JP2014152895A - 車両用無段変速機の制御装置 - Google Patents

車両用無段変速機の制御装置 Download PDF

Info

Publication number
JP2014152895A
JP2014152895A JP2013024951A JP2013024951A JP2014152895A JP 2014152895 A JP2014152895 A JP 2014152895A JP 2013024951 A JP2013024951 A JP 2013024951A JP 2013024951 A JP2013024951 A JP 2013024951A JP 2014152895 A JP2014152895 A JP 2014152895A
Authority
JP
Japan
Prior art keywords
speed
thrust
continuously variable
shift
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013024951A
Other languages
English (en)
Inventor
Shinko Tawara
真弘 俵
Sei Kojima
星 児島
Motonobu Kimura
元宣 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013024951A priority Critical patent/JP2014152895A/ja
Publication of JP2014152895A publication Critical patent/JP2014152895A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】ベルト式無段変速機の変速時に、ベルト滑りの防止と変速応答性とを両立させる。
【解決手段】変速時にベルト掛かり径Rが大きい側に変化する可変プーリにおいて、伝動ベルト40のエレメントの速度が比較的速くなる大きなベルト掛かり径Rの変速比γである程、又は可変プーリの回転速度が速い程、変速速度が抑制されるので、伝動ベルト40のベルト滑りを防止することができる範囲で、変速速度をできるだけ速くすることができる。よって、無段変速機18の変速時に、ベルト滑りの防止と変速応答性とを両立させることができる。
【選択図】図7

