JP2007177834A - 無段変速機の制御装置 - Google Patents

無段変速機の制御装置 Download PDF

Info

Publication number
JP2007177834A
JP2007177834A JP2005375193A JP2005375193A JP2007177834A JP 2007177834 A JP2007177834 A JP 2007177834A JP 2005375193 A JP2005375193 A JP 2005375193A JP 2005375193 A JP2005375193 A JP 2005375193A JP 2007177834 A JP2007177834 A JP 2007177834A
Authority
JP
Japan
Prior art keywords
control
pressure
reverse
output
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005375193A
Other languages
English (en)
Inventor
Sei Kojima
星 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005375193A priority Critical patent/JP2007177834A/ja
Publication of JP2007177834A publication Critical patent/JP2007177834A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】前進走行中に後進走行位置へシフト操作されたときにニュートラル状態とされるようにリバースインヒビット制御を実行する無段変速機の制御装置において、リバースインヒビット制御中にニュートラル状態から動力伝達可能状態へ復帰させる際に、動力源の過回転を防止する。
【解決手段】リバースインヒビット制御の実行中にR→Dシフトが行われたときには、エンジン12が所定の過回転速度NEORを超えないことを条件として、動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられるように、リバースインヒビット時復帰制御手段170により前進用クラッチC1へ供給する油圧が制御されるので、推力比コントロールバルブ118による閉じ込み制御が行われているリバースインヒビット制御中に比較的大きな所定の変速比に保持されるような場合であっても、動力伝達可能状態への復帰の際にエンジン12が過回転することが防止される。
【選択図】図7

