WO2012026043A1 - 車両用無段変速機の制御装置 - Google Patents

車両用無段変速機の制御装置 Download PDF

Info

Publication number
WO2012026043A1
WO2012026043A1 PCT/JP2010/064642 JP2010064642W WO2012026043A1 WO 2012026043 A1 WO2012026043 A1 WO 2012026043A1 JP 2010064642 W JP2010064642 W JP 2010064642W WO 2012026043 A1 WO2012026043 A1 WO 2012026043A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
pulley
target
primary
control
Prior art date
Application number
PCT/JP2010/064642
Other languages
English (en)
French (fr)
Inventor
邦雄 服部
晋哉 豊田
綾部 篤志
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080068812.XA priority Critical patent/CN103080612B/zh
Priority to PCT/JP2010/064642 priority patent/WO2012026043A1/ja
Priority to US13/819,551 priority patent/US8914206B2/en
Priority to JP2012530500A priority patent/JP5403164B2/ja
Publication of WO2012026043A1 publication Critical patent/WO2012026043A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/125Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members characterised by means for controlling the geometrical interrelationship of pulleys and the endless flexible member, e.g. belt alignment or position of the resulting axial pulley force in the plane perpendicular to the pulley axis

Definitions

  • the present invention relates to a control device for a continuously variable transmission for a vehicle (belt type continuously variable transmission) that realizes a target speed ratio while preventing belt slippage by controlling an input side thrust and an output side thrust, respectively. .
  • the secondary target thrust (target secondary thrust) is set to the minimum slip limit thrust (necessary secondary thrust) necessary to prevent belt slippage from occurring at the secondary pulley.
  • the sum (total thrust) of the shift difference thrust (transient thrust) for realizing the target shift speed when changing the gear ratio. Then, by controlling the hydraulic pressure to each pulley so as to obtain the set thrust, the target gear ratio is realized while preventing belt slippage.
  • the gear shift thrust on the primary side is a negative value
  • the target primary thrust that is set is the minimum required slip limit thrust (necessary primary thrust) to prevent belt slippage at the primary pulley. It is easy to fall below and may cause belt slip.
  • the gear shift thrust on the primary side becomes a positive value, so the target primary thrust that is set is difficult to fall below the required primary thrust, but it may fall below the required primary thrust depending on the balance thrust on the primary side, etc. There is a possibility of causing belt slip.
  • Patent Document 1 In contrast to such a target primary thrust being lower than the required primary thrust, in Patent Document 1, when the target primary thrust is smaller than the required primary thrust, the slip limit thrust is set as the target primary thrust on the primary side. By setting the total thrust of the balance thrust and shift differential thrust for shifting on the secondary side as the target secondary thrust, the target is achieved while preventing the occurrence of belt slip using the minimum necessary pulley thrust It has been proposed to achieve a shift. That is, in Patent Document 1, it is determined whether or not the target primary thrust for shift control corresponding to the target secondary thrust set to the slip limit thrust (necessary secondary thrust) is smaller than the slip limit thrust (necessary primary thrust). Judgment and on the basis of the judgment result, the function that guarantees belt slip prevention on the primary side and the secondary side and the function that realizes the target gear shift are interchanged to realize gear shift and belt slip prevention with minimum thrust. ing.
  • the hydraulic control accuracy on one pulley side is good.
  • the actual hydraulic pressure on one pulley side is detected. It is desirable that a hydraulic pressure sensor is provided and feedback control can be performed so that a detected value of the hydraulic pressure sensor becomes a target hydraulic pressure toward one pulley corresponding to the target thrust.
  • the thrust on the other pulley side can be corrected by feedback control so that the actual speed ratio becomes the target speed ratio. It is not necessary to assume that the hydraulic control accuracy is good.
  • the target thrust is set to “slip limit thrust + thrust corresponding to the predetermined other pulley-side hydraulic pressure fluctuation to ensure that the slip limit thrust is obtained no matter how much the oil pressure varies.”
  • the target thrust is set to “slip limit thrust + thrust corresponding to the predetermined other pulley-side hydraulic pressure fluctuation to ensure that the slip limit thrust is obtained no matter how much the oil pressure varies.”
  • the target thrust (or target oil pressure) on the pulley side must also be increased, which may deteriorate fuel consumption.
  • the above-described problems are not known, and it has not yet been proposed to suppress deterioration of fuel consumption due to a variation in hydraulic pressure in a belt-type continuously variable transmission having good hydraulic control accuracy only on one pulley side.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is for a vehicle capable of improving fuel efficiency by reducing the hydraulic margin on the pulley side where hydraulic control accuracy is poor. It is to provide a control device for a continuously variable transmission.
  • the gist of the present invention is that: (a) a pair of variable pulleys having variable effective diameters of the input side variable pulley and the output side variable pulley, and a loop between the pair of variable pulleys The transmission side belt, and controlling the input side thrust in the input side variable pulley and the output side thrust in the output side variable pulley, respectively, to prevent the transmission belt from slipping and to achieve the actual speed ratio. (B) A hydraulic control circuit capable of controlling thrust with high accuracy by comparing one of the input-side variable pulley and the output-side variable pulley with the other.
  • the thrust for preventing belt slippage is controlled on the side of one variable pulley with relatively good thrust control accuracy, it is not necessary to add a hydraulic pressure variation in the other variable pulley when setting the target thrust. That is, the necessary thrust for preventing belt slippage in both variable pulleys is ensured on one variable pulley side without adding the hydraulic pressure variation. Therefore, it is possible to improve the fuel consumption by reducing the hydraulic margin on the pulley side where the hydraulic control accuracy is not good.
  • the thrust on the other side necessary for the shift control calculated based on the target thrust on the one side is set as the target thrust on the other side. In this way, it is possible to achieve the target shift while preventing belt slippage in the other variable pulley without adding a variation in hydraulic pressure in the other variable pulley having relatively poor thrust control accuracy.
  • the target thrust on the other side is corrected by feedback control of thrust on the other side based on a deviation between the target gear ratio and the actual gear ratio or a deviation between the target pulley position and the actual pulley position. It is to be done. In this way, it is possible to compensate for variations in hydraulic pressure in the other variable pulley, which has relatively poor thrust control accuracy. Accordingly, it is possible to suppress deterioration in fuel consumption due to variations in hydraulic pressure, and appropriately achieve target shift and belt slip prevention with the minimum necessary pulley thrust.
  • the thrust necessary for the shift control is a thrust necessary for realizing the target gear ratio and the target shift speed. In this way, the thrust required for the shift control is appropriately calculated.
  • the slip limit thrust is calculated based on an actual gear ratio and an input torque of the vehicle continuously variable transmission. In this way, the slip limit thrust is appropriately calculated, and the necessary thrust for preventing belt slip is appropriately secured.
  • the hydraulic control circuit includes a hydraulic sensor for detecting an actual pulley pressure acting on one of the variable pulleys only on the one side, and the detection value of the hydraulic sensor is set to the one of the one side.
  • the feedback control is performed with the target pulley pressure corresponding to the target thrust on the side. In this way, it is possible to control the thrust with high accuracy by comparing one side with the other.
  • a predetermined thrust corresponding to a variation related to the calculation of the thrust on the one side based on the slip limit thrust on the other side is converted into a slip limit thrust on the other side prior to the calculation.
  • the variation related to the above calculation is different from, for example, the hydraulic pressure variation (the difference in the actual hydraulic pressure with respect to the hydraulic pressure command value), and the thrust on the one side is calculated based on the slip limit thrust on the other side.
  • individual variation such as a predetermined characteristic used in the calculation.
  • the hydraulic pressure variation is a relatively large value depending on, for example, the unit, but the variation related to the calculation is an extremely small value compared to the hydraulic pressure variation.
  • the input-side thrust and the output-side thrust are each controlled by configuring a hydraulic control circuit so as to independently control pulley pressure applied to the input-side variable pulley and the output-side variable pulley. It can be controlled directly or indirectly.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power transmission path from an engine 12 to a drive wheel 24 constituting a vehicle 10 to which the present invention is applied.
  • power generated by an engine 12 used as a driving force source for traveling is converted into a torque converter 14 as a fluid transmission device, a forward / reverse switching device 16, and a belt type as a continuously variable transmission for a vehicle. It is transmitted to the left and right drive wheels 24 through a continuously variable transmission (hereinafter referred to as continuously variable transmission (CVT)) 18, a reduction gear device 20, a differential gear device 22, and the like.
  • CVT continuously variable transmission
  • the torque converter 14 includes a pump impeller 14p connected to the crankshaft 13 of the engine 12 and a turbine impeller 14t connected to the forward / reverse switching device 16 via a turbine shaft 30 corresponding to an output side member of the torque converter 14.
  • the power is transmitted through the fluid.
  • a lockup clutch 26 is provided between the pump impeller 14p and the turbine impeller 14t, and when the lockup clutch 26 is completely engaged, the pump impeller 14p and the turbine impeller 14t. Are rotated together.
  • the pump impeller 14p controls the speed of the continuously variable transmission 18, generates belt clamping pressure in the continuously variable transmission 18, controls the torque capacity of the lock-up clutch 26, and controls the forward / reverse switching device 16.
  • a mechanical oil pump 28 is connected which is generated when the engine 12 is rotationally driven by a working hydraulic pressure for switching the power transmission path and supplying lubricating oil to each part of the power transmission path of the vehicle 10. .
  • the forward / reverse switching device 16 is mainly composed of a forward clutch C1 and a reverse brake B1 and a double pinion type planetary gear device 16p, and the turbine shaft 30 of the torque converter 14 is integrally connected to the sun gear 16s.
  • the input shaft 32 of the continuously variable transmission 18 is integrally connected to the carrier 16c, while the carrier 16c and the sun gear 16s are selectively connected via the forward clutch C1, and the ring gear 16r is connected to the reverse brake B1.
  • the housing is selectively fixed to the housing 34 as a non-rotating member.
  • the forward clutch C1 and the reverse brake B1 correspond to an intermittent device, both of which are hydraulic friction engagement devices that are frictionally engaged by a hydraulic cylinder.
  • the forward / reverse switching device 16 configured as described above, when the forward clutch C1 is engaged and the reverse brake B1 is released, the forward / reverse switching device 16 is brought into an integral rotation state, thereby causing the turbine shaft 30 to rotate. Is directly connected to the input shaft 32, and a forward power transmission path is established (achieved), so that the driving force in the forward direction is transmitted to the continuously variable transmission 18 side.
  • the forward / reverse switching device 16 establishes (achieves) the reverse power transmission path, and the input shaft 32 is connected to the turbine shaft 30. On the other hand, it is rotated in the opposite direction, and the driving force in the reverse direction is transmitted to the continuously variable transmission 18 side.
  • the forward / reverse switching device 16 is in a neutral state (power transmission cut-off state) in which power transmission is cut off.
  • the engine 12 is constituted by an internal combustion engine such as a gasoline engine or a diesel engine.
  • This intake pipe 36 of the engine 12, the electronic throttle valve 40 for electrically controlling the intake air quantity Q AIR of the engine 12 using the throttle actuator 38 is provided.
  • the continuously variable transmission 18 is an input-side variable pulley (primary pulley, primary sheave) 42 that is an input-side member that is provided on the input shaft 32 and is an output-side member that is provided on the output shaft 44.
  • the primary pulley 42 is provided with a fixed rotating body (fixed sheave) 42 a as an input side fixed rotating body fixed to the input shaft 32, and is not rotatable relative to the input shaft 32 around the axis and is movable in the axial direction.
  • an input side hydraulic cylinder (primary side hydraulic cylinder) 42c as a hydraulic actuator.
  • the secondary pulley 46 is fixed to the output shaft 44, and is a fixed rotating body (fixed sheave) 46a as an output-side fixed rotating body.
  • the secondary pulley 46 is not rotatable relative to the output shaft 44 and is movable in the axial direction.
  • an output side hydraulic cylinder (secondary side hydraulic cylinder) 46c as a hydraulic actuator for providing a pressure receiving area).
  • the primary pressure Pin which is the hydraulic pressure to the primary hydraulic cylinder 42c
  • the secondary pressure Pout which is the hydraulic pressure to the secondary hydraulic cylinder 46c
  • the primary thrust Win and the secondary thrust Wout are directly or indirectly controlled.
  • the rotational speed N OUT is continuously changed, and the frictional force (belt clamping pressure) between the pair of variable pulleys 42 and 46 and the transmission belt 48 is controlled so that the transmission belt 48 does not slip. .
  • the actual transmission ratio (actual transmission ratio) ⁇ is set as the target transmission ratio ⁇ * while preventing the transmission belt 48 from slipping.
  • the input shaft rotational speed N IN is the rotational speed of the input shaft 32
  • the output shaft rotational speed N OUT is the rotational speed of the output shaft 44.
  • the input shaft rotation speed N IN is the same as the rotation speed of the primary pulley 42
  • the output shaft rotation speed N OUT is the same as the rotation speed of the secondary pulley 46.
  • the V groove width of the primary pulley 42 is narrowed to reduce the gear ratio ⁇ , that is, the continuously variable transmission 18 is upshifted. Further, when the primary pressure Pin is lowered, the V groove width of the primary pulley 42 is widened to increase the gear ratio ⁇ , that is, the continuously variable transmission 18 is downshifted. Therefore, when the V groove width of the primary pulley 42 is minimized, the minimum speed ratio ⁇ min (the highest speed side speed ratio, the highest Hi) is formed as the speed ratio ⁇ of the continuously variable transmission 18.
  • the maximum speed ratio ⁇ max (the lowest speed side speed ratio, the lowest) is formed as the speed ratio ⁇ of the continuously variable transmission 18.
  • the primary pressure Pin (primary thrust Win also agrees) and the secondary pressure Pout (secondary thrust Wout agrees) are prevented from slipping (belt slipping) of the transmission belt 48, while the primary thrust Win and the secondary thrust Wout Therefore, the target speed ratio ⁇ * is realized, and the target speed change is not realized only by one pulley pressure (the thrust is also agreed).
  • FIG. 2 is a block diagram for explaining a main part of a control system provided in the vehicle 10 for controlling the engine 12, the continuously variable transmission 18, and the like.
  • the vehicle 10 is provided with an electronic control device 50 including a control device for a vehicle continuously variable transmission related to, for example, shift control of the continuously variable transmission 18.
  • the electronic control unit 50 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the CPU uses a temporary storage function of the RAM and follows a program stored in the ROM in advance.
  • Various controls of the vehicle 10 are executed by performing signal processing.
  • the electronic control unit 50 performs output control of the engine 12, shift control of the continuously variable transmission 18, belt clamping pressure control, torque capacity control of the lockup clutch 26, and the like.
  • the engine control, the continuously variable transmission 18 and the lockup clutch 26 are controlled separately.
  • the electronic control unit 50 rotation angle (position) A CR and a signal representative of the rotational speed (engine rotational speed) N E of the engine 12 of the crankshaft 13 detected by the engine rotational speed sensor 52, a turbine speed sensor 54 A signal representing the detected rotational speed (turbine rotational speed) NT of the turbine shaft 30, and a signal representing the input shaft rotational speed N IN which is the input rotational speed of the continuously variable transmission 18 detected by the input shaft rotational speed sensor 56.
