JP2010169128A - 車両の駆動装置の制御装置 - Google Patents

車両の駆動装置の制御装置 Download PDF

Info

Publication number
JP2010169128A
JP2010169128A JP2009010316A JP2009010316A JP2010169128A JP 2010169128 A JP2010169128 A JP 2010169128A JP 2009010316 A JP2009010316 A JP 2009010316A JP 2009010316 A JP2009010316 A JP 2009010316A JP 2010169128 A JP2010169128 A JP 2010169128A
Authority
JP
Japan
Prior art keywords
control
rotational speed
target
downshift
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009010316A
Other languages
English (en)
Inventor
Hironari Fujiwara
裕也 藤原
Akihide Ito
彰英 伊藤
Taichi Washio
太一 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009010316A priority Critical patent/JP2010169128A/ja
Publication of JP2010169128A publication Critical patent/JP2010169128A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】車速制限手段による車速制限制御にキックダウンスイッチによるダウン変速がオーバーライドして実行される場合においても、加速応答性やドライバビリティの良好な車両の駆動装置の制御装置を提供する。
【解決手段】オーバーライド制御実行手段136により、車速制限手段134による車速制限制御の実行中に(S1)キックダウン判定手段132によりダウン変速の実行が判断され(S2)、車速制限制御の実行が中止されてダウン変速が実行される場合において、目標回転速度変化設定手段156(S3)により、オーバーライド制御実行手段136によらずキックダウンによるダウン変速が実行される場合とは異なる無段変速機18の入力軸回転速度の目標値NIN の過渡変化NIN OR(t)が設定され、目標値に追従するように制御される(S4)。
【選択図】図4

Description

本発明は、車両の駆動装置の制御装置に係り、特に、車速制限手段による車速制限制御の実行中にキックダウンによるダウン変速の実行が判断された場合における制御技術に関するものである。
変速比を連続的に無段階に変化させることのできる無段変速機が知られている。例えば特許文献1に記載されたベルト式無段変速機がそれである。かかるベルト式無段変速機においては、有効径が可変のプライマリプーリおよびセカンダリプーリと、それら両プーリに巻き掛けられたベルト等とによって駆動力源であるエンジンによって発生された駆動力が駆動輪に伝達される。このとき前記プライマリプーリおよびセカンダリプーリの有効径を変化させることにより、ベルト式無段変速機の変速比が変更させられる。
一方、前記ベルト式無段変速機などの自動変速機を備える車両の駆動装置の制御装置において、運転者の操作によりダウン変速を実行するキックダウンスイッチが用いられることがある。このキックダウンスイッチは、例えば運転者によって操作されるアクセルペダルの踏込量に基づいてダウン変速を実行することにより、運転者の急加速の意図を反映させる。
特許文献1には、スロットル開度が大きいほど目標エンジン回転速度を大きくするとともに、所定時間ごとのスロットル開度変化量が車速に応じたしきい値よりも大きいもしくは小さいことに基づいて、前記スロットル開度に第1の値もしくは第2の値を加算することにより、スロットル急開時にも目標エンジン回転速度が急に大きくなることが回避され、キックダウン量が大きくなりすぎることのない無段変速機の制御方法が開示されている。