Description

本発明は、無段変速機の制御装置に係り、特に、前後進を切り替えるための前進用係合装置および後進用係合装置の係合油圧制御に関するものである。
車両に備えられた無段変速機の制御装置において、前後進を切り替えるための前後進切替装置の作動を制御すると共に無段変速機の変速比を変化させるためのアクチュエータへの作動油の給排を制御する油圧回路を備え、前進走行時に前進走行位置から後進走行位置へシフト操作されたときには、動力伝達経路が解放されるすなわち動力伝達が遮断されるニュートラル状態となるように油路を切り換えて後進走行のための動力伝達経路が確立されることを制限(禁止)する所謂リバースインヒビット制御を実行する制御作動が良く知られている。
例えば、特許文献1に記載されたベルト式無段変速機の制御装置がそれである。この特許文献1には、前進用ドライブギヤおよび後進用ドライブギヤをドリブンシャフトに結合可能に設けるセレクタを、いずれのドライブギヤもドリブンシャフトに結合されないニュートラル位置、前進用ドライブギヤがドリブンシャフトに結合されるドライブ(前進走行)位置、および後進用ドライブギヤがドリブンシャフトに結合されるリバース(後進走行)位置のいずれかの位置に選択的に切り換えるように、シフトレバーの操作位置に応じて油路を切り換えることによりそのセレクタに連結されたシフトサーボを作動させると共に、ベルト式無段変速機の変速比を変化させるためのドライブプーリの油室に作用する油圧を2つの電磁弁からの出力油圧に基づいてレシオコントロールバルブにより調圧する油圧回路を備え、前進走行時にセレクタをリバース位置とするための油路が構成される操作位置へシフトレバーが操作されると、強制的にセレクタをニュートラル位置に保持するようにシフトサーボを作動させるための油路を上記2つの電磁弁の出力油圧に基づいて構成してセレクタをリバース位置に切り換えないリバースインヒビット制御を実行する制御作動が記載されている。
また、特許文献1に記載の油圧回路は、電磁弁に対する指令信号が遮断されたり電磁弁から油圧が出力されないような故障時に、車両の発進や走行が一応支障なく行われるように、2つの電磁弁の出力が共にオフ状態とされると、無段変速機の変速比が所定の中間変速比に保持されるように構成されている。
特開平8−303542号公報
ところで、リバースインヒビット制御中に前進走行位置へ切り換えるようにシフト操作されると、動力伝達経路はニュートラル状態(動力伝達遮断状態)から動力伝達可能状態へ復帰させられる。一方、上記特許文献1に記載されたようにリバースインヒビット制御と所定の中間変速比の保持とが兼用の電磁弁の出力油圧に基づいて実行される場合において、そのリバースインヒビット制御の実行中に所定の変速比となるように油圧回路を構成することも考えられる。
このようなとき、上記所定の変速比が特許文献1に示されているように中間変速比やそれよりも低車速側(ロー側)となる大きな変速比に設定されると、リバースインヒビット制御中には変速比が比較的大きくなり、特に、高速走行時のリバースインヒビット制御中に前進走行位置へ切り換えるようにシフト操作されて動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられると、エンジンなどの動力源が過回転(オーバーレブ)して動力源の耐久性が低下するという問題が発生する可能性があった。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、前後進を切り替えるための前進用係合装置および後進用係合装置を備え、前進走行中に後進走行位置へシフト操作されたときには、動力伝達経路が動力伝達遮断状態とされるように後進用係合装置へ供給する油圧を制御するためのリバースインヒビット制御を実行する無段変速機の制御装置において、リバースインヒビット制御中に動力伝達経路を動力伝達遮断状態から動力伝達可能状態へ復帰させる際に、動力源の過回転を防止することにある。
かかる目的を達成するための請求項1にかかる発明の要旨とするところは、(a) 走行用動力源と駆動輪との間の動力伝達経路に無段変速機が配設された車両において、前後進を切り替えるための前進用係合装置および後進用係合装置のいずれかへ供給する油圧を制御すると同時に前記無段変速機の変速比を変化させるためのアクチュエータへ所定の変速比となるように油圧を供給する油圧回路とを備え、前進走行中に前進走行位置から後進走行位置へシフト操作されたときには、前記動力伝達経路が動力伝達遮断状態とされるように前記後進用係合装置へ供給する油圧を制御するためのリバースインヒビット制御を実行する無段変速機の制御装置であって、(b) 前記リバースインヒビット制御の実行中に後進走行位置から前進走行位置へシフト操作されたときには、前記走行用動力源が所定の過回転速度を超えないことを条件として、前記動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられるように前記前進用係合装置へ供給する油圧を制御するリバースインヒビット時復帰制御手段を含むことにある。
このようにすれば、リバースインヒビット制御の実行中に後進走行位置から前進走行位置へシフト操作されたときには、走行用動力源が所定の過回転速度を超えないことを条件として、動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられるように、リバースインヒビット時復帰制御手段により前進用係合装置へ供給する油圧が制御されるので、所定の変速比が例えば低車速側となる大きな変速比に設定されてリバースインヒビット制御中に変速比が比較的大きくなるような場合であっても、動力伝達可能状態への復帰の際に走行用動力源が過回転(オーバーレブ)することが防止される。
ここで、請求項2にかかる発明は、請求項1に記載の無段変速機の制御装置において、前記走行用動力源が所定の過回転速度を超えないことを条件とすることは、車速が変速比の函数である判定車速以下であることを条件とするものである。このようにすれば、動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられたときに走行用動力源が所定の過回転速度を超える可能性があるか否かが判定され得る。
また、請求項3にかかる発明は、請求項1または2に記載の無段変速機の制御装置において、アクセルペダルが踏込操作された場合には、前記リバースインヒビット時復帰制御手段により前記動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられるまで、前記走行用動力源が所定の過回転速度を超えないようにその走行用動力源の出力を抑制する動力源出力制御手段をさらに含むものである。このようにすれば、動力伝達経路が動力伝達遮断状態のときにアクセルペダルが大きく踏込操作されることによって走行用動力源が過回転することが抑制されて、その走行用動力源の耐久性が向上する。
例えば、前記走行用動力源がガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジンである場合には、動力源出力制御手段は、そのエンジンが所定の過回転速度を超えないように電子スロットル弁の開度を制御したり、燃料噴射量を低減したり、或いは点火時期を制御して、エンジンの出力を抑制する。また、前記走行用動力源としては、このようなエンジンが広く用いられるが、電動機等がこのエンジンに加えて用いられても良い。或いは、走行用動力源として電動機のみが用いられてもよい。
ここで、好適には、請求項1に記載の無段変速機の制御装置において、前記リバースインヒビット時復帰制御手段は、前記リバースインヒビット制御の実行中に前進走行位置へシフト操作されたときに、前記動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられることにより前記走行用動力源が所定の過回転速度を超える場合には、前記前進走行位置へのシフト操作後も前記動力伝達遮断状態が継続されるように前記前進用係合装置へ供給する油圧を制御するものである。このようにすれば、所定の変速比が例えば低車速側となる大きな変速比に設定されてリバースインヒビット制御中に変速比が比較的大きくなるような場合であっても、走行用動力源が過回転することが防止される。
また、好適には、前記無段変速機は、動力伝達部材として機能する伝動ベルトが有効径が可変である一対の可変プーリである入力側可変プーリおよび出力側可変プーリに巻き掛けられ変速比が無段階に連続的に変化させられる所謂ベルト式無段変速機、共通の軸心まわりに回転させられる一対のコーンを有しその軸心と交差する回転中心回転可能な複数個のローラがそれら一対のコーンの間で挟圧されそのローラの回転中心と軸心との交差角が変化させられることによって変速比が可変とされた所謂トラクション型無段変速機などにより構成される。
例えば、上記ベルト式無段変速機において、入力側可変プーリの有効径を変化させる油圧シリンダ等が入力側可変プーリに一体的に設けられ、入力側可変プーリの油圧シリンダ(入力側油圧シリンダ)の油圧が制御装置によって変化させられることにより伝動ベルトの掛かり径(有効径)が変更され、変速比が連続的に変化させられる。また、出力側可変プーリの有効径を変化させる油圧シリンダ等が出力側可変プーリに一体的に設けられ、出力側可変プーリの油圧シリンダ(出力側油圧シリンダ)の油圧は伝動ベルトが滑りを生じないように制御装置によって制御される。
無段変速機の通常の変速制御、すなわち回転速度センサによる回転速度の検出が困難な極低車速より高速の通常走行時の変速制御は、例えば予め定められた変速条件に従って目標変速比を求め、実際の変速比が目標変速比になるように入力側油圧シリンダの油圧をフィードバック制御したり、車速や出力軸回転速度(駆動輪側回転速度)などに応じて入力側(駆動源側)の目標回転速度を求め、実際の入力軸回転速度が目標回転速度になるように入力側油圧シリンダの油圧をフィードバック制御したりするなど、種々の態様を採用できる。
上記予め定められた変速条件は、例えばアクセル操作量などの運転者の出力要求量(加速要求量)および車速(出力回転速度に対応)などの運転状態をパラメータとするマップや演算式などによって設定される。
極低車速走行時のようなフィードバック制御が不可の時の油圧制御は、入力側油圧シリンダの油圧および出力側油圧シリンダの油圧をそれぞれ独立に制御して所定の推力比τ(=出力側油圧シリンダの油圧×出力側油圧シリンダの断面積/入力側油圧シリンダの油圧×入力側油圧シリンダの断面積)となるように入力側油圧シリンダの油圧を制御するものでも良いが、例えば出力側油圧シリンダの油圧がパイロット圧として導入される推力比コントロールバルブを有し、その推力比コントロールバルブから出力されるコントロール圧に基づいて入力側油圧シリンダの油圧が制御されることにより、所定の推力比τとなるように構成することが望ましい。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が適用された車両用駆動装置10の構成を説明する骨子図である。この車両用駆動装置10は横置き型自動変速機であって、FF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものであり、走行用の動力源としてエンジン12を備えている。内燃機関にて構成されているエンジン12の出力は、エンジン12のクランク軸、流体式伝動装置としてのトルクコンバータ14から前後進切換装置16、ベルト式の無段変速機(CVT)18、減速歯車装置20を介して差動歯車装置22に伝達され、左右の駆動輪24L、24Rへ分配される。
トルクコンバータ14は、エンジン12のクランク軸に連結されたポンプ翼車14p、およびトルクコンバータ14の出力側部材に相当するタービン軸34を介して前後進切換装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行うようになっている。また、それ等のポンプ翼車14pおよびタービン翼車14tの間にはロックアップクラッチ26が設けられており、油圧制御回路(油圧回路)100(図2、図3参照)内の図示しないロックアップコントロールバルブ(L/C制御弁)などによって係合側油室および解放側油室に対する油圧供給が切り換えられることにより、係合または解放されるようになっており、完全係合させられることによってポンプ翼車14pおよびタービン翼車14tは一体回転させられる。ポンプ翼車14pには、無段変速機18を変速制御したりベルト挟圧力を発生させたり、ロックアップクラッチ26を係合解放制御したり、或いは各部に潤滑油を供給したりするための油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ28が連結されている。
前後進切換装置16は、ダブルピニオン型の遊星歯車装置を主体として構成されており、トルクコンバータ14のタービン軸34はサンギヤ16sに一体的に連結され、無段変速機18の入力軸36はキャリア16cに一体的に連結されている一方、キャリア16cとサンギヤ16sは前進用クラッチC1を介して選択的に連結され、リングギヤ16rは後進用ブレーキB1を介してハウジングに選択的に固定されるようになっている。前進用クラッチC1および後進用ブレーキB1は断続装置に相当するもので、何れも油圧シリンダによって摩擦係合させられる油圧式摩擦係合装置である。