  • the electronic control unit 50 also outputs an engine output control command signal S E for output control of the engine 12, a hydraulic control command signal S CVT for hydraulic control related to the shift of the continuously variable transmission 18, and the like.
  • a command signal for driving the linear solenoid valve SLP for regulating the primary pressure Pin a command signal for driving the linear solenoid valve SLS for regulating the secondary pressure Pout, and the line hydraulic pressure P
  • a command signal for driving the linear solenoid valve SLT that controls L is output to the hydraulic control circuit 100.
  • FIG. 3 is a hydraulic circuit diagram showing a main part related to the hydraulic control related to the shift of the continuously variable transmission 18 in the hydraulic control circuit 100.
  • the hydraulic control circuit 100 includes, for example, an oil pump 28, a primary pressure control valve 110 that regulates the primary pressure Pin, a secondary pressure control valve 112 that regulates the secondary pressure Pout, a primary regulator valve (line hydraulic pressure regulating valve) 114, A modulator valve 116, a linear solenoid valve SLT, a linear solenoid valve SLP, a linear solenoid valve SLS, and the like are provided.
  • Line pressure P L for example the output from the oil pump 28 (the generation) by the hydraulic pressure as a source pressure
  • engine load based on the control oil pressure P SLT is the output oil pressure of the linear solenoid valve SLT by the primary regulator valve 114 of the relief type
  • the pressure is adjusted to a value according to the above.
  • the line pressure P L based on the control pressure P SLT of hydraulic pressure by adding a predetermined margin (margin) to the hydraulic pressure of higher primary pressure Pin and the secondary pressure Pout is set so as to obtain It is regulated.
  • the line pressure P L as the original pressure in pressure regulating operation of the primary pressure control valve 110 and the secondary pressure control valve 112 is insufficient, the line pressure P L from being unnecessarily high It is possible.
  • modulator pressure P M, the control hydraulic pressure P SLT is controlled by the electronic control unit 50, the linear solenoid valve control oil pressure P SLP is a SLP of the output hydraulic pressure, and the control oil pressure P SLS is the output oil pressure of the linear solenoid valve SLS be comprised between each source pressure and pressure is adjusted to a constant pressure by a modulator valve 116 to line pressure P L as source pressure.
  • Primary pressure control valve 110 the spool valve element 110a that allows supplying the line pressure P L by opening and closing an input port 110i by being movable in the axial direction from the input port 110i to the primary pulley 42 via an output port 110t And a spring 110b as an urging means for urging the spool valve element 110a in the valve opening direction, and a control oil pressure P SLP for accommodating the spring 110b and applying a thrust force in the valve opening direction to the spool valve element 110a.
  • the primary pressure control valve 110 configured as described above, for example, the control for supplying hydraulic pressure P SLP to the primary hydraulic cylinder 42c of the primary pulley 42 to control the line pressure P L to regulation control as a pilot pressure. As a result, the primary pressure Pin supplied to the primary hydraulic cylinder 42c is controlled.
  • an orifice 120 is provided in the oil passage 118 between the primary hydraulic cylinder 42c and the primary pressure control valve 110 for the purpose of fail-safe or the like.
  • Secondary pressure control valve 112 permits the supply of line pressure P L by opening and closing an input port 112i by being movable in the axial direction from the input port 112i to the secondary pulley 46 via an output port 112t as secondary pressure Pout
  • An oil chamber 112c that receives the control hydraulic pressure P SLS , a feedback oil chamber 112d that receives the secondary pressure Pout output from the output port 112t in order to apply thrust in the valve closing direction to the spool valve element 112a, and a spool valve element 112a that are closed.
  • the secondary pressure control valve 112 configured as described above, for example, supplies the control oil pressure P SLS on the secondary side hydraulic cylinder 46c of the secondary pulley 46 by the line pressure P L pressure regulation and control as a pilot pressure. Thereby, the secondary pressure Pout supplied to the secondary hydraulic cylinder 46c is controlled. For example, when the control hydraulic pressure P SLS output from the linear solenoid valve SLS increases from the state in which the predetermined hydraulic pressure is supplied to the secondary hydraulic cylinder 46c, the spool valve element 112a of the secondary pressure control valve 112 is moved upward in FIG. Moving. Thereby, the secondary pressure Pout to the secondary side hydraulic cylinder 46c increases.
  • an orifice 124 is provided in the oil passage 122 between the secondary hydraulic cylinder 46c and the secondary pressure control valve 112 for the purpose of fail-safe or the like.
  • the primary pressure Pin regulated by the linear solenoid valve SLP and the secondary pressure Pout regulated by the linear solenoid valve SLS do not cause belt slip and are unnecessary.
  • the pair of variable pulleys 42 and 46 is controlled to generate a belt clamping pressure that does not increase.
  • the speed ratio ⁇ is changed.
  • the gear ratio ⁇ is increased as the thrust ratio ⁇ is increased (that is, the continuously variable transmission 18 is downshifted).
  • FIG. 4 is a functional block diagram for explaining a main part of the control function by the electronic control unit 50.
  • the engine output control unit that is, the engine output control unit 130, for example engine 12 throttle signal and the injection signal and an ignition timing signal throttle actuator 38 and the fuel respectively the engine output control command signal S E, such as for output control of the Output to the injection device 80 and the ignition device 82.
  • the engine output control means 130 sets a target engine torque T E * for obtaining a driving force (driving torque) corresponding to the accelerator opening Acc, and throttles the target engine torque T E * so as to obtain the target engine torque T E *.
  • the fuel injection amount is controlled by the fuel injection device 80
  • the ignition timing is controlled by the ignition device 82.
  • the continuously variable transmission control unit that is, the continuously variable transmission control means 132, for example, performs primary pressure so as to achieve the target gear ratio ⁇ * of the continuously variable transmission 18 while preventing belt slippage of the continuously variable transmission 18.
  • a primary command pressure Pintgt as a command value of Pin (or target primary pressure Pin * ) and a secondary command pressure Pouttgt as a command value of secondary pressure Pout (or target secondary pressure Pout * ) are determined, and the primary command pressure Pintgt and secondary The command pressure Pouttgt is output to the hydraulic control circuit 100.
  • the hydraulic control circuit 100 of the present embodiment has an actual secondary pressure that acts on the secondary pulley 46 (secondary hydraulic cylinder 46c) only on the secondary pulley 46 side, which is one side of the pair of variable pulleys 42 and 46.
  • a secondary pressure sensor 78 is provided as a hydraulic pressure sensor for detecting Pout. Therefore, the continuously variable transmission control means 132 executes feedback control in which the detected value of the secondary pressure sensor 78 (a signal indicating the actual secondary pressure Pout) is set to the target secondary pressure Pout * corresponding to the target secondary thrust Wout * , for example. be able to.
  • the thrust (pulley pressure) can be accurately controlled on the secondary pulley 46 side as compared to the primary pulley 42 side on which no hydraulic sensor is provided. That is, in this embodiment, the hydraulic control circuit that can control the thrust (pulley pressure) with high accuracy by comparing the secondary pulley 46 that is one of the primary pulley 42 and the secondary pulley 46 with the primary pulley 42 that is the other. 100 is provided.
  • the thrust required for preventing belt slip with the minimum necessary thrust that is, the belt slip limit thrust (hereinafter referred to as slip limit thrust), which is the thrust immediately before the occurrence of belt slip, is set as the target thrust.
  • the primary pulley 42 side has a relatively poor hydraulic control accuracy (that is, feedback control based on the deviation between the detected value of the hydraulic sensor and the target value cannot be performed)
  • the hydraulic command value primary It is necessary to add the thrust corresponding to the hydraulic pressure variation, which is the difference between the command pressure (Pintgt) and the actual hydraulic pressure (actual primary pressure Pin), to the slip limit thrust.
  • the target secondary thrust Wout * must also be increased corresponding to the thrust corresponding to, and the fuel consumption may deteriorate.
  • the hydraulic control accuracy is not necessarily good.
  • the continuously variable transmission control means 132 is, for example, a secondary pulley side slip limit thrust Woutlmt that is a slip limit thrust on the secondary pulley 46 side, and a primary pulley side slip limit thrust that is a slip limit thrust on the primary pulley 42 side.
  • the larger one of the secondary pulley side shift control thrust Woutsh that is the thrust on the secondary pulley 46 side necessary for the shift control calculated based on Winlmt is selected as the target secondary thrust Wout * .
  • the continuously variable transmission control means 132 for example, a primary pulley side shift control thrust Winsh, which is a thrust on the primary pulley 42 side necessary for shift control calculated based on the selected target secondary thrust Wout * , Set as target primary thrust Win * . Further, the continuously variable transmission control means 132 performs the target primary thrust Win * (that is, the primary pulley side speed change) by feedback control of the primary thrust Win based on the speed ratio deviation ⁇ between the target speed ratio ⁇ * and the actual speed ratio ⁇ , for example. The control thrust (Winsh) is corrected.
  • a primary pulley side shift control thrust Winsh which is a thrust on the primary pulley 42 side necessary for shift control calculated based on the selected target secondary thrust Wout * , Set as target primary thrust Win * .
  • the continuously variable transmission control means 132 performs the target primary thrust Win * (that is, the primary pulley side speed change) by feedback control of the primary thrust Win based on the speed ratio deviation ⁇ between the target speed ratio ⁇ *
  • the gear ratio deviation ⁇ may be a deviation between the target value and the actual value in the parameter corresponding to the gear ratio ⁇ on a one-to-one basis.
  • deviation ⁇ Rin between target belt engagement diameter Rin * on the primary pulley 42 side and actual belt engagement diameter Rin (see FIG.
  • the thrust required for the shift control is, for example, a thrust necessary for realizing the target shift, and a thrust required for realizing the target gear ratio ⁇ * and the target shift speed.
  • the pulley position movement amount (dX / dNelm) per belt element (block) is used. Defined (dX: axial displacement of pulley per unit time [mm / ms], dNelm: number of elements (blocks) biting into pulley per unit time [piece / ms]).
  • the target shift speed is represented by the primary target shift speed (dXin / dNelmin) and the secondary target shift speed (dXout / dNelmout).
  • the thrust required for the speed change control is, when one thrust is set, the target speed ratio ⁇ * corresponding to one thrust based on the thrust ratio ⁇ for maintaining the target speed ratio ⁇ * .
  • the other balance thrust Wbl for realizing and the target shift speed (for example, the primary target shift speed (dXin / dNelmin) and the secondary target shift speed (dXout / dNelmout)) when the target gear ratio ⁇ * is changed. This is the sum of the shift difference thrust ⁇ W for realizing.
  • FIG. 5 is a diagram for explaining the thrust required for the shift control.
  • FIG. 5 shows the primary thrust Win set when the target upshift is realized on the primary pulley 42 side when the secondary thrust Wout is set so as to realize belt slip prevention on the secondary pulley 46 side, for example.
  • An example is shown.
  • the target gear ratio ⁇ * is in the upshift state from the time point t1 to the time point t3, the thrust relationship diagram at the time point t2 in FIG. 5A shown in FIG.
  • each thrust Win is the sum of the primary balance thrust Winbl and the primary shift difference thrust ⁇ Win.
  • the shaded portion of each thrust shown in FIG. 5 (b) corresponds to each balance thrust Wbl for maintaining the target speed ratio ⁇ * at time t2 in FIG. 5 (a).
  • FIG. 6 is a block diagram showing a control structure for achieving both a target shift and belt slip prevention with the minimum necessary thrust when the secondary pressure sensor 78 is provided only on the secondary pulley 46 side. 6, the input torque T IN of the target gear ratio gamma * and the continuously variable transmission 18, for example, sequentially calculated by the CVT control unit 132.
  • the continuously variable transmission control means 132 determines the post-shift target speed ratio ⁇ * l, which is the speed ratio ⁇ to be achieved after the speed change of the continuously variable transmission 18.
  • the continuously variable transmission control means 132 uses the accelerator opening Acc as shown in FIG. 7 as a parameter, for example, to obtain and store the relationship between the output shaft rotational speed N OUT and the target input shaft rotational speed N IN * that has been obtained in advance (transmission speed).
  • the target input shaft rotational speed N IN * is set based on the vehicle state indicated by the actual output shaft rotational speed N OUT and the accelerator opening Acc from the map).
  • the shift map in FIG. 7 corresponds to a shift condition, and the target input shaft rotational speed N IN * that sets a larger gear ratio ⁇ is set as the output shaft rotational speed N OUT is smaller and the accelerator opening Acc is larger.
  • This post-shift target speed ratio ⁇ * l is determined within the range of the minimum speed ratio ⁇ min (highest speed gear ratio, highest Hi) and the maximum speed ratio ⁇ max (lowest speed gear ratio, lowest Low) of the continuously variable transmission 18. .
  • the continuously variable transmission control means 132 determines the speed ratio ⁇ before the start of the shift and the target speed ratio ⁇ * l after the shift from a relationship that is experimentally set in advance so as to realize a quick and smooth shift, for example. Based on these differences, the target speed ratio ⁇ * is determined as the target value of the transient speed ratio ⁇ during the speed change.
  • the continuously variable transmission control means 132 is a smooth curve (for example, a first-order lag curve) that changes the target speed ratio ⁇ * that is sequentially changed during the shift from the start of the shift toward the post-shift target speed ratio ⁇ * l. And a second order delay curve) as a function of elapsed time.
  • the continuously variable transmission control means 132 sequentially shifts the speed ratio ⁇ before the start of the shift from the speed ratio ⁇ before the start of the shift to the target speed ratio ⁇ * 1 after the shift during the shift of the continuously variable transmission 18. Change the target gear ratio ⁇ * . Further, when the continuously variable transmission control means 132 determines the target transmission gear ratio ⁇ * as a function of the elapsed time, the target transmission gear ratio (primary target transmission speed (dXin / dNelmin ) is determined based on the target transmission gear ratio ⁇ *. ) And the secondary side target shift speed (dXout / dNelmout)). For example, when the gear shift is completed and the target gear ratio ⁇ * is in a constant steady state, the target gear shift speed becomes zero.
  • the continuously variable transmission control means 132 uses, for example, the intake air amount Q AIR (or the corresponding throttle valve opening ⁇ TH or the like) as a required load for the engine 12 as a parameter, and the engine speed N E and the engine torque T E. experimentally determined in advance are shown in FIG.
  • the continuously variable transmission control means 132 calculates from a map and a predetermined operating characteristic diagram of the torque converter 14.
  • the estimated engine torque T E es is calculated so as to represent the actual engine torque T E itself, and unless otherwise distinguished from the actual engine torque T E , the estimated engine torque T E es is calculated as the actual engine torque T E es. It shall be treated as T E. Accordingly, the estimated engine torque T E es includes the actual engine torque T E.
  • the continuously variable transmission control means 132 includes, for example, a limit thrust calculation unit that calculates a slip limit thrust Wlmt, that is, a limit thrust calculation unit 134, a steady thrust calculation unit that calculates a balance thrust Wbl, that is, a steady thrust calculation unit 136, A differential thrust calculation unit for calculating the differential thrust ⁇ W, that is, a differential thrust calculation unit 138, and an FB control amount calculation unit for calculating the feedback control amount Winfb, that is, an FB control amount calculation unit 140 are provided.
  • limit thrust calculation means 134 calculates the slip limit thrust Wlmt based on the input torque T IN of the actual speed ratio ⁇ and the continuously variable transmission 18. Specifically, the limit thrust calculating means 134 calculates the input torque T IN of the continuously variable transmission 18 as the input torque of the primary pulley 42 and the input torque of the secondary pulley 46 from the following expressions (1) and (2). Output torque T OUT of the continuously variable transmission 18, sheave angle ⁇ of the variable pulleys 42, 46, a predetermined element-to-pulley friction coefficient ⁇ in on the primary pulley 42 side, and a predetermined element-to-pulley friction coefficient on the secondary pulley 46 side.
