JP2009283552A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2009283552A
JP2009283552A JP2008131924A JP2008131924A JP2009283552A JP 2009283552 A JP2009283552 A JP 2009283552A JP 2008131924 A JP2008131924 A JP 2008131924A JP 2008131924 A JP2008131924 A JP 2008131924A JP 2009283552 A JP2009283552 A JP 2009283552A
Authority
JP
Japan
Prior art keywords
transistor
gate insulating
insulating film
pixel
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131924A
Other languages
English (en)
Other versions
JP2009283552A5 (ja
Inventor
Ryohei Miyagawa
良平 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008131924A priority Critical patent/JP2009283552A/ja
Priority to US12/427,952 priority patent/US8009217B2/en
Publication of JP2009283552A publication Critical patent/JP2009283552A/ja
Publication of JP2009283552A5 publication Critical patent/JP2009283552A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Abstract

【課題】増幅トランジスタの1/fノイズを抑圧できると共に、飽和電荷量を大きく取れる固体撮像装置を提供する。
【解決手段】画素内の読み出しトランジスタ12の第1のゲート絶縁膜22を、画素内の増幅トランジスタ14の第2のゲート絶縁膜23よりも厚く形成し、かつ、画素内の増幅トランジスタ14の第2のゲート絶縁膜23を、画素外の周辺の微細n型トランジスタ17及び微細p型トランジスタ18の第3のゲート絶縁膜24よりも厚く形成する。
【選択図】図5

Description

本発明は、固体撮像素子に関し、特に、画素内に増幅トランジスタを有するMOS型の固体撮像素子に関する。
近年、携帯電話、デジタルスチルカメラ、及びムービーカメラ等の画像情報取得手段としてのMOS(Metal−Oxide−Semiconductor)型の固体撮像装置への要求は、高画質を保持しながら、画素ピッチ縮小による高解像度、低消費電力、低コストを実現することにある。画素微細化に伴ってMOS型の固体撮像装置の画素数が多くなり、この大量の画素情報を高速に読み出すことや高速に画像処理することが求められている。
これを実現するために、画素を配列した画素領域外に、高速アナログ−デジタル(AD)変換回路やAD変換によって得られた画像信号を処理するDSP(Digital Signal Processor)回路が搭載された、高機能なMOS型の固体撮像装置への要求が高まっている。このため、画素領域以外で規模の大きな回路ブロックが必要になってきている。
また、画素の微細化に伴い、画素に入射する光量が画素面積に比例して減少するために1画素当たりの感度が低くなり、信号量/ノイズ量の比であるS/N比が低下する。このS/N比を向上するために、ノイズ量を低減することが求められる。画素内で発生するノイズでは、増幅トランジスタで発生する1/fノイズが課題であり、画素微細化に伴い、増幅トランジスタの1/fノイズの低減が求められている。
また、画素の微細化に伴って単位画素内のフォトダイオードの面積が小さくなるため、画素で取り扱える最大電荷量が減少する傾向にある。このために、フォトダイオードのn型拡散層の濃度を大きくするが、濃度が大きくなるとフォトダイオードの電位が大きくなり、フォトダイオードに蓄積された信号電荷の読み出し不良が起こり、残像が発生する。この残像を防止するためにフォトダイオードのn型拡散層の濃度を増加すると共に、読み出しゲートに印加する電圧を昇圧して高くする工夫が行われている。
図1に、一般的なMOS型の固体撮像装置のレイアウト構成図を示す。
画素領域8は、画素の2次元的な配列からなり、画素領域8の画素は、垂直走査回路1及び水平走査回路3によって駆動される。画素領域8では、光電変換され蓄積された信号電荷が画素内の増幅トランジスタによって増幅されて、画素信号としてコラム回路2に読み出される。コラム回路2は、画素増幅トランジスタのしきい値のバラツキによる画素信号バラツキを低減するノイズキャンセル機能と、ノイズキャンセルされた信号を保持するアナログメモリ機能とがある。コラム回路2に保持されたアナログ信号は、水平走査回路3により走査されて出力アンプ回路5に送られる。出力アンプ回路5は、アナログ信号を増幅してセンサから出力信号を出力する。垂直走査回路1、コラム回路2、水平走査回路3、及び出力アンプ回路5を制御するタイミングパルスは、タイミング発生回路4で発生される。I/O回路7は、センサ全体を制御するパルス信号を入力するバッファ機能と、この固体撮像装置の出力信号を入力するAFE素子等に出力信号のサンプリングタイミングを供給する信号等の出力バッファ機能とを持つ。
図2は、図1の画素領域8、コラム回路2、及び水平走査回路3の詳細な回路構成を示す図である。図3は、図2における画素の駆動を説明するためのタイミング波形を示す図である。