ところで、車速が予め設定された設定車速を上回ることがないように駆動力源の出力を抑制する車速制限制御が知られている。この車速制限制御は、例えば、実際の車速が運転者により設定される設定車速を下回っている場合には、アクセルペダルの操作量に応じた加速を行なう一方、実際の車速が前記設定車速を上回っている場合には、例えばスロットルバルブの開度を調節することなどにより車速を前記設定車速まで減速させるとともに、その設定車速となるように車速を維持させる。
前記車速制限手段と前述のキックダウンスイッチとの両方を備えた車両においては、車速制限手段による車速制限制御の実行中にキックダウンスイッチによるダウン変速の実行が判断されることがある。かかる場合においては、運転者の急加速の意図に基づき、車速制限手段による車速制限制御にキックダウンスイッチによるダウン変速がオーバーライドして実行される。すなわち、車速制限制御は中断されて、ダウン変速が実行される。言いかえれば、車速制限手段による車速制限制御の実行中においては、キックダウンスイッチは車速制限制御の終了スイッチとしても作動する。
前記車速制限制御の実行中においては、自動変速機の入力軸回転速度の目標値は車速が前記設定車速となるように制限された値に設定されている。一方、キックダウンスイッチによるダウン変速の実行時には、自動変速機の入力軸回転速度の目標値は例えばスロットル開度に応じた高い値に設定される。そのため、車速制限手段による車速制限制御が中断されてキックダウンスイッチによるダウン変速が実行されると、前記入力軸回転速度の目標値が大きく変化させられる。
特開2007−16967号公報
ところで、無段変速機においてはその内部のイナーシャによる損失があり、変速を行なう際の変速比幅が大きい程、変速によって所望の加速度が得られるまでの時間が長くなるという性質がある。そのため、前述のように車速制限制御が中断されてダウン変速が実行されることにより入力軸回転速度が大きく変化させられる場合においても、加速応答性が悪化する場合がある。また、キックダウンスイッチによるダウン変速の実行後において、入力軸回転速度が高い値を維持するように設定されると、エンジンが高回転に貼りついたまま加速するため、騒音や振動の原因となるおそれがあった。さらに、運転者が車速制限制御を解除するために一時的にキックダウンスイッチを作動させた場合であっても、エンジン回転速度が高い値まで上昇させられるので、ドライバビリティを悪化させるという問題もあった。
本発明は以上の事情を背景として為されたもので、その目的とするところは、前記車速制限手段と前述のキックダウンスイッチとの両方を備えた車両において、車速制限手段による車速制限制御にキックダウンスイッチによるダウン変速がオーバーライドして実行される場合においても、加速応答性やドライバビリティの良好な車両の駆動装置の制御装置を提供することにある。
かかる目的を達成するための請求項1にかかる発明は、(a)変速比を無段階に調節可能な無段変速機と、車速が設定車速を上回ることがないように駆動力源の出力を抑制する車速制限手段と、運転者の操作によりダウン変速を実行するためのキックダウンスイッチと、(b)前記車速制限手段による車速制限制御の実行中に前記キックダウンスイッチがオンとされることによるダウン変速の実行が判断された場合には、該車速制限制御の実行を中止して該ダウン変速を実行するオーバーライド制御実行手段と、を有する車両の駆動装置の制御装置であって、(c)該オーバーライド制御実行手段により前記ダウン変速が実行される場合において、前記オーバーライド制御実行手段によらず前記ダウン変速が実行される場合とは異なる前記無段変速機の入力軸回転速度の目標値の過渡変化を設定する目標回転速度変化設定手段を有することを特徴とする。
請求項1にかかる発明によれば、前記オーバーライド制御実行手段により前記車速制限手段による車速制限制御の実行中に前記キックダウンスイッチがオンとされることによるダウン変速の実行が判断され、該車速制限制御の実行が中止されて該ダウン変速が実行される場合において、前記目標回転速度変化設定手段により、前記オーバーライド制御実行手段によらず前記ダウン変速が実行される場合とは異なる前記無段変速機の入力軸回転速度の目標値の過渡変化が設定され、該目標値に追従するように制御されるので、前記オーバーライド制御実行手段により前記ダウン変速が実行される場合においては、前記オーバーライド制御実行手段によらず前記ダウン変速が実行される場合とは異なる前記入力軸回転速度の目標値の過渡変化に応じて前記入力軸回転速度が変化させられ、加速応答性やドライバビリティが向上する。