  • the belt engagement diameter Rin on the primary pulley 42 side uniquely calculated from ⁇ out and the actual transmission ratio ⁇
  • the belt engagement diameter Rout on the secondary pulley 46 side uniquely calculated from the actual transmission ratio ⁇ (see FIG. 3 above).
  • Winlmt (Tin ⁇ cos ⁇ ) / (2 ⁇ ⁇ in ⁇ Rin) (2)
  • the steady thrust calculating means 136 calculates, for example, a secondary balance thrust Woutbl corresponding to the primary pulley side slip limit thrust Winlmt and a primary balance thrust Winbl corresponding to the target secondary thrust Wout *. .
  • a target shift that is sequentially calculated from, for example, a relationship (thrust ratio map) as shown in FIG.
  • the steady thrust calculating means 136 calculates the secondary balance thrust Woutbl based on the primary pulley side slip limit thrust Winlmt and the thrust ratio ⁇ in from the following equation (3).
  • the target gear ratio ⁇ * calculated sequentially from, for example, the relationship (thrust ratio map) as shown in FIG. 10B, which is experimentally obtained and stored in advance with the thrust ratio ⁇ out when calculating the thrust on the side.
  • the thrust ratio ⁇ out is calculated based on the reciprocal SFout ⁇ 1 of the secondary side safety factor.
  • the differential thrust calculation means 138 for example, the secondary shift difference thrust ⁇ Wout as the secondary pulley-side converted difference thrust ⁇ Wout when the target shift is realized on the secondary pulley 46 side, and the primary A primary shift difference thrust ⁇ Win is calculated as a differential thrust ⁇ W converted to the primary pulley when the target shift is realized on the pulley 42 side.
  • the differential thrust calculation means 138 is obtained experimentally in advance and stored, for example, as shown in FIG. 11B, between the secondary side target shift speed (dXout / dNelmout) and the secondary shift difference thrust ⁇ Wout.
  • the secondary shift difference thrust ⁇ Wout is calculated based on the sequentially calculated secondary target shift speed (dXout / dNelmout).
  • the differential thrust calculation means 138 has a relationship (difference as shown in, for example, FIG. 11A) which is experimentally obtained and stored in advance between the primary target shift speed (dXin / dNelmin) and the primary shift differential thrust ⁇ Win. From the thrust map), the primary shift difference thrust ⁇ Win is calculated based on the primary target shift speed (dXin / dNelmin) calculated sequentially.
  • the limit thrust calculation means 134 for example, the secondary pulley 46 side thrust (secondary balance thrust Woutbl or secondary shift difference thrust ⁇ Wout based on the primary pulley side slip limit thrust Winlmt), for example.
  • the steady thrust calculating means 136 adds the control margin Wmgn from the following equation (3) ′ instead of, for example, the equation (3).
  • the control margin Wmgn is, for example, a constant value (design value) that is experimentally obtained and set in advance.
  • the transient state (during shifting) is more variable than the steady state (shifting ratio is constant). Since a large amount of (thrust ratio map and physical characteristic diagram of the differential thrust map) is used, it is set to a large value.
  • the variation with respect to the physical characteristics related to the above calculation includes, for example, variations in the control hydraulic pressures P SLP and P SLS with respect to each control current to the linear solenoid valves SLP and SLS, variations in the drive circuit that outputs the control current, and control hydraulic pressure P SLP, is different from the actual pulley pressure Pin for P SLS, the actual hydraulic pressure of the shift amount for the hydraulic command value of the pulley pressures, such as variations in the Pout (hydraulic variation amount, the variation of the hydraulic pressure control component).
  • the hydraulic pressure variation is a relatively large value depending on the unit (hard unit such as the hydraulic control circuit 100)
  • the variation with respect to the physical characteristics related to the calculation is an extremely small value compared to the hydraulic pressure variation. .
  • adding the control margin Wmgn to the primary pulley side slip limit thrust Winlmt means that the target pulley pressure can be obtained no matter how much the actual pulley pressure varies with respect to the pulley pressure hydraulic command value. Compared with adding control variation to the control, deterioration of fuel consumption is suppressed. Further, since the calculations in the blocks B6 and B7 are based on the target secondary thrust Wout * , here, the control margin Wmgn is not added to the target secondary thrust Wout * prior to the calculation.
  • continuously variable transmission control means 132 selects the larger one of secondary pulley side slip limit thrust Woutlmt and secondary pulley side shift control thrust Woutsh as target secondary thrust Wout * .
  • KP is a predetermined proportionality constant
  • KI is a predetermined integral constant
  • KD is a predetermined speed. Differential constant.
  • Winfb KP ⁇ ⁇ + KI ⁇ ( ⁇ dt) + KD ⁇ (d ⁇ / dt) (5)
  • the blocks B1 to B5 function as a secondary target thrust calculation unit that sets the target secondary thrust Wout *, that is, the secondary target thrust calculation means 150.
  • the blocks B6 to B8 function as a primary target thrust calculation unit that sets the target primary thrust Win *, that is, a primary target thrust calculation means 152.
  • the primary pressure control valve 110 and the secondary pressure control valve 112 are used for controlling the primary pressure Pin and the secondary pressure Pout. For this reason, for example, during a shift, a change in the spring force of the springs 110b and 112b and a fluid force (flow force) occur due to the supply and discharge of hydraulic oil. As a result, the balance of the forces in the moving direction of the spool valve elements 110a, 112a (the valve opening / closing direction, the vertical direction in FIG. 3) is lost, and a deviation ⁇ P1 occurs between the pulley command pressure and the actual pulley pressure.
  • This deviation ⁇ P1 can be derived, for example, by Bernoulli's theorem and the momentum conservation law, and can be expressed as a function of the flow rate Qf of hydraulic oil or the amount of change in pulley positions Xin and Xout as an override characteristic.
  • orifices 120 and 124 are provided in the hydraulic control circuit 100 of the present embodiment. Therefore, during the shift, a pressure difference ⁇ P2 is generated between the upstream and downstream of the orifices 120 and 124 in accordance with the flow rate Qf of the hydraulic oil.
  • This pressure difference ⁇ P2 can be expressed by, for example, a quadratic function of the flow rate Qf of hydraulic oil or the amount of change in pulley positions Xin and Xout as orifice characteristics.
  • the change in the actual pulley pressure with respect to the change in the pulley command pressure includes the delay characteristic of the hydraulic control circuit 100 and the delay characteristic of the fluid.
  • This delay characteristic can be approximated by, for example, a first-order lag system or a second-order lag system. Therefore, a delay characteristic of the actual pulley pressure with respect to the pulley command pressure is modeled, and a delay compensation characteristic for canceling the delay characteristic is modeled based on the modeled delay characteristic.
  • the continuously variable transmission control means 132 is based on the override characteristic and the orifice characteristic with respect to the target secondary pressure Pout * and the target primary pressure Pin * , for example.
  • the values corrected by the amount of deviation ( ⁇ P1 + ⁇ P2) and further compensated for the hydraulic response delay based on the modeled delay compensation characteristics are set as the secondary command pressure Pouttgt and the primary command pressure Pintgt.
  • CVT control means 132 for example, so that the target primary pressure Pin * and the target secondary pressure Pout * is obtained, outputs the primary instruction pressure Pintgt and secondary instruction pressure Pouttgt as hydraulic control command signal S CVT to the hydraulic control circuit 100 To do.
  • the hydraulic control circuit 100 the following hydraulic pressure control command signal S CVT, with pressure regulating the primary pressure Pin by operating the linear solenoid valve SLP, actuates the linear solenoid valve SLS pressure regulating the secondary pressure Pout by.
  • the continuously variable transmission control means 132 detects the secondary pressure Pout detected by the secondary pressure sensor 78 so as to compensate for the hydraulic pressure variation (variation in hydraulic control) on the secondary pulley 46 side, for example.
  • the primary control is performed by the feedback control on the secondary pulley 46 side based on the deviation between the detected value of the pulley pressure and the actual value.
  • the command pressure Pintgt cannot be corrected.
  • FIG. 12 shows a control operation for reducing the hydraulic margin (hydraulic pressure for compensating for hydraulic pressure variation) on the primary pulley 42 side where the main control operation of the electronic control unit 50, that is, the hydraulic control accuracy is not good, is improved. And is repeatedly executed with an extremely short cycle time of about several milliseconds to several tens of milliseconds, for example.
  • Secondary pulley side slip limit thrust Woutlmt based on the sheave angle ⁇ , the predetermined element-pulley friction coefficient ⁇ out on the secondary pulley 46 side, and the belt engagement diameter Rin on the primary pulley 42 side that is uniquely calculated from the actual gear ratio ⁇ . Is calculated.
  • the limit thrust calculation means 134 for example, the input torque T IN of the continuously variable transmission 18, the sheave angle ⁇ of the variable pulleys 42 and 46, and the predetermined element on the primary pulley 42 side from the above equation (2).
  • the primary pulley side slip limit thrust Winlmt is calculated based on the belt engagement diameter Rin on the primary pulley 42 side that is uniquely calculated from the inter-pulley friction coefficient ⁇ in and the actual speed ratio ⁇ .
  • the control margin Wmgn may be added to the primary pulley side slip limit thrust Winlmt.
  • S30 corresponding to the steady thrust calculating means 136, for example, from the thrust ratio map as shown in FIG. 10 (a), based on the target gear ratio ⁇ * and the reciprocal SFin ⁇ 1 of the primary-side safety factor calculated sequentially.
  • a thrust ratio ⁇ in is calculated.
  • a secondary balance thrust (secondary steady thrust) Woutbl is calculated based on the primary pulley side slip limit thrust Winlmt and the thrust ratio ⁇ in from the equation (3).
  • the secondary balance thrust Woutbl is calculated from the equation (3) ′ instead of the equation (3) in S30.
  • the secondary shift differential thrust ⁇ Wout is calculated based on the secondary target shift speed (dXout / dNelmout) sequentially calculated. Is calculated.
  • S10 to S50 correspond to the secondary target thrust calculation means 150.
  • a feedback control amount (FB control correction amount) Winfb is calculated based on the gear ratio deviation ⁇ from, for example, a predetermined feedback control equation as shown in the equation (5).
  • S60 to S90 correspond to the primary target thrust calculation means 152.
  • the secondary command pressure Pouttgt is output to the hydraulic control circuit 100 as the hydraulic pressure control command signal S CVT, the linear solenoid valve SLS is actuated by the secondary pressure Pout is pressure regulated in accordance with the oil pressure control command signal S CVT.
  • the hydraulic pressure variation on the secondary pulley 46 side is compensated.
  • the primary command pressure Pintgt is output to the hydraulic control circuit 100 as the hydraulic pressure control command signal S CVT, the linear solenoid valve SLP is pressurized primary pressure Pin adjusted to be actuated in accordance with the oil pressure control command signal S CVT.
  • the hydraulic pressure variation on the pulley 42 side is compensated.
  • the thrust for preventing belt slippage is controlled on the secondary pulley 46 side with relatively good thrust control accuracy, the hydraulic pressure in the primary pulley 42 with relatively poor thrust control accuracy when setting the target secondary thrust Wout *. There is no need to add variations. That is, the necessary thrust for preventing belt slippage in both the variable pulleys 42 and 46 is secured on the secondary pulley 46 side without adding the hydraulic pressure variation. Therefore, it is possible to improve the fuel consumption by reducing the hydraulic margin on the primary pulley 42 side where the hydraulic control accuracy is poor. Moreover, since only the thrust control accuracy (hydraulic control accuracy) on the secondary pulley 46 side is relatively improved, an increase in cost is suppressed.
  • the primary pulley side shift control thrust Winsh necessary for the shift control calculated based on the target secondary thrust Wout * is set as the target primary thrust Win *.
  • the target shift can be realized while preventing belt slippage in the primary pulley 42 without adding a hydraulic pressure variation in the relatively inferior primary pulley 42.
  • the feedback control of the primary thrust Win based on the gear ratio deviation ⁇ between the target gear ratio ⁇ * and the actual gear ratio ⁇ or the deviation ⁇ Xin between the target pulley position Xin * and the actual pulley position Xin. Since the target primary thrust Win * is corrected by the above, for example, it is possible to compensate for the hydraulic pressure variation in the primary pulley 42 with relatively poor thrust control accuracy. Accordingly, it is possible to suppress deterioration in fuel consumption due to variations in hydraulic pressure, and appropriately achieve target shift and belt slip prevention with the minimum necessary pulley thrust.
  • the thrust required for the speed change control (secondary pulley side speed change control thrust Woutsh, primary pulley side speed change control thrust Winsh) is determined by the target speed ratio ⁇ * and the target speed change speed (primary side target speed). Since the thrust is necessary for realizing the shift speed (dXin / dNelmin) and the secondary target shift speed (dXout / dNelmout), for example, the thrust necessary for shift control is appropriately calculated.
  • the slip limit thrust Wlmt so is calculated on the basis of the input torque T IN of the actual speed ratio ⁇ and the continuously variable transmission 18, for example, the slip limit thrust Wlmt is properly calculated, the belt The necessary thrust for preventing slipping is appropriately secured.
  • the hydraulic control circuit 100 includes the secondary pressure sensor 78 for detecting the actual secondary pressure Pout acting on the secondary pulley 46 only on the secondary pulley 46 side. Since feedback control is performed with the value set as the target secondary pressure Pout * corresponding to the target secondary thrust Wout * , for example, the thrust on the secondary pulley 46 side is accurate compared to the primary pulley 42 side where no hydraulic sensor is provided. (Pulley pressure) can be controlled.
  • the predetermined thrust corresponding to the variation with respect to the physical characteristics related to the calculation of the secondary pulley 46 side thrust (secondary balance thrust Woutbl and secondary shift difference thrust ⁇ Wout) based on the primary pulley side slip limit thrust Winlmt.
  • (Control margin) Wmgn is added to the primary pulley side slip limit thrust Winlmt prior to the calculation of the thrust on the secondary pulley 46 side, so for example, belt slippage in the primary pulley 42 with relatively poor thrust control accuracy is reliably prevented. The necessary thrust to do this is adequately secured.
  • the secondary pulley 46 is provided with the hydraulic control circuit 100 that can control the thrust (pulley pressure) with higher accuracy than the primary pulley 42.
  • the primary pulley 42 side is provided with a hydraulic control circuit 100 that can control the thrust with high precision compared to the secondary pulley 46 side.
  • the slip limit thrust on the primary pulley 42 side and the slip limit thrust on the secondary pulley 46 side are ensured, that is, the belt torque capacity guarantee of both pulleys 42 and 46 is realized.
  • the hydraulic control accuracy is the relatively poor secondary pulley 46 side, to set the target primary thrust force Win * to the target secondary thrust Wout corresponding *, to realize the shift of the target.
  • feedback control based on the gear ratio deviation ⁇ is executed in order to avoid fuel consumption deterioration due to the hydraulic pressure variation on the secondary pulley 46 side.
  • the present invention is provided if the hydraulic control circuit 100 capable of accurately controlling the thrust of one of the primary pulley 42 and the secondary pulley 46 compared to the other pulley is provided. Can be applied.
  • the thrust can be controlled with high accuracy by providing the hydraulic pressure sensor capable of detecting the pulley pressure as compared with the pulley side where the hydraulic pressure sensor is not provided.
  • the hydraulic pressure sensor capable of detecting the pulley pressure as compared with the pulley side where the hydraulic pressure sensor is not provided.
  • the hydraulic sensor need not be provided.
  • the torque converter 14 provided with the lock-up clutch 26 is used as the fluid transmission device.
  • the lock-up clutch 26 is not necessarily provided.
  • other fluid transmission devices such as a fluid coupling (fluid coupling) having no torque amplification effect may be used.
  • a starting mechanism such as a starting clutch is provided, or an engaging device or the like capable of connecting / disconnecting the power transmission path is provided, the fluid transmission device May not be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 油圧制御精度が良くない方のプーリ側の油圧マージン分を削って燃費向上を図る。 セカンダリプーリ側滑り限界推力Woutlmtと、プライマリプーリ側滑り限界推力Winlmtに基づいて算出される変速制御の為に必要なセカンダリプーリ46側のセカンダリプーリ側変速制御推力Woutshとのうちの大きい方が目標セカンダリ推力Woutとして選択されるので、油圧制御精度が比較的良いセカンダリプーリ46側にて、セカンダリプーリ46におけるベルト滑り防止の為の必要推力が確保されることはもちろんのこと、油圧制御精度が比較的劣るプライマリプーリ42におけるベルト滑り防止の為の必要推力も確保される。また、ベルト滑り防止の為の推力は油圧制御精度が比較的良いセカンダリプーリ46側にて制御されることから、目標セカンダリ推力Woutの設定時に、プライマリプーリ42における油圧ばらつき分を加える必要が無い。