ある行に含まれる全画素は、図3のリセット期間において、読み出し制御線110及びリセット制御線120の両方を“H”電位にすることにより、フォトダイオード11及びフローティングディフュージョン16がリセットされる。そして、蓄積時間が経過した後、信号電荷の読み出し動作が行われる。読み出し期間中は、行選択信号線が“H”にセットされ、まず期間前半にリセット制御線120が“H”にセットされてフローティングディフュージョン16のリセットが行われ、リセット制御線120が“L”電位にセットされる。
この状態のフローティングディフュージョン16のリセット電位は、増幅トランジスタ14で増幅され垂直共通信号線270を介して、コラム回路2に送られる。期間後半には読み出し制御線110が“H”電位にセットされ、フォトダイオード11の信号電荷がフローティングディフュージョン16に転送される。この後、読み出し制御線110は“L”電位に戻る。
この信号電荷が読み出された状態のフローティングディフュージョン16の読み出し電位は、増幅トランジスタ14で増幅され垂直共通信号線270を介して、コラム回路2に送られる。コラム回路2では、このリセット電位信号と読み出し電位信号との差分を取り、増幅トランジスタ14のしきい値バラツキで発生するノイズ成分を除去する。従って、完全に暗状態であればフローティングディフュージョン16に読み出される電荷は無く、フローティングディフュージョン16のリセット電位と読み出し電位とは完全に一致することになる。
増幅トランジスタ14がノイズ成分を持たなければ、コラム回路2に送られるリセット電位信号と読み出し電位信号との差分はゼロとなる。ところが、MOS型半導体プロセスの微細化が進み、微細なMOS型トランジスタでは1/fノイズが発生していることが一般的に知られている。増幅トランジスタ14では、この1/fノイズにより、完全に暗状態であっても増幅トランジスタ14で増幅されてコラム回路2に送られるリセット電位信号と読み出し電位信号とはノイズ分だけ差が発生する。従って、コラム回路2で差分を取ってもノイズ成分として残り画質の劣化を引き起こす。
このMOSトランジスタの1/fノイズは、特許文献1にあるようにゲート酸化膜を薄くすることで低減出来ることが知られている。ところが、単純に画素内の全てのトランジスタのゲート酸化膜を薄くすると、ゲート酸化膜の薄膜化に伴ってゲート酸化膜の耐圧が低減するために、例えば読み出しトランジスタ12の読み出し時のゲート電圧を下げる必要がある。読み出し時のゲート電圧を下げると読み出しが不十分になり、フォトダイオード11から読み出し可能な最大電荷量(以下、飽和電荷量と記述する)が低下しダイナミックレンジが減少したり、又は読み出し不十分な為に残像と呼ばれるノイズが発生して画質劣化を引き起こす。
画素の微細化に伴うフォトダイオード面積減少による飽和電荷量減少を対策するために、むしろ読み出しトランジスタ12のゲート電圧を高くして飽和電荷量を増やすことが行われており、画素内のトランジスタのゲート酸化膜を単純に薄くすることは出来ない。このため、特許文献1では画素内の読み出しトランジスタ12のゲート酸化膜を厚くし、増幅トランジスタ14のゲート酸化膜を薄くするという工夫を行っている。
上記のように、画素領域8内のトランジスタで2種類の膜厚のゲート酸化膜を用いる固体撮像装置では、従来は周辺の回路にも2種類のゲート酸化膜のトランジスタを用いていた。具体的には、画素信号を増幅し、ノイズキャンセルを行うコラム回路2や出力アンプ回路5等のアナログ回路では、厚いゲート酸化膜(例えば、膜厚9nmでゲート長が0.4um又はそれ以上)のトランジスタを用いて、3.3Vの電源電圧で駆動される。一方、タイミング発生回路4等の単純なロジック回路には、薄いゲート酸化膜(例えば、膜厚5nmでゲート長が0.25μm)のトランジスタを用いて、2.5Vの電源電圧で駆動される。
アナログ回路では、画素信号の増幅等が行われるために動作のダイナミックレンジを大きく取るために高い電源電圧が必要で、一方ロジック回路では低消費電力を図るため電源電圧を低くするためである。ところが、画素の微細化に伴って固体撮像装置の多画素化が進むと、同一フレーム期間内により多画素の信号を読み出すことが要請されるため、読み出し周波数が大きくなり消費電力が大きくなるという問題がある。
この問題を対策するために、画素内の増幅トランジスタ14のゲート酸化膜をより薄くして、例えば2〜3nmのゲート酸化膜を使用すると、画素領域8外の周辺ロジック回路でこのゲート酸化膜でゲート長の短い微細なトランジスタを用いることができ、1.2〜1.5V電源電圧駆動が可能となり消費電力が低減できる。
逆に、この薄膜のゲート酸化膜を画素内の増幅トランジスタ14に適用すると、電源電圧が1.2〜1.5Vとなりダイナミックレンジが減り画素信号の振幅が小さくなるという問題が起こる。このため、画素内のダイナミックレンジを維持したまま、周辺回路の低消費電力化を実現することは困難である。
特開2006−253316号公報
上述した通り、従来の固体撮像装置では、画素の微細化に伴う画素内増幅トランジスタの1/fノイズの増加と飽和電荷量の減少とを同時に対策するために、画素内で2種類の膜厚のゲート酸化膜を用い、読み出しトランジスタのゲート酸化膜を厚くし、増幅トランジスタのゲート酸化膜を薄くしている。
しかしながら、単純にこの2種類のゲート酸化膜を画素領域以外の周辺回路のトランジスタとして採用すると、周辺回路のロジック回路の電源電圧を小さくすることに限界がある。このため、低消費電力化を図ることが困難となり、また微細なトランジスタを採用することができない。従って、周辺ロジック回路の高速動作が困難となると共に、周辺回路のトランジスタサイズを小さくできないためチップサイズが大きくなる。
それ故に、本発明の目的は、増幅トランジスタの1/fノイズを抑圧できると共に、飽和電荷量を大きく取れる固体撮像装置を提供することである。また同時に、本発明の目的は、周辺ロジック回路の低消費電力化を図り、周辺ロジック回路の面積を低減させた固体撮像装置を提供することである。
