン 撮像素子、及び、撮像装置
CN112882400B (zh) * 2021-01-12 2022-10-25 杭州芯格微电子有限公司 同时驱动多个i2c从设备的方法及由控制器同时驱动的芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318638A (ja) * 2001-04-24 2002-10-31 Hitachi Ltd 情報処理システム及び半導体集積回路装置
JP2004254080A (ja) * 2003-02-20 2004-09-09 Konica Minolta Holdings Inc Ccd用パルスジェネレータ
JP2007189732A (ja) * 2003-01-28 2007-07-26 Matsushita Electric Ind Co Ltd 固体撮像装置、その駆動方法及びそれを用いたカメラ
JP2008099228A (ja) * 2006-09-15 2008-04-24 Ricoh Co Ltd シリアルデータ通信システムおよび画像形成装置
JP2008235681A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 固体撮像素子、単板カラー固体撮像素子及び電子機器
JP2009038781A (ja) * 2007-08-06 2009-02-19 Sony Corp 固体撮像装置、固体撮像装置のアナログ−デジタル変換方法および撮像装置
JP2010022063A (ja) * 2004-02-23 2010-01-28 Sony Corp Ad変換方法およびad変換装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4421052A1 (de) * 1994-06-17 1995-12-21 Basf Ag Neue Thrombininhibitoren, ihre Herstellung und Verwendung
JP2000224495A (ja) * 1998-11-24 2000-08-11 Canon Inc 撮像装置及びそれを用いた撮像システム
JP2000269472A (ja) * 1999-03-15 2000-09-29 Canon Inc 撮像装置
JP2002217253A (ja) * 2001-01-15 2002-08-02 Matsushita Electric Ind Co Ltd 固体撮像素子の検査方法及び検査装置
CN100480897C (zh) * 2001-08-17 2009-04-22 微米技术有限公司 全息照相存储器系统
JP3652676B2 (ja) * 2002-09-17 2005-05-25 松下電器産業株式会社 撮像装置および画像ピックアップシステム
CN1234234C (zh) * 2002-09-30 2005-12-28 松下电器产业株式会社 固体摄像器件及使用该固体摄像器件的设备
CN100499752C (zh) 2003-01-28 2009-06-10 松下电器产业株式会社 固体摄像器件、其驱动方法及应用它的相机
JP4457613B2 (ja) * 2003-09-04 2010-04-28 ソニー株式会社 固体撮像装置
JP2005184634A (ja) * 2003-12-22 2005-07-07 Renesas Technology Corp 画像撮像装置
JP4423112B2 (ja) * 2004-06-01 2010-03-03 キヤノン株式会社 固体撮像装置および撮像システム
JP2006014316A (ja) * 2004-06-22 2006-01-12 Samsung Electronics Co Ltd サブサンプリングされたアナログ信号を平均化する改善された固体撮像素子及びその駆動方法
US7315273B2 (en) * 2004-11-08 2008-01-01 Sony Corporation Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
JP2006311051A (ja) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd 固体撮像素子用の信号処理回路および固体撮像装置
JP4792923B2 (ja) * 2005-11-07 2011-10-12 ソニー株式会社 物理量検出装置、物理量検出装置の駆動方法および撮像装置
CN101385220B (zh) * 2005-11-24 2011-08-24 欧陆汽车有限责任公司 具有改进的密封件的马达-泵-总成
JP2007288755A (ja) 2006-04-14 2007-11-01 Optopac Co Ltd カメラモジュール
JP4289377B2 (ja) * 2006-08-21 2009-07-01 ソニー株式会社 物理量検出装置及び撮像装置
JP2008103870A (ja) * 2006-10-18 2008-05-01 Matsushita Electric Ind Co Ltd 携帯無線機
JP4971834B2 (ja) * 2007-03-01 2012-07-11 キヤノン株式会社 撮像装置及び撮像システム
JP5067011B2 (ja) * 2007-05-18 2012-11-07 ソニー株式会社 固体撮像装置、撮像装置、電子機器
US7469085B1 (en) * 2007-07-12 2008-12-23 International Business Machines Corporation Method and apparatus for minimizing propagation losses in wavelength selective filters
TWI399088B (zh) * 2007-10-12 2013-06-11 Sony Corp 資料處理器,固態成像裝置,成像裝置,及電子設備
US8781053B2 (en) * 2007-12-14 2014-07-15 Conversant Intellectual Property Management Incorporated Clock reproducing and timing method in a system having a plurality of devices
JP2009158750A (ja) * 2007-12-27 2009-07-16 Fujifilm Corp ワイヤボンディング方法及び半導体装置
JP2010045082A (ja) * 2008-08-08 2010-02-25 Sharp Corp 表示素子・電子素子モジュールおよびその製造方法、電子情報機器
JP2010050771A (ja) * 2008-08-22 2010-03-04 Kyocera Corp 撮像装置モジュール
JP5510877B2 (ja) * 2008-10-07 2014-06-04 株式会社リコー センサモジュール及びセンシング装置
JP5810493B2 (ja) * 2010-09-03 2015-11-11 ソニー株式会社 半導体集積回路、電子機器、固体撮像装置、撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318638A (ja) * 2001-04-24 2002-10-31 Hitachi Ltd 情報処理システム及び半導体集積回路装置
JP2007189732A (ja) * 2003-01-28 2007-07-26 Matsushita Electric Ind Co Ltd 固体撮像装置、その駆動方法及びそれを用いたカメラ
JP2004254080A (ja) * 2003-02-20 2004-09-09 Konica Minolta Holdings Inc Ccd用パルスジェネレータ
JP2010022063A (ja) * 2004-02-23 2010-01-28 Sony Corp Ad変換方法およびad変換装置
JP2008099228A (ja) * 2006-09-15 2008-04-24 Ricoh Co Ltd シリアルデータ通信システムおよび画像形成装置
JP2008235681A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 固体撮像素子、単板カラー固体撮像素子及び電子機器
JP2009038781A (ja) * 2007-08-06 2009-02-19 Sony Corp 固体撮像装置、固体撮像装置のアナログ−デジタル変換方法および撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009550B2 (en) 2013-02-21 2021-05-18 Advantest Corporation Test architecture with an FPGA based test board to simulate a DUT or end-point