Description

車両用無段変速機の制御装置
 本発明は、入力側推力及び出力側推力を各々制御することでベルト滑りを防止しつつ目標変速比を実現する車両用無段変速機(ベルト式無段変速機)の制御装置に関するものである。
 入力側可変プーリ(プライマリプーリ、プライマリシーブ)及び出力側可変プーリ(セカンダリプーリ、セカンダリシーブ)の有効径が可変の一対の可変プーリと、その一対の可変プーリの間に巻き掛けられた伝動ベルトとを有し、プライマリプーリにおける入力側推力(プライマリ推力)及びセカンダリプーリにおける出力側推力(セカンダリ推力)を各々制御することで伝動ベルトの滑りを防止しつつ実際の変速比を目標変速比とする車両用無段変速機(以下、無段変速機)の制御装置が良く知られている。特許文献1に記載されたベルト式無段変速機の変速制御装置がそれである。このような無段変速機では、例えばセカンダリ側の目標推力(目標セカンダリ推力)を、セカンダリプーリにてベルト滑りを発生させない為に最低限必要な滑り限界推力(必要セカンダリ推力)に設定する。加えて、プライマリ側の目標推力(目標プライマリ推力)を、目標変速比を維持する為の推力比(=セカンダリ推力/プライマリ推力)に基づいて目標セカンダリ推力に対してバランスするバランス推力(定常推力)と、変速比を変化させるときの目標変速速度を実現する為の変速差推力(過渡推力)との和(合計推力)に設定する。そして、各々設定された推力が得られるように各プーリへの油圧を制御することで、ベルト滑りの発生が防止されつつ目標変速比が実現される。
 ここで、例えば無段変速機のダウンシフトを実行する場合を考える。ダウンシフトでは、プライマリ側の変速差推力が負の値となることから、設定される目標プライマリ推力がプライマリプーリにてベルト滑りを発生させない為に最低限必要な滑り限界推力(必要プライマリ推力)を下回り易く、ベルト滑りを生じさせる可能性がある。尚、アップシフトでは、プライマリ側の変速差推力が正の値となることから、設定される目標プライマリ推力が必要プライマリ推力を下回り難いものの、プライマリ側のバランス推力等によっては必要プライマリ推力を下回ってベルト滑りを生じさせる可能性がある。このような目標プライマリ推力が必要プライマリ推力を下回ることに対して、上記特許文献1には、目標プライマリ推力が必要プライマリ推力より小さいときは、プライマリ側にて滑り限界推力を目標プライマリ推力として設定し、セカンダリ側にて変速の為のバランス推力と変速差推力との合計推力を目標セカンダリ推力として設定することで、必要最小限のプーリ推力を用いてベルト滑りの発生を防止しつつ、目標とする変速を実現することが提案されている。つまり、特許文献1では、滑り限界推力(必要セカンダリ推力)に設定された目標セカンダリ推力に対応する変速制御の為の目標プライマリ推力が滑り限界推力(必要プライマリ推力)よりも小さくなるか否かを判定し、判定結果に基づいてプライマリ側とセカンダリ側とでベルト滑り防止を保証する機能と目標とする変速を実現する機能とを入れ替えることで、最小限の推力で変速とベルト滑り防止を実現している。
特許第3042684号公報
 ところで、ベルト滑り防止を保証する一方のプーリ側では、例えばその一方のプーリ側の油圧制御精度が良いことが前提となる。つまり、油圧指令値に対して実油圧に油圧ばらつきが存在することを考慮すると、滑り限界推力に設定した目標推力に実推力を合わせ込むには、例えば一方のプーリ側への実油圧を検出する油圧センサを備え、油圧センサの検出値が目標推力に対応する一方のプーリ側への目標油圧となるようにフィードバック制御できることが望まれる。尚、目標とする変速を実現する他方のプーリ側では、実変速比が目標変速比となるようにフィードバック制御によりその他方のプーリ側の推力を補正することができるので、必ずしもその他方のプーリ側の油圧制御精度が良いことを前提としなくとも良い。
 そうすると、前記特許文献1にて提案された技術では、プライマリ側とセカンダリ側との両方の油圧制御精度が良ければ、例えば両プーリへの各プーリ圧を検出する油圧センサが各々設けられていれば、ベルト滑り防止を保証する機能と目標とする変速を実現する機能とを入れ替えても問題は生じない。しかしながら、プライマリ側とセカンダリ側との両方の油圧制御精度を良くするのはコストアップとなる。また、コストを低減する為に、一方のプーリ側しか油圧制御精度を良くしない場合、他方のプーリ側の油圧制御精度は一方のプーリ側より劣るので、例えば以下に示すような問題が生じる。すなわち、例えば一方のプーリ側にのみ上記油圧センサが備えられているハード構成の場合、油圧制御精度が劣る他方のプーリ側の目標推力を滑り限界推力に設定する変速状態にて確実にベルト滑り防止を保証する為には、その目標推力を例えば「滑り限界推力+どんなに油圧がばらついてもその滑り限界推力が確実に得られる為の所定の他方のプーリ側油圧ばらつきに相当する推力分」に設定する必要がある。その為、目標の変速を実現する為に、他方のプーリ側の目標推力に対して推力比に基づいてバランスしようとすると、上記「他方のプーリ側油圧ばらつきに相当する推力分」に対応して一方のプーリ側の目標推力(或いは目標油圧)も増大させなければならず、燃費が悪化する可能性がある。尚、上述したような課題は未公知であり、片方のプーリ側のみ油圧制御精度が良いベルト式無段変速機において、油圧ばらつき分による燃費の悪化を抑制することについて未だ提案されていない。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、油圧制御精度が良くない方のプーリ側の油圧マージン分を削って燃費向上を図ることができる車両用無段変速機の制御装置を提供することにある。
 前記目的を達成するための本発明の要旨とするところは、(a) 入力側可変プーリ及び出力側可変プーリの有効径が可変の一対の可変プーリと、その一対の可変プーリの間に巻き掛けられた伝動ベルトとを有し、その入力側可変プーリにおける入力側推力及びその出力側可変プーリにおける出力側推力を各々制御することでその伝動ベルトの滑りを防止しつつ実変速比を目標変速比とする車両用無段変速機の制御装置であって、(b) 前記入力側可変プーリ及び前記出力側可変プーリの一方を、他方と比較して、精度良く推力を制御できる油圧制御回路が備えられており、(c) 前記一方の側の目標推力として、ベルト滑り防止の為に必要なその一方の側の滑り限界推力と、ベルト滑り防止の為に必要な前記他方の側の滑り限界推力に基づいて算出される変速制御の為に必要なその一方の側の推力とのうちの大きい方を選択することにある。
 このようにすれば、ベルト滑り防止の為に必要なその一方の側の滑り限界推力と、ベルト滑り防止の為に必要な前記他方の側の滑り限界推力に基づいて算出される変速制御の為に必要なその一方の側の推力とのうちの大きい方が前記一方の側の目標推力として選択されるので、推力制御精度(油圧制御精度)が比較的良い一方の可変プーリ側にて、一方の可変プーリにおけるベルト滑り防止の為の必要推力が確保されることはもちろんのこと、推力制御精度が比較的劣る他方の可変プーリにおけるベルト滑り防止の為の必要推力も確保される。また、ベルト滑り防止の為の推力は推力制御精度が比較的良い一方の可変プーリ側にて制御されることから、目標推力の設定時に他方の可変プーリにおける油圧ばらつき分を加える必要が無い。つまり、その油圧ばらつき分を加えることなく、一方の可変プーリ側にて両可変プーリにおけるベルト滑り防止の為の必要推力が確保される。よって、油圧制御精度が良くない方のプーリ側の油圧マージン分を削って燃費向上を図ることができる。
 ここで、好適には、前記他方の側の目標推力として、前記一方の側の目標推力に基づいて算出される変速制御の為に必要なその他方の側の推力を設定することにある。このようにすれば、推力制御精度が比較的劣る他方の可変プーリにおける油圧ばらつき分を加えることなくその他方の可変プーリにおけるベルト滑りを防止しつつ、目標の変速を実現することができる。
 また、好適には、前記他方の側の目標推力は、目標変速比と実変速比との偏差或いは目標プーリ位置と実プーリ位置との偏差に基づいたその他方の側の推力のフィードバック制御により補正されることにある。このようにすれば、推力制御精度が比較的劣る他方の可変プーリにおける油圧ばらつき分を補償することができる。従って、油圧ばらつき分による燃費悪化を抑制でき、必要最小限のプーリ推力で目標の変速とベルト滑り防止とを適切に実現することができる。
 また、好適には、前記変速制御の為に必要な推力は、目標変速比及び目標変速速度を実現する為に必要な推力である。このようにすれば、変速制御の為に必要な推力が適切に算出される。
 また、好適には、前記滑り限界推力は、実変速比と前記車両用無段変速機の入力トルクとに基づいて算出されることにある。このようにすれば、前記滑り限界推力が適切に算出され、ベルト滑り防止の為の必要推力が適切に確保される。
 また、好適には、前記油圧制御回路は、前記一方の側のみに、その一方の可変プーリに作用する実プーリ圧を検出する為の油圧センサを備え、前記油圧センサの検出値を前記一方の側の目標推力に対応する目標プーリ圧とするフィードバック制御を実行することにある。このようにすれば、一方の側を、他方と比較して、精度良く推力を制御することができる。
 また、好適には、前記他方の側の滑り限界推力に基づく前記一方の側の推力の算出に関わるばらつき分に対応する所定推力を、その算出に先立って、その他方の側の滑り限界推力に加算することにある。このようにすれば、推力制御精度が比較的劣る他方の可変プーリにおけるベルト滑りを確実に防止する為の必要推力が適切に確保される。尚、上記算出に関わるばらつき分は、例えば油圧ばらつき分(油圧指令値に対する実油圧のずれ分)とは異なるものであり、前記他方の側の滑り限界推力に基づいて前記一方の側の推力を算出する際に用いる例えば所定の特性などの個体ばらつき(ユニットばらつき)である。また、上記油圧ばらつき分は、例えばユニットによっては比較的大きな値となるが、上記算出に関わるばらつき分は、油圧ばらつき分と比べて極めて小さな値である。
本発明が適用される車両を構成する動力伝達経路の概略構成を説明する図である。 車両に設けられた制御系統の要部を説明するブロック線図である。 油圧制御回路のうち無段変速機の変速に関する油圧制御に関する要部を示す油圧回路図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図である。 変速制御の為に必要な推力を説明する為の一例を示す図である。 本実施例の制御構造を示すブロック図である。 無段変速機の変速に関する油圧制御において目標入力軸回転速度を求める際に用いられる変速マップの一例を示す図である。 吸入空気量をパラメータとしてエンジン回転速度とエンジントルクとの予め実験的に求められて記憶されたマップの一例を示す図である。 トルクコンバータの所定の作動特性として予め実験的に求められて記憶されたマップの一例を示す図である。 目標変速比をパラメータとして安全率の逆数と推力比との予め実験的に求められて記憶された推力比マップの一例を示す図である。 目標変速速度とセカンダリ変速差推力との予め実験的に求められて記憶された差推力マップの一例を示す図である。 電子制御装置の制御作動の要部すなわち油圧制御精度が良くないプライマリプーリ側の油圧マージン分を削って燃費向上を図る為の制御作動を説明するフローチャートである。
 本発明において、好適には、前記入力側可変プーリや出力側可変プーリに作用させるプーリ圧をそれぞれ独立に制御するように油圧制御回路を構成することで、前記入力側推力及び出力側推力が各々直接的に或いは間接的に制御される。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用される車両10を構成するエンジン12から駆動輪24までの動力伝達経路の概略構成を説明する図である。図1において、例えば走行用の駆動力源として用いられるエンジン12により発生させられた動力は、流体式伝動装置としてのトルクコンバータ14、前後進切換装置16、車両用無段変速機としてのベルト式無段変速機(以下、無段変速機(CVT)という)18、減速歯車装置20、差動歯車装置22などを順次介して、左右の駆動輪24へ伝達される。
 トルクコンバータ14は、エンジン12のクランク軸13に連結されたポンプ翼車14p、及びトルクコンバータ14の出力側部材に相当するタービン軸30を介して前後進切換装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行うようになっている。また、それ等のポンプ翼車14p及びタービン翼車14tの間にはロックアップクラッチ26が設けられており、このロックアップクラッチ26が完全係合させられることによってポンプ翼車14p及びタービン翼車14tは一体回転させられる。ポンプ翼車14pには、無段変速機18を変速制御したり、無段変速機18におけるベルト挟圧力を発生させたり、ロックアップクラッチ26のトルク容量を制御したり、前後進切換装置16における動力伝達経路を切り換えたり、車両10の動力伝達経路の各部に潤滑油を供給したりする為の作動油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ28が連結されている。
 前後進切換装置16は、前進用クラッチC1及び後進用ブレーキB1とダブルピニオン型の遊星歯車装置16pとを主体として構成されており、トルクコンバータ14のタービン軸30はサンギヤ16sに一体的に連結され、無段変速機18の入力軸32はキャリア16cに一体的に連結されている一方、キャリア16cとサンギヤ16sとは前進用クラッチC1を介して選択的に連結され、リングギヤ16rは後進用ブレーキB1を介して非回転部材としてのハウジング34に選択的に固定されるようになっている。前進用クラッチC1及び後進用ブレーキB1は断続装置に相当するもので、何れも油圧シリンダによって摩擦係合させられる油圧式摩擦係合装置である。
 このように構成された前後進切換装置16では、前進用クラッチC1が係合されると共に後進用ブレーキB1が解放されると、前後進切換装置16は一体回転状態とされることによりタービン軸30が入力軸32に直結され、前進用動力伝達経路が成立(達成)させられて、前進方向の駆動力が無段変速機18側へ伝達される。また、後進用ブレーキB1が係合されると共に前進用クラッチC1が解放されると、前後進切換装置16は後進用動力伝達経路が成立(達成)させられて、入力軸32はタービン軸30に対して逆方向へ回転させられるようになり、後進方向の駆動力が無段変速機18側へ伝達される。また、前進用クラッチC1及び後進用ブレーキB1が共に解放されると、前後進切換装置16は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)とされる。
 エンジン12は、例えばガソリンエンジンやディーゼルエンジン等の内燃機関にて構成されている。このエンジン12の吸気配管36には、スロットルアクチュエータ38を用いてエンジン12の吸入空気量QAIRを電気的に制御する為の電子スロットル弁40が備えられている。
 無段変速機18は、入力軸32に設けられた入力側部材である有効径が可変の入力側可変プーリ(プライマリプーリ、プライマリシーブ)42及び出力軸44に設けられた出力側部材である有効径が可変の出力側可変プーリ(セカンダリプーリ、セカンダリシーブ)46の一対の可変プーリ42,46と、その一対の可変プーリ42,46の間に巻き掛けられた伝動ベルト48とを備えており、一対の可変プーリ42,46と伝動ベルト48との間の摩擦力を介して動力伝達が行われる。
 プライマリプーリ42は、入力軸32に固定された入力側固定回転体としての固定回転体(固定シーブ)42aと、入力軸32に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた入力側可動回転体としての可動回転体(可動シーブ)42bと、それらの間のV溝幅を変更する為のプライマリプーリ42における入力側推力(プライマリ推力)Win(=プライマリ圧Pin×受圧面積)を付与する油圧アクチュエータとしての入力側油圧シリンダ(プライマリ側油圧シリンダ)42cとを備えて構成されている。また、セカンダリプーリ46は、出力軸44に固定された出力側固定回転体としての固定回転体(固定シーブ)46aと、出力軸44に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた出力側可動回転体としての可動回転体(可動シーブ)46bと、それらの間のV溝幅を変更する為のセカンダリプーリ46における出力側推力(セカンダリ推力)Wout(=セカンダリ圧Pout×受圧面積)を付与する油圧アクチュエータとしての出力側油圧シリンダ(セカンダリ側油圧シリンダ)46cとを備えて構成されている。
 そして、プライマリ側油圧シリンダ42cへの油圧であるプライマリ圧Pin及びセカンダリ側油圧シリンダ46cへの油圧であるセカンダリ圧Poutが油圧制御回路100(図3参照)によって各々独立に調圧制御されることにより、プライマリ推力Win及びセカンダリ推力Woutが各々直接的に或いは間接的に制御される。これにより、一対の可変プーリ42,46のV溝幅が変化して伝動ベルト48の掛かり径(有効径)が変更され、変速比(ギヤ比)γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化させられると共に、伝動ベルト48が滑りを生じないように一対の可変プーリ42,46と伝動ベルト48との間の摩擦力(ベルト挟圧力)が制御される。このように、プライマリ推力Win及びセカンダリ推力Woutが各々制御されることで伝動ベルト48の滑りが防止されつつ実際の変速比(実変速比)γが目標変速比γとされる。尚、入力軸回転速度NINは入力軸32の回転速度であり、出力軸回転速度NOUTは出力軸44の回転速度である。また、本実施例では図1から判るように、入力軸回転速度NINはプライマリプーリ42の回転速度と同一であり、出力軸回転速度NOUTはセカンダリプーリ46の回転速度と同一である。