そして、前進用クラッチC1が係合させられるとともに後進用ブレーキB1が解放されると、前後進切換装置16は一体回転状態とされることによりタービン軸34が入力軸36に直結され、前進用動力伝達経路が成立(達成)させられて、前進方向の駆動力が無段変速機18側へ伝達される。また、後進用ブレーキB1が係合させられるとともに前進用クラッチC1が解放されると、前後進切換装置16は後進用動力伝達経路が成立(達成)させられて、入力軸36はタービン軸34に対して逆方向へ回転させられるようになり、後進方向の駆動力が無段変速機18側へ伝達される。また、前進用クラッチC1および後進用ブレーキB1が共に解放されると、前後進切換装置16は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)になる。
無段変速機18は、入力軸36に設けられた入力側部材である有効径が可変の入力側可変プーリ(プライマリシーブ)42と、出力軸44に設けられた出力側部材である有効径が可変の出力側可変プーリ(セカンダリシーブ)46と、それ等の可変プーリ42、46に巻き掛けられた伝動ベルト48とを備えており、可変プーリ42、46と伝動ベルト48との間の摩擦力を介して動力伝達が行われる。
可変プーリ42および46は、入力軸36および出力軸44にそれぞれ固定された固定回転体42aおよび46aと、入力軸36および出力軸44に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた可動回転体42bおよび46bと、それらの間のV溝幅を可変とする推力を付与するアクチュエータとしての入力側油圧シリンダ42cおよび出力側油圧シリンダ46cとを備えて構成されており、入力側油圧シリンダ42cの油圧(変速制御圧PRATIO)が油圧制御回路100によって制御されることにより、両可変プーリ42、46のV溝幅が変化して伝動ベルト48の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化させられる。また、出力側油圧シリンダ46cの油圧(挟圧力制御圧PBELT)は、伝動ベルト48が滑りを生じないように油圧制御回路100によって調圧制御される。
図2は、図1の車両用駆動装置10などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や無段変速機18の変速制御およびベルト挟圧力制御やロックアップクラッチ26のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や無段変速機18およびロックアップクラッチ26の油圧制御用等に分けて構成される。
電子制御装置50には、エンジン回転速度センサ52により検出されたクランク軸回転角度(位置)ACR(°)およびエンジン12の回転速度(エンジン回転速度)Nに対応するクランク軸回転速度を表す信号、タービン回転速度センサ54により検出されたタービン軸34の回転速度(タービン回転速度)Nを表す信号、入力軸回転速度センサ56により検出された無段変速機18の入力回転速度である入力軸36の回転速度(入力軸回転速度)NINを表す信号、車速センサ(出力軸回転速度センサ)58により検出された無段変速機18の出力回転速度である出力軸44の回転速度(出力軸回転速度)NOUTすなわち出力軸回転速度NOUTに対応する車速Vを表す車速信号、スロットルセンサ60により検出されたエンジン12の吸気配管32(図1参照)に備えられた電子スロットル弁30のスロットル弁開度θTHを表すスロットル弁開度信号、冷却水温センサ62により検出されたエンジン12の冷却水温Tを表す信号、CVT油温センサ64により検出された無段変速機18等の油圧回路の油温TCVTを表す信号、アクセル開度センサ66により検出されたアクセルペダル68の操作量であるアクセル開度Accを表すアクセル開度信号、フットブレーキスイッチ70により検出された常用ブレーキであるフットブレーキの操作の有無BONを表すブレーキ操作信号、レバーポジションセンサ72により検出されたシフトレバー74のレバーポジション(操作位置)PSHを表す操作位置信号などが供給されている。
また、電子制御装置50からは、エンジン12の出力制御の為のエンジン出力制御指令信号S、例えば電子スロットル弁30の開閉を制御するためのスロットルアクチュエータ76を駆動するスロットル信号や燃料噴射装置78から噴射される燃料の量を制御するための噴射信号や点火装置80によるエンジン12の点火時期を制御するための点火時期信号などが出力される。また、無段変速機18の変速比γを変化させる為の変速制御指令信号S例えば変速制御圧PRATIOを制御するための指令信号、伝動ベルト48の挟圧力を調整させる為の挟圧力制御指令信号S例えば挟圧力制御圧PBELTを制御するための指令信号、ロックアップクラッチ26の係合、解放、スリップ量を制御させる為のロックアップ制御指令信号例えば油圧制御回路100内の前記ロックアップコントロールバルブの弁位置を切り換える図示しないオンオフソレノイド弁DSUを駆動するための指令信号やロックアップクラッチ26のトルク容量を調節するソレノイド弁DS2を駆動するための指令信号、ライン油圧Pを制御するリニアソレノイド弁SLTやリニアソレノイド弁SLSを駆動するための指令信号などが油圧制御回路100へ出力される。
シフトレバー74は、例えば運転席の近傍に配設され、順次位置させられている5つのレバーポジション「P」、「R」、「N」、「D」、および「L」(図3参照)のうちの何れかへ手動操作されるようになっている。
「P」ポジション(レンジ)は車両用駆動装置10の動力伝達経路を解放しすなわち車両用駆動装置10の動力伝達が遮断されるニュートラル状態(中立状態)とし且つメカニカルパーキング機構によって機械的に出力軸44の回転を阻止(ロック)するための駐車ポジション(位置)であり、「R」ポジションは出力軸44の回転方向を逆回転とするための後進走行ポジション(位置)であり、「N」ポジションは車両用駆動装置10の動力伝達が遮断されるニュートラル状態とするための中立ポジション(位置)であり、「D」ポジションは無段変速機18の変速を許容する変速範囲で自動変速モードを成立させて自動変速制御を実行させる前進走行ポジション(位置)であり、「L」ポジションは強いエンジンブレーキが作用させられるエンジンブレーキポジション(位置)である。このように、「P」ポジションおよび「N」ポジションは車両を走行させないときに選択される非走行ポジションであり、「R」ポジション、「D」ポジションおよび「L」ポジションは車両を走行させるときに選択される走行ポジションである。
図3は、油圧制御回路100のうち無段変速機18のベルト挟圧力制御、変速比制御、およびシフトレバー74の操作に伴う前進用クラッチC1或いは後進用ブレーキB1の係合油圧制御に関する部分を示す要部油圧回路図である。図3において、油圧制御回路100は、伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cの油圧である挟圧力制御圧PBELTを調圧する挟圧力コントロールバルブ110、リニアソレノイド弁SLTにより調圧された第1油圧としての制御油圧PSLTを出力する第1位置とライン圧モジュレータNO.2バルブ122からの第2油圧としての出力油圧PLM2を出力する第2位置とに切り換えられる切換弁として機能するクラッチアプライコントロールバルブ112、変速比γが連続的に変化させられるように入力側油圧シリンダ42cの油圧である変速制御圧PRATIOを調圧する変速比コントロールバルブUP114および変速比コントロールバルブDN116、変速制御圧PRATIOと挟圧力制御圧PBELTとの比率を予め定められた関係とする推力比コントロールバルブ118、前進用クラッチC1および後進用ブレーキB1が係合或いは解放されるようにシフトレバー74の操作に従って油路が機械的に切り換えられるマニュアルバルブ120等を備えている。
また、ライン油圧Pは、エンジン12により回転駆動される機械式のオイルポンプ28(図1参照)から出力(発生)される作動油圧を元圧として、例えばリリーフ型のプライマリレギュレータバルブ(調圧弁)124によりリニアソレノイド弁SLTからの信号圧PSLT或いはリニアソレノイド弁SLSからの信号圧PSLSに基づいてエンジン負荷等に応じた値に調圧されるようになっている。上記出力油圧PLM2は、ライン油圧Pを元圧として前記ライン圧モジュレータNO.2バルブ122によりリニアソレノイド弁SLTからの信号圧PSLT或いはリニアソレノイド弁SLSからの信号圧PSLSに基づいて調圧されるようになっている。出力油圧PLM3は、制御油圧(信号圧)PSLTおよび信号圧PSLSの元圧となるものであって、ライン油圧Pを元圧としてライン圧モジュレータNO.3バルブ126により一定圧に調圧されるようになっている。モジュレータ油圧Pは、電子制御装置50によってデューティ制御されるソレノイド弁DS1の出力油圧である制御油圧PDS1およびソレノイド弁DS2の出力油圧である制御油圧PDS2の元圧となるものであって、出力油圧PLM3を元圧としてモジュレータバルブ128により一定圧に調圧されるようになっている。
前記マニュアルバルブ120において、入力ポート120aにはクラッチアプライコントロールバルブ112から出力された係合油圧Pが供給される。そして、シフトレバー74が「D」ポジション或いは「L」ポジションに操作されると、係合油圧Pが前進走行用出力圧として前進用出力ポート120fを経て前進用クラッチC1に供給され且つ後進用ブレーキB1内の作動油が後進用出力ポート120rから排出ポートEXを経て例えば大気圧にドレーン(排出)されるようにマニュアルバルブ120の油路が切り換えられ、前進用クラッチC1が係合させられると共に後進用ブレーキB1が解放させられる。
また、シフトレバー74が「R」ポジションに操作されると、係合油圧Pが後進走行用出力圧として後進用出力ポート120rを経て後進用ブレーキB1に供給され且つ前進用クラッチC1内の作動油が前進用出力ポート120fから排出ポートEXを経て例えば大気圧にドレーン(排出)されるようにマニュアルバルブ120の油路が切り換えられ、後進用ブレーキB1が係合させられると共に前進用クラッチC1が解放させられる。
また、シフトレバー74が「P」ポジションおよび「N」ポジションに操作されると、入力ポート120aから前進用出力ポート120fへの油路および入力ポート120aから後進用出力ポート120rへの油路がいずれも遮断され且つ前進用クラッチC1および後進用ブレーキB1内の作動油が何れもマニュアルバルブ120からドレーンされるようにマニュアルバルブ120の油路が切り換えられ、前進用クラッチC1および後進用ブレーキB1が共に解放させられる。
前記クラッチアプライコントロールバルブ112は、軸方向へ移動可能に設けられることにより制御油圧PSLTを入力ポート112iから出力ポート112sを経て係合油圧Pとしてマニュアルバルブ120へ供給し且つ信号圧PSLSを入力ポート112jから出力ポート112tを経てライン圧モジュレータNO.2バルブ122およびプライマリレギュレータバルブ124へ供給する第1の油路を構成する第1位置(CONTROL位置)と出力油圧PLM2を入力ポート112kから出力ポート112sを経て係合油圧Pとしてマニュアルバルブ120へ供給し且つ制御油圧PSLTを入力ポート112iから出力ポート112tを経てライン圧モジュレータNO.2バルブ122およびプライマリレギュレータバルブ124へ供給する第2の油路を構成する第2位置(NORMAL位置)とに位置させられるスプール弁子112aと、そのスプール弁子112aを第2位置側に向かって付勢する付勢手段としてのスプリング112bと、スプール弁子112aに第1位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室112cと、スプール弁子112aに第1位置側に向かう推力を付与するために制御油圧PDS2を受け入れる径差部112dとを備えている。
このように構成されたクラッチアプライコントロールバルブ112において、例えば所定車速以下の低車速時や車両停止時等にシフトレバー74が「N」ポジションから「D」ポジション或いは「R」ポジションへ操作されるガレージシフト(N→Dシフト或いはN→Rシフト)が行われ、所定圧以上の制御油圧PDS1が油室112cへ供給され且つ所定圧以上の制御油圧PDS2が径差部112dへ供給されると、中心線より右側半分に示す第1位置側に切り換えられて制御油圧PSLTがマニュアルバルブ120を介して前進用クラッチC1或いは後進用ブレーキB1に供給される。これにより、ガレージシフト時のクラッチC1やブレーキB1の係合過渡油圧が第1の電磁弁としてのリニアソレノイド弁SLTによって調圧される。例えば、制御油圧PSLTは、N→Dシフト或いはN→RシフトにおいてクラッチC1やブレーキB1の過渡的な係合状態を制御するための油圧であって、クラッチC1或いはブレーキB1が滑らかに係合させられ、係合時のショックが抑制されるように、予め定められた規則に従って調圧される。
また、例えばガレージシフト後のクラッチC1やブレーキB1が係合させられた定常時等に、制御油圧PDS1および制御油圧PDS2のうち少なくとも一方の供給が停止させられると、中心線より左側半分に示す第2位置側に切り換えられて出力油圧PLM2がマニュアルバルブ120を介して前進用クラッチC1或いは後進用ブレーキB1に供給される。これにより、ガレージシフト後のクラッチC1やブレーキB1の係合が出力油圧PLM2によって保持される。例えば、出力油圧PLM2は、クラッチC1やブレーキB1を完全係合状態とするための所定油圧であって、少なくとも予め定められた一定圧に調圧されると共に信号圧PSLTに応じた油圧分を加えて調圧される。
このように、クラッチアプライコントロールバルブ112は、クラッチC1或いはブレーキB1への油圧の供給油路を、ガレージシフト時には前進用クラッチC1或いは後進用ブレーキB1の過渡的な係合状態を制御するために制御油圧PSLTを供給する第1油路と、定常時にはクラッチC1或いはブレーキB1を完全係合状態とするために出力油圧PLM2を供給する第2油路とのいずれかに、第2の電磁弁としてのソレノイド弁DS1およびソレノイド弁DS2からの制御油圧PDS1および制御油圧PDS2に基づいて切り換える切換弁として機能する。