好適には、前記目標回転速度変化設定手段は、運転者によって操作されるアクセルペダルの操作量、操作速度、車速、および、前記車速制限手段による車速制限制御実行時における入力軸回転速度の前記ダウン変速の終了時における最終目標回転速度からの偏差、の少なくとも1つに基づいて、前記オーバーライド制御実行手段により前記ダウン変速が実行される場合における前記無段変速機の入力軸回転速度の目標値の過渡変化を設定することを特徴とする。このようにすれば、前記オーバーライド判定手段により前記車速制限手段による車速制限制御の実行中に前記キックダウンスイッチがオンとされることによるダウン変速の実行が判断され、前記車速制限制御の実行が中止されて前記ダウン変速が実行される場合において、前記無段変速機の入力軸回転速度は、アクセルペダルの操作量、操作速度、車速、および、前記車速制限手段による車速制限制御実行時における入力軸回転速度の前記最終目標回転速度からの偏差、の少なくとも1つに基づいて過渡的に変化させられるので、加速応答性やドライバビリティが向上する。
好適には、前記目標回転速度変化設定手段は、前記ダウン変速の実行開始時における入力軸回転速度の目標値の変化量である初期ダウンシフト量と、該初期ダウンシフト量だけ変化させられた後にから前記最終目標回転速度までの回転速度の変化率である上昇勾配とによって、前記オーバーライド制御実行手段により前記ダウン変速が実行される場合における前記無段変速機の入力軸回転速度の目標値の過渡変化を設定することを特徴とする。このようにすれば、前記オーバーライド判定手段により前記車速制限手段による車速制限制御の実行中に前記キックダウンスイッチがオンとされることによるダウン変速の実行が判断され、前記車速制限制御の実行が中止されて前記ダウン変速が実行される場合において、前記無段変速機の入力軸回転速度は、前記ダウン変速の実行開始時に前記初期ダウンシフト量だけ上昇させられ、その後前記上昇勾配に基づいて前記最終目標回転速度まで増加するように過渡的に変化させられるので、前記ダウン変速の実行開始時から前記最終目標回転速度に貼りつくことがなく、加速応答性やドライバビリティが向上する。
また好適には、前記目標回転速度変化設定手段は、該入力軸回転速度の目標値の値が前記最終目標回転速度に近づくにつれて、該入力軸回転速度の目標値の過渡変化の勾配が前記最終目標回転速度の勾配に近づくように、前記無段変速機の入力軸回転速度の目標値の過渡変化を設定することを特徴とする。このようにすれば、前記オーバーライド判定手段により前記車速制限手段による車速制限制御の実行中に前記キックダウンスイッチがオンとされることによるダウン変速の実行が判断され、前記車速制限制御の実行が中止されて前記ダウン変速が実行される場合において、前記無段変速機の入力軸回転速度が過渡変化させられた後に前記最終目標回転速度とされる際に急激な変化となることが避けられるので、前述の効果に加え、さらにドライバビリティの悪化を抑制することができる。
本発明が適用された車両用駆動装置を説明する骨子図である。 図1の車両用駆動装置などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。 油圧制御回路のうち無段変速機のベルト挟圧力制御、変速比制御、およびシフトレバーの操作に伴う前進用クラッチ或いは後進用ブレーキの係合油圧制御に関する要部を示す油圧回路図である。 図2の電子制御装置の制御機能の要部を説明する機能ブロック線図である。 無段変速機の変速制御において目標入力回転速度を求める際に用いられる変速マップの一例を示す図である。 出力流量に基づいて変速制御弁を駆動するためのDuty値を設定する際に用いられる逆変換流量マップの一例を示す図である。 無段変速機の挟圧力制御において変速比等に応じてベルト挟圧力を求めるベルト挟圧力マップの一例を示す図である。 図4の目標入力回転速度変化設定手段が設定する、無段変速機の入力軸回転速度の目標値の時間変化の一例とアクセルペダル開度の時間変化との関係を説明する図である。 図2の電子制御装置の制御作動の要部、すなわち車速制限制御を中止してキックダウンによるダウン変速を行なうオーバーライド制御における制御作動を説明するフローチャートである。 図2の電子制御装置の制御作動に伴う入力軸回転速度目標値の時間変化を、キックダウンスイッチの出力、車速制限制御の有無、アクセル開度、および得られる車両加速度のそれぞれの時間変化とともに示したタイムチャートである。