Also Published As

Publication number Publication date
CN103069792A (zh) 2013-04-24
CN107257446B (zh) 2020-06-02
JP2012049597A (ja) 2012-03-08
CN107257446A (zh) 2017-10-17
US9743028B2 (en) 2017-08-22
US10375339B2 (en) 2019-08-06
CN103069792B (zh) 2017-08-29
CN107509049A (zh) 2017-12-22
US20160065876A1 (en) 2016-03-03
US20170318251A1 (en) 2017-11-02
US20130128086A1 (en) 2013-05-23
US20190320131A1 (en) 2019-10-17
CN107509049B (zh) 2020-08-11
US9210337B2 (en) 2015-12-08
US10721428B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
US10721428B2 (en) Imaging device
US10057529B2 (en) Photoelectric conversion device
JP5546257B2 (ja) 固体撮像装置
JP6042052B2 (ja) イメージセンサーモジュール、その製造方法、及びそれを含むイメージ処理システム
JP2001298748A (ja) 固体撮像装置およびその駆動方法並びにカメラシステム
US20140240565A1 (en) Solid-state imaging device and electronic apparatus
JP6457738B2 (ja) 固体撮像装置および撮像装置
US9621830B2 (en) Image sensor, image capturing apparatus, and cellular phone
US9571771B2 (en) Data transfer circuit, imaging device and imaging apparatus
JP2015154413A (ja) 情報処理装置、情報処理方法、情報処理システム、および撮像装置
JP6037878B2 (ja) 撮像装置
US8792036B2 (en) Image sensor and image capture apparatus
US9143705B2 (en) Signal providing apparatus, and analog-to-digital converting apparatus and image sensor using the same
US9094626B2 (en) Solid-state imaging device, method for controlling solid-state imaging device, and imaging device
US9438838B2 (en) Imaging element and imaging apparatus
KR102505432B1 (ko) 이미지 센서 모듈 및 듀얼 카메라 모듈
JP2005020039A (ja) 撮像素子
JP5402249B2 (ja) 固体撮像素子及び撮像装置
KR20110068796A (ko) 이미지 센서 모듈, 이의 제조 방법, 및 이를 포함하는 이미지 처리 시스템
KR20170126226A (ko) 이미지 센서
US20230179890A1 (en) Photoelectric conversion apparatus and equipment
US20240080589A1 (en) Image sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040931.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13813515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819563

Country of ref document: EP

Kind code of ref document: A1