Description

本発明は、実変速比が目標変速比となるように変速制御を実行する車両用無段変速機の制御装置に関するものである。
車両用無段変速機としてベルト式無段変速機が良く知られている。例えば、特許文献1−3に記載された無段変速機がそれである。このような無段変速機では、例えば目標変速比が実現されるように、フィードフォワード制御(FF制御)及びフィードバック制御(FB制御)による変速制御が実行される。この際、変速速度(変速比の変化量)に上限を設定することも良く知られた手法である。特許文献1には、車速が高い程、スロットル開度が大きい程、変速速度の上限を大きくすることで、ショックの発生を防止しつつレスポンス性能を維持することが開示されている。又、特許文献2には、出力側回転速度や実変速比が大きい程、変速速度を小さくすることで、イナーシャトルクの影響を排除して良好な運転性を確保することが開示されている。又、特許文献3には、変速比が小さな高車速側である程、変速速度を大きくすることで、変速に伴って必要油圧が過大になることを回避することが開示されている。
特開2010−77998号公報 特開2006−258195号公報 特開2006−74997号公報
ところで、上述したように、種々の課題を解決する為に、変速速度を車速や変速速度等に基づいて設定することはできるが、ベルト滑りが発生してしまう領域がある。変速速度を低く設定すれば、ベルト滑りは回避できるが、反対に変速の進行が遅くなることでドライバビリティが悪化する可能性がある。このように、ベルト滑りの防止と変速応答性との両立という観点においては、まだまだ改善の余地がある。尚、上述したような課題は未公知であり、伝動ベルトのエレメントがプーリに入り込む数(見方を換えれば、エレメントの速度)に着目して、ベルト滑りを防止しながら変速速度をできるだけ速くすることについて未だ提案されていない。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、ベルト式無段変速機の変速時に、ベルト滑りの防止と変速応答性とを両立させることができる車両用無段変速機の制御装置を提供することにある。
前記目的を達成する為の第1の発明の要旨とするところは、(a) 入力側可変プーリ及び出力側可変プーリを有する有効径が可変の一対の可変プーリと、その一対の可変プーリの間に巻き掛けられた伝動ベルトとを備え、実際の変速比が目標変速比となるように変速制御を実行する車両用無段変速機の制御装置であって、(b) アップシフト時は、前記車両用無段変速機の変速比が低車速側の変速比である場合には、高車速側の変速比である場合よりも、大きな変速速度を設定する一方で、(c) ダウンシフト時は、前記車両用無段変速機の変速比が低車速側の変速比である場合には、高車速側の変速比である場合よりも、小さな変速速度を設定することにある。
このようにすれば、変速時に有効径(伝動ベルトの掛かり径)が大きい側に変化する可変プーリにおいて、エレメントの速度が比較的速くなる大きな有効径(径方向外側の掛かり位置)の変速比である程、変速速度が抑制されるので、伝動ベルトのベルト滑りを防止することができる範囲で、変速速度をできるだけ速くすることができる。よって、ベルト式無段変速機の変速時に、ベルト滑りの防止と変速応答性とを両立させることができる
ここで、第2の発明は、前記第1の発明に記載の車両用無段変速機の制御装置において、アップシフト時は、前記車両用無段変速機の入力側の回転速度が低い場合には、高い場合よりも、大きな変速速度を設定する一方で、ダウンシフト時は、前記車両用無段変速機の出力側の回転速度が低い場合には、高い場合よりも、大きな変速速度を設定することにある。このようにすれば、変速時に有効径が大きい側に変化する可変プーリにおいて、エレメントの速度が比較的速い程、変速速度が抑制されるので、伝動ベルトのベルト滑りを防止することができる範囲で、変速速度をできるだけ速くすることができる。
また、第3の発明は、前記第1の発明又は第2の発明に記載の車両用無段変速機の制御装置において、前記変速速度の設定は、その変速速度の上限値を設定するものである。このようにすれば、伝動ベルトのベルト滑りを防止することができる範囲で、変速速度をできるだけ速くすることが、一層確実に実現される。
また、第4の発明は、前記第1の発明乃至第3の発明の何れか1つに記載の車両用無段変速機の制御装置において、変速目標値と実際値との偏差に比例した比例項とその偏差を積分した積分項とを加算したものを、変速速度を制御する為の制御量とするPI制御において、前記比例項を前記上限値に基づいて制限すると共に、その制限された比例項に対して前記積分項を加算することで、最終的な制御量を算出することにある。このようにすれば、変速速度の上限値を設定することによって定常偏差や無段変速機のハード的なばらつきを吸収するPI制御の積分項も制限されてしまう可能性がある為に定常偏差が残ったりハード的なばらつき分が制御量に反映されず目標変速比を実現し難くなる可能性があることに対して、積分項には前記上限値による制限を掛けないことで、定常偏差が残り難くなったり、ハード的なばらつき分が制御量に反映され易くなって、目標変速比が実現され易くなる。
本発明が適用される車両の概略構成を説明する図であると共に、車両に設けられた制御系統の要部を説明するブロック線図である。 油圧制御回路のうち無段変速機の変速制御などに関する要部を示す油圧回路図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図である。 無段変速機の変速制御において目標入力軸回転速度を求める際に用いられる変速マップの一例を示す図である。 変速差推力と変速速度との予め定められた関係の一例を示す図である。 プーリの回転速度をパラメータとして実変速比と差推力上限値との予め定められた関係(差推力上限値マップ)の一例を示す図である。 電子制御装置の制御作動の要部すなわち無段変速機の変速時にベルト滑りの防止と変速応答性とを両立させる為の制御作動を説明するブロック図である。 図7のブロック図に示す制御作動を実行した場合のタイムチャートであって、ダウンシフト時の一例である。 電子制御装置の制御作動の要部すなわち無段変速機の変速時にベルト滑りの防止と変速応答性とを両立させる為の制御作動を説明するブロック図である。
本発明において、好適には、前記入力側可変プーリや前記出力側可変プーリに作用させる油圧(プーリ圧)は、それらの油圧をそれぞれ独立に制御するように油圧制御回路が構成される。このような油圧制御回路により、前記入力側可変プーリにおける入力側推力及び前記出力側可変プーリにおける出力側推力が各々直接的に或いは間接的に(結果的に生じるように)制御されることで、伝動ベルトの滑りを防止しつつ目標の変速が実現されるように変速制御が実行される。
また、好適には、駆動力源の動力が前記車両用無段変速機を介して駆動輪へ伝達される。前記駆動力源としては、例えば内燃機関等のガソリンエンジンやディーゼルエンジン等が用いられるが、電動機等の他の原動機を単独で或いはエンジンと組み合わせて採用することもできる。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が適用される車両10の概略構成を説明する図であると共に、車両10の各部を制御する為に設けられた制御系統の要部を説明するブロック線図である。図1において、車両10では、走行用の駆動力源としてのエンジン12から出力される動力は、流体式伝動装置としてのトルクコンバータ14、前後進切換装置16、車両用無段変速機としてのベルト式無段変速機(以下、無段変速機(CVT)という)18、減速歯車装置20、差動歯車装置22などを順次介して、左右の駆動輪24へ伝達される。
トルクコンバータ14は、エンジン12に連結されたポンプ翼車14p、及びタービン軸26を介して前後進切換装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行う。ポンプ翼車14pには、無段変速機18を変速制御したり、無段変速機18におけるベルト挟圧力を発生させたり、前後進切換装置16における動力伝達経路を切り換えたり、車両10の動力伝達経路の各部に潤滑油を供給したりする為の作動油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ28が連結されている。
前後進切換装置16は、前進用クラッチC1及び後進用ブレーキB1とダブルピニオン型の遊星歯車装置16pとを主体として構成されている。遊星歯車装置16pのサンギヤ16sにはトルクコンバータ14のタービン軸26が一体的に連結され、遊星歯車装置16pのキャリア16cには無段変速機18の入力軸30が一体的に連結されている。また、キャリア16cとサンギヤ16sとは前進用クラッチC1を介して選択的に連結され、遊星歯車装置16pのリングギヤ16rは後進用ブレーキB1を介して非回転部材としてのハウジング32に選択的に固定される。前進用クラッチC1及び後進用ブレーキB1は、油圧式摩擦係合装置である。