本発明は、画素をマトリクス上に配した画素領域と、画素を駆動して出力信号を取り出す周辺回路部とを備えた、MOS型の固体撮像素子に向けられている。そして、上記目的を達成するために、本発明の固体撮像素子は、少なくとも1つのフォトダイオードと、フォトダイオードに蓄積された電荷を読み出す読み出しトランジスタと、読み出された電荷を電圧に変換する不純物拡散層からなるフローティングディフュージョンと、フローティングディフュージョンを所定の電圧にリセットするリセットトランジスタと、フローティングディフュージョンの電位をゲート入力とする増幅トランジスタとを、少なくとも画素領域の構成要素とする。さらに、画素内の読み出しトランジスタが用いる第1のゲート絶縁膜は、画素内の増幅トランジスタが用いる第2のゲート絶縁膜よりも厚く、増幅トランジスタが用いる第2のゲート絶縁膜は、周辺回路部の一部のトランジスタが用いる第3のゲート絶縁膜よりも厚くする。
好ましくは、周辺回路のアナログ回路部分のトランジスタに、第1のゲート絶縁膜又は第2のゲート絶縁膜を用いる。このトランジスタは、アナログ回路部分のうちのコラムアンプ部のトランジスタが望ましい。また、アナログ回路部分のうちのコラム回路内に配置されたMOSキャパシタに、第1のゲート絶縁膜又は第2のゲート絶縁膜を用いてもよい。また、周辺回路のI/O部分の回路内のトランジスタに、第1のゲート絶縁膜又は第2のゲート絶縁膜を用いてもよい。さらには、画素内に増幅トランジスタと直列するように行選択トランジスタが配置されている場合には、増幅トランジスタと行選択トランジスタとに、第2のゲート絶縁膜を用いることができる。
上記本発明によれば、増幅トランジスタの1/fノイズを低減できる。また、同時に読み出しトランジスタの読み出し時のゲート電圧に大きな電圧を用いて飽和電荷量を維持することができる。さらには、同時に画素領域以外の主にデジタル回路部分を低電圧で駆動して消費電力を低減できる。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る固体撮像装置のレイアウト構成を示す平面図である。この第1の実施形態に係る固体撮像装置のレイアウト構成は、上述した一般的な固体撮像装置と同じである。また、画素領域8、コラム回路2、及び水平走査回路3の詳細な構成を示す回路図は、図2と同様である。
第1の実施形態では、タイミング発生回路4、垂直走査回路1の一部、水平走査回路3、I/O回路7の一部のトランジスタのゲート絶縁膜厚は、例えば2〜3nmに設定される。このゲート絶縁膜を駆動する電源電圧は、1.2V〜1.8Vである。最も低電圧で低消費電力が図れる1.2V系とすると、ゲート絶縁膜厚は2.1nmとなる。また、画素内の増幅トランジスタ14のゲート絶縁膜厚は、例えば4.5〜7nmに設定される。このゲート絶縁膜厚は、画素の駆動電源電圧に応じて、耐圧が保持される信頼性上問題ない範囲で最小の値を選択する。ゲート絶縁膜が薄いほどトランジスタの1/fノイズが低減されるからである。画素内の読み出しトランジスタ12のゲート絶縁膜厚は、この増幅トランジスタ14よりも厚く例えば7.5nm〜9.5nmに設定される。
この構成により、読み出しトランジスタ12には増幅トランジスタ14よりも大きな電圧を印加することが可能となり、より多くの電荷をフォトダイオード11より転送することが可能となる。このため、飽和電荷量を大きくすることができ、ダイナミックレンジを大きくすることが可能となる。
図4は、第1の実施形態に係る固体撮像装置の単位画素の概略レイアウトを示す平面図である。図4では、活性領域、素子分離領域、及びポリシリコンゲート領域を記述している。図5(a)は、図4の画素レイアウトにおけるA−A’部分の概略断面図である。この断面図には、フローティングディフュージョン16、フォトダイオード11、読み出しトランジスタ12、増幅トランジスタ14、及び行選択トランジスタ15の断面が描かれている。図5(b)は、タイミング発生回路4、垂直走査回路1、水平走査回路3、及びI/O回路7の中で使用されている微細トランジスタの断面概略図である。この図5(b)には、微細n型トランジスタ17及び微細p型トランジスタ18の断面が描かれている。
以下、この図4及び図5を用いて、第1の実施形態に係る固体撮像装置の構造を説明する。
トランジスタやフォトダイオード等の構成要素は、活性領域内に形成される。この活性領域は、STI(Shallow Trench Isolation)からなる素子分離領域21によって定義される。図5(a)からわかるように、単位画素にはSi基板20内にpウェル領域が形成されており、その中にフォトダイオード及びトランジスタが形成される。フォトダイオード11は、n型領域であり、その上部にはp型領域を設けてSi表面で発生する暗電流を低減している。トランジスタは、Si基板20の表面の活性領域上にゲート絶縁膜を形成して、その上にポリシリコンからなるゲート電極が形成される。その後、このゲート電極に自己整合的に形成されたn型又はp型の拡散領域からなるソース及びドレインが形成される。ただし、読み出しトランジスタ12のソースに相当するフォトダイオード11のn型領域であるが、このn型領域は読み出しトランジスタ12のソースと光生成電子の収集の2つの機能を持つため、ゲート電極に自己整合的に形成されない場合が多い。
図5(b)では、pウェル領域内に微細n型トランジスタ17とnウェル内に微細p型トランジスタ18とが形成されている。微細n型トランジスタ17及び微細p型トランジスタ18の構造は、ゲート絶縁膜が形成された上に、ポリシリコンからなるそれぞれゲート電極が形成されている。このゲート電極に対して、自己整合的に形成されたn型及びp型の拡散領域からなるソース及びドレインが形成されている。