尚、本実施例では、リニアソレノイド弁SLTの出力油圧を制御油圧PSLTと信号圧PSLTとで2通りの記載をしているが、ガレージシフト時の係合過渡油圧を制御油圧PSLTとし、ライン油圧Pを調圧するためのパイロット圧を信号圧PSLTとして明確に区別して用いる。すなわち、リニアソレノイド弁SLTは、クラッチアプライコントロールバルブ112が第1位置に切り換えられているときには前進用クラッチC1或いは後進用ブレーキB1の過渡的な係合状態を制御するために制御油圧PSLTを出力し、クラッチアプライコントロールバルブ112が第2位置に切り換えられているときにはライン油圧Pを調圧するために信号圧PSLTを出力する。また、この信号圧PSLTはプライマリレギュレータバルブ124によりライン油圧Pを調圧するためのパイロット圧であり、クラッチC1或いはブレーキB1を係合するために直接的にそれら係合装置の油圧アクチュエータに供給される油圧でないことから、上記出力油圧PLM2よりも小さな油圧とされている。
前記変速比コントロールバルブUP114は、軸方向へ移動可能に設けられることによりライン油圧Pを入力ポート114iから入出力ポート114jを経て入力側可変プーリ42へ供給可能且つ入出力ポート114kを閉弁するアップシフト位置と入力側可変プーリ42が入出力ポート114jを介して入出力ポート114kと連通させられる原位置とに位置させられるスプール弁子114aと、そのスプール弁子114aを原位置側に向かって付勢する付勢手段としてのスプリング114bと、そのスプリング114bを収容し且つスプール弁子114aに原位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室114cと、スプール弁子114aにアップシフト位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室114dとを備えている。
また、変速比コントロールバルブDN116は、軸方向へ移動可能に設けられることにより入出力ポート116jが排出ポートEXと連通させられるダウンシフト位置と入出力ポート116jが入出力ポート116kと連通させられる原位置とに位置させられるスプール弁子116aと、そのスプール弁子116aを原位置側に向かって付勢する付勢手段としてのスプリング116bと、そのスプリング116bを収容し且つスプール弁子116aに原位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室116cと、スプール弁子116aにダウンシフト位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室116dとを備えている。
このように構成された変速比コントロールバルブUP114および変速比コントロールバルブDN116において、中心線より左側半分に示すようにスプール弁子114aがスプリング114bの付勢力に従って原位置に保持されている閉じ状態では、入出力ポート114jと入出力ポート114kとが連通させられ、入力側可変プーリ42(入力側油圧シリンダ42c)の作動油が入出力ポート116jへ流通することが許容される。また、中心線より右側半分に示すようにスプール弁子116aがスプリング116bの付勢力に従って原位置に保持されている閉じ状態では、入出力ポート116jと入出力ポート116kとが連通させられ、推力比コントロールバルブ118からの推力比制御油圧Pτが入出力ポート114kへ流通することが許容される。
また、制御油圧PDS1が油室114dへ供給されると、中心線より右側半分に示すようにスプール弁子114aがその制御油圧PDS1に応じた推力によりスプリング114bの付勢力に抗してアップシフト位置側へ移動させられ、ライン油圧Pが制御油圧PDS1に対応する流量で入力ポート114iから入出力ポート114jを経て入力側油圧シリンダ42cへ供給されると共に、入出力ポート114kが遮断されて変速比コントロールバルブDN116側への作動油の流通が阻止される。これにより、変速制御圧PRATIOが高められ、入力側可変プーリ42のV溝幅が狭くされて変速比γが小さくされるすなわち無段変速機18がアップシフトされる。
また、制御油圧PDS2が油室116dへ供給されると、中心線より左側半分に示すようにスプール弁子116aがその制御油圧PDS2に応じた推力によりスプリング116bの付勢力に抗してダウンシフト位置側へ移動させられ、入力側油圧シリンダ42cの作動油が制御油圧PDS2に対応する流量で入出力ポート114jから入出力ポート114kさらに入出力ポート116jを経て排出ポートEXから排出される。これにより、変速制御圧PRATIOが低められ、入力側可変プーリ42のV溝幅が広くされて変速比γが大きくされるすなわち無段変速機18がダウンシフトされる。
このように、制御油圧PDS1が出力されると変速比コントロールバルブUP114に入力されたライン油圧Pが入力側油圧シリンダ42cへ供給されて変速制御圧PRATIOが連続的にアップシフトされ、制御油圧PS2が出力されると入力側油圧シリンダ42cの作動油が排出ポートEXから排出されて変速制御圧PRATIOが連続的にダウンシフトされる。
例えば図4に示すようにアクセル開度Accをパラメータとして車速Vと無段変速機18の目標入力回転速度である目標入力軸回転速度NIN との予め記憶された関係(変速マップ)から実際の車速Vおよびアクセル開度Accで示される車両状態に基づいて設定される目標入力軸回転速度NIN と実際の入力軸回転速度(以下、実入力軸回転速度という)NINとが一致するように、それ等の回転速度差(偏差)ΔNIN(=NIN −NIN)に応じて無段変速機18の変速がフィードバック制御により実行される、すなわち入力側油圧シリンダ42cに対する作動油の供給および排出により変速制御圧PRATIOが調圧されて変速比γがフィードバック制御により連続的に変化させられる。
図4の変速マップは変速条件に相当するもので、車速Vが小さくアクセル開度Accが大きい程大きな変速比γになる目標入力軸回転速度NIN が設定されるようになっている。また、車速Vは出力軸回転速度NOUTに対応するため、入力軸回転速度NINの目標値である目標入力軸回転速度NIN は目標変速比に対応し、無段変速機18の最小変速比γMINと最大変速比γMAXの範囲内で定められる。
また、制御油圧PDS1は変速比コントロールバルブDN116の油室116cに供給され、制御油圧PDS2に拘らずその変速比コントロールバルブDN116を閉じ状態としてダウンシフトを制限する一方、制御油圧PDS2は変速比コントロールバルブUP114の油室114cに供給され、制御油圧PDS1に拘らずその変速比コントロールバルブUP114を閉じ状態としてアップシフトを禁止するようになっている。つまり、制御油圧PDS1および制御油圧PDS2が共に供給されないときはもちろんであるが、制御油圧PDS1および制御油圧PDS2が共に供給されるときにも、変速比コントロールバルブUP114および変速比コントロールバルブDN116は何れも原位置に保持されている閉じ状態とされる。これにより、電気系統の故障などでソレノイド弁DS1、DS2の一方が機能しなくなり、制御油圧PDS1または制御油圧PDS2が最大圧で出力され続けるオンフェール時となった場合でも、急なアップシフトやダウンシフトが生じたり、その急変速に起因してベルト滑りが発生したりすることが防止される。
前記挟圧力コントロールバルブ110は、軸方向へ移動可能に設けられることにより入力ポート110iを開閉してライン油圧Pを入力ポート110iから出力ポート110tを経て出力側可変プーリ46および推力比コントロールバルブ118へ挟圧力制御圧PBELTを供給可能にするスプール弁子110aと、そのスプール弁子110aを開弁方向へ付勢する付勢手段としてのスプリング110bと、そのスプリング110bを収容し且つスプール弁子110aに開弁方向の推力を付与するために制御油圧PSLSを受け入れる油室110cと、スプール弁子110aに閉弁方向の推力を付与するために出力ポート110tから出力された挟圧力制御圧PBELTを受け入れるフィードバック油室110dと、スプール弁子110aに閉弁方向の推力を付与するためにモジュレータ油圧Pを受け入れる油室110eとを備えている。
このように構成された挟圧力コントロールバルブ110において、伝動ベルト48が滑りを生じないように制御油圧PSLSをパイロット圧としてライン油圧Pが連続的に調圧制御されることにより、出力ポート110tから挟圧力制御圧PBELTが出力される。
例えば図5に示すように伝達トルクに対応するアクセル開度Accをパラメータとして変速比γと必要油圧PBELT (ベルト挟圧力に相当)とのベルト滑りが生じないように予め実験的に求められて記憶された関係(挟圧力マップ)から実際の変速比γおよびアクセル開度Accで示される車両状態に基づいて決定された必要油圧PBELT が得られるように出力側油圧シリンダ46cの挟圧力制御圧PBELTが制御され、この挟圧力制御圧PBELTに応じてベルト挟圧力すなわち可変プーリ42、46と伝動ベルト48との間の摩擦力が増減させられる。
前記推力比コントロールバルブ118は、軸方向へ移動可能に設けられることにより入力ポート118iを開閉してライン油圧Pを入力ポート118iから出力ポート118tを経て変速比コントロールバルブDN116へ推力比制御油圧Pτを供給可能にするスプール弁子118aと、そのスプール弁子118aを開弁方向へ付勢する付勢手段としてのスプリング118bと、そのスプリング118bを収容し且つスプール弁子118aに開弁方向の推力を付与するために挟圧力制御圧PBELTを受け入れる油室118cと、スプール弁子118aに閉弁方向の推力を付与するために出力ポート118tから出力された推力比制御油圧Pτを受け入れるフィードバック油室118dとを備えている。
このように構成された推力比コントロールバルブ118において、油室118cにおける挟圧力制御圧PBELTの受圧面積をa、フィードバック油室118dにおける推力比制御油圧Pτの受圧面積をb、スプリング118bの付勢力をFとすると、次式(1)で平衡状態となる。
τ×b=PBELT×a+F ・・・(1)
従って、推力比制御油圧Pτは、次式(2)で表され、挟圧力制御圧PBELTに比例する。
τ=PBELT×(a/b)+F/b ・・・(2)
そして、制御油圧PDS1および制御油圧PDS2が共に供給されないか、或いは所定圧以上の制御油圧PDS1および所定圧以上の制御油圧PDS2がともに供給されて、変速比コントロールバルブUP114および変速比コントロールバルブDN116が何れも原位置に保持されている閉じ状態とされたときには、推力比制御油圧Pτが入力側油圧シリンダ42cに供給されることから、変速制御圧PRATIOが推力比制御油圧Pτと一致させられる。つまり、推力比コントロールバルブ118により変速制御圧PRATIOと挟圧力制御圧PBELTとの比率を予め定められた関係に保つ推力比制御油圧PτすなわちPRATIOが出力される。
例えば、車速センサ58の精度上所定車速未満の極低車速では車速Vの検出精度が劣ることから、このような極低車速走行時や発進時には回転速度差(偏差)ΔNINに基づいた変速比γのフィードバック制御に替えて、制御油圧PDS1および制御油圧PDS2を供給せず変速比コントロールバルブUP114および変速比コントロールバルブDN116を何れも閉じ状態とする所謂閉じ込み制御を実行する。これにより、車両発進時には変速制御圧PRATIOと挟圧力制御圧PBELTとの比率を一定とするようにPBELTに比例するPRATIOが入力側油圧シリンダ42cへ供給されて、車両停車時から極低車速時における伝動ベルト48のベルト滑りが防止されると共に、このとき例えば最大変速比γMAXに対応する推力比τ(=出力側推力WOUT/入力側推力WIN;WOUTは挟圧力制御圧PBELT×出力側油圧シリンダ46cの断面積、WINは変速制御圧PRATIO×入力側油圧シリンダ42cの断面積)より大きな推力比τが可能なように上記式(2)の右辺第1項の(a/b)が設定されていると、最大変速比γMAX又はその近傍の変速比γMAX’にて良好な発進が行われる。
図6は、車速Vをパラメータとして変速比γと推力比τとの予め求められて記憶された関係であって、最大変速比γMAXに対応する推力比τより大きな推力比τが可能なように上記式(2)の右辺第1項の(a/b)が設定された場合の一例を示す図である。図6の一点鎖線で示した車速Vのパラメータは入力側油圧シリンダ42cおよび出力側油圧シリンダ46cにおける遠心油圧を考慮して算出した推力比τであり、実線との交点(V、V20、V50)にて閉じ込み制御時に保持可能な所定の変速比としての変速比γが求められる。例えば、この図6においては、車速Vが20Km/h以下であれば閉じ込み制御時に変速比γとして最大変速比γMAXが保持可能である。
図7は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。図7において、目標入力回転設定手段150は、例えば図4に示すような予め記憶された変速マップから実際の車速Vおよびアクセル開度Accで示される車両状態に基づいて入力軸回転速度NINの目標入力軸回転速度NIN を逐次設定する。
変速制御手段152は、実入力軸回転速度NINが前記目標入力回転設定手段150によって設定された目標入力軸回転速度NIN と一致するように、回転速度差ΔNIN(=NIN −NIN)に応じて無段変速機18の変速をフィードバック制御する。すなわち、入力側油圧シリンダ42cの変速制御圧PRATIOを制御する変速制御指令信号(油圧指令)Sを油圧制御回路100へ出力して変速比γを連続的に変化させる。