このように構成された前後進切換装置16では、前進用クラッチC1が係合されると共に後進用ブレーキB1が解放されると、タービン軸26が入力軸30に直結され、前進用動力伝達経路が成立(達成)させられる。また、後進用ブレーキB1が係合されると共に前進用クラッチC1が解放されると、前後進切換装置16は後進用動力伝達経路が成立させられて、入力軸30はタービン軸26に対して逆方向へ回転させられる。また、前進用クラッチC1及び後進用ブレーキB1が共に解放されると、前後進切換装置16は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)とされる。
無段変速機18は、入力軸30に設けられた入力側部材である有効径が可変の入力側可変プーリ(プライマリプーリ、プライマリシーブ)34及び出力軸36に設けられた出力側部材である有効径が可変の出力側可変プーリ(セカンダリプーリ、セカンダリシーブ)38を有する一対の可変プーリ34,38と、その一対の可変プーリ34,38の間に巻き掛けられた伝動ベルト40とを備えており、一対の可変プーリ34,38と伝動ベルト40との間の摩擦力を介して動力伝達が行われる。
プライマリプーリ34は、入力軸30に固定された入力側固定回転体としての固定回転体(固定シーブ)34aと、入力軸30に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた入力側可動回転体としての可動回転体(可動シーブ)34bと、それらの間のV溝幅を変更する為のプライマリプーリ34における入力側推力(プライマリ推力)Win(=プライマリ圧Pin×受圧面積)を付与する油圧アクチュエータとしての入力側油圧シリンダ(プライマリ側油圧シリンダ)34cとを備えている。また、セカンダリプーリ38は、出力軸36に固定された出力側固定回転体としての固定回転体(固定シーブ)38aと、出力軸36に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた出力側可動回転体としての可動回転体(可動シーブ)38bと、それらの間のV溝幅を変更する為のセカンダリプーリ38における出力側推力(セカンダリ推力)Wout(=セカンダリ圧Pout×受圧面積)を付与する油圧アクチュエータとしての出力側油圧シリンダ(セカンダリ側油圧シリンダ)38cとを備えている。
そして、プライマリ側油圧シリンダ34cへ供給される油圧であるプライマリ圧Pin及びセカンダリ側油圧シリンダ38cへ供給される油圧であるセカンダリ圧Poutが油圧制御回路100(図2参照)によって各々独立に調圧制御されることにより、プライマリ推力Win及びセカンダリ推力Woutが各々直接的に或いは間接的に制御される。これにより、一対の可変プーリ34,38のV溝幅が変化して伝動ベルト40の掛かり径(有効径)が変更され、変速比(ギヤ比)γ(=入力軸回転速度Nin/出力軸回転速度Nout)が連続的に変化させられると共に、伝動ベルト40が滑りを生じないように一対の可変プーリ34,38と伝動ベルト40との間の摩擦力(ベルト挟圧力)が制御される。このように、プライマリ推力Win及びセカンダリ推力Woutが各々制御されることで伝動ベルト40の滑りが防止されつつ実際の変速比(実変速比)γが目標変速比γtgtとされる。尚、入力軸回転速度Ninは入力軸30の回転速度であって無段変速機18の入力側の回転速度である。また、出力軸回転速度Noutは出力軸36の回転速度であって無段変速機18の出力側の回転速度である。また、本実施例では図1から判るように、入力軸回転速度Ninはプライマリプーリ34の回転速度と同一であり、出力軸回転速度Noutはセカンダリプーリ38の回転速度と同一である。
無段変速機18では、例えばプライマリ圧Pinが高められると、プライマリプーリ34のV溝幅が狭くされて(すなわち伝動ベルト40の掛かり径が大きくされて)、変速比γが小さくなる高車速側(ハイ側)の変速比へ変化させられる(すなわち無段変速機18がアップシフトされる)。従って、プライマリプーリ34のV溝幅が最小とされるところで、無段変速機18の変速比γとして最小変速比γmin(最高車速側の変速比、最Hi)が形成される。一方で、プライマリ圧Pinが低められると、プライマリプーリ34のV溝幅が広くされて(すなわち伝動ベルト40の掛かり径が小さくされて)、変速比γが大きくなる低車速側(ロー側)の変速比へ変化させられる(すなわち無段変速機18がダウンシフトされる)。従って、プライマリプーリ34のV溝幅が最大とされるところで、無段変速機18の変速比γとして最大変速比γmax(最低車速側の変速比、最Low)が形成される。尚、プライマリ圧Pin(プライマリ推力Winも同意)とセカンダリ圧Pout(セカンダリ推力Woutも同意)とにより伝動ベルト40の滑り(ベルト滑り)が防止されつつ、それらプライマリ推力Winとセカンダリ推力Woutとの相互関係にて目標変速比γtgtが実現されるものであり、一方のプーリ圧(推力も同意)のみで目標の変速が実現されるものではない。
また、車両10には、例えば無段変速機18の制御装置を含む電子制御装置50が備えられている。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置50は、エンジン12の出力制御、無段変速機18の変速制御やベルト挟圧力制御等を実行するようになっており、必要に応じてエンジン制御用、無段変速機18の油圧制御用等に分けて構成される。
電子制御装置50には、車両10に設けられた各センサ(例えばエンジン回転速度センサ52、タービン回転速度センサ54、入力軸回転速度センサ56、出力軸回転速度センサ58、アクセル開度センサ60など)により検出された検出値に基づく各種入力信号(例えばエンジン回転速度Ne、タービン回転速度Nt、入力軸回転速度Nin、車速Vに対応する出力軸回転速度Nout、アクセル開度θaccなど)が供給される。また、電子制御装置50からは、車両10に設けられた各装置(例えばエンジン12、油圧制御回路100など)に各種出力信号(例えばエンジン12の出力制御の為のエンジン出力制御指令信号Se、無段変速機18の変速に関する油圧制御の為の油圧制御指令信号Scvtなど)が供給される。また、電子制御装置50は、例えば出力軸回転速度Noutと入力軸回転速度Ninとに基づいて無段変速機18の実変速比γ(=Nin/Nout)を逐次算出する。尚、上記油圧制御指令信号Scvtとしては、例えばプライマリ圧Pinを制御するリニアソレノイドバルブSLPを駆動する為の指令信号、セカンダリ圧Poutを制御するリニアソレノイドバルブSLSを駆動する為の指令信号、ライン油圧Plを制御するリニアソレノイドバルブSLTを駆動する為の指令信号などである。
図2は、油圧制御回路100のうち無段変速機18の変速制御などに関する要部を示す油圧回路図である。図2において、油圧制御回路100は、例えばオイルポンプ28、プライマリ圧Pinを調圧するプライマリ圧コントロールバルブ110、セカンダリ圧Poutを調圧するセカンダリ圧コントロールバルブ112、ライン油圧Plを調圧するプライマリレギュレータバルブ114、モジュレータ油圧Pmを調圧するモジュレータバルブ116、リニアソレノイドバルブSLP、リニアソレノイドバルブSLS、リニアソレノイドバルブSLT等を備えている。
ライン油圧Plは、オイルポンプ28から出力される作動油圧を元圧として、リリーフ型のプライマリレギュレータバルブ114によりリニアソレノイドバルブSLTの出力油圧である制御油圧Psltに基づいてエンジン負荷等に応じた値に調圧される。モジュレータ油圧Pmは、電子制御装置50によって制御される制御油圧Pslt、リニアソレノイドバルブSLPの出力油圧である制御油圧Pslp、及びリニアソレノイドバルブSLSの出力油圧である制御油圧Pslsの各元圧となるものであって、ライン油圧Plを元圧としてモジュレータバルブ116により一定圧に調圧される。
図2の如く構成されたプライマリ圧コントロールバルブ110は、例えば制御油圧Pslpをパイロット圧としてライン油圧Plを調圧制御してプライマリ側油圧シリンダ34cへ供給する。これにより、ライン油圧Plは、入力ポート110iから出力ポート110tを経て、プライマリ圧Pinとしてプライマリ側油圧シリンダ34cへ供給される。例えば、プライマリ側油圧シリンダ34cに所定の油圧が供給されている状態から、制御油圧Pslpが増大すると、スプール弁子110aが図2の上側に移動することによりプライマリ圧Pinが増大する。一方で、例えば制御油圧Pslpが低下すると、スプール弁子110aが図2の下側に移動することによりプライマリ圧Pinが低下する。