本第1の実施形態の特徴は、図5の断面図からわかるように、周辺回路で用いられる微細n型トランジスタ17及び微細p型トランジスタ18のゲート絶縁膜が、画素内のトランジスタ12、14、及び15のゲート絶縁膜よりも薄く、かつ、画素内においては読み出しトランジスタ12のゲート絶縁膜が増幅トランジスタ14のゲート絶縁膜より厚い。すなわち、読み出しトランジスタ12のゲート絶縁膜(第1のゲート絶縁膜22)は、増幅トランジスタ14のゲート絶縁膜(第2のゲート絶縁膜23)よりも厚く、さらに第2のゲート絶縁膜23は、微細n型トランジスタ17及び微細p型トランジスタ18のゲート絶縁膜(第3のゲート絶縁膜24)よりも厚く構成されている。
図6は、第1の実施形態に係る固体撮像装置における上記第1〜第3のゲート絶縁膜22〜24の製造工程を説明する断面図である。この図6では、図5(a)の画素の断面構造と、図5(b)の周辺回路で用いられる微細トランジスタの断面構造とを、並列して示している。なお、拡散領域等の熱酸化工程の説明に関係しない構造は省略している。
まず、Si基板20に素子分離領域21が形成され後、素子分離領域21で定義される活性領域に、RTP(Rapid Thermal Process)等を用いた第1の熱酸化によってゲート絶縁膜が形成される(図6(a))。この後、フォトリソグラフィープロセスを用いて第2のゲート絶縁膜領域26を開口するフォトレジスト28が形成される(図6(b))。この状態でフッ酸の希釈液を用いてウェットエッチングを行い、第2のゲート絶縁膜領域26の熱酸化膜を除去する。フォトレジスト28の開口する部分は、図4にフォトレジスト開口領域30として示している。このフォトレジスト開口領域30は、増幅トランジスタ14の第2のゲート絶縁膜を形成する領域を含み、他のトランジスタ、すなわち行選択トランジスタ15、リセットトランジスタ13、及び読み出しトランジスタ12のゲート絶縁膜を含まず、かつフォトダイオード11の領域を含まないように配置されている。この配置により、増幅トランジスタ14の第2のゲート絶縁膜領域の熱酸化膜だけをウェットエッチングを用いて除去することができる。
次に、フォトレジスト28は剥離され、RTP等を用いて第2の熱酸化が行われる(図6(c))。次に、フォトリソグラフィープロセスを用いて第3のゲート絶縁膜領域27を開口するフォトレジスト29が形成される(図6(d))。この状態でフッ酸の希釈液を用いてウェットエッチングを行い、第3のゲート絶縁膜領域27の熱酸化膜を除去する。その後、フォトレジスト29は剥離され、RTP等を用いて第3の熱酸化が行われる(図6(e))。
この結果、第1のゲート絶縁膜領域25には、第1〜第3の熱酸化によって酸化膜(絶縁膜)が形成され、第2のゲート絶縁膜領域26には、第2及び第3の熱酸化によって酸化膜(絶縁膜)が形成され、第3のゲート絶縁膜領域27には、第3の熱酸化によって酸化膜(絶縁膜)が形成される。従って、第1のゲート絶縁膜領域25の熱酸化膜は、第2ゲート絶縁膜領域26の熱酸化膜よりも厚く、第2のゲート絶縁膜領域26の熱酸化膜は、第3のゲート絶縁膜領域27の熱酸化膜よりも厚くなる。
この第1〜第3の熱酸化のプロセス条件、例えば熱酸化に用いるガスの酸素濃度、酸化温度、及び酸化時間等を制御することにより、第1〜第3のゲート絶縁膜領域25〜27の酸化膜厚を所望の膜厚に制御することができる。通常、第3の熱酸化の後に熱酸化膜表面の窒化をRTPプロセス等で行う。これは、熱酸化膜表面を窒化することにより、微細p型トランジスタ18のゲート材料であるボロンドープポリシリコンからのB原子のSi基板20への拡散を防止することができるためである。
その後、ポリシリコンが成膜され、フォトリソグラフィープロセスとエッチングプロセスとを用いて所望の形状に加工され、ポリシリコンからなるゲート電極31が形成される(図6(e))。
以上の工程により、トランジスタのゲート絶縁膜として膜厚の異なる第1〜第3のゲート絶縁膜22〜24が形成され、画素内の読み出しトランジスタ12の第1のゲート絶縁膜22が一番厚く、画素内の増幅トランジスタ14の第2のゲート絶縁膜23が次ぎに厚く、画素領域外の周辺回路で用いられる微細n型トランジスタ17及び微細p型トランジスタ18の第3のゲート絶縁膜24が一番薄くなる。
読み出しトランジスタ12のゲート酸化膜である第1のゲート絶縁膜22は、例えば7.5nm〜9.5nmに設定され、増幅トランジスタ14のゲート酸化膜である第2のゲート絶縁膜23は、例えば4.5nm〜6.5nmに設定される。このゲート絶縁膜厚では、画素内のVDD電源は3.3Vで駆動でき、読み出しトランジスタ12にはフォトダイオード11の信号電荷を転送するときに3.5〜4.5Vの電圧を印加できる。第1のゲート絶縁膜22の膜厚を大きく取れば、その分だけ読み出しトランジスタ12に大きな電圧をかけることができ、その分だけフォトダイオード11から残像なしで多くの信号電荷を転送が可能となる。
微細n型トランジスタ17及び微細p型トランジスタ18のゲート酸化膜である第3のゲート絶縁膜24は、例えば2.1nmに設定される。このゲート絶縁膜厚では、ゲート長として110nmのトランジスタが実現でき、VDDとして1.2Vを用いることができる。このことにより、1.2Vと低い電源電圧で高速な動作が可能となる。また、ゲート長が小さく面積の小さな微細トランジスタを用いることで、画素領域外の周辺回路ブロックの面積を小さくすることができ、チップのコストダウンを図ることが可能となる。
なお、図1に示した固体撮像装置の回路ブロックの構成で、画素領域8以外の周辺回路のトランジスタは、低い電源電圧で駆動する微細n型トランジスタ17及び微細p型トランジスタ18のみで構成されるわけではない。例えば、I/O回路7は、I/Oの入出力の電圧を周辺ICの入出力仕様に合わせる必要があり、通常2.5V〜3.3Vである。このため、I/O回路7の大部分の電源電圧には2.5V〜3.3Vが用いられ、その回路部分のトランジスタとしてはゲート絶縁膜の小さい微細なトランジスタが用いられることはなく、画素内で用いる第1のゲート絶縁膜22及び第2のゲート絶縁膜23のいずれかのトランジスタを用いることになる。