以下、本発明の一実施例について、図面を参照しつつ詳細に説明する。
図1は、本発明が適用された車両用駆動装置10の構成を説明する骨子図である。この車両用駆動装置10は横置き型自動変速機であって、FF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものであり、走行用の動力源としてエンジン12を備えている。内燃機関にて構成されているエンジン12の出力は、エンジン12のクランク軸、流体式伝動装置としてのトルクコンバータ14から前後進切換装置16、ベルト式の無段変速機(CVT)18、減速歯車装置20を介して差動歯車装置22に伝達され、左右の駆動輪24L、24Rへ分配される。
トルクコンバータ14は、エンジン12のクランク軸に連結されたポンプ翼車14p、およびトルクコンバータ14の出力側部材に相当するタービン軸34を介して前後進切換装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行うようになっている。また、それ等のポンプ翼車14pおよびタービン翼車14tの間にはロックアップクラッチ26が設けられており、油圧制御回路100(図2、図3参照)内の図示しないロックアップコントロールバルブ(L/C制御弁)などによって係合側油室および解放側油室に対する油圧供給が切り換えられることにより、係合または解放されるようになっており、完全係合させられることによってポンプ翼車14pおよびタービン翼車14tは一体回転させられる。ポンプ翼車14pには、無段変速機18を変速制御したりベルト挟圧力を発生させたり、ロックアップクラッチ26を係合解放制御したり、或いは各部に潤滑油を供給したりするための油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ28が連結されている。
前後進切換装置16は、ダブルピニオン型の遊星歯車装置を主体として構成されており、トルクコンバータ14のタービン軸34はサンギヤ16sに一体的に連結され、無段変速機18の入力軸36はキャリア16cに一体的に連結されている一方、キャリア16cとサンギヤ16sは前進用クラッチC1を介して選択的に連結され、リングギヤ16rは後進用ブレーキB1を介してハウジングに選択的に固定されるようになっている。前進用クラッチC1および後進用ブレーキB1は断続装置に相当するもので、何れも油圧シリンダによって摩擦係合させられる油圧式摩擦係合装置である。
そして、前進用クラッチC1が係合させられるとともに後進用ブレーキB1が解放されると、前後進切換装置16は一体回転状態とされることによりタービン軸34が入力軸36に直結され、前進用動力伝達経路が成立(達成)させられて、前進方向の駆動力が無段変速機18側へ伝達される。また、後進用ブレーキB1が係合させられるとともに前進用クラッチC1が解放されると、前後進切換装置16は後進用動力伝達経路が成立(達成)させられて、入力軸36はタービン軸34に対して逆方向へ回転させられるようになり、後進方向の駆動力が無段変速機18側へ伝達される。また、前進用クラッチC1および後進用ブレーキB1が共に解放されると、前後進切換装置16は動力伝達を遮断するニュートラル(遮断状態)になる。
無段変速機18は、入力軸36に設けられた入力側部材である有効径が可変の入力側可変プーリ(プライマリプーリ)42と、出力軸44に設けられた出力側部材である有効径が可変の出力側可変プーリ(セカンダリプーリ)46と、それ等の可変プーリ42、46に巻き掛けられた伝動ベルト48とを備えており、可変プーリ42、46と伝動ベルト48との間の摩擦力を介して動力伝達が行われる。