 無段変速機18では、例えばプライマリ圧Pinが高められると、プライマリプーリ42のV溝幅が狭くされて変速比γが小さくされるすなわち無段変速機18がアップシフトされる。また、プライマリ圧Pinが低められると、プライマリプーリ42のV溝幅が広くされて変速比γが大きくされるすなわち無段変速機18がダウンシフトされる。従って、プライマリプーリ42のV溝幅が最小とされるところで、無段変速機18の変速比γとして最小変速比γmin(最高速側変速比、最Hi)が形成される。また、プライマリプーリ42のV溝幅が最大とされるところで、無段変速機18の変速比γとして最大変速比γmax(最低速側変速比、最Low)が形成される。尚、プライマリ圧Pin(プライマリ推力Winも同意)とセカンダリ圧Pout(セカンダリ推力Woutも同意)とにより伝動ベルト48の滑り(ベルト滑り)が防止されつつ、それらプライマリ推力Winとセカンダリ推力Woutとの相互関係にて目標変速比γが実現されるものであり、一方のプーリ圧(推力も同意)のみで目標の変速が実現されるものではない。
 図2は、エンジン12や無段変速機18などを制御する為に車両10に設けられた制御系統の要部を説明するブロック線図である。図2において、車両10には、例えば無段変速機18の変速制御などに関連する車両用無段変速機の制御装置を含む電子制御装置50が備えられている。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置50は、エンジン12の出力制御、無段変速機18の変速制御やベルト挟圧力制御、ロックアップクラッチ26のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用、無段変速機18及びロックアップクラッチ26の油圧制御用等に分けて構成される。
 電子制御装置50には、エンジン回転速度センサ52により検出されたクランク軸13の回転角度(位置)ACR及びエンジン12の回転速度(エンジン回転速度)Nを表す信号、タービン回転速度センサ54により検出されたタービン軸30の回転速度(タービン回転速度)Nを表す信号、入力軸回転速度センサ56により検出された無段変速機18の入力回転速度である入力軸回転速度NINを表す信号、出力軸回転速度センサ58により検出された車速Vに対応する無段変速機18の出力回転速度である出力軸回転速度NOUTを表す信号、スロットルセンサ60により検出された電子スロットル弁40のスロットル弁開度θTHを表す信号、冷却水温センサ62により検出されたエンジン12の冷却水温THを表す信号、吸入空気量センサ64により検出されたエンジン12の吸入空気量QAIRを表す信号、アクセル開度センサ66により検出された運転者の加速要求量としてのアクセルペダルの操作量であるアクセル開度Accを表す信号、フットブレーキスイッチ68により検出された常用ブレーキであるフットブレーキが操作された状態を示すブレーキオンBONを表す信号、CVT油温センサ70により検出された無段変速機18等の作動油の油温THOILを表す信号、レバーポジションセンサ72により検出されたシフトレバーのレバーポジション(操作位置)PSHを表す信号、バッテリセンサ76により検出されたバッテリ温度THBATやバッテリ入出力電流(バッテリ充放電電流)IBATやバッテリ電圧VBATを表す信号、セカンダリ圧センサ78により検出されたセカンダリプーリ46への供給油圧であるセカンダリ圧Poutを表す信号等が、それぞれ供給される。尚、電子制御装置50は、例えば上記バッテリ温度THBAT、バッテリ充放電電流IBAT、及びバッテリ電圧VBATなどに基づいてバッテリ(蓄電装置)の充電状態(充電容量)SOCを逐次算出する。また、電子制御装置50は、例えば出力軸回転速度NOUTと入力軸回転速度NINとに基づいて無段変速機18の実変速比γ(=NIN/NOUT)を逐次算出する。
 また、電子制御装置50からは、エンジン12の出力制御の為のエンジン出力制御指令信号S、無段変速機18の変速に関する油圧制御の為の油圧制御指令信号SCVT等が、それぞれ出力される。具体的には、上記エンジン出力制御指令信号Sとして、スロットルアクチュエータ38を駆動して電子スロットル弁40の開閉を制御する為のスロットル信号や燃料噴射装置80から噴射される燃料の量を制御する為の噴射信号や点火装置82によるエンジン12の点火時期を制御する為の点火時期信号などが出力される。また、上記油圧制御指令信号SCVTとして、プライマリ圧Pinを調圧するリニアソレノイド弁SLPを駆動する為の指令信号、セカンダリ圧Poutを調圧するリニアソレノイド弁SLSを駆動する為の指令信号、ライン油圧Pを制御するリニアソレノイド弁SLTを駆動する為の指令信号などが油圧制御回路100へ出力される。
 図3は、油圧制御回路100のうち無段変速機18の変速に関する油圧制御に関する要部を示す油圧回路図である。図3において、油圧制御回路100は、例えばオイルポンプ28、プライマリ圧Pinを調圧するプライマリ圧コントロールバルブ110、セカンダリ圧Poutを調圧するセカンダリ圧コントロールバルブ112、プライマリレギュレータバルブ(ライン油圧調圧弁)114、モジュレータバルブ116、リニアソレノイド弁SLT、リニアソレノイド弁SLP、リニアソレノイド弁SLS等を備えている。
 ライン油圧Pは、例えばオイルポンプ28から出力(発生)される作動油圧を元圧として、リリーフ型のプライマリレギュレータバルブ114によりリニアソレノイド弁SLTの出力油圧である制御油圧PSLTに基づいてエンジン負荷等に応じた値に調圧される。具体的には、ライン油圧Pは、プライマリ圧Pin及びセカンダリ圧Poutの高い方の油圧に所定の余裕分(マージン)を加えた油圧が得られるように設定された制御油圧PSLTに基づいて調圧される。従って、プライマリ圧コントロールバルブ110及びセカンダリ圧コントロールバルブ112の調圧動作において元圧であるライン油圧Pが不足するということが回避されると共に、ライン油圧Pが不必要に高くされないようにすることが可能である。また、モジュレータ油圧Pは、電子制御装置50によって制御される制御油圧PSLT、リニアソレノイド弁SLPの出力油圧である制御油圧PSLP、及びリニアソレノイド弁SLSの出力油圧である制御油圧PSLSの各元圧となるものであって、ライン油圧Pを元圧としてモジュレータバルブ116により一定圧に調圧される。
 プライマリ圧コントロールバルブ110は、軸方向へ移動可能に設けられることにより入力ポート110iを開閉してライン油圧Pを入力ポート110iから出力ポート110tを経てプライマリプーリ42へ供給可能にするスプール弁子110aと、そのスプール弁子110aを開弁方向へ付勢する付勢手段としてのスプリング110bと、そのスプリング110bを収容し且つスプール弁子110aに開弁方向の推力を付与するために制御油圧PSLPを受け入れる油室110cと、スプール弁子110aに閉弁方向の推力を付与する為に出力ポート110tから出力されたライン油圧Pを受け入れるフィードバック油室110dと、スプール弁子110aに閉弁方向の推力を付与するためにモジュレータ油圧Pを受け入れる油室110eとを備えている。このように構成されたプライマリ圧コントロールバルブ110は、例えば制御油圧PSLPをパイロット圧としてライン油圧Pを調圧制御してプライマリプーリ42のプライマリ側油圧シリンダ42cに供給する。これにより、そのプライマリ側油圧シリンダ42cに供給されるプライマリ圧Pinが制御される。例えば、プライマリ側油圧シリンダ42cに所定の油圧が供給されている状態から、リニアソレノイド弁SLPが出力する制御油圧PSLPが増大すると、プライマリ圧コントロールバルブ110のスプール弁子110aが図3の上側に移動する。これにより、プライマリ側油圧シリンダ42cへのプライマリ圧Pinが増大する。一方で、プライマリ側油圧シリンダ42cに所定の油圧が供給されている状態から、リニアソレノイド弁SLPが出力する制御油圧PSLPが低下すると、プライマリ圧コントロールバルブ110のスプール弁子110aが図3の下側に移動する。これにより、プライマリ側油圧シリンダ42cへのプライマリ圧Pinが低下する。
 また、プライマリ側油圧シリンダ42cとプライマリ圧コントロールバルブ110との間の油路118には、フェールセーフ等を目的として、オリフィス120が設けられている。このオリフィス120が設けられていることにより、例えばリニアソレノイド弁SLPが故障してもプライマリ側油圧シリンダ42cの内圧が急減しないようにされている。これにより、例えばリニアソレノイド弁SLPの故障に起因した車両10の急減速が抑制される。
 セカンダリ圧コントロールバルブ112は、軸方向へ移動可能に設けられることにより入力ポート112iを開閉してライン油圧Pを入力ポート112iから出力ポート112tを経てセカンダリプーリ46へセカンダリ圧Poutとして供給可能にするスプール弁子112aと、そのスプール弁子112aを開弁方向へ付勢する付勢手段としてのスプリング112bと、そのスプリング112bを収容し且つスプール弁子112aに開弁方向の推力を付与するために制御油圧PSLSを受け入れる油室112cと、スプール弁子112aに閉弁方向の推力を付与するために出力ポート112tから出力されたセカンダリ圧Poutを受け入れるフィードバック油室112dと、スプール弁子112aに閉弁方向の推力を付与するためにモジュレータ油圧Pを受け入れる油室112eとを備えている。このように構成されたセカンダリ圧コントロールバルブ112は、例えば制御油圧PSLSをパイロット圧としてライン油圧Pを調圧制御してセカンダリプーリ46のセカンダリ側油圧シリンダ46cに供給する。これにより、そのセカンダリ側油圧シリンダ46cに供給されるセカンダリ圧Poutが制御される。例えば、セカンダリ側油圧シリンダ46cに所定の油圧が供給されている状態から、リニアソレノイド弁SLSが出力する制御油圧PSLSが増大すると、セカンダリ圧コントロールバルブ112のスプール弁子112aが図3の上側に移動する。これにより、セカンダリ側油圧シリンダ46cへのセカンダリ圧Poutが増大する。一方で、セカンダリ側油圧シリンダ46cに所定の油圧が供給されている状態から、リニアソレノイド弁SLSが出力する制御油圧PSLSが低下すると、セカンダリ圧コントロールバルブ112のスプール弁子112aが図3の下側に移動する。これにより、セカンダリ側油圧シリンダ46cへのセカンダリ圧Poutが低下する。
 また、セカンダリ側油圧シリンダ46cとセカンダリ圧コントロールバルブ112との間の油路122には、フェールセーフ等を目的として、オリフィス124が設けられている。このオリフィス124が設けられていることにより、例えばリニアソレノイド弁SLSが故障してもセカンダリ側油圧シリンダ46cの内圧が急減しないようにされている。これにより、例えばリニアソレノイド弁SLSの故障に起因したベルト滑りが防止される。
 このように構成された油圧制御回路100において、例えばリニアソレノイド弁SLPにより調圧されるプライマリ圧Pin及びリニアソレノイド弁SLSにより調圧されるセカンダリ圧Poutは、ベルト滑りを発生させず且つ不必要に大きくならないベルト挟圧力を一対の可変プーリ42,46に発生させるように制御される。また、後述するように、プライマリ圧Pinとセカンダリ圧Poutとの相互関係で、一対の可変プーリの42,46の推力比τ(=Wout/Win)が変更されることにより無段変速機18の変速比γが変更される。例えば、その推力比τが大きくされるほど変速比γが大きくされる(すなわち無段変速機18はダウンシフトされる)。
 図4は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。図4において、エンジン出力制御部すなわちエンジン出力制御手段130は、例えばエンジン12の出力制御の為にスロットル信号や噴射信号や点火時期信号などのエンジン出力制御指令信号Sをそれぞれスロットルアクチュエータ38や燃料噴射装置80や点火装置82へ出力する。例えば、エンジン出力制御手段130は、アクセル開度Accに応じた駆動力(駆動トルク)が得られる為の目標エンジントルクT を設定し、その目標エンジントルクT が得られるようにスロットルアクチュエータ38により電子スロットル弁40を開閉制御する他、燃料噴射装置80により燃料噴射量を制御したり、点火装置82により点火時期を制御する。
 無段変速機制御部すなわち無段変速機制御手段132は、例えば無段変速機18のベルト滑りが発生しないようにしつつ無段変速機18の目標変速比γを達成するように、プライマリ圧Pinの指令値(又は目標プライマリ圧Pin)としてのプライマリ指示圧Pintgtとセカンダリ圧Poutの指令値(又は目標セカンダリ圧Pout)としてのセカンダリ指示圧Pouttgtとを決定し、プライマリ指示圧Pintgtとセカンダリ指示圧Pouttgtとを油圧制御回路100へ出力する。
 ところで、本実施例の油圧制御回路100は、一対の可変プーリの42,46の一方の側であるセカンダリプーリ46側のみに、そのセカンダリプーリ46(セカンダリ側油圧シリンダ46c)に作用する実セカンダリ圧Poutを検出する為の油圧センサとしてのセカンダリ圧センサ78を備えている。その為、無段変速機制御手段132は、例えばセカンダリ圧センサ78の検出値(実セカンダリ圧Poutを表す信号)を目標セカンダリ推力Woutに対応する目標セカンダリ圧Poutとするフィードバック制御を実行することができる。これによって、セカンダリプーリ46側では、油圧センサが備えられていないプライマリプーリ42側と比較して、精度良く推力(プーリ圧)を制御することができる。つまり、本実施例では、プライマリプーリ42及びセカンダリプーリ46の一方であるセカンダリプーリ46を、他方であるプライマリプーリ42と比較して、精度良く推力(プーリ圧)を制御することができる油圧制御回路100が備えられている。
 従って、必要最小限の推力でベルト滑りを防止する為に必要な推力(必要推力)すなわちベルト滑りが発生する直前の推力であるベルト滑り限界推力(以下、滑り限界推力)を目標推力として設定する場合、比較的油圧制御精度が劣る(すなわち油圧センサの検出値と目標値との偏差に基づくフィードバック制御できない)プライマリプーリ42側では、確実に滑り限界推力を確保する為に、油圧指令値(プライマリ指示圧Pintgt)と実油圧(実プライマリ圧Pin)とのずれである油圧ばらつきに相当する推力分をその滑り限界推力に上乗せする必要がある。そうすると、目標の変速を実現する為の推力比τ(=Wout/Win)に基づくプライマリ圧Pin(プライマリ推力Win)とセカンダリ圧Pout(セカンダリ推力Wout)との相互関係から、プライマリプーリ42側油圧ばらつきに相当する推力分に対応して目標セカンダリ推力Woutも増大させなければならず、燃費が悪化する可能性がある。尚、油圧センサを備えなくとも、目標変速比γと実変速比γとの変速比偏差Δγ(=γ-γ)に基づくフィードバック制御により推力を補正することは可能であるので、目標の変速を実現することに関しては、必ずしも油圧制御精度が良い必要はない。
 そこで、本実施例では、例えば油圧制御精度が比較的良いセカンダリプーリ46側で、セカンダリプーリ46側の滑り限界推力を確保することはもちろんのこと、プライマリプーリ42側の滑り限界推力も確保する、すなわち両プーリ42,46のベルトトルク容量保証を実現する。また、油圧制御精度が比較的劣るプライマリプーリ42側では、上記ベルト滑りの防止を保証する為の目標セカンダリ推力Woutに対応した目標プライマリ推力Winを設定し、目標の変速を実現する。この際、プライマリプーリ42側の油圧ばらつき分による燃費悪化を避ける為、変速比偏差Δγに基づいたフィードバック制御を実行する。
 具体的には、無段変速機制御手段132は、例えばセカンダリプーリ46側の滑り限界推力であるセカンダリプーリ側滑り限界推力Woutlmtと、プライマリプーリ42側の滑り限界推力であるプライマリプーリ側滑り限界推力Winlmtに基づいて算出される変速制御の為に必要なセカンダリプーリ46側の推力であるセカンダリプーリ側変速制御推力Woutshとのうちの大きい方を、目標セカンダリ推力Woutとして選択する。また、無段変速機制御手段132は、例えば上記選択した目標セカンダリ推力Woutに基づいて算出される変速制御の為に必要なプライマリプーリ42側の推力であるプライマリプーリ側変速制御推力Winshを、目標プライマリ推力Winとして設定する。また、無段変速機制御手段132は、例えば目標変速比γと実変速比γとの変速比偏差Δγに基づいたプライマリ推力Winのフィードバック制御により、目標プライマリ推力Win(すなわちプライマリプーリ側変速制御推力Winsh)を補正する。