I/O回路7以外にもアナログ回路を含むコラム回路2及び出力アンプ5等は、画素信号を増幅する機能を持つ部分では3.3V程度の電源電圧が必要であり、この部分では第1のゲート絶縁膜22又は第2のゲート絶縁膜23が用いられる。特に、コラム回路2の中で用いる容量の部分は注意が必要である。
図2において、クランプ容量200、コラムアンプ210、コラムアンプ帰還容量220、及びコラムアンプリセットトランジスタ230を用いて、画素からの信号が増幅される。画素信号を増幅することによりS/N比(画素信号とノイズの比)を大きく取ることができるため、高感度の固体撮像装置にとってコラムアンプは必須の技術である。コラムアンプ回路のゲインは、コラムアンプ帰還容量220の容量値をクランプ容量200の容量値で割った値となる。従って、このコラムアンプを用いた増幅ゲインは、クランプ容量200及びコラムアンプ帰還容量220がばらつくとゲインがばらつくことになり、画像としては縦線の画像不良となる。このため、クランプ容量200及びサンプル容量250を大きいサイズに設計してバラツキを抑制する必要がある。
また、コラムアンプ210で増幅された画素信号は、列CDS回路240(ブロックで表し回路の詳細は省略する)でノイズキャンセルされる。すなわち、コラムアンプ210で発生するオフセット電圧のバラツキをキャンセルする回路であり、この列CDS回路240においてもMOS容量が用いられる。このMOS容量のバラツキもまた、ノイズキャンセルの精度に影響するため、MOS容量のサイズを大きくすることが望ましい。
また、列CDS回路240でノイズキャンセルされた信号は、サンプル容量250に蓄積され、列選択トランジスタ260及び水平共通信号線300を介して出力アンプ330に送られる。このサンプル容量250に蓄積された電荷は、出力アンプ330に送られる際に水平共通信号線300の寄生容量と分け合って、電圧としては低下する。従って、サンプル容量250のサイズが大きいほど、サンプル容量250に蓄積される電荷は大きくなるため、出力アンプ5に送る際に電圧の低下を抑圧できる。よって、以降に乗ってくるノイズ、例えば出力アンプ5で発生するノイズ等の影響を受けにくくなる。従って、サンプル容量250を大きいサイズに設計することが望ましい。
以上のように、このクランプ容量200、コラムアンプ帰還容量220、列CDS回路240内の容量、及びサンプル容量250は、MOS容量で形成され、コラム回路2で発生するノイズを抑圧するためには大きな容量のMOS容量が必要である。コラム回路2内のMOS容量は、チップサイズに影響が大きく、このMOS容量のゲート絶縁膜は、なるべく薄くしてMOS容量の面積を小さくすることが望ましい。
このMOS容量は、画像信号を増幅するアナログ回路部分であるため、薄い第3のゲート絶縁膜24を用いることはできず、第1のゲート絶縁膜22又は第2のゲート絶縁膜23を用いることになる。特に、MOS容量のサイズを小さくするために第2のゲート絶縁膜23を用いることが望ましい。このように、増幅トランジスタ14で用いられる第2のゲート絶縁膜をアナログ回路で用いられるMOS容量に適用することで、チップサイズの低減を図ることができる。
(第2の実施形態)
図7は、第2の実施形態に係る固体撮像装置の単位画素の概略レイアウトを示す平面図である。この第2の実施形態に係る固体撮像装置のレイアウトは、上記第1の実施形態に係る固体撮像装置とほぼ同じであるが、フォトレジスト開口領域30が増幅トランジスタ14と行選択トランジスタ15との活性領域を覆っていることが異なる。
増幅トランジスタ14に加えて行選択トランジスタ15のゲート酸化膜は、第2のゲート絶縁膜22となる。行選択トランジスタ15と増幅トランジスタ14とは、回路的に直列になっており、増幅トランジスタ14のソースと行選択トランジスタ15のドレインとは、同じn型拡散領域であり、この部分にはコンタクトが形成されることがない。画素微細化のためには、この増幅トランジスタ14と行選択トランジスタ15が隣接するゲート電極との距離を最小に設計することが有利である。
このように、増幅トランジスタ14と行選択トランジスタ15が隣接するゲート電極との距間が小さい場合は、第1の実施形態のように増幅トランジスタ14のゲート絶縁膜のみを第2のゲート絶縁膜とすると、フォトレジスト開口領域30のフォトリソグラフィー工程の合わせマージンや形状再現性等の加工上の問題がある。よって、この第2の実施形態のように、増幅トランジスタ14に加えて行選択トランジスタ15のゲート酸化膜を第2のゲート絶縁膜とすることで、同様の効果が得られる。
但し、行選択トランジスタ15のゲート絶縁膜が薄くなるために行選択トランジスタ15に印加できる最大電圧は低下するため、画素動作上の制限は加わる可能性がある。例えば、行選択トランジスタ15のゲート電圧は、リセットトランジスタ13や読み出しトランジスタ12より低くする必要が出てくる場合がある。
(第3の実施形態)
図8は、本発明の第3の実施形態に係る固体撮像装置のレイアウト構成を示す平面図である。第3の実施形態に係る固体撮像装置は、画素領域8以外の周辺回路としてAD変換回路及び信号処理回路を搭載したものである。よって、第3の実施形態では、周辺回路規模が大きくなっている。
コラム回路2に、並列に画素信号をAD変換するコラムAD変換回路2aと、その結果を保持するデジタルメモリ回路2bとが、配置されている。そして、このAD変換された画素信号を信号処理する信号処理回路9が配置されている。コラムAD変換回路2a及びデジタルメモリ回路2bは、第3のゲート絶縁膜24を持つ微細n型トランジスタ17及び微細p型トランジスタ18を用いている。この部分は、微細トランジスタを採用することでブロック面積の縮小を図っている。また、微細トランジスタを用いることで、電源電圧は第1の実施形態と同様に低いで電源電圧(例えば1.2V)を用いることができ、かつ、高速の処理を行うことができる。