図2の如く構成されたセカンダリ圧コントロールバルブ112は、例えば制御油圧Pslsをパイロット圧としてライン油圧Plを調圧制御してセカンダリ側油圧シリンダ38cへ供給する。これにより、ライン油圧Plは、入力ポート112iから出力ポート112tを経て、セカンダリ圧Poutとしてセカンダリ側油圧シリンダ38cへ供給される。例えば、セカンダリ側油圧シリンダ38cに所定の油圧が供給されている状態から、制御油圧Pslsが増大すると、スプール弁子112aが図2の上側に移動することによりセカンダリ圧Poutが増大する。一方で、例えば制御油圧Pslsが低下すると、スプール弁子112aが図2の下側に移動することによりセカンダリ圧Poutが低下する。
このように構成された油圧制御回路100において、例えばプライマリ圧Pin及びセカンダリ圧Poutは、ベルト滑りを発生させず且つ不必要に大きくならないベルト挟圧力を一対の可変プーリ34,38に発生させるように制御される。また、後述するように、プライマリ圧Pinとセカンダリ圧Poutとの相互関係で、一対の可変プーリの34,38の推力比τ(=Wout/Win)が変更されることにより無段変速機18の変速比γが変更される。例えば、その推力比τが大きくされる程、変速比γが大きくされる(すなわち無段変速機18はダウンシフトされる)。
図3は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。図3において、エンジン出力制御手段すなわちエンジン出力制御部70は、エンジン12の出力制御の為にスロットル信号や噴射信号や点火時期信号などのエンジン出力制御指令信号Seをそれぞれスロットルアクチュエータや燃料噴射装置や点火装置へ出力する。例えば、エンジン出力制御部70は、アクセル開度θaccに応じた駆動力(駆動トルク)が得られる為の目標エンジントルクTetgtを設定し、その目標エンジントルクTetgtが得られるようにスロットルアクチュエータにより電子スロットル弁を開閉制御する他、燃料噴射装置により燃料噴射量を制御したり、点火装置により点火時期を制御する。
無段変速機制御手段すなわち無段変速機制御部72は、例えば無段変速機18のベルト滑りが発生しないようにしつつ無段変速機18の目標変速比γtgtを達成するように、プライマリ圧Pinの指令値(又は目標プライマリ圧)としてのプライマリ指示油圧Pintgtとセカンダリ圧Poutの指令値(又は目標セカンダリ圧)としてのセカンダリ指示油圧Pouttgtとを決定し、プライマリ指示油圧Pintgtとセカンダリ指示油圧Pouttgtとを油圧制御指令信号Scvtとして油圧制御回路100へ出力する。
ここで、無段変速機18の変速制御の為に必要な推力は、例えば目標の変速を実現する為に必要な推力であって、目標変速比γtgt及び目標変速速度を実現する為に必要な推力である。変速速度は、例えば単位時間当たりの変速比γの変化量dγ(=dγ/dt)であるが、ベルトエレメント(ブロック)1個当たりのプーリ位置移動量(dX/dNelm)として定義することもできる(dX:単位時間当たりのプーリの軸方向変位量[mm/ms]、dNelm:単位時間当たりにプーリに噛み込むエレメント(ブロック)数[個/ms])。具体的には、定常状態(変速比γが一定の状態)でのプライマリ推力Winとセカンダリ推力Woutとをバランス推力(定常推力)Wbl(例えばプライマリバランス推力Winblとセカンダリバランス推力Woutbl)と称し、これらの比が推力比τ(=Woutbl/Winbl)である。また、プライマリ推力Winとセカンダリ推力Woutとが一定の変速比γを保つ定常状態にあるとき、一対の可変プーリ34,38の少なくとも一方の推力に、ある推力を加算又は減算すると、定常状態が崩れて変速比γが変化し、加算又は減算した推力の大きさに応じた変速速度(dX/dNelm)が生じる。この加算又は減算した推力のことを変速差推力(過渡推力)ΔW(例えばプライマリ変速差推力ΔWinとセカンダリ変速差推力ΔWout)と称す。従って、前記変速制御の為に必要な推力は、目標変速比γtgtを維持する為の推力比τを実現する為のバランス推力(定常推力)Wblと、目標変速比γtgtが変化させられるときの目標変速速度を実現する為の変速差推力ΔWとの和となる。また、変速差推力ΔWは、プライマリ変速差推力ΔWinとセカンダリ変速差推力ΔWoutとの絶対値の和であるが、本実施例では、便宜上、プライマリプーリ34側のみにて変速比γを変化させる場合として換算したプライマリプーリ側換算の差推力として表す。従って、変速差推力ΔWは、アップシフト状態であれば(ΔW>0)となり、ダウンシフト状態であれば(ΔW<0)となり、変速比一定の定常状態であれば(ΔW=0)となる。
具体的には、無段変速機制御部72は、例えば図4に示すようなアクセル開度θaccをパラメータとして車速V(出力軸回転速度Nout)と目標入力軸回転速度Nintgtとの予め求められて記憶された関係(変速マップ)から実際の出力軸回転速度Nout及びアクセル開度θaccで示される車両状態に基づいて最終目標入力軸回転速度Nintgtlを設定する。そして、無段変速機制御部72は、最終目標入力軸回転速度Nintgtlに基づいて、無段変速機18の変速後に達成すべき変速比γである最終目標変速比γtgtl(=Nintgtl/Nout)を算出する。一方で、無段変速機制御部72は、例えば迅速且つ滑らかな変速が実現されるように予め実験的に設定された関係から、変速開始前の入力軸回転速度Ninと最終目標入力軸回転速度Nintgtlとそれらの差とに基づいて、変速中の過渡的な入力軸回転速度Ninの目標値として過渡目標入力軸回転速度Nintgtcを設定する。例えば、無段変速機制御部72は、変速中に逐次変化させる過渡目標入力軸回転速度Nintgtcを、変速開始時から最終目標入力軸回転速度Nintgtlに向かって変化する直線或いは滑らかな曲線(例えば1次遅れ曲線や2次遅れ曲線)に沿って変化する経過時間の関数として決定する。すなわち、無段変速機制御部72は、無段変速機18の変速中において、変速開始時からの時間経過に従って変速開始前の入力軸回転速度Ninから最終目標入力軸回転速度Nintgtlに近付くように、過渡目標入力軸回転速度Nintgtcを変化させる。そして、無段変速機制御部72は、過渡目標入力軸回転速度Nintgtcに基づいて過渡目標変速比γtgtc(=Nintgtc/Nout)を算出する。
無段変速機制御部72は、例えば定常推力Wblを算出する定常推力算出手段すなわち定常推力算出部74と、変速差推力ΔWを算出する差推力算出手段すなわち差推力算出部76とを備えている。定常推力算出部74は、例えば予め定められた関係(推力比マップ)から、実変速比γに基づいて、その実変速比γを維持するときの推力比τを算出する。そして、定常推力算出部74は、予め定められた関係(マップ)から、推力比τと無段変速機18の入力トルクTinとに基づいて、ベルト滑りが生じない定常推力Wblを算出する。無段変速機18の入力トルクTinは、例えばエンジントルクTeにトルクコンバータ14のトルク比t(=タービントルクTt/ポンプトルクTp)を乗じたトルク(=Te×t)として、無段変速機制御部72により算出される。また、トルクコンバータ14のトルク比tは、トルクコンバータ14の速度比e(=タービン回転速度Nt/ポンプ回転速度Np(エンジン回転速度Ne))の関数であり、例えば速度比eとトルク比t、効率η、及び容量係数Cとのそれぞれの予め定められた関係(マップ)から、実際の速度比eに基づいて無段変速機制御部72により算出される。
差推力算出部76は、過渡目標変速比γtgtcの変化量を得る為の適合値(或いは理論値、実験値)として予め定められた関係から、過渡目標変速比γtgtcに基づいて、フィードフォワード制御量(FF制御量)ΔWffを算出する。この予め定められた関係には、油圧制御回路100等のハードユニットの最大ばらつき分を考慮したものが含まれても良い。
また、差推力算出部76は、変速比偏差Δγに比例した比例項と変速比偏差Δγを積分した積分項とを加算したものを、変速速度を制御する為の制御量とするPI制御における、次式(1)に示すような予め定められたフィードバック制御式から、変速比偏差Δγに基づいて、フィードバック制御量(FB制御量)ΔWfbを算出する。この式(1)において、Δγは過渡目標変速比γtgtcと実変速比γとの変速比偏差(=γtgtc−γ)、Kpは所定の比例定数、Kiは所定の積分定数である。従って、右辺の左側の項が比例項であり、右辺の右側の項が積分項である。そして、差推力算出部76は、FF制御量ΔWffとFB制御量ΔWfbとの和を変速差推力ΔWとして算出する。
ΔWfb=Kp×Δγ+Ki×(∫Δγdt) ・・・(1)