 尚、この変速比偏差Δγは、変速比γと1対1に対応するパラメータにおける目標値と実際値との偏差であれば良い。例えば、変速比偏差Δγに替えて、プライマリプーリ42側の目標プーリ位置Xinと実プーリ位置Xin(図3参照)との偏差ΔXin(=Xin-Xin)、セカンダリプーリ46側の目標プーリ位置Xoutと実プーリ位置Xout(図3参照)との偏差ΔXout(=Xout-Xout)、プライマリプーリ42側の目標ベルト掛かり径Rinと実ベルト掛かり径Rin(図3参照)との偏差ΔRin(=Rin-Rin)、セカンダリプーリ46側の目標ベルト掛かり径Routと実ベルト掛かり径Rout(図3参照)との偏差ΔRout(=Rout-Rout)、目標入力軸回転速度NIN と実入力軸回転速度NINとの偏差ΔNIN(=NIN -NIN)などを用いることができる。
 また、前記変速制御の為に必要な推力は、例えば目標の変速を実現する為に必要な推力であって、目標変速比γ及び目標変速速度を実現する為に必要な推力である。変速速度は、例えば単位時間当たりの変速比γの変化量dγ(=dγ/dt)であるが、本実施例では、ベルトエレメント(ブロック)1個当たりのプーリ位置移動量(dX/dNelm)として定義する(dX:単位時間当たりのプーリの軸方向変位量[mm/ms]、dNelm:単位時間当たりにプーリに噛み込むエレメント(ブロック)数[個/ms])。よって、目標変速速度としては、プライマリ側目標変速速度(dXin/dNelmin)と、セカンダリ側目標変速速度(dXout/dNelmout)とで表される。具体的には、定常状態(変速比γが一定の状態)でのプライマリ推力Winとセカンダリ推力Woutとをバランス推力(定常推力)Wbl(例えばプライマリバランス推力Winblとセカンダリバランス推力Woutbl)と称し、これらの比が推力比τ(=Woutbl/Winbl)である。また、プライマリ推力Winとセカンダリ推力Woutとが一定の変速比γを保つ定常状態にあるとき、一対の可変プーリ42,46の何れかの推力に、ある推力を加算又は減算すると、定常状態が崩れて変速比γが変化し、加算又は減算した推力の大きさに応じた変速速度(dX/dNelm)が生じる。この加算又は減算した推力のことを変速差推力(過渡推力)ΔW(例えばプライマリ変速差推力ΔWinとセカンダリ変速差推力ΔWout)と称す。従って、前記変速制御の為に必要な推力は、一方の推力が設定された場合、目標変速比γを維持する為の推力比τに基づいて一方の推力に対応する目標変速比γを実現する為の他方のバランス推力Wblと、目標変速比γが変化させられるときの目標変速速度(例えばプライマリ側目標変速速度(dXin/dNelmin)とセカンダリ側目標変速速度(dXout/dNelmout))を実現する為の変速差推力ΔWとの和となる。また、プライマリプーリ42側にて目標の変速を実現する場合の差推力ΔWは、すなわちプライマリプーリ側換算のプライマリ変速差推力ΔWinは、アップシフト状態であれば(ΔWin>0)となり、ダウンシフト状態であれば(ΔWin<0)となり、変速比一定の定常状態であれば(ΔWin=0)となる。また、セカンダリプーリ46側にて目標の変速を実現する場合の差推力ΔWは、すなわちセカンダリプーリ側換算のセカンダリ変速差推力ΔWoutは、アップシフト状態であれば(ΔWout<0)となり、ダウンシフト状態であれば(ΔWout>0)となり、変速比一定の定常状態であれば(ΔWout=0)となる。
 図5は、前記変速制御の為に必要な推力を説明する為の図である。この図5は、例えばセカンダリプーリ46側にてベルト滑り防止を実現するようにセカンダリ推力Woutを設定した場合に、プライマリプーリ42側にて目標のアップシフトを実現するときに設定されるプライマリ推力Winの一例を示している。図5(a)において、t1時点以前或いはt3時点以降では、目標変速比γが一定の定常状態にありΔWin=0とされるので、プライマリ推力Winはプライマリバランス推力Winbl(=Wout/τ)のみとなる。また、t1時点乃至t3時点では、目標変速比γが小さくされるアップシフト状態にあるので、図5(b)に示した図5(a)のt2時点における推力関係図で表されるように、プライマリ推力Winはプライマリバランス推力Winblとプライマリ変速差推力ΔWinとの和となる。図5(b)に示した各推力の斜線部分は、図5(a)のt2時点の目標変速比γを維持する為の各々のバランス推力Wblに相当する。
 図6は、セカンダリプーリ46側にのみセカンダリ圧センサ78が備えられている場合に、必要最小限の推力で目標の変速とベルト滑り防止とを両立する為の制御構造を示すブロック図である。図6において、目標変速比γ及び無段変速機18の入力トルクTINが、例えば無段変速機制御手段132により逐次算出される。
 具体的には、無段変速機制御手段132は、無段変速機18の変速後に達成すべき変速比γである変速後目標変速比γlを決定する。無段変速機制御手段132は、例えば図7に示すようなアクセル開度Accをパラメータとして出力軸回転速度NOUTと目標入力軸回転速度NIN との予め求められて記憶された関係(変速マップ)から実際の出力軸回転速度NOUT及びアクセル開度Accで示される車両状態に基づいて目標入力軸回転速度NIN を設定する。そして、無段変速機制御手段132は、目標入力軸回転速度NIN に基づいて変速後目標変速比γl(=NIN /NOUT)を算出する。図7の変速マップは変速条件に相当するもので、出力軸回転速度NOUTが小さくアクセル開度Accが大きい程大きな変速比γになる目標入力軸回転速度NIN が設定されるようになっている。この変速後目標変速比γlは、無段変速機18の最小変速比γmin(最高速ギヤ比、最Hi)と最大変速比γmax(最低速ギヤ比、最Low)の範囲内で定められる。そして、無段変速機制御手段132は、例えば迅速且つ滑らかな変速が実現されるように予め実験的に設定された関係から、変速開始前の変速比γと変速後目標変速比γlとそれらの差とに基づいて、変速中の過渡的な変速比γの目標値として目標変速比γを決定する。例えば、無段変速機制御手段132は、変速中に逐次変化させる目標変速比γを、変速開始時から変速後目標変速比γlに向かって変化する滑らかな曲線(例えば1次遅れ曲線や2次遅れ曲線)に沿って変化する経過時間の関数として決定する。すなわち、無段変速機制御手段132は、無段変速機18の変速中において、変速開始時からの時間経過に従って変速開始前の変速比γから変速後目標変速比γlに近付くように逐次目標変速比γを変化させる。また、無段変速機制御手段132は、上記経過時間の関数として目標変速比γを決定する際、その目標変速比γから変速中における目標変速速度(プライマリ側目標変速速度(dXin/dNelmin)とセカンダリ側目標変速速度(dXout/dNelmout))を算出する。例えば変速が完了して目標変速比γが一定の定常状態となれば、目標変速速度は零になる。
 また、無段変速機制御手段132は、例えばエンジントルクTにトルクコンバータ14のトルク比t(=トルクコンバータ14の出力トルクであるタービントルクT/トルクコンバータ14の入力トルクであるポンプトルクT)を乗じたトルク(=T×t)として、無段変速機18の入力トルクTINを算出する。また、無段変速機制御手段132は、例えばエンジン12に対する要求負荷としての吸入空気量QAIR(或いはそれに相当するスロットル弁開度θTH等)をパラメータとしてエンジン回転速度NとエンジントルクTとの予め実験的に求められて記憶された図8に示すような関係(マップ、エンジントルク特性図)から、吸入空気量QAIR及びエンジン回転速度Nに基づいて推定エンジントルクTesとして、エンジントルクTを算出する。或いは、このエンジントルクTは、例えばトルクセンサなどにより検出されるエンジン12の実出力トルク(実エンジントルク)Tなどが用いられても良い。また、トルクコンバータ14のトルク比tは、トルクコンバータ14の速度比e(=トルクコンバータ14の出力回転速度であるタービン回転速度N/トルクコンバータ14の入力回転速度であるポンプ回転速度N(エンジン回転速度N))の関数であり、例えば速度比eとトルク比t、効率η、及び容量係数Cとのそれぞれの予め実験的に求められて記憶された図9に示すような関係(マップ、トルクコンバータ14の所定の作動特性図)から、実際の速度比eに基づいて無段変速機制御手段132により算出される。尚、推定エンジントルクTesは、実エンジントルクTそのものを表すように算出されるものであり、特に実エンジントルクTと区別する場合を除き、推定エンジントルクTesを実エンジントルクTとして取り扱うものとする。従って、推定エンジントルクTesには実エンジントルクTも含むものとする。
 また、無段変速機制御手段132は、例えば滑り限界推力Wlmtを算出する限界推力算出部すなわち限界推力算出手段134と、バランス推力Wblを算出する定常推力算出部すなわち定常推力算出手段136と、変速差推力ΔWを算出する差推力算出部すなわち差推力算出手段138と、フィードバック制御量Winfbを算出するFB制御量算出部すなわちFB制御量算出手段140とを備えている。
 図6のブロックB1及びブロックB2において、限界推力算出手段134は、例えば実変速比γと無段変速機18の入力トルクTINとに基づいて滑り限界推力Wlmtを算出する。具体的には、限界推力算出手段134は、次式(1)及び次式(2)からプライマリプーリ42の入力トルクとしての無段変速機18の入力トルクTIN、セカンダリプーリ46の入力トルクとしての無段変速機18の出力トルクTOUT、可変プーリ42,46のシーブ角α、プライマリプーリ42側の所定のエレメント・プーリ間摩擦係数μin、セカンダリプーリ46側の所定のエレメント・プーリ間摩擦係数μout、実変速比γから一意的に算出されるプライマリプーリ42側のベルト掛かり径Rin、実変速比γから一意的に算出されるセカンダリプーリ46側のベルト掛かり径Rout(以上、図3参照)に基づいて、セカンダリプーリ側滑り限界推力Woutlmt及びプライマリプーリ側滑り限界推力Winlmtをそれぞれ算出する。尚、TOUT=γ×Tin=(Rout/Rin)×Tinとしている。
 Woutlmt=(TOUT×cosα)/(2×μout×Rout)
     =(Tin ×cosα)/(2×μout×Rin ) ・・・(1)
 Winlmt =(Tin ×cosα)/(2×μin ×Rin ) ・・・(2)
 図6のブロックB3及びブロックB6において、定常推力算出手段136は、例えばプライマリプーリ側滑り限界推力Winlmtに対応するセカンダリバランス推力Woutbl、及び目標セカンダリ推力Woutに対応するプライマリバランス推力Winblをそれぞれ算出する。具体的には、定常推力算出手段136は、目標変速比γをパラメータとしてプライマリ側安全率SFin(=Win/Winlmt)の逆数SFin-1(=Winlmt/Win)とプライマリプーリ42側に対応するセカンダリプーリ46側の推力を算出するときの推力比τinとの予め実験的に求められて記憶された例えば図10(a)に示すような関係(推力比マップ)から、逐次算出される目標変速比γ及びプライマリ側安全率の逆数SFin-1に基づいて推力比τinを算出する。そして、定常推力算出手段136は、次式(3)からプライマリプーリ側滑り限界推力Winlmt及び推力比τinに基づいてセカンダリバランス推力Woutblを算出する。また、定常推力算出手段136は、目標変速比γをパラメータとしてセカンダリ側安全率SFout(=Wout/Woutlmt)の逆数SFout-1(=Woutlmt/Wout)とセカンダリプーリ46側に対応するプライマリプーリ42側の推力を算出するときの推力比τoutとの予め実験的に求められて記憶された例えば図10(b)に示すような関係(推力比マップ)から、逐次算出される目標変速比γ及びセカンダリ側安全率の逆数SFout-1に基づいて推力比τoutを算出する。そして、定常推力算出手段136は、次式(4)から目標セカンダリ推力Wout及び推力比τoutに基づいてプライマリバランス推力Winblを算出する。尚、被駆動時には入力トルクTINや出力トルクTOUTが負の値となることから、上記各安全率の逆数SFin-1,SFout-1も被駆動時には負の値となる。また、この逆数SFin-1,SFout-1は、逐次算出されても良いが、安全率SFin、SFoutに所定値(例えば1-1.5程度)を各々設定するならばその逆数を設定しても良い。
 Woutbl=Winlmt×τin ・・・(3)
 Winbl=Wout/τout ・・・(4)
 図6のブロックB4及びブロックB7において、差推力算出手段138は、例えばセカンダリプーリ46側にて目標の変速を実現する場合のセカンダリプーリ側換算の差推力ΔWとしてのセカンダリ変速差推力ΔWout、及びプライマリプーリ42側にて目標の変速を実現する場合のプライマリプーリ側換算の差推力ΔWとしてのプライマリ変速差推力ΔWinを算出する。具体的には、差推力算出手段138は、セカンダリ側目標変速速度(dXout/dNelmout)とセカンダリ変速差推力ΔWoutとの予め実験的に求められて記憶された例えば図11(b)に示すような関係(差推力マップ)から、逐次算出されるセカンダリ側目標変速速度(dXout/dNelmout)に基づいてセカンダリ変速差推力ΔWoutを算出する。また、差推力算出手段138は、プライマリ側目標変速速度(dXin/dNelmin)とプライマリ変速差推力ΔWinとの予め実験的に求められて記憶された例えば図11(a)に示すような関係(差推力マップ)から、逐次算出されるプライマリ側目標変速速度(dXin/dNelmin)に基づいてプライマリ変速差推力ΔWinを算出する。
 ここで、上記ブロックB3,B4における演算では、推力比マップ(図10参照)や差推力マップ(図11参照)等の予め実験的に求められて設定された物理特性図を用いる。その為、油圧制御回路100等の個体差によりセカンダリバランス推力Woutblやセカンダリ変速差推力ΔWoutの算出結果には物理特性に対するばらつきが存在する。そこで、このような物理特性に対するばらつきを考慮する場合には、限界推力算出手段134は、例えばプライマリプーリ側滑り限界推力Winlmtに基づくセカンダリプーリ46側の推力(セカンダリバランス推力Woutblやセカンダリ変速差推力ΔWout)の算出に関わる物理特性に対するばらつき分に対応する所定推力(制御マージン)Wmgnを、上記セカンダリプーリ46側の推力の算出に先立って、プライマリプーリ側滑り限界推力Winlmtに加算する。従って、上記物理特性に対するばらつきを考慮する場合には、前記ブロックB3において、定常推力算出手段136は、例えば前記式(3)に替えて、次式(3)’から上記制御マージンWmgnが加算されたプライマリプーリ側滑り限界推力Winlmt及び推力比τinに基づいてセカンダリバランス推力Woutblを算出する。
 Woutbl=(Winlmt+Wmgn)×τin ・・・(3)’
 尚、上記制御マージンWmgnは、例えば予め実験的に求められて設定された一定値(設計値)であるが、定常状態(変速比一定状態)よりも過渡状態(変速中)の方がばらつき要因(推力比マップや差推力マップの物理特性図)を多く用いるので、大きい値に設定されている。また、上記算出に関わる物理特性に対するばらつき分は、例えばリニアソレノイド弁SLP,SLSへの各制御電流に対する制御油圧PSLP,PSLSのばらつき、その制御電流を出力する駆動回路のばらつき、制御油圧PSLP,PSLSに対する実プーリ圧Pin,Poutのばらつき等のプーリ圧の油圧指令値に対する実油圧のずれ分(油圧ばらつき分、油圧制御上のばらつき分)とは異なるものである。この油圧ばらつき分は、ユニット(油圧制御回路100等のハードユニット)によっては比較的大きな値となるが、上記算出に関わる物理特性に対するばらつき分は、上記油圧ばらつき分と比べて極めて小さな値である。その為、制御マージンWmgnをプライマリプーリ側滑り限界推力Winlmtに加算することは、プーリ圧の油圧指令値に対して実プーリ圧がどんなにばらついても目標のプーリ圧が得られるようにその油圧指令値に制御上のばらつき分を上乗せすることに比べ、燃費の悪化が抑制される。また、上記ブロックB6,B7における演算では、目標セカンダリ推力Woutを基にするので、ここでは演算に先立って上記制御マージンWmgnを目標セカンダリ推力Woutに加算することについては実行しない。
 また、無段変速機制御手段132は、例えばプライマリプーリ42側のベルト滑りを防止する為に必要なセカンダリ推力として、セカンダリバランス推力Woutblにセカンダリ変速差推力ΔWoutを加算したセカンダリプーリ側変速制御推力Woutsh(=Woutbl+ΔWout)を算出する。そして、図6のブロックB5において、無段変速機制御手段132は、セカンダリプーリ側滑り限界推力Woutlmtとセカンダリプーリ側変速制御推力Woutshとのうちの大きい方を、目標セカンダリ推力Woutとして選択する。
 また、無段変速機制御手段132は、例えばプライマリバランス推力Winblにプライマリ変速差推力ΔWinを加算してプライマリプーリ側変速制御推力Winsh(=Winbl+ΔWin)を算出する。また、図6のブロックB8において、FB制御量算出手段140は、例えば次式(5)に示すような予め求められて設定されたフィードバック制御式を用いて、実変速比γを目標変速比γと一致させる為のフィードバック制御量(FB制御補正量)Winfbを算出する。この式(5)において、Δγは目標変速比γと実変速比γとの変速比偏差(=γ-γ)、KPは所定の比例定数、KIは所定の積分定数、KDは所定の微分定数である。そして、無段変速機制御手段132は、例えばプライマリプーリ側変速制御推力Winshに対して、変速比偏差Δγに基づいたフィードバック制御により補正した値(=Winsh+Winfb)を目標プライマリ推力Winとして設定する。