ベルト挟圧力設定手段154は、例えば図5に示すような予め実験的に求められて記憶された挟圧力マップから実際の変速比γおよびアクセル開度Accで示される車両状態に基づいて必要油圧PBELT を設定する。
ベルト挟圧力制御手段156は、前記ベルト挟圧力設定手段154により設定された必要油圧PBELT が得られるように出力側油圧シリンダ46cの挟圧力制御圧PBELTを制御する挟圧力制御指令信号Sを油圧制御回路100へ出力してベルト挟圧力を増減させる。
油圧制御回路100は、上記変速制御指令信号Sに従って無段変速機18の変速が実行されるようにソレノイド弁DS1およびソレノイド弁DS2を作動させて変速制御圧PRATIOを調圧すると共に、上記挟圧力制御指令信号Sに従ってベルト挟圧力が増減されるようにリニアソレノイド弁SLSを作動させて挟圧力制御圧PBELTを調圧する。
エンジン出力制御手段158は、エンジン12の出力制御の為にエンジン出力制御指令信号S、例えばスロットル信号や噴射信号や点火時期信号などをそれぞれスロットルアクチュエータ76や燃料噴射装置78や点火装置80へ出力する。例えば、エンジン出力制御手段158は、アクセル開度Accに応じたスロットル開度θTHとなるように電子スロットル弁30を開閉するスロットル信号をスロットルアクチュエータ76へ出力してエンジントルクTを制御する動力源出力制御手段として機能する。
係合制御手段160は、ガレージシフト時には、クラッチアプライコントロールバルブ112を第1位置側へ切り換えると共に、前進用クラッチC1或いは後進用ブレーキB1の過渡的な係合状態を制御するために係合ショックが抑制されるように係合油圧を緩やかに上昇させるための制御油圧PSLTを出力し且つライン油圧Pを調圧するために信号圧PSLSを出力する制御指令信号Sを油圧制御回路100へ出力する。例えば、係合制御手段160は、リニアソレノイド弁SLTをデューティー制御するための指令信号SLTDUTYとして係合過渡油圧指令圧pcltexcを油圧制御回路100へ出力する。
油圧制御回路100は、ガレージシフト時には上記制御指令信号Sに従って、クラッチアプライコントロールバルブ112が第1位置側へ切り換えられるようにソレノイド弁DS1およびソレノイド弁DS2を作動させて所定圧以上の制御油圧PDS1および所定圧以上の制御油圧PDS2を出力すると共に、予め定められた規則に従って前進用クラッチC1或いは後進用ブレーキB1が係合されるようにリニアソレノイド弁SLTを作動させて制御油圧PSLTを出力し且つエンジン負荷等に応じてライン油圧Pが調圧されるようにリニアソレノイド弁SLSを作動させて信号圧PSLSを出力する。
また、係合制御手段160は、ガレージシフト後例えばガレージシフト開始から所定時間経過後や制御油圧PSLTが所定の係合油圧以上となった後等の定常時には、前進用クラッチC1或いは後進用ブレーキB1へ出力油圧PLM2を供給して完全係合状態とするためにクラッチアプライコントロールバルブ112を第2位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLTを出力する制御指令信号Sを油圧制御回路100へ出力する。例えば、係合制御手段160は、リニアソレノイド弁SLTをデューティー制御するための指令信号SLTDUTYとしてライン圧指令圧plctgtを油圧制御回路100へ出力する。
油圧制御回路100は、定常時には上記制御指令信号Sに従って、前進用クラッチC1或いは後進用ブレーキB1へ出力油圧PLM2が供給されて完全係合状態とされるようにソレノイド弁DS1およびソレノイド弁DS2を同時に作動させずにクラッチアプライコントロールバルブ112を第2位置側へ切り換えると共に、エンジン負荷等に応じてライン油圧Pが調圧されるようにリニアソレノイド弁SLTを作動させて信号圧PSLTを出力する。
このように、リニアソレノイド弁SLTは、ガレージシフト時にはクラッチアプライコントロールバルブ112の第1位置において、前進用クラッチC1或いは後進用ブレーキB1が係合されるように制御油圧PSLTを出力する(クラッチ圧モードという)。また、リニアソレノイド弁SLTは、定常時にはクラッチアプライコントロールバルブ112の第2位置において、ライン油圧Pが調圧されるように信号圧PSLTを出力する(ライン圧モードという)。また、このクラッチ圧モードにおいては、所定圧以上の制御油圧PDS1および所定圧以上の制御油圧PDS2が出力されていることから、前進用クラッチC1或いは後進用ブレーキB1へ制御油圧PSLTが供給されると同時に、所定の変速比となるように推力比コントロールバルブ118による閉じ込み制御が行われる。
また、係合制御手段160は、定常時の前進走行中にシフトレバー74が「D」ポジションから「N」ポジションを経て「R」ポジションへ操作される所謂前進走行時Rシフト(D→(N→)Rシフト)が行われたときには、例えばD→Rシフト判定手段162によりレバーポジションPSHに基づいてD→Rシフトが行われたと判定されたときには、ガレージシフト時と同様に、クラッチアプライコントロールバルブ112を第1位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLSを出力する制御指令信号Sを油圧制御回路100へ出力して、ライン圧モードからクラッチ圧モードに切り換える。
油圧制御回路100は、D→Rシフト時には上記制御指令信号Sに従って、クラッチアプライコントロールバルブ112が第1位置側へ切り換えられるようにソレノイド弁DS1およびソレノイド弁DS2を作動させて所定圧以上の制御油圧PDS1および所定圧以上の制御油圧PDS2を出力すると共に、エンジン負荷等に応じてライン油圧Pが調圧されるようにリニアソレノイド弁SLSを作動させて信号圧PSLSを出力する。
さらに、係合制御手段160は、このD→Rシフト時に、車速Vがリバースインヒビット車速VINHを超えていない場合にはガレージシフト時と同様に後進用ブレーキB1の過渡的な係合状態を制御するために制御油圧PSLTを出力する指令信号SLTDUTYとして係合過渡油圧指令圧pcltexcを油圧制御回路100へ出力してリバース(後進走行、「R」レンジ)を確定する。係合制御手段160は、このリバース確定後には、ガレージシフト後の定常時と同様に、後進用ブレーキB1へ出力油圧PLM2を供給して完全係合状態とするためにクラッチアプライコントロールバルブ112を第2位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLTを出力する制御指令信号Sを油圧制御回路100へ出力して、クラッチ圧モードからライン圧モードに切り換える。
一方、係合制御手段160は、このD→Rシフト時に、車速Vがリバースインヒビット車速VINH以上である場合にはガレージシフト時と異なり動力伝達経路がニュートラル状態とされるように後進用ブレーキB1を解放状態とするための制御油圧PSLTを出力する指令信号SLTDUTYとして解放油圧指令圧pclopenを油圧制御回路100へ出力してリバースインヒビット制御を実行する。
この後進用ブレーキB1を解放状態とするための制御油圧PSLTは後進用ブレーキB1が係合トルク容量を持たない油圧であって、油圧制御回路100は、解放油圧指令圧pclopenに従って、後進用ブレーキB1が解放されるようにリニアソレノイド弁SLTを作動させて制御油圧PSLTを例えば零であったり或いは係合させるときの応答速度が早くなるように後進用ブレーキB1の油圧アクチュエータのリターンスプリング相当の油圧に調圧する。
車速判定手段164は、車速Vがリバースインヒビット車速VINH以上であるか否かを判定し、この判定結果を前記係合制御手段160へ出力する。このリバースインヒビット車速VINHは、例えば前進走行中にリバースが確定されたときの切換えショックや無段変速機18等の耐久性低下が抑制されるための予め実験的に求められて記憶された判定車速であり、例えば5〜10km/h程度に設定されている。
つまり、係合制御手段160は、D→Rシフト時に、車速Vがリバースインヒビット車速VINHを超えていない場合にはガレージシフト時と同様に後進用ブレーキB1を係合させる一方で、車速Vがリバースインヒビット車速VINH以上である場合には後進用ブレーキB1を係合させないリバースインヒビット制御を実行してリバースを成立させない。
ところで、リバースインヒビット制御中はクラッチアプライコントロールバルブ112が第1位置に切り換えられるクラッチ圧モードとされることから、前述したように推力比コントロールバルブ118による閉じ込み制御が行われて所定の変速比に保持される。このとき、図6に示すように最大変速比γMAXに対応する推力比τより大きな推力比τが可能なように前記式(2)の右辺第1項の(a/b)が設定されていると、リバースインヒビット制御中には変速比γが比較的大きな所定の変速比に保持されることになる。
また、リバースインヒビット制御中にシフトレバー74が「R」ポジションから「N」ポジションを経て「D」ポジションへ操作される所謂インヒビット制御時Dシフト(R→(N→)Dシフト)が行われたときには、前進用クラッチC1が係合されて動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられる。しかしながら、リバースインヒビット制御中に変速比γが比較的大きな所定の変速比に保持されることから、特に、高速走行時のR→Dシフトによって動力伝達経路が動力伝達可能状態へ復帰させられると、エンジン12の過回転(オーバーレブ)が発生する可能性がある。
そこで、R→Dシフトによる動力伝達可能状態への復帰の際にエンジン12が過回転することが防止されるために、リバースインヒビット制御の実行中にR→Dシフトが行われたときには、エンジン12が所定の過回転速度NEORを超えないことを条件として、動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられるように前進用クラッチC1へ供給する油圧を制御する。
具体的には、インヒビット時Dシフト判定手段166は、レバーポジションPSHに基づいて前記係合制御手段160によるリバースインヒビット制御中にR→Dシフトが行われたか否かを判定する。
エンジン過回転可能性判定手段168は、リバースインヒビット制御中のR→Dシフトに伴って前進用クラッチC1が係合されたときに、すなわちエンジン12から駆動輪24への動力伝達経路が動力伝達可能状態へ復帰させられたときに、エンジン12が所定の過回転速度NEORを超える可能性があるか否かを判定する。例えば、エンジン過回転可能性判定手段168は、前進用クラッチC1係合後のエンジン回転速度Nに相当する入力軸回転速度NIN(本明細書では便宜上トルクコンバータ14の速度比を1とする)が所定の過回転速度NEORを超えているか否かに基づいて、前進用クラッチC1係合後にエンジン12が所定の過回転速度NEORを超える可能性があるか否かを判定する。この所定の過回転速度NEORは、エンジン12の耐久性等を考慮してエンジン12に許容される最大許容回転速度を超えないエンジン回転速度領域で常用され得る為の予め実験的に定められたエンジン許容回転速度である。
リバースインヒビット時復帰制御手段170は、リバースインヒビット制御中のR→Dシフトに伴う前進用クラッチC1の係合に際して前記エンジン過回転可能性判定手段168によりエンジン12が所定の過回転速度NEORを超える可能性がないと判定された場合には、前進用クラッチC1が係合させられて動力伝達可能状態へ復帰させられるように制御油圧PSLTをリニアソレノイド弁SLTにより調圧する指令を前記係合制御手段160に出力する。
係合制御手段160は、リバースインヒビット時復帰制御手段170による指令に従って、前進用クラッチC1の過渡的な係合状態を制御するために制御油圧PSLTを出力する指令信号SLTDUTYとして係合過渡油圧指令圧pcltexcを油圧制御回路100へ出力してドライブ(前進走行、「D」レンジ)を確定する。係合制御手段160は、このドライブ確定後には、ガレージシフト後の定常時と同様に、前進用クラッチC1へ出力油圧PLM2を供給して完全係合状態とするためにクラッチアプライコントロールバルブ112を第2位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLTを出力する制御指令信号Sを油圧制御回路100へ出力して、クラッチ圧モードからライン圧モードに切り換える。
一方、リバースインヒビット時復帰制御手段170は、リバースインヒビット制御中のR→Dシフトに伴う前進用クラッチC1の係合に際して前記エンジン過回転可能性判定手段168によりエンジン12が所定の過回転速度NEORを超える可能性があると判定された場合には、前進用クラッチC1が解放状態とされるように制御油圧PSLTをリニアソレノイド弁SLTにより調圧する指令を前記係合制御手段160に出力する。
係合制御手段160は、リバースインヒビット時復帰制御手段170による指令に従って、動力伝達経路がニュートラル状態とされるように前進用クラッチC1を解放状態とするための制御油圧PSLTを出力する指令信号SLTDUTYとして解放油圧指令圧pclopenを油圧制御回路100へ出力してニュートラル制御を実行する。
この前進用クラッチC1を解放状態とするための制御油圧PSLTは前進用クラッチC1が係合トルク容量を持たない油圧であって、油圧制御回路100は、解放油圧指令圧pclopenに従って、前進用クラッチC1が解放されるようにリニアソレノイド弁SLTを作動させて制御油圧PSLTを例えば零であったり或いは係合させるときの応答速度が早くなるように前進用クラッチC1の油圧アクチュエータのリターンスプリング相当の油圧に調圧する。