可変プーリ42および46は、入力軸36および出力軸44にそれぞれ固定された固定回転体である入力側固定シーブ42aおよび出力側固定シーブ46aと、入力軸36および出力軸44に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた可動回転体である入力側可動シーブ42bおよび出力側可動シーブ46bと、それらの間のV溝幅を変更する推力を付与する油圧アクチュエータとしての入力側油圧シリンダ(プライマリプーリ側油圧シリンダ)42cおよび出力側油圧シリンダ(セカンダリプーリ側油圧シリンダ)46cとを備えて構成されており、入力側油圧シリンダ42cへの作動油の供給排出流量が油圧制御回路100によって制御されることにより、両可変プーリ42、46のV溝幅が変化して伝動ベルト48の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化させられる。また、出力側油圧シリンダ46cの油圧(ベルト挟圧Pd)が油圧制御回路100によって調圧制御されることにより、伝動ベルト48が滑りを生じないようにベルト挟圧力が制御される。このような制御の結果として、入力側油圧シリンダ42cの油圧(変速制御圧Pin)が生じるのである。
図2は、図1の車両用駆動装置10などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や無段変速機18の変速制御およびベルト挟圧力制御やロックアップクラッチ26のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や無段変速機18およびロックアップクラッチ26の油圧制御用等に分けて構成される。
電子制御装置50には、エンジン回転速度センサ52により検出されたクランク軸回転角度(位置)ACR(°)およびエンジン12の回転速度(エンジン回転速度)Nに対応するクランク軸回転速度を表す信号、タービン回転速度センサ54により検出されたタービン軸34の回転速度(タービン回転速度)Nを表す信号、入力軸回転速度センサ56により検出された無段変速機18の入力回転速度である入力軸36の回転速度(入力軸回転速度)NINを表す信号、車速センサ(出力軸回転速度センサ)58により検出された無段変速機18の出力回転速度である出力軸44の回転速度(出力軸回転速度)NOUTすなわち出力軸回転速度NOUTに対応する車速Vを表す信号、スロットルセンサ60により検出されたエンジン12の吸気配管32(図1参照)に備えられた電子スロットル弁30のスロットル弁開度θTHを表すスロットル弁開度信号、冷却水温センサ62により検出されたエンジン12の冷却水温Tを表す信号、CVT油温センサ64により検出された無段変速機18等の作動油温度(油温)TCVTを表す信号、アクセル開度センサ66により検出されたアクセルペダル68の操作量であるアクセル開度Accを表すアクセル開度信号、アクセルペダル68が予め定められた所定量を上回って踏み込まれた場合にオンとされるキックダウンスイッチ69の出力信号、車速設定スイッチ75によって設定された車速制限制御の実行および実行解除についての信号、設定車速についての情報、フットブレーキスイッチ70により検出された常用ブレーキであるフットブレーキの操作の有無BONを表すブレーキ操作信号、レバーポジションセンサ72により検出されたシフトレバー74のレバーポジション(操作位置)PSHを表す操作位置信号などが供給されている。
また、電子制御装置50からは、エンジン12の出力制御の為のエンジン出力制御指令信号S、例えば電子スロットル弁30の開閉を制御するためのスロットルアクチュエータ76を駆動するスロットル信号や燃料噴射装置78から噴射される燃料の量を制御するための噴射信号や点火装置80によるエンジン12の点火時期を制御するための点火時期信号などが出力される。また、無段変速機18の変速比γを変化させる為の変速制御指令信号S例えば入力側油圧シリンダ42cへの作動油の流量を制御するソレノイド弁DS1およびソレノイド弁DS2を駆動するための指令信号、伝動ベルト48の挟圧力を調整させる為の挟圧力制御指令信号S例えばベルト挟圧Pdを調圧するリニアソレノイド弁SLSを駆動するための指令信号、ライン油圧Pを制御させる為のライン油圧制御指令信号SPL例えばライン油圧Pを調圧するリニアソレノイド弁SLTを駆動するための指令信号などが油圧制御回路100へ出力される。