 Winfb=KP×Δγ+KI×(∫Δγdt)+KD×(dΔγ/dt) ・・・(5)
 このように、前記ブロックB1乃至B5は、目標セカンダリ推力Woutを設定するセカンダリ側目標推力演算部すなわちセカンダリ側目標推力演算手段150として機能する。また、前記ブロックB6乃至B8は、目標プライマリ推力Winを設定するプライマリ側目標推力演算部すなわちプライマリ側目標推力演算手段152として機能する。
 図6のブロックB9及びブロックB12において、無段変速機制御手段132は、例えば目標推力を目標プーリ圧に変換する。具体的には、無段変速機制御手段132は、目標セカンダリ推力Wout及び目標プライマリ推力Winを、各油圧シリンダ46c,42cの各受圧面積に基づいて目標セカンダリ圧Pout(=Wout/46cの受圧面積)及び目標プライマリ圧Pin(=Win/42cの受圧面積)に各々変換する。
 ここで、本実施例の油圧制御回路100では、プライマリ圧Pin及びセカンダリ圧Poutの制御にプライマリ圧コントロールバルブ110及びセカンダリ圧コントロールバルブ112の各減圧弁を用いている。その為、例えば変速中は作動油の給排によりスプリング110b,112bのバネ力の変化と流体力(フローフォース)とが生じる。これによりスプール弁子110a,112aの移動方向(弁開閉方向、図3の上下方向、)の力の釣り合いが崩れるので、プーリ指示圧と実プーリ圧との間にずれδP1が発生する。このずれδP1は、例えばベルヌーイの定理と運動量保存則により導出することができ、オーバーライド特性として作動油の流量Qf又はプーリ位置Xin,Xoutの変化量の関数で表すことができる。また、本実施例の油圧制御回路100では、オリフィス120,124が設けられている。その為、変速中は、作動油の流量Qfに応じてオリフィス120,124の上流と下流との間に圧力差δP2が生じる。この圧力差δP2は、例えばオリフィス特性として作動油の流量Qf又はプーリ位置Xin,Xoutの変化量の2次関数で表すことができる。
 また、プーリ指示圧の変化に対して実プーリ圧の変化には、油圧制御回路100の遅れ特性と流体の遅れ特性とが存在する。この遅れ特性は、例えば1次遅れ系や2次遅れ系にて近似することができる。そこで、プーリ指示圧に対する実プーリ圧の遅れ特性をモデル化し、このモデル化した遅れ特性に基づいて遅れ特性を相殺する為の遅れ補償特性をモデル化する。
 そして、図6のブロックB10,B11及びブロックB13,B14において、無段変速機制御手段132は、例えば目標セカンダリ圧Pout及び目標プライマリ圧Pinに対して、前記オーバーライド特性及びオリフィス特性に基づいたずれ量分(δP1+δP2)だけ各々補正し、更に前記モデル化した遅れ補償特性に基づいて油圧応答遅れ分だけ補償した値をセカンダリ指示圧Pouttgt及びプライマリ指示圧Pintgtとして設定する。
 無段変速機制御手段132は、例えば目標プライマリ圧Pin及び目標セカンダリ圧Poutが得られるように、油圧制御指令信号SCVTとしてプライマリ指示圧Pintgt及びセカンダリ指示圧Pouttgtを油圧制御回路100へ出力する。油圧制御回路100は、その油圧制御指令信号SCVTに従って、リニアソレノイド弁SLPを作動させてプライマリ圧Pinを調圧すると共に、リニアソレノイド弁SLSを作動させてセカンダリ圧Poutを調圧する。
 また、無段変速機制御手段132は、例えばセカンダリプーリ46側の油圧ばらつき分(油圧制御上のばらつき分)を補償する為に、セカンダリ圧センサ78によるセカンダリ圧Poutの検出値が目標セカンダリ圧Poutと一致するように、セカンダリ圧Poutの検出値と目標セカンダリ圧Poutとの偏差ΔPout(=Pout-Pout検出値)に基づくフィードバック制御によりセカンダリ指示圧Pouttgtを補正する。尚、本実施例の油圧制御回路100ではプライマリプーリ42側に油圧センサが設けられていないので、プーリ圧の検出値と実際値との偏差に基づく上記セカンダリプーリ46側のようなフィードバック制御によりプライマリ指示圧Pintgtを補正することはできない。しかしながら、本実施例では、例えば前記ブロックB8において実変速比γが目標変速比γと一致するようにフィードバック制御により補正された値(=Winsh+Winfb)が目標プライマリ推力Winとして設定されるので、プライマリプーリ42側の油圧ばらつき分を補償することができる。
 図12は、電子制御装置50の制御作動の要部すなわち油圧制御精度が良くないプライマリプーリ42側の油圧マージン(油圧ばらつきを補償する為の油圧)分を削って燃費向上を図る為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
 図12において、先ず、限界推力算出手段134に対応するステップ(以下、ステップを省略する)S10において、例えば前記式(1)から無段変速機18の入力トルクTIN、可変プーリ42,46のシーブ角α、セカンダリプーリ46側の所定のエレメント・プーリ間摩擦係数μout、実変速比γから一意的に算出されるプライマリプーリ42側のベルト掛かり径Rinに基づいて、セカンダリプーリ側滑り限界推力Woutlmtが算出される。次いで、同じく限界推力算出手段134に対応するS20において、例えば前記式(2)から無段変速機18の入力トルクTIN、可変プーリ42,46のシーブ角α、プライマリプーリ42側の所定のエレメント・プーリ間摩擦係数μin、実変速比γから一意的に算出されるプライマリプーリ42側のベルト掛かり径Rinに基づいて、プライマリプーリ側滑り限界推力Winlmtが算出される。このS20では、例えば前記物理特性に対するばらつきを考慮する場合には、制御マージンWmgnがプライマリプーリ側滑り限界推力Winlmtに加算されても良い。次いで、定常推力算出手段136に対応するS30において、例えば図10(a)に示すような推力比マップから、逐次算出される目標変速比γ及びプライマリ側安全率の逆数SFin-1に基づいて推力比τinが算出される。そして、前記式(3)から上記プライマリプーリ側滑り限界推力Winlmt及び推力比τinに基づいてセカンダリバランス推力(セカンダリ定常推力)Woutblが算出される。上記S20にて制御マージンWmgnがプライマリプーリ側滑り限界推力Winlmtに加算された場合には、このS30では、前記式(3)に替えて、前記式(3)’からセカンダリバランス推力Woutblが算出される。次いで、差推力算出手段138に対応するS40において、例えば図11(b)に示すような差推力マップから、逐次算出されるセカンダリ側目標変速速度(dXout/dNelmout)に基づいてセカンダリ変速差推力ΔWoutが算出される。次いで、無段変速機制御手段132に対応するS50において、例えば上記セカンダリバランス推力Woutblにセカンダリ変速差推力ΔWoutが加算されてセカンダリプーリ側変速制御推力Woutsh(=Woutbl+ΔWout)が算出される。そして、上記セカンダリプーリ側滑り限界推力Woutlmtとセカンダリプーリ側変速制御推力Woutshとのうちの大きい方が目標セカンダリ推力Woutとして選択される。尚、上記S10乃至S50はセカンダリ側目標推力演算手段150に対応する。
 次いで、定常推力算出手段136に対応するS60において、例えば図10(b)に示すような推力比マップから、逐次算出される目標変速比γ及びセカンダリ側安全率の逆数SFout-1に基づいて推力比τoutが算出される。そして、前記式(4)から前記目標セカンダリ推力Wout及び推力比τoutに基づいてプライマリバランス推力(プライマリ定常推力)Winblが算出される。次いで、差推力算出手段138に対応するS70において、例えば図11(a)に示すような差推力マップから、逐次算出されるプライマリ側目標変速速度(dXin/dNelmin)に基づいてプライマリ変速差推力ΔWinが算出される。次いで、FB制御量算出手段140に対応するS80において、例えば前記式(5)に示すような所定のフィードバック制御式から変速比偏差Δγに基づいてフィードバック制御量(FB制御補正量)Winfbが算出される。次いで、無段変速機制御手段132に対応するS90において、例えば上記プライマリバランス推力Winblにプライマリ変速差推力ΔWinが加算されてプライマリプーリ側変速制御推力Winsh(=Winbl+ΔWin)が算出される。そして、上記プライマリプーリ側変速制御推力Winshに上記フィードバック制御量Winfbが加算されて目標プライマリ推力Win(=Winsh+Winfb)が設定される。尚、上記S60乃至S90はプライマリ側目標推力演算手段152に対応する。
 次いで、無段変速機制御手段132に対応するS100において、例えば前記目標セカンダリ推力Woutがセカンダリ側油圧シリンダ46cの受圧面積に基づいて目標セカンダリ圧Pout(=Wout/受圧面積)に変換される。そして、上記目標セカンダリ圧Poutに対して、前記オーバーライド特性及びオリフィス特性に基づいたずれ量分(δP1+δP2)だけ補正し、更に前記モデル化した遅れ補償特性に基づいて油圧応答遅れ分だけ補償した値がセカンダリ指示圧Pouttgtとして設定される。このセカンダリ指示圧Pouttgtは油圧制御指令信号SCVTとして油圧制御回路100へ出力され、この油圧制御指令信号SCVTに従ってリニアソレノイド弁SLSが作動させられてセカンダリ圧Poutが調圧される。この際、例えばセカンダリ圧センサ78によるセカンダリ圧Poutの検出値が目標セカンダリ圧Poutと一致するように、偏差ΔPout(=Pout-Pout検出値)に基づくフィードバック制御によりセカンダリ指示圧Pouttgtが補正されて、セカンダリプーリ46側の油圧ばらつき分が補償される。
 次いで、無段変速機制御手段132に対応するS110において、例えば前記目標プライマリ推力Winがプライマリ側油圧シリンダ42cの受圧面積に基づいて目標プライマリ圧Pin(=Win/受圧面積)に変換される。そして、上記目標プライマリ圧Pinに対して、前記オーバーライド特性及びオリフィス特性に基づいたずれ量分(δP1+δP2)だけ補正し、更に前記モデル化した遅れ補償特性に基づいて油圧応答遅れ分だけ補償した値がプライマリ指示圧Pintgtとして設定される。このプライマリ指示圧Pintgtは油圧制御指令信号SCVTとして油圧制御回路100へ出力され、この油圧制御指令信号SCVTに従ってリニアソレノイド弁SLPが作動させられてプライマリ圧Pinが調圧される。この際、例えば前記S80,90にて、実変速比γが目標変速比γと一致するようにフィードバック制御により補正された値(=Winsh+Winfb)が目標プライマリ推力Winとして設定されるので、プライマリプーリ42側の油圧ばらつき分が補償される。
 上述のように、本実施例によれば、セカンダリプーリ側滑り限界推力Woutlmtと、プライマリプーリ側滑り限界推力Winlmtに基づいて算出される変速制御の為に必要なセカンダリプーリ46側のセカンダリプーリ側変速制御推力Woutshとのうちの大きい方が目標セカンダリ推力Woutとして選択されるので、例えば推力制御精度(油圧制御精度)が比較的良いセカンダリプーリ46側にて、セカンダリプーリ46におけるベルト滑り防止の為の必要推力が確保されることはもちろんのこと、推力制御精度が比較的劣るプライマリプーリ42におけるベルト滑り防止の為の必要推力も確保される。また、ベルト滑り防止の為の推力は推力制御精度が比較的良いセカンダリプーリ46側にて制御されることから、目標セカンダリ推力Woutの設定時に、推力制御精度が比較的劣るプライマリプーリ42における油圧ばらつき分を加える必要が無い。つまり、油圧ばらつき分を加えることなく、セカンダリプーリ46側にて両可変プーリ42,46におけるベルト滑り防止の為の必要推力が確保される。よって、油圧制御精度が良くない方のプライマリプーリ42側の油圧マージン分を削って燃費向上を図ることができる。また、セカンダリプーリ46側の推力制御精度(油圧制御精度)のみが比較的良くされるので、コストアップが抑制される。
 また、本実施例によれば、目標セカンダリ推力Woutに基づいて算出される変速制御の為に必要なプライマリプーリ側変速制御推力Winshを目標プライマリ推力Winとして設定するので、例えば推力制御精度が比較的劣るプライマリプーリ42における油圧ばらつき分を加えることなくプライマリプーリ42におけるベルト滑りを防止しつつ、目標の変速を実現することができる。
 また、本実施例によれば、目標変速比γと実変速比γとの変速比偏差Δγ或いは目標プーリ位置Xinと実プーリ位置Xinとの偏差ΔXinなどに基づいたプライマリ推力Winのフィードバック制御により目標プライマリ推力Winが補正されるので、例えば推力制御精度が比較的劣るプライマリプーリ42における油圧ばらつき分を補償することができる。従って、油圧ばらつき分による燃費悪化を抑制でき、必要最小限のプーリ推力で目標の変速とベルト滑り防止とを適切に実現することができる。
 また、本実施例によれば、前記変速制御の為に必要な推力(セカンダリプーリ側変速制御推力Woutsh、プライマリプーリ側変速制御推力Winsh)は、目標変速比γ及び目標変速速度(プライマリ側目標変速速度(dXin/dNelmin)とセカンダリ側目標変速速度(dXout/dNelmout))を実現する為に必要な推力であるので、例えば変速制御の為に必要な推力が適切に算出される。
 また、本実施例によれば、滑り限界推力Wlmtは実変速比γと無段変速機18の入力トルクTINとに基づいて算出されるので、例えば滑り限界推力Wlmtが適切に算出され、ベルト滑り防止の為の必要推力が適切に確保される。
 また、本実施例によれば、油圧制御回路100はセカンダリプーリ46側のみに、そのセカンダリプーリ46に作用する実セカンダリ圧Poutを検出する為のセカンダリ圧センサ78を備え、セカンダリ圧センサ78の検出値を目標セカンダリ推力Woutに対応する目標セカンダリ圧Poutとするフィードバック制御を実行するので、例えばセカンダリプーリ46側では、油圧センサが備えられていないプライマリプーリ42側と比較して、精度良く推力(プーリ圧)を制御することができる。
 また、本実施例によれば、プライマリプーリ側滑り限界推力Winlmtに基づくセカンダリプーリ46側の推力(セカンダリバランス推力Woutblやセカンダリ変速差推力ΔWout)の算出に関わる物理特性に対するばらつき分に対応する所定推力(制御マージン)Wmgnを、そのセカンダリプーリ46側の推力の算出に先立って、プライマリプーリ側滑り限界推力Winlmtに加算するので、例えば推力制御精度が比較的劣るプライマリプーリ42におけるベルト滑りを確実に防止する為の必要推力が適切に確保される。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例では、セカンダリプーリ46を、プライマリプーリ42と比較して、精度良く推力(プーリ圧)を制御することができる油圧制御回路100が備えられていたが、これに限らず、例えばプライマリプーリ42側を、セカンダリプーリ46側と比較して、精度良く推力を制御することができる油圧制御回路100が備えられていれば良い。この場合には、例えばプライマリプーリ42側にて、プライマリプーリ42側の滑り限界推力及びセカンダリプーリ46側の滑り限界推力を確保する、すなわち両プーリ42,46のベルトトルク容量保証を実現する。また、油圧制御精度が比較的劣るセカンダリプーリ46側では、目標プライマリ推力Winに対応した目標セカンダリ推力Woutを設定し、目標の変速を実現する。この際、セカンダリプーリ46側の油圧ばらつき分による燃費悪化を避ける為、変速比偏差Δγに基づいたフィードバック制御を実行する。このように、要は、プライマリプーリ42及びセカンダリプーリ46の一方のプーリを、他方のプーリと比較して、精度良く推力を制御することができる油圧制御回路100が備えられておれば本発明は適用され得る。
 また、前述の実施例では、プーリ圧を検出可能な油圧センサを備えることで、油圧センサが備えられていないプーリ側と比較して、精度良く推力(プーリ圧)を制御することができたが、必ずしもこれに限らない。例えば、リニアソレノイド弁SL等の油圧制御回路100を構成するハードにおいて油圧ばらつきが抑えられて油圧制御精度が比較的良いのであれば、油圧センサは設けられなくとも良い。
 また、前述の実施例において、流体式伝動装置としてロックアップクラッチ26が備えられているトルクコンバータ14が用いられていたが、ロックアップクラッチ26は必ずしも設けられなくても良く、またトルクコンバータ14に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式伝動装置が用いられてもよい。また、前後進切換装置がその発進機構として機能するか、発進クラッチ等の発進機構が備えられるか、或いは動力伝達経路を断接可能な係合装置等が備えられる場合には、流体式伝動装置は備えられなくとも良い。
 尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
18:ベルト式無段変速機(車両用無段変速機)
42:入力側可変プーリ
46:出力側可変プーリ
48:伝動ベルト
50:電子制御装置(制御装置)
78:セカンダリ圧センサ(油圧センサ)
100:油圧制御回路