尚、この変速比偏差Δγは、変速比γと1対1に対応するパラメータにおける変速目標値と実際値との偏差であれば良い。例えば、変速比偏差Δγに替えて、FF制御量ΔWffによるフィードフォワード制御を実行した場合の推定の変速比と実変速比との偏差、プライマリプーリ34側の目標プーリ位置Xintgtと実プーリ位置Xin(図2参照)との偏差ΔXin(=Xintgt−Xin)、セカンダリプーリ38側の目標プーリ位置Xouttgtと実プーリ位置Xout(図3参照)との偏差ΔXout(=Xouttgt−Xout)、プライマリプーリ34側の目標ベルト掛かり径Rintgtと実ベルト掛かり径Rin(図3参照)との偏差ΔRin(=Rintgt−Rin)、セカンダリプーリ38側の目標ベルト掛かり径Routtgtと実ベルト掛かり径Rout(図3参照)との偏差ΔRout(=Routtgt−Rout)、過渡目標入力軸回転速度Nintgtcと実入力軸回転速度Ninとの偏差ΔNin(=Nintgtc−Nin)などを用いることができる。
無段変速機制御部72は、例えば定常推力Wblに変速差推力ΔWを加算して目標推力Wtgt(=Wbl+ΔW)を算出する。目標推力Wtgtは、目標プライマリ推力Wintgt及び目標セカンダリ推力Wouttgtである。無段変速機制御部72は、目標推力Wtgtを目標プーリ圧(指示油圧)に変換する。具体的には、無段変速機制御部72は、目標プライマリ推力Wintgt及び目標セカンダリ推力Wouttgtを、各油圧シリンダ34c,38cの受圧面積に基づいてプライマリ指示油圧Pintgt(=Wintgt/34cの受圧面積)及びセカンダリ指示油圧Pouttgt(=Wouttgt/38cの受圧面積)に各々変換する。無段変速機制御部72は、油圧制御指令信号Scvtとしてプライマリ指示油圧Pintgt及びセカンダリ指示油圧Pouttgtを油圧制御回路100へ出力する。油圧制御回路100は、その油圧制御指令信号Scvtに従って、リニアソレノイド弁SLPを作動させてプライマリ圧Pinを調圧すると共に、リニアソレノイド弁SLSを作動させてセカンダリ圧Poutを調圧する。
ところで、図5に示すように、変速差推力ΔWが大きい程、変速速度が速くなる。見方を換えれば、過渡目標変速比γtgtcの変化量が大きければ、大きな変速差推力ΔWが要求される。しかしながら、変速差推力ΔWが比較的大きな領域では、ベルト滑りが発生する(或いは音が発生する)可能性があり、変速速度を制御することができない。その為、変速速度に上限を設定すること(すなわち変速差推力ΔWに上限を設定すること)が考えられる。この場合、一律に上限を設定することも考えられるが、ベルト滑りを防止しながら変速速度をできるだけ速くするという観点では、不十分である。本実施例では、ベルト滑りが発生する領域が、変速の種類、変速比γ、及びプーリの回転速度により変化することを見出した。以下に、ベルト滑りを防止しながら可及的に速い変速速度(すなわち可及的に大きな変速差推力ΔW)を設定することについて、詳細に説明する。
本実施例では、変速時にベルト掛かり径Rが小さい側から大きい側へ変化する可変プーリとなるのは、アップシフト時はプライマリプーリ34であり、ダウンシフト時はセカンダリプーリ38であること、回転軸心の回転速度が同じでもベルト掛かり径Rが大きい程伝動ベルト40のエレメントの速度が速くなることなどに着目して、変速速度を設定する。すなわち、電子制御装置50は、アップシフト時は、無段変速機18の変速比γが低車速側の変速比である場合には、高車速側の変速比である場合よりも、大きな変速速度を設定する一方で、ダウンシフト時は、無段変速機18の変速比γが低車速側の変速比である場合には、高車速側の変速比である場合よりも、小さな変速速度を設定する。また、電子制御装置50は、アップシフト時は、入力軸回転速度Ninが低い場合には、高い場合よりも、大きな変速速度を設定する一方で、ダウンシフト時は、出力軸回転速度Noutが低い場合には、高い場合よりも、大きな変速速度を設定する。
具体的には、上述した変速速度の設定では、電子制御装置50は、変速速度の上限値を設定する。変速速度の上限値を設定することは、変速差推力ΔWの上限値(以下、差推力上限値)ΔWlimを設定することであり、電子制御装置50は、差推力上限値ΔWlimを設定する差推力上限値設定手段すなわち差推力上限値設定部78(図3参照)を備えている。差推力上限設定部78は、アップシフト時の差推力上限値ΔWlimとして、入力軸回転速度Ninをパラメータとして実変速比γと差推力上限値ΔWlimとの予め定められた例えば図6(a)に示すような関係(アップシフト時差推力上限値マップ)から、実変速比γ及び入力軸回転速度Ninに基づいて、アップシフト側の差推力上限値ΔWlimを算出する。一方で、差推力上限設定部78は、ダウンシフト時の差推力上限値ΔWlimとして、出力軸回転速度Noutをパラメータとして実変速比γと差推力上限値ΔWlimとの予め定められた例えば図6(b)に示すような関係(ダウンシフト時差推力上限値マップ)から、実変速比γ及び出力軸回転速度Noutに基づいて、ダウンシフト側の差推力上限値ΔWlimを算出する。図6(a)のアップシフト時差推力上限値マップでは、実変速比γが大きい程、差推力上限値ΔWlimが大きくされていると共に、入力軸回転速度Ninが低い程、差推力上限値ΔWlimが大きくされている。一方で、図6(b)のダウンシフト時差推力上限値マップでは、実変速比γが大きい程、差推力上限値ΔWlimが小さくされていると共に、出力軸回転速度Noutが低い程、差推力上限値ΔWlimが大きくされている。尚、本実施例では、便宜上、ダウンシフト時には変速差推力ΔWを負値として取り扱っているので、ダウンシフト側の差推力上限値ΔWlimは、演算上は、下限値ということになる。
差推力算出部76は、FF制御量ΔWffとFB制御量ΔWfbとを合算した変速差推力ΔWに対して、差推力上限設定部78により算出された差推力上限値ΔWlimに基づいて、ガード処理を施す。すなわち、演算上は、変速差推力ΔWを差推力上限値ΔWlimにて上下限ガード処理する。具体的には、差推力算出部76は、変速差推力ΔWが差推力上限値ΔWlimの範囲に入っていれば、変速差推力ΔWを最終変速差推力ΔWlとして算出する。一方で、差推力算出部76は、変速差推力ΔWが差推力上限値ΔWlimの範囲に入っていなければ、差推力上限値ΔWlimを最終変速差推力ΔWlとして算出する。そして、無段変速機制御部72は、例えば定常推力Wblに最終変速差推力ΔWlを加算して目標推力Wtgt(=Wbl+ΔWl)を算出し、その目標推力Wtgtを指示油圧に変換する。
図7は、電子制御装置50の制御作動の要部すなわち無段変速機18の変速時にベルト滑りの防止と変速応答性とを両立させる為の制御作動を説明するブロック図であって、制御作動を示すフローチャートに相当するものであり、例えば数mSec乃至数十mSec程度の極めて短いサイクルタイムで繰り返し実行される。図8は、図7のブロック図に示す制御作動を実行した場合のタイムチャートであって、ダウンシフト時の一例である。
図7において、定常推力算出部74に対応するブロック(以下、ブロックを省略する)B10において、例えば実変速比γ及び入力トルクTinなどに基づいて定常推力Wblが算出される。このB10と並行して、差推力算出部76に対応するB20において、例えば過渡目標変速比γtgtcと実変速比γとに基づいて、FF制御量ΔWffとFB制御量ΔWfbとが算出され、FF制御量ΔWffとFB制御量ΔWfbとの和が変速差推力ΔWとして算出される。また、上記B10と並行して、差推力上限設定部78に対応するB30において、例えば図6(a)に示すようなアップシフト時差推力上限値マップから、実変速比γ及び入力軸回転速度Ninに基づいてアップシフト側の差推力上限値ΔWlimが算出される。また、上記B10と並行して、差推力上限設定部78に対応するB40において、例えば図6(b)に示すようなダウンシフト時差推力上限値マップから、実変速比γ及び出力軸回転速度Noutに基づいてダウンシフト側の差推力上限値ΔWlimが算出される。次いで、差推力算出部76に対応するB50において、例えば上記B20にて算出された変速差推力ΔWが、上記B30,B40にて算出された差推力上限値ΔWlimにて上下限ガード処理されて、最終変速差推力ΔWlとして算出される。次いで、無段変速機制御部72に対応するB60において、例えば上記B10にて算出された定常推力Wblに、上記B50にて算出された最終変速差推力ΔWlが加算されて、目標推力Wtgt(目標プライマリ推力Wintgt及び目標セカンダリ推力Wouttgt)が算出される。次いで、無段変速機制御部72に対応するB70において、例えば上記B60にて算出された目標プライマリ推力Wintgt及び目標セカンダリ推力Wouttgtが、プライマリ指示油圧Pintgt及びセカンダリ指示油圧Pouttgtに各々変換され、それら各指示油圧が油圧制御指令信号Scvtとして油圧制御回路100へ出力される。