また、リバースインヒビット制御中のR→Dシフトに伴う前進用クラッチC1の係合に際して、前記係合制御手段160によりリバースインヒビット時復帰制御手段170による指令に従ってニュートラル制御が実行されているときに、アクセルペダル68が大きく踏込操作されると、エンジン12は空吹かし状態(エンジンレーシング状態)とされてエンジン12が所定の過回転速度NEORを超える可能性がある。
そこで、エンジン出力制御手段158は、前述の機能に加えて、前記係合制御手段160によるニュートラル制御時に、アクセル踏込み判定手段172によりアクセルペダル68が大きく踏込操作されたと判定されたときには、例えばアクセル踏込み判定手段172によりアクセル開度Accが所定アクセル開度以上であると判定されたときには、前記エンジン過回転可能性判定手段168によりエンジン12が所定の過回転速度NEORを超える可能性がないと判定されるまで、すなわち前記リバースインヒビット時復帰制御手段170により動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられるまで、エンジン12が所定の過回転速度NEORを超えないようにエンジン12の出力を抑制する。
例えば、エンジン出力制御手段158は、エンジン12の出力を抑制する為のエンジン出力制御指令信号S、例えばエンジン12が所定の過回転速度NEORを超えないように電子スロットル弁30の開度θTHを制御するスロットル信号や燃料噴射量を低減する噴射信号や点火時期を制御する点火時期信号などを単独で或いは組み合わせてスロットルアクチュエータ76や燃料噴射装置78や点火装置80へ出力する。
上記所定アクセル開度は、エンジンレーシング状態においてエンジン12が所定の過回転速度NEORを超える可能性があるアクセル開度であることを予め求めて記憶されたアクセル踏込み量判定値である。
図8は、電子制御装置50の制御作動の要部すなわちリバースインヒビット制御中のR→Dシフトの際に動力伝達経路を動力伝達遮断状態から動力伝達可能状態へ適切に復帰させる為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
先ず、前記D→Rシフト判定手段162に対応するステップ(以下、ステップを省略する)S1およびS2において、定常時の前進走行中にレバーポジションPSHに基づいてD→Rシフトが行われたか否かが判定される。
上記S2の判断が否定される場合は上記S1およびS2が繰り返し実行されるが肯定される場合は前記係合制御手段160に対応するS3において、ガレージシフト時と同様に、クラッチアプライコントロールバルブ112を第1位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLSを出力する制御指令信号Sが油圧制御回路100へ出力されて、ライン圧モードからクラッチ圧モードに切り換えられる。このクラッチ圧モードにおいては、推力比コントロールバルブ118による閉じ込み制御が行われて無段変速機18の変速比γが所定の変速比に保持される。
次いで、前記車速判定手段164に対応するS4において、車速Vがリバースインヒビット車速VINH以上であるか否かが判定される。
上記S4の判断が否定される場合は前記係合制御手段160に対応するS5において、ガレージシフト時と同様に、後進用ブレーキB1の過渡的な係合状態を制御するために制御油圧PSLTを出力する指令信号SLTDUTYとして係合過渡油圧指令圧pcltexcが油圧制御回路100へ出力されてリバースが確定される。このリバース確定後には、ガレージシフト後の定常時と同様に、後進用ブレーキB1へ出力油圧PLM2を供給して完全係合状態とするためにクラッチアプライコントロールバルブ112を第2位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLTを出力する制御指令信号Sが油圧制御回路100へ出力されて、クラッチ圧モードからライン圧モードに切り換えられる。
前記S4の判断が肯定される場合は前記係合制御手段160に対応するS6において、ガレージシフト時と異なり動力伝達経路がニュートラル状態とされるように後進用ブレーキB1を解放状態とするための制御油圧PSLTを出力する指令信号SLTDUTYとして解放油圧指令圧pclopenが油圧制御回路100へ出力されてリバースインヒビット制御が実行される。
次いで、前記インヒビット時Dシフト判定手段166に対応するS7において、レバーポジションPSHに基づいて上記S6において実行されているリバースインヒビット制御中にR→Dシフトが行われたか否かが判定される。
上記S7の判断が否定される場合は前記S4が実行されるが肯定される場合は前記エンジン過回転可能性判定手段168に対応するS8において、リバースインヒビット制御中のR→Dシフトに伴って前進用クラッチC1が係合されたときに、すなわちエンジン12から駆動輪24への動力伝達経路が動力伝達可能状態へ復帰させられたときに、エンジン12が所定の過回転速度NEORを超える可能性があるか否かが判定される。
上記S8の判断が否定される場合は前記リバースインヒビット時復帰制御手段170および係合制御手段160に対応するS9において、前進用クラッチC1が係合させられて動力伝達可能状態へ復帰させられるように制御油圧PSLTをリニアソレノイド弁SLTにより調圧する指令が出力され、前進用クラッチC1の過渡的な係合状態を制御するために制御油圧PSLTを出力する指令信号SLTDUTYとして係合過渡油圧指令圧pcltexcが油圧制御回路100へ出力されてドライブが確定される。このドライブ確定後には、ガレージシフト後の定常時と同様に、前進用クラッチC1へ出力油圧PLM2を供給して完全係合状態とするためにクラッチアプライコントロールバルブ112を第2位置側へ切り換えると共に、ライン油圧Pを調圧するために信号圧PSLTを出力する制御指令信号Sが油圧制御回路100へ出力されて、クラッチ圧モードからライン圧モードに切り換えられる。
前記S8の判断が肯定される場合は前記リバースインヒビット時復帰制御手段170および係合制御手段160に対応するS10において、前進用クラッチC1が解放状態とされるように制御油圧PSLTをリニアソレノイド弁SLTにより調圧する指令が出力され、動力伝達経路がニュートラル状態とされるように前進用クラッチC1を解放状態とするための制御油圧PSLTを出力する指令信号SLTDUTYとして解放油圧指令圧pclopenが油圧制御回路100へ出力されてニュートラル制御が実行される。
次いで、前記アクセル踏込み判定手段172に対応するS11において、上記S10において実行されているニュートラル制御中にアクセル開度Accが所定アクセル開度以上であるか否かが判定される。
上記S11の判断が否定される場合は前記S8が実行されるが肯定される場合は前記エンジン出力制御手段158に対応するS12において、前記S8の判断が否定されるまですなわち前記S9において前進用クラッチC1が係合させられて動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられるまで、エンジン12が所定の過回転速度NEORを超えないようにエンジン12の出力が抑制される。例えば、エンジン12の出力を抑制する為のエンジン出力制御指令信号Sとして、エンジン12が所定の過回転速度NEORを超えないように電子スロットル弁30の開度θTHを制御する為のスロットル信号がスロットルアクチュエータ76へ出力される。
上述のように、本実施例によれば、係合制御手段160によるリバースインヒビット制御の実行中にR→Dシフトが行われたときには、前進用クラッチC1が係合されたときにエンジン12が所定の過回転速度NEORを超えないことを条件として、動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられるように、リバースインヒビット時復帰制御手段170により前進用クラッチC1へ供給する油圧が制御されるので、推力比コントロールバルブ118による閉じ込み制御において最大変速比γMAXに対応する推力比τより大きな推力比τが可能なように設定されてリバースインヒビット制御中に変速比γが比較的大きな所定の変速比に保持されるような場合であっても、動力伝達可能状態への復帰の際にエンジン12が過回転(オーバーレブ)することが防止される。
また、本実施例によれば、係合制御手段160によるリバースインヒビット制御の実行中にR→Dシフトが行われたときに、動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられることによりエンジン12が所定の過回転速度NEORを超える場合には、R→Dシフト操作後もニュートラル状態が継続されるようにリバースインヒビット時復帰制御手段170により前進用クラッチC1へ供給する油圧が制御されるので、リバースインヒビット制御中に変速比γが比較的大きな所定の変速比に保持されるような場合であっても、動力伝達可能状態への復帰の際にエンジン12が過回転することが防止される。
また、本実施例によれば、R→Dシフト操作後にニュートラル状態が継続されているときにアクセルペダル68が踏込操作された場合には、リバースインヒビット時復帰制御手段170により動力伝達経路がニュートラル状態から動力伝達可能状態へ復帰させられるまで、エンジン12が所定の過回転速度NEORを超えないようにエンジン12の出力が抑制されるので、ニュートラル状態のときにアクセルペダル68が大きく踏込操作されることによってエンジン12が過回転することが抑制されて、そのエンジン12の耐久性が向上する。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例における入力軸回転速度NINやそれに関連する目標入力軸回転速度NIN などは、それら入力軸回転速度NINなどに替えて、エンジン回転速度Nやそれに関連する目標エンジン回転速度N など、或いはタービン回転速度Nやそれに関連する目標タービン回転速度N などであっても良い。従って、入力軸回転速度センサ56等の回転速度センサは、制御する必要がある回転速度に合わせて適宜備えられれば良い。
また、前述の実施例において、エンジン過回転可能性判定手段168は、エンジン12が所定の過回転速度NEORを超える可能性があるか否かを、前進用クラッチC1係合後のエンジン回転速度Nに相当する入力軸回転速度NINが所定の過回転速度NEORを超えているか否かに基づいて判定したが、この判定方法に限らず他の判定方法が種々用いられても良い。
例えば、リバースインヒビット制御中の閉じ込み制御により図6に示す関係から車速Vに基づいて変速比γが求められることから、エンジン過回転可能性判定手段168は、車速V(出力軸回転速度NOUT)と変速比γとから算出される入力軸回転速度NIN(=γ×NOUT)が所定の過回転速度NEORを超えているか否かに基づいて判定しても良い。また、エンジン過回転可能性判定手段168は、車速Vすなわち出力軸回転速度NOUTが所定の過回転速度NEORに対応する閉じ込み制御中の変速比γの函数である判定車速V’すなわち判定出力軸回転速度NOUT’(=NEOR/γ)を超えているか否かに基づいて判定しても良い。このようにすれば、たとえ入力軸回転速度センサ56が備えられていない場合でも、また前後進切換装置16が無段変速機18と駆動輪24との間の動力伝達経路に備えられてその動力伝達経路の動力伝達遮断状態においては入力軸回転速度NINが車速Vに拘束されない場合でも、動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられたときにエンジン12が所定の過回転速度NEORを超える可能性があるか否かが判定される。
また、前述の実施例において、流体伝動装置としてロックアップクラッチ26が備えられているトルクコンバータ14が用いられていたが、ロックアップクラッチ26は必ずしも設けられなくてもよく、またトルクコンバータ14に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式動力伝達装置が用いられてもよい。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
本発明が適用された車両用駆動装置を説明する骨子図である。 図1の車両用駆動装置などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。 油圧制御回路のうち無段変速機のベルト挟圧力制御、変速比制御、およびシフトレバーの操作に伴う前進用クラッチ或いは後進用ブレーキの係合油圧制御に関する部分を示す要部油圧回路図である。 無段変速機の変速制御において目標入力回転速度を求める際に用いられる変速マップの一例を示す図である。 無段変速機の挟圧力制御において変速比等に応じて必要油圧を求める必要油圧マップの一例を示す図である。 車速をパラメータとして変速比と推力比との予め求められて記憶された関係であって、最大変速比に対応する推力比より大きな推力比が可能なように設定された場合の一例を示す図である。 図2の電子制御装置の制御機能の要部を説明する機能ブロック線図である。 図2の電子制御装置の制御作動の要部すなわちリバースインヒビット制御中のR→Dシフトの際に動力伝達経路を動力伝達遮断状態から動力伝達可能状態へ適切に復帰させる為の制御作動を説明するフローチャートである。
符号の説明
12:エンジン(走行用動力源)
18:無段変速機
24:駆動輪
42c:入力側油圧シリンダ(アクチュエータ)
46c:出力側油圧シリンダ(アクチュエータ)
50:電子制御装置(制御装置)
100:油圧制御回路(油圧回路)
170:リバースインヒビット時復帰制御手段
C1:前進用クラッチ(前進用係合装置)
B1:後進用ブレーキ(後進用係合装置)