Claims (7)

  1.  入力側可変プーリ及び出力側可変プーリの有効径が可変の一対の可変プーリと、該一対の可変プーリの間に巻き掛けられた伝動ベルトとを有し、該入力側可変プーリにおける入力側推力及び該出力側可変プーリにおける出力側推力を各々制御することで該伝動ベルトの滑りを防止しつつ実変速比を目標変速比とする車両用無段変速機の制御装置であって、
     前記入力側可変プーリ及び前記出力側可変プーリの一方を、他方と比較して、精度良く推力を制御できる油圧制御回路が備えられており、
     前記一方の側の目標推力として、
     ベルト滑り防止の為に必要な該一方の側の滑り限界推力と、
     ベルト滑り防止の為に必要な前記他方の側の滑り限界推力に基づいて算出される変速制御の為に必要な該一方の側の推力と
     のうちの大きい方を選択することを特徴とする車両用無段変速機の制御装置。
  2.  前記他方の側の目標推力として、前記一方の側の目標推力に基づいて算出される変速制御の為に必要な該他方の側の推力を設定することを特徴とする請求項1に記載の車両用無段変速機の制御装置。
  3.  前記他方の側の目標推力は、目標変速比と実変速比との偏差或いは目標プーリ位置と実プーリ位置との偏差に基づいた該他方の側の推力のフィードバック制御により補正されることを特徴とする請求項2に記載の車両用無段変速機の制御装置。
  4.  前記変速制御の為に必要な推力は、目標変速比及び目標変速速度を実現する為に必要な推力であることを特徴とする請求項1乃至3の何れか1項に記載の車両用無段変速機の制御装置。
  5.  前記滑り限界推力は、実変速比と前記車両用無段変速機の入力トルクとに基づいて算出されることを特徴とする請求項1乃至4の何れか1項に記載の車両用無段変速機の制御装置。
  6.  前記油圧制御回路は、前記一方の側のみに、該一方の可変プーリに作用する実プーリ圧を検出する為の油圧センサを備え、
     前記油圧センサの検出値を前記一方の側の目標推力に対応する目標プーリ圧とするフィードバック制御を実行することを特徴とする請求項1乃至5の何れか1項に記載の車両用無段変速機の制御装置。
  7.  前記他方の側の滑り限界推力に基づく前記一方の側の推力の算出に関わるばらつき分に対応する所定推力を、該算出に先立って、該他方の側の滑り限界推力に加算することを特徴とする請求項1乃至6の何れか1項に記載の車両用無段変速機の制御装置。
PCT/JP2010/064642 2010-08-27 2010-08-27 車両用無段変速機の制御装置 WO2012026043A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080068812.XA CN103080612B (zh) 2010-08-27 2010-08-27 车辆用无级变速器的控制装置
PCT/JP2010/064642 WO2012026043A1 (ja) 2010-08-27 2010-08-27 車両用無段変速機の制御装置
US13/819,551 US8914206B2 (en) 2010-08-27 2010-08-27 Control device of continuously variable transmission for vehicle
JP2012530500A JP5403164B2 (ja) 2010-08-27 2010-08-27 車両用無段変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064642 WO2012026043A1 (ja) 2010-08-27 2010-08-27 車両用無段変速機の制御装置

Publications (1)

Publication Number Publication Date
WO2012026043A1 true WO2012026043A1 (ja) 2012-03-01

Family

ID=45723070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064642 WO2012026043A1 (ja) 2010-08-27 2010-08-27 車両用無段変速機の制御装置

Country Status (4)

Country Link
US (1) US8914206B2 (ja)
JP (1) JP5403164B2 (ja)
CN (1) CN103080612B (ja)
WO (1) WO2012026043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860427A4 (en) * 2012-06-08 2016-09-07 Jatco Ltd CONTINUOUSLY VARIABLE TRANSMISSION AND HYDRAULIC PRESSURE CONTROL METHOD RELATING THERETO
US10683931B2 (en) 2017-12-27 2020-06-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle drive-force transmitting apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786653B1 (ko) * 2012-11-08 2017-11-15 현대자동차주식회사 하이브리드 차량의 엔진클러치의 동작 학습 방법 및 시스템
WO2015125718A1 (ja) * 2014-02-20 2015-08-27 ジヤトコ株式会社 油圧制御装置、及びその制御方法
JP6493050B2 (ja) * 2015-07-16 2019-04-03 トヨタ自動車株式会社 車両用無段変速機の油圧制御装置
US10316968B2 (en) * 2017-05-16 2019-06-11 GM Global Technology Operations LLC Method and apparatus for ratio control for a continuously variable transmission
JP6879196B2 (ja) 2017-12-27 2021-06-02 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP7040011B2 (ja) * 2017-12-27 2022-03-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
CN110230692B (zh) * 2018-03-05 2020-08-28 上海汽车集团股份有限公司 一种更新主从动缸推力比与速比关系图的方法及装置
CN112639331B (zh) * 2018-10-22 2024-04-12 加特可株式会社 无级变速器
JP7036944B2 (ja) * 2018-10-22 2022-03-15 ジヤトコ株式会社 車両用の無段変速機
JP7001837B2 (ja) * 2018-10-22 2022-01-20 ジヤトコ株式会社 無段変速機
DE102019127419A1 (de) * 2019-10-11 2021-04-15 Schaeffler Technologies AG & Co. KG Notbetriebsverfahren für ein Umschlingungsgetriebe bei Anpressdruckabfall, sowie Antriebsstrang
CN111577888B (zh) * 2020-04-30 2021-06-25 湖南容大智能变速器股份有限公司 一种cvt双压力液压系统的压力控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342684B2 (ja) * 1985-11-01 1991-06-28
JPH08285021A (ja) * 1995-04-10 1996-11-01 Unisia Jecs Corp 無段変速機の制御装置
JP2000097321A (ja) * 1998-09-21 2000-04-04 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2001173770A (ja) * 1999-10-07 2001-06-26 Denso Corp 無段変速機の制御装置
JP2004263743A (ja) * 2003-02-28 2004-09-24 Jatco Ltd 無段変速機の制御装置
JP2005291290A (ja) * 2004-03-31 2005-10-20 Jatco Ltd ベルト式無段変速機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342684A (ja) 1989-07-10 1991-02-22 Konica Corp 中間濃度選択機能付き像形成装置
JP3042684B2 (ja) * 1998-07-03 2000-05-15 本田技研工業株式会社 ベルト式無段変速機の変速制御方法
JP2003194205A (ja) * 2001-12-28 2003-07-09 Jatco Ltd トロイダル型無段変速機の変速制御装置
JP4449441B2 (ja) * 2003-12-09 2010-04-14 トヨタ自動車株式会社 ベルト式無段変速機
JP4457863B2 (ja) * 2004-11-22 2010-04-28 トヨタ自動車株式会社 車両用動力伝達機構の油圧制御装置
JP4641852B2 (ja) * 2005-04-11 2011-03-02 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
JP4613226B2 (ja) * 2008-05-30 2011-01-12 ジヤトコ株式会社 無段変速機の制御装置
JP4618338B2 (ja) * 2008-06-20 2011-01-26 トヨタ自動車株式会社 無段変速機の変速制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342684B2 (ja) * 1985-11-01 1991-06-28
JPH08285021A (ja) * 1995-04-10 1996-11-01 Unisia Jecs Corp 無段変速機の制御装置
JP2000097321A (ja) * 1998-09-21 2000-04-04 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2001173770A (ja) * 1999-10-07 2001-06-26 Denso Corp 無段変速機の制御装置
JP2004263743A (ja) * 2003-02-28 2004-09-24 Jatco Ltd 無段変速機の制御装置
JP2005291290A (ja) * 2004-03-31 2005-10-20 Jatco Ltd ベルト式無段変速機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860427A4 (en) * 2012-06-08 2016-09-07 Jatco Ltd CONTINUOUSLY VARIABLE TRANSMISSION AND HYDRAULIC PRESSURE CONTROL METHOD RELATING THERETO
US10683931B2 (en) 2017-12-27 2020-06-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle drive-force transmitting apparatus

Also Published As

Publication number Publication date
JPWO2012026043A1 (ja) 2013-10-28
CN103080612A (zh) 2013-05-01
JP5403164B2 (ja) 2014-01-29
US20130165282A1 (en) 2013-06-27
CN103080612B (zh) 2015-02-25
US8914206B2 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP5403164B2 (ja) 車両用無段変速機の制御装置
JP5790173B2 (ja) 車両用無段変速機の制御装置
JP4690255B2 (ja) ベルト式無段変速機の制御装置
US8062156B2 (en) Control device for continuously variable transmission
JP5435137B2 (ja) 車両用無段変速機の制御装置
JP2008020055A (ja) ベルト式無段変速機の制御装置
JP2008045638A (ja) 車両用無段変速機の変速制御装置
JP5376054B2 (ja) 車両用変速制御装置
JP5765182B2 (ja) 車両用ベルト式無段変速機の油圧制御装置
JP5765168B2 (ja) 車両用ベルト式無段変速機の油圧制御装置
JP2012052619A (ja) 車両用ベルト式無段変速機の制御装置
JP5472074B2 (ja) 車両用無段変速機の制御装置
JP5765188B2 (ja) 車両用無段変速機の制御装置
JP5545247B2 (ja) 車両用無段変速機の制御装置
JP5737013B2 (ja) 車両用無段変速機の制御装置
JP5477305B2 (ja) 車両用ベルト式無段変速機の変速制御装置
JP2007211867A (ja) 車両用無段変速機の制御装置
JP5505324B2 (ja) 車両用ベルト式無段変速機の制御装置
JP2012241799A (ja) 車両用ベルト式無段変速機の油圧制御装置
JP2007177834A (ja) 無段変速機の制御装置
JP4882609B2 (ja) ベルト式無段変速機の変速制御装置
JP2007177832A (ja) 車両の制御装置
JP2014152895A (ja) 車両用無段変速機の制御装置
US10907731B2 (en) Control device for power transmission mechanism
JP2008101716A (ja) 車両用無段変速機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068812.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856445

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012530500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13819551

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10856445

Country of ref document: EP

Kind code of ref document: A1