図8において、例えばアクセルペダルの踏み込み操作に伴って、変速制御(ダウンシフト制御)が開始される(t1時点)。変速過渡中には、最終目標入力軸回転速度Nintgtl(或いは最終目標変速比γtgtl)に基づいて、過渡目標入力軸回転速度Nintgtc(或いは過渡目標変速比γtgtc)が算出され、フィードフォワード分のFF制御量ΔWff(実線)とフィードバック分のFB制御量ΔWfb(二点鎖線)との和である変速差推力ΔWが、差推力上限値ΔWlim(破線)にて上下限ガード処理される(t1時点乃至t2時点)。そして、実際値が最終目標値に到達すると変速制御が終了させられる(t2時点)。
上述のように、本実施例によれば、変速時にベルト掛かり径Rが大きい側に変化する可変プーリにおいて、伝動ベルト40のエレメントの速度が比較的速くなる大きなベルト掛かり径Rの変速比γである程、又は可変プーリの回転速度が速い程、変速速度が抑制されるので、伝動ベルト40のベルト滑りを防止することができる範囲で、変速速度をできるだけ速くすることができる。よって、無段変速機18の変速時に、ベルト滑りの防止と変速応答性とを両立させることができる。
また、本実施例によれば、変速時における変速速度の設定は、その変速速度の上限値を設定するもの(すなわち差推力上限値ΔWlimを設定するもの)であるので、伝動ベルト40のベルト滑りを防止することができる範囲で、変速速度をできるだけ速くすることが、一層確実に実現される。
次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
前述の実施例1では、差推力算出部76は、FF制御量ΔWffとFB制御量ΔWfbとを合算した変速差推力ΔWの全体を、差推力上限値ΔWlimにて上下限ガード処理した。ここで、FB制御量ΔWfbのうちの積分項(以下、フィードバック積分項)は、FB制御量ΔWfbのうちの比例項(以下、フィードバック比例項)のみでの制御によって残る定常偏差や無段変速機18のハード的なばらつきを吸収する制御量である。そうすると、変速差推力ΔWの全体を差推力上限値ΔWlimにて上下限ガード処理することで、フィードバック積分項も制限されてしまう可能性があり、上記定常偏差が残ったりハード的なばらつき分が制御量に反映されず目標変速比(最終目標変速比γtgtl、過渡目標変速比γtgtc)を実現し難くなる可能性がある。そこで、本実施例では、電子制御装置50は、PI制御において、 フィードバック比例項を差推力上限値ΔWlimに基づいて制限すると共に、その制限されたフィードバック比例項に対してフィードバック積分項を加算することで、最終変速差推力ΔWlを算出する。
具体的には、差推力算出部76は、前記式(1)に示すような予め定められたフィードバック制御式におけるフィードバック比例項分のFB制御量ΔWfbpを算出する。また、差推力算出部76は、前記式(1)に示すような予め定められたフィードバック制御式におけるフィードバック積分項分のFB制御量ΔWfbiを算出する。そして、差推力算出部76は、FF制御量ΔWffとフィードバック比例項分のFB制御量ΔWfbpとの和を仮変速差推力ΔWtとして算出する。更に、差推力算出部76は、その仮変速差推力ΔWtを、差推力上限値ΔWlimにて上下限ガード処理してガード後仮変速差推力ΔWtgとして算出する。そして、差推力算出部76は、そのガード後仮変速差推力ΔWtgとフィードバック積分項分のFB制御量ΔWfbiとの和を最終変速差推力ΔWlとして算出する。
図9は、電子制御装置50の制御作動の要部すなわち無段変速機18の変速時にベルト滑りの防止と変速応答性とを両立させる為の制御作動を説明するブロック図であって、制御作動を示すフローチャートに相当するものであり、例えば数mSec乃至数十mSec程度の極めて短いサイクルタイムで繰り返し実行される。この図9は、前述した実施例1における図7に対応する別の実施例であり、以下に図7と相違する点について主に説明する。
図9において、定常推力算出部74に対応するB10において、例えば定常推力Wblが算出される。このB10と並行して、差推力算出部76に対応するB21,B22,B23において、例えばFF制御量ΔWff、フィードバック比例項分のFB制御量ΔWfbp、及びフィードバック積分項分のFB制御量ΔWfbiがそれぞれ算出される。次いで、差推力算出部76に対応するB24において、例えば上記B21にて算出されたFF制御量ΔWffと、上記B22にて算出されたフィードバック比例項分のFB制御量ΔWfbpとの和が仮変速差推力ΔWtとして算出される。また、上記B10と並行して、差推力上限設定部78に対応するB30,B40において、例えばアップシフト側の差推力上限値ΔWlim及びダウンシフト側の差推力上限値ΔWlimが算出される。次いで、差推力上限設定部78に対応するB45において、例えば上記B30,B40にて算出された差推力上限値ΔWlimに基づいて変速差推力ΔWの上下限値が決定される。次いで、差推力算出部76に対応するB51において、例えば上記B24にて算出された仮変速差推力ΔWtが、上記B45にて算出された変速差推力ΔWの上下限値にて上下限ガード処理されて、ガード後仮変速差推力ΔWtgとして算出される。次いで、差推力算出部76に対応するB52において、例えば上記B51にて算出されたガード後仮変速差推力ΔWtgと、上記B23にて算出されたフィードバック積分項分のFB制御量ΔWfbiとの和が最終変速差推力ΔWlとして算出される。次いで、無段変速機制御部72に対応するB60において、例えば上記B10にて算出された定常推力Wblに、上記B52にて算出された最終変速差推力ΔWlが加算されて、目標推力Wtgtが算出される。次いで、無段変速機制御部72に対応するB70において、例えば上記B60にて算出された目標推力Wtgtが指示油圧に変換され、その指示油圧が油圧制御回路100へ出力される。
上述のように、本実施例によれば、前述の実施例1と同様の効果が得られることに加え、PI制御において、フィードバック比例項分のFB制御量ΔWfbpを差推力上限値ΔWlimに基づいて制限すると共に、その制限されたFB制御量ΔWfbpに対してフィードバック積分項分のFB制御量ΔWfbiを加算することで、最終変速差推力ΔWlを算出するので、フィードバック積分項には差推力上限値ΔWlimによる制限を掛けないことで、定常偏差が残り難くなったり、ハード的なばらつき分が制御量に反映され易くなって、目標変速比が実現され易くなる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明は実施例相互を組み合わせて実施可能であると共にその他の態様においても適用される。
例えば、前述の実施例2では、前述の実施例1での制御に対して、フィードバック積分項には差推力上限値ΔWlimによる制限を掛けないことで、定常偏差分等を吸収した。これに替えて、前述の実施例1での制御に対して、学習制御により、残った定常偏差分等を相殺する学習値を算出して、定常偏差分等を吸収しても良い。尚、この学習制御は、前述の実施例2に対して行っても良い。
また、前述の実施例では、無段変速機18の入力側の回転速度として入力軸回転速度Ninを例示したが、これに限らず、入力側の回転速度は、エンジン12から入力軸30までの動力伝達経路における回転部材の回転速度であれば良い。また、無段変速機18の出力側の回転速度として出力軸回転速度Noutを例示したが、これに限らず、出力側の回転速度は、出力軸36から駆動輪24までの動力伝達経路における回転部材の回転速度であれば良い。
また、前述の実施例では、流体式伝動装置としてトルクコンバータ14が用いられていたが、トルクコンバータ14に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式伝動装置が用いられても良い。また、トルクコンバータ14には、ポンプ翼車14p及びタービン翼車14tの間にロックアップクラッチが設けられているが、必ずしも設けられる必要はない。また、前後進切換装置16がその発進機構として機能するか、発進クラッチ等の発進機構が備えられるか、或いは動力伝達経路を断接可能な係合装置等が備えられる場合には、流体式伝動装置は備えられなくとも良い。
また、前述の実施例の油圧制御回路100は、油圧シリンダへ供給する油圧を直接的に制御してプーリ圧とする構成であったが、これに限らない。例えば、油圧シリンダへの作動油の流量を制御することにより結果的にプーリ圧を生じるような構成の油圧制御回路であっても本発明は適用され得る。
また、前述の実施例の油圧制御回路100では、プライマリ圧Pinとセカンダリ圧Poutとによりベルト滑りを防止しつつ、プライマリ推力Winとセカンダリ推力Woutとの相互関係にて目標変速比を実現する構成の油圧制御回路であったが、これに限らない。例えば、一方のプーリ側で目標の変速を実現し、他方のプーリ側で目標のベルト挟圧力を実現する構成の油圧制御回路であっても良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
18:ベルト式無段変速機(車両用無段変速機)
34:入力側可変プーリ
38:出力側可変プーリ
40:伝動ベルト
50:電子制御装置(制御装置)