この高速処理により、高フレームレート等の高機能を実現できる。この第3の実施形態でも、第1の実施形態と同様に、画素内の読み出しトランジスタ12には第1のゲート絶縁膜が用いられ、増幅トランジスタ14には第2のゲート絶縁膜が用いられることで、増幅トランジスタ14の1/fノイズを低減すると共に、高い飽和信号電荷量を実現することができる。
以上のように、本発明の各実施形態に係る固体撮像装置によれば、画素内の読み出しトランジスタ12のゲート絶縁膜、画素内の増幅トランジスタ14のゲート絶縁膜、画素外の周辺の微細n型トランジスタ17及び微細p型トランジスタ18のゲート絶縁膜の順に厚さが薄くなる、第1〜第3のゲート絶縁膜22〜24を用いることで、増幅トランジスタ14の1/fノイズを抑圧できる。また、飽和電荷量を大きく取ることで、S/N比の大きくすることができると共に、画素領域外の回路で微細トランジスタを採用することが可能となる。さらに、チップサイズの縮小によるコストダウン、低電圧駆動による低消費電力、及び高速動作による高フレームレート等の高機能を実現することができる。
本発明は、携帯電話、デジタルスチルカメラ、及びムービーカメラ等の画像機器に利用可能であり、特に大量の画素情報を高速に処理したい場合等に適している。
本発明の第1の実施形態に係る固体撮像装置及び従来の固体撮像装置に共通するレイアウト構成を示す図 本発明の第1の実施形態に係る固体撮像装置及び従来の固体撮像装置に共通する回路構成を示す図 図2における画素の駆動を説明するためのタイミング波形を示す図 第1の実施形態に係る固体撮像装置の単位画素の概略レイアウトを示す図 図4の画素レイアウトにおける概略断面図 本発明の第1の実施形態に係る固体撮像装置におけるゲート絶縁膜の製造工程を説明する図 本発明の第2の実施形態に係る固体撮像装置の単位画素の概略レイアウトを示す図 本発明の第3の実施形態に係る固体撮像装置のレイアウト構成を示す図
符号の説明
1 垂直走査回路
2 コラム回路
2a コラムAD変換回路
2b デジタルメモリ回路
3 水平走査回路
4 タイミング発生回路
5 出力アンプ回路
7 I/O回路
8 画素領域
9 信号処理回路
11 フォトダイオード
12 読み出しトランジスタ
13 リセットトランジスタ
14 増幅トランジスタ
15 行選択トランジスタ
16 フローティングディフュージョン
17 微細n型トランジスタ
18 微細p型トランジスタ
20 Si基板
21 素子分離領域
22〜24 ゲート絶縁膜
25〜27 ゲート絶縁膜領域
28〜29 フォトレジスト
30 フォトレジスト開口領域
110 読み出し制御線
120 リセット制御線
200 クランプ容量
210 コラムアンプ
220 コラムアンプ帰還容量
230 コラムアンプリセットトランジスタ
240 列CDS回路
250 サンプル容量
260 列選択トランジスタ
270 垂直共通信号線

Claims (6)

  1. 画素をマトリクス上に配した画素領域と、画素を駆動して出力信号を取り出す周辺回路部とを備えた、MOS型の固体撮像素子であって、
    前記画素領域は、
    少なくとも1つのフォトダイオードと、
    前記フォトダイオードに蓄積された電荷を読み出す読み出しトランジスタと、
    読み出された前記電荷を電圧に変換する不純物拡散層からなるフローティングディフュージョンと、
    前記フローティングディフュージョンを所定の電圧にリセットするリセットトランジスタと、
    前記フローティングディフュージョンの電位をゲート入力とする増幅トランジスタとを、少なくとも構成要素とし、
    前記画素内の前記読み出しトランジスタが用いる第1のゲート絶縁膜は、前記画素内の前記増幅トランジスタが用いる第2のゲート絶縁膜よりも厚く、
    前記増幅トランジスタが用いる第2のゲート絶縁膜は、前記周辺回路部の一部のトランジスタが用いる第3のゲート絶縁膜よりも厚いことを特徴とする、固体撮像素子。
  2. 前記周辺回路部のアナログ回路部分のトランジスタに、前記第1のゲート絶縁膜又は前記第2のゲート絶縁膜を用いることを特徴とする、請求項1に記載の固体撮像素子。
  3. 前記アナログ回路部のうちのコラムアンプ部のトランジスタに、前記第1のゲート絶縁膜又は前記第2のゲート絶縁膜を用いることを特徴とする、請求項2に記載の固体撮像素子。
  4. 前記アナログ回路部のうちのコラム回路内に配置されたMOSキャパシタに、前記第1のゲート絶縁膜又は前記第2のゲート絶縁膜を用いることを特徴とする、請求項3に記載の固体撮像素子。
  5. 前記周辺回路部のI/O部分の回路内のトランジスタに、前記第1のゲート絶縁膜又は前記第2のゲート絶縁膜を用いることを特徴とする、請求項1に記載の固体撮像素子。
  6. 前記画素内に前記増幅トランジスタと直列するように行選択トランジスタが配置され、
    前記増幅トランジスタと前記行選択トランジスタとに、前記第2のゲート絶縁膜を用いることを特徴とする、請求項1に記載の固体撮像素子。
JP2008131924A 2008-05-20 2008-05-20 固体撮像素子 Pending JP2009283552A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008131924A JP2009283552A (ja) 2008-05-20 2008-05-20 固体撮像素子
US12/427,952 US8009217B2 (en) 2008-05-20 2009-04-22 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131924A JP2009283552A (ja) 2008-05-20 2008-05-20 固体撮像素子

Publications (2)

Publication Number Publication Date
JP2009283552A true JP2009283552A (ja) 2009-12-03