シフトレバー74は、例えば運転席の近傍に配設され、順次位置させられている5つのレバーポジション「P」、「R」、「N」、「D」、および「L」(図3参照)のうちの何れかへ手動操作されるようになっている。
「P」ポジション(レンジ)は車両用駆動装置10の動力伝達経路を解放しすなわち車両用駆動装置10の動力伝達が遮断されるニュートラル状態(中立状態)とし且つメカニカルパーキング機構によって機械的に出力軸44の回転を阻止(ロック)するための駐車ポジション(位置)であり、「R」ポジションは出力軸44の回転方向を逆回転とするための後進走行ポジション(位置)であり、「N」ポジションは車両用駆動装置10の動力伝達が遮断されるニュートラル状態とするための中立ポジション(位置)であり、「D」ポジションは無段変速機18の変速を許容する変速範囲で自動変速モードを成立させて自動変速制御を実行させる前進走行ポジション(位置)であり、「L」ポジションは強いエンジンブレーキが作用させられるエンジンブレーキポジション(位置)である。このように、「P」ポジションおよび「N」ポジションは車両を走行させないときに選択される非走行ポジションであり、「R」ポジション、「D」ポジションおよび「L」ポジションは車両を走行させるときに選択される走行ポジションである。
図3は、油圧制御回路100のうち無段変速機18のベルト挟圧力制御、変速比制御、およびシフトレバー74の操作に伴う前進用クラッチC1或いは後進用ブレーキB1の係合油圧制御に関する要部を示す油圧回路図である。図3において、油圧制御回路100は、伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cの油圧であるベルト挟圧Pdを調圧する挟圧力コントロールバルブ110、変速比γが連続的に変化させられるように入力側油圧シリンダ42cへの作動油の流量を制御する変速制御弁としての変速比コントロールバルブUP114および変速比コントロールバルブDN116、変速制御圧Pinとベルト挟圧Pdとの比率を予め定められた関係とする推力比コントロールバルブ118、前進用クラッチC1および後進用ブレーキB1が係合或いは解放されるようにシフトレバー74の操作に従って油路が機械的に切り換えられるマニュアルバルブ120等を備えている。
ライン油圧Pは、エンジン12により回転駆動される機械式のオイルポンプ28から出力(発生)される作動油圧を元圧として、例えばリリーフ型のプライマリレギュレータバルブ(ライン油圧調圧弁)122によりリニアソレノイド弁SLTの出力油圧である制御油圧PSLTに基づいてエンジン負荷等に応じた値に調圧されるようになっている。
より具体的には、プライマリレギュレータバルブ122は、軸方向へ移動可能に設けられることにより入力ポート122iを開閉してオイルポンプ28から発生される作動油圧を出力ポート122tを経て吸入油路124へ排出するスプール弁子122aと、そのスプール弁子122aを閉弁方向へ付勢する付勢手段としてのスプリング122bと、そのスプリング122bを収容し且つスプール弁子122aに閉弁方向の推力を付与するために制御油圧PSLTを受け入れる油室122cと、スプール弁子122aに開弁方向の推力を付与するためにオイルポンプ28から発生される作動油圧を受け入れる油室122dとを備えている。
このように構成されたプライマリレギュレータバルブ122において、スプリング122bの付勢力をF、油室122cにおける制御油圧PSLTの受圧面積をa、油室122dにおけるライン油圧Pの有効受圧面積をbとすると、次式(1)で平衡状態となる。従って、ライン油圧Pは、次式(2)で表され、制御油圧PSLTに比例する。
×b=PSLT×a+F ・・・(1)
=PSLT×(a/b)+F/b ・・・(2)
このように、プライマリレギュレータバルブ122とリニアソレノイド弁SLTとは、油圧指令値としてのライン油圧制御指令信号SPLに基づいてオイルポンプ28から吐出される作動油をライン油圧Pに調圧する調圧装置として機能する。
モジュレータ油圧Pは、制御油圧PSLTおよびリニアソレノイド弁SLSの出力油圧である制御油圧PSLSの元圧となるものであると共に、電子制御装置50によってデューティ制御されるソレノイド弁DS1の出力油圧である制御油圧PDS1およびソレノイド弁DS2の出力油圧である制御油圧PDS2の元圧となるものであって、ライン油圧Pを元圧としてモジュレータバルブ126により一定圧に調圧されるようになっている。