Claims (4)

  1. 入力側可変プーリ及び出力側可変プーリを有する有効径が可変の一対の可変プーリと、該一対の可変プーリの間に巻き掛けられた伝動ベルトとを備え、実際の変速比が目標変速比となるように変速制御を実行する車両用無段変速機の制御装置であって、
    アップシフト時は、前記車両用無段変速機の変速比が低車速側の変速比である場合には、高車速側の変速比である場合よりも、大きな変速速度を設定する一方で、
    ダウンシフト時は、前記車両用無段変速機の変速比が低車速側の変速比である場合には、高車速側の変速比である場合よりも、小さな変速速度を設定することを特徴とする車両用無段変速機の制御装置。
  2. アップシフト時は、前記車両用無段変速機の入力側の回転速度が低い場合には、高い場合よりも、大きな変速速度を設定する一方で、
    ダウンシフト時は、前記車両用無段変速機の出力側の回転速度が低い場合には、高い場合よりも、大きな変速速度を設定することを特徴とする請求項1に記載の車両用無段変速機の制御装置。
  3. 前記変速速度の設定は、該変速速度の上限値を設定するものであることを特徴とする請求項1又は2に記載の車両用無段変速機の制御装置。
  4. 変速目標値と実際値との偏差に比例した比例項と該偏差を積分した積分項とを加算したものを、変速速度を制御する為の制御量とするPI制御において、
    前記比例項を前記上限値に基づいて制限すると共に、該制限された比例項に対して前記積分項を加算することで、最終的な制御量を算出することを特徴とする請求項1乃至3の何れか1項に記載の車両用無段変速機の制御装置。
JP2013024951A 2013-02-12 2013-02-12 車両用無段変速機の制御装置 Pending JP2014152895A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024951A JP2014152895A (ja) 2013-02-12 2013-02-12 車両用無段変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024951A JP2014152895A (ja) 2013-02-12 2013-02-12 車両用無段変速機の制御装置