JP2009283552A5 JP2009283552A5 (ja) 2011-03-31

Family

ID=41341820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131924A Pending JP2009283552A (ja) 2008-05-20 2008-05-20 固体撮像素子

Country Status (2)

Country Link
US (1) US8009217B2 (ja)
JP (1) JP2009283552A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084408A1 (ja) * 2011-12-09 2013-06-13 パナソニック株式会社 固体撮像装置及びそれを備える撮像装置
KR101358554B1 (ko) 2011-08-11 2014-02-05 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 다중 게이트 유전체 구조 및 이를 형성하는 방법
WO2016027682A1 (ja) * 2014-08-19 2016-02-25 ソニー株式会社 固体撮像素子および電子機器
JP2016219550A (ja) * 2015-05-18 2016-12-22 キヤノン株式会社 撮像装置、撮像システムおよび撮像装置の製造方法
JP2018050035A (ja) * 2016-09-20 2018-03-29 パナソニックIpマネジメント株式会社 撮像装置およびその製造方法
WO2020105634A1 (ja) * 2018-11-19 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器
WO2021131844A1 (ja) * 2019-12-25 2021-07-01 ソニーセミコンダクタソリューションズ株式会社 受光素子及び受光装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671890B2 (ja) * 2010-08-31 2015-02-18 株式会社ニコン 撮像装置
JP5930650B2 (ja) * 2011-10-07 2016-06-08 キヤノン株式会社 半導体装置の製造方法
FR3023652A1 (fr) 2014-07-09 2016-01-15 Commissariat Energie Atomique Capteur d'images cmos
FR3058857B1 (fr) * 2016-11-16 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Capteur d'images cmos a bruit reduit
KR102560699B1 (ko) 2017-10-30 2023-07-27 삼성전자주식회사 이미지 센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268920A (ja) * 1993-03-15 1994-09-22 Canon Inc 信号処理装置
JPH1065971A (ja) * 1996-06-13 1998-03-06 Rockwell Internatl Corp Cmos受動画素センサシステムおよび同システムのための読出回路
WO2004010506A1 (ja) * 2002-07-23 2004-01-29 Fujitsu Limited イメージセンサおよびイメージセンサモジュール
WO2005069608A1 (ja) * 2004-01-13 2005-07-28 Matsushita Electric Industrial Co., Ltd. 固体撮像装置およびこれを用いたカメラ
JP2007317741A (ja) * 2006-05-23 2007-12-06 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674470B1 (en) * 1996-09-19 2004-01-06 Kabushiki Kaisha Toshiba MOS-type solid state imaging device with high sensitivity
KR100523671B1 (ko) * 2003-04-30 2005-10-24 매그나칩 반도체 유한회사 이중 게이트절연막을 구비하는 씨모스 이미지 센서 및그의 제조 방법
JP2006253316A (ja) 2005-03-09 2006-09-21 Sony Corp 固体撮像装置
KR100653716B1 (ko) * 2005-07-19 2006-12-05 삼성전자주식회사 이미지 센서 및 그 제조 방법
JP2008124229A (ja) 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 固体撮像素子
JP2008124395A (ja) 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd 固体撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268920A (ja) * 1993-03-15 1994-09-22 Canon Inc 信号処理装置
JPH1065971A (ja) * 1996-06-13 1998-03-06 Rockwell Internatl Corp Cmos受動画素センサシステムおよび同システムのための読出回路
WO2004010506A1 (ja) * 2002-07-23 2004-01-29 Fujitsu Limited イメージセンサおよびイメージセンサモジュール