Claims (3)

  1. 走行用動力源と駆動輪との間の動力伝達経路に無段変速機が配設された車両において、前後進を切り替えるための前進用係合装置および後進用係合装置のいずれかへ供給する油圧を制御すると同時に前記無段変速機の変速比を変化させるためのアクチュエータへ所定の変速比となるように油圧を供給する油圧回路とを備え、前進走行中に前進走行位置から後進走行位置へシフト操作されたときには、前記動力伝達経路が動力伝達遮断状態とされるように前記後進用係合装置へ供給する油圧を制御するためのリバースインヒビット制御を実行する無段変速機の制御装置であって、
    前記リバースインヒビット制御の実行中に後進走行位置から前進走行位置へシフト操作されたときには、前記走行用動力源が所定の過回転速度を超えないことを条件として、前記動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられるように前記前進用係合装置へ供給する油圧を制御するリバースインヒビット時復帰制御手段を含むことを特徴とする無段変速機の制御装置。
  2. 前記走行用動力源が所定の過回転速度を超えないことを条件とすることは、車速が変速比の函数である判定車速以下であることを条件とするものである請求項1の無段変速機の制御装置。
  3. アクセルペダルが踏込操作されたときには、前記リバースインヒビット時復帰制御手段により前記動力伝達経路が動力伝達遮断状態から動力伝達可能状態へ復帰させられるまで、前記走行用動力源が所定の過回転速度を超えないようにその走行用動力源の出力を抑制する動力源出力制御手段をさらに含むものである請求項1または2の無段変速機の制御装置。
JP2005375193A 2005-12-27 2005-12-27 無段変速機の制御装置 Pending JP2007177834A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375193A JP2007177834A (ja) 2005-12-27 2005-12-27 無段変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375193A JP2007177834A (ja) 2005-12-27 2005-12-27 無段変速機の制御装置