Publications (1)

Publication Number Publication Date
JP2014152895A true JP2014152895A (ja) 2014-08-25

Family

ID=51574951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024951A Pending JP2014152895A (ja) 2013-02-12 2013-02-12 車両用無段変速機の制御装置

Country Status (1)

Country Link
JP (1) JP2014152895A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129511A1 (ja) * 2018-12-21 2020-06-25 ジヤトコ株式会社 ベルト式無段変速機
JP2021139454A (ja) * 2020-03-06 2021-09-16 ダイハツ工業株式会社 無段変速機の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277924A (ja) * 1995-04-05 1996-10-22 Unisia Jecs Corp 無段変速機の制御装置
JPH11315913A (ja) * 1998-05-08 1999-11-16 Honda Motor Co Ltd 金属ベルト式無段変速機における変速速度制御方法
JP2000193075A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2013015186A (ja) * 2011-07-04 2013-01-24 Toyota Motor Corp 車両用無段変速機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277924A (ja) * 1995-04-05 1996-10-22 Unisia Jecs Corp 無段変速機の制御装置
JPH11315913A (ja) * 1998-05-08 1999-11-16 Honda Motor Co Ltd 金属ベルト式無段変速機における変速速度制御方法
JP2000193075A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2013015186A (ja) * 2011-07-04 2013-01-24 Toyota Motor Corp 車両用無段変速機の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129511A1 (ja) * 2018-12-21 2020-06-25 ジヤトコ株式会社 ベルト式無段変速機
JPWO2020129511A1 (ja) * 2018-12-21 2021-10-14 ジヤトコ株式会社 ベルト式無段変速機
JP7033216B2 (ja) 2018-12-21 2022-03-09 ジヤトコ株式会社 ベルト式無段変速機
JP2021139454A (ja) * 2020-03-06 2021-09-16 ダイハツ工業株式会社 無段変速機の制御装置
JP7427331B2 (ja) 2020-03-06 2024-02-05 ダイハツ工業株式会社 無段変速機の制御装置

Similar Documents

Publication Publication Date Title
JP5790173B2 (ja) 車両用無段変速機の制御装置
US8062156B2 (en) Control device for continuously variable transmission
WO2012026043A1 (ja) 車両用無段変速機の制御装置
JP5850062B2 (ja) 車両用無段変速機の制御装置
JP6168107B2 (ja) 動力伝達装置の制御装置
JP2015227697A (ja) 車両用変速機の制御装置
JP5376054B2 (ja) 車両用変速制御装置
US10663061B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
JP2015197193A (ja) 車両用無段変速機の油圧制御装置
US10724612B2 (en) Control apparatus for vehicle
US10683933B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
JP2016161023A (ja) 車両の制御装置
JP6942238B2 (ja) 自動変速機のロックアップ制御装置および制御方法
JP5472074B2 (ja) 車両用無段変速機の制御装置
WO2019167507A1 (ja) 自動変速機のロックアップ制御装置および制御方法
JP2014152895A (ja) 車両用無段変速機の制御装置
JP5765188B2 (ja) 車両用無段変速機の制御装置
JP4736831B2 (ja) 車両用無段変速機の制御装置
JP7188269B2 (ja) 車両の制御装置
US10704686B2 (en) Control apparatus for vehicle drive-force transmitting apparatus
JP5737013B2 (ja) 車両用無段変速機の制御装置
JP2007177834A (ja) 無段変速機の制御装置
JPWO2020054269A1 (ja) 自動変速機のロックアップ制御装置
JP5505324B2 (ja) 車両用ベルト式無段変速機の制御装置
JP6891978B2 (ja) 動力伝達装置の制御方法及び動力伝達装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160726