WO2005069608A1 (ja) * 2004-01-13 2005-07-28 Matsushita Electric Industrial Co., Ltd. 固体撮像装置およびこれを用いたカメラ
JP2007317741A (ja) * 2006-05-23 2007-12-06 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358554B1 (ko) 2011-08-11 2014-02-05 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 다중 게이트 유전체 구조 및 이를 형성하는 방법
WO2013084408A1 (ja) * 2011-12-09 2013-06-13 パナソニック株式会社 固体撮像装置及びそれを備える撮像装置
JPWO2013084408A1 (ja) * 2011-12-09 2015-04-27 パナソニックIpマネジメント株式会社 固体撮像装置及びそれを備える撮像装置
US9131177B2 (en) 2011-12-09 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and image capturing apparatus including the same
WO2016027682A1 (ja) * 2014-08-19 2016-02-25 ソニー株式会社 固体撮像素子および電子機器
US10347673B2 (en) 2014-08-19 2019-07-09 Sony Semiconductor Solutions Corporation Solid state image sensor and electronic device
US11626432B2 (en) 2014-08-19 2023-04-11 Sony Semiconductor Solutions Corporation Solid state image sensor and electronic device
JP2016219550A (ja) * 2015-05-18 2016-12-22 キヤノン株式会社 撮像装置、撮像システムおよび撮像装置の製造方法
JP2018050035A (ja) * 2016-09-20 2018-03-29 パナソニックIpマネジメント株式会社 撮像装置およびその製造方法
WO2020105634A1 (ja) * 2018-11-19 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器
WO2021131844A1 (ja) * 2019-12-25 2021-07-01 ソニーセミコンダクタソリューションズ株式会社 受光素子及び受光装置

Also Published As

Publication number Publication date
US8009217B2 (en) 2011-08-30
US20090290058A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP2009283552A (ja) 固体撮像素子
US10200641B2 (en) Optical sensor and solid-state imaging device, and signal reading methods therefor
US10154222B2 (en) Optical sensor, signal reading method therefor, solid-state imaging device, and signal reading method therefor
JP4939514B2 (ja) 撮像装置
EP3681147B1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US7612819B2 (en) CMOS image sensor and method of operating the same
US8031250B2 (en) Solid-state imaging device and method of driving the same
JP4467542B2 (ja) 固体撮像装置
US20120314109A1 (en) Solid-state imaging device and camera
US20060081957A1 (en) Solid-state imaging device
JP5269425B2 (ja) 固体撮像素子および固体撮像装置
JP2005142503A (ja) 光電変換装置及び撮像装置
JP2013041915A (ja) 固体撮像素子および製造方法、並びに電子機器
JP2006237462A (ja) 固体撮像装置
JP2017069231A (ja) Mos型電界効果トランジスタ、半導体集積回路、固体撮像素子、及び、電子機器
JP4155568B2 (ja) 固体撮像装置及びカメラ
JP2010027668A (ja) 撮像装置
JP2008124395A (ja) 固体撮像装置
JP3658384B2 (ja) Mos型撮像装置およびこれを組み込んだカメラ
US9406816B2 (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus and electronic device
JP2011054832A (ja) 増幅型固体撮像素子およびその製造方法
JP2008218756A (ja) 光電変換装置及び撮像システム
US20130070134A1 (en) Low Noise CMOS Pixel Array
JP2007088309A (ja) 固体撮像装置
JP4383755B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305