Publications (1)

Publication Number Publication Date
JP2007177834A true JP2007177834A (ja) 2007-07-12

Family

ID=38303239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375193A Pending JP2007177834A (ja) 2005-12-27 2005-12-27 無段変速機の制御装置

Country Status (1)

Country Link
JP (1) JP2007177834A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133082A (ja) * 2009-12-25 2011-07-07 Daihatsu Motor Co Ltd 自動変速機のリバースインヒビット制御方法
JP2016031096A (ja) * 2014-07-28 2016-03-07 マツダ株式会社 自動変速機の制御装置及び制御方法
JP2019173818A (ja) * 2018-03-27 2019-10-10 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133082A (ja) * 2009-12-25 2011-07-07 Daihatsu Motor Co Ltd 自動変速機のリバースインヒビット制御方法
JP2016031096A (ja) * 2014-07-28 2016-03-07 マツダ株式会社 自動変速機の制御装置及び制御方法
JP2019173818A (ja) * 2018-03-27 2019-10-10 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP7114978B2 (ja) 2018-03-27 2022-08-09 トヨタ自動車株式会社 車両用油圧制御装置

Similar Documents

Publication Publication Date Title
JP4238895B2 (ja) 車両用無段変速機の変速制御装置
JP4187023B2 (ja) 車両用動力伝達装置の油圧制御装置
JP4690255B2 (ja) ベルト式無段変速機の制御装置
JP4277882B2 (ja) 無段変速機の変速制御装置
WO2009128304A1 (ja) 無段変速機の制御装置および制御方法
JP5790173B2 (ja) 車両用無段変速機の制御装置
JP2008020055A (ja) ベルト式無段変速機の制御装置
JP5125030B2 (ja) 車両用無段変速機の油圧制御装置
JP4839988B2 (ja) 車両用無段変速機の制御装置
JP4736831B2 (ja) 車両用無段変速機の制御装置
JP2010169128A (ja) 車両の駆動装置の制御装置
JP2007177833A (ja) 車両用無段変速機の変速制御装置
JP4892969B2 (ja) 車両の制御装置
JP2007177834A (ja) 無段変速機の制御装置
JP5071418B2 (ja) 車両用無段変速機の制御装置
JP4735225B2 (ja) 無段変速機の油圧制御装置
JP4811151B2 (ja) 車両用無段変速機の変速制御装置
JP5125668B2 (ja) 車両用無段変速機の変速制御装置
JP4893134B2 (ja) 車両用無段変速機の制御装置
JP4835257B2 (ja) 車両用無段変速機の変速制御装置
JP2008095907A (ja) 車両用無段変速機の変速制御装置
JP2020076459A (ja) 油圧制御装置
JP2008101716A (ja) 車両用無段変速機の制御装置
JP5125654B2 (ja) 車両用無段変速機の変速制御装置
JP3948399B2 (ja) 車両用動力伝達装置の油圧制御装置