出力油圧PLM2は、ライン油圧Pを元圧としてライン圧モジュレータNO.2バルブ128により制御油圧PSLTに基づいて調圧されるようになっている。
前記マニュアルバルブ120において、入力ポート120aには出力油圧PLM2が供給される。そして、シフトレバー74が「D」ポジション或いは「L」ポジションに操作されると、出力油圧PLM2が前進走行用出力圧として前進用出力ポート120fを経て前進用クラッチC1に供給され且つ後進用ブレーキB1内の作動油が後進用出力ポート120rから排出ポートEXを経て例えば大気圧にドレーン(排出)されるようにマニュアルバルブ120の油路が切り換えられ、前進用クラッチC1が係合させられると共に後進用ブレーキB1が解放させられる。
また、シフトレバー74が「R」ポジションに操作されると、出力油圧PLM2が後進走行用出力圧として後進用出力ポート120rを経て後進用ブレーキB1に供給され且つ前進用クラッチC1内の作動油が前進用出力ポート120fから排出ポートEXを経て例えば大気圧にドレーン(排出)されるようにマニュアルバルブ120の油路が切り換えられ、後進用ブレーキB1が係合させられると共に前進用クラッチC1が解放させられる。
また、シフトレバー74が「P」ポジションおよび「N」ポジションに操作されると、入力ポート120aから前進用出力ポート120fへの油路および入力ポート120aから後進用出力ポート120rへの油路がいずれも遮断され且つ前進用クラッチC1および後進用ブレーキB1内の作動油が何れもマニュアルバルブ120からドレーンされるようにマニュアルバルブ120の油路が切り換えられ、前進用クラッチC1および後進用ブレーキB1が共に解放させられる。
前記変速比コントロールバルブUP114は、軸方向へ移動可能に設けられることによりライン油圧Pを入力ポート114iから入出力ポート114jを経て入力側可変プーリ42へ供給可能且つ入出力ポート114kを閉弁するアップシフト位置と入力側可変プーリ42が入出力ポート114jを介して入出力ポート114kと連通させられる原位置とに位置させられるスプール弁子114aと、そのスプール弁子114aを原位置側に向かって付勢する付勢手段としてのスプリング114bと、そのスプリング114bを収容し且つスプール弁子114aに原位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室114cと、スプール弁子114aにアップシフト位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室114dとを備えている。
また、変速比コントロールバルブDN116は、軸方向へ移動可能に設けられることにより入出力ポート116jが排出ポートEXと連通させられるダウンシフト位置と入出力ポート116jが入出力ポート116kと連通させられる原位置とに位置させられるスプール弁子116aと、そのスプール弁子116aを原位置側に向かって付勢する付勢手段としてのスプリング116bと、そのスプリング116bを収容し且つスプール弁子116aに原位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室116cと、スプール弁子116aにダウンシフト位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室116dとを備えている。
このように構成された変速比コントロールバルブUP114および変速比コントロールバルブDN116において、中心線より左側半分に示すようにスプール弁子114aがスプリング114bの付勢力に従って原位置に保持されている閉じ状態では、入出力ポート114jと入出力ポート114kとが連通させられ、入力側可変プーリ42(入力側油圧シリンダ42c)の作動油が入出力ポート116jへ流通することが許容される。また、中心線より右側半分に示すようにスプール弁子116aがスプリング116bの付勢力に従って原位置に保持されている閉じ状態では、入出力ポート116jと入出力ポート116kとが連通させられ、推力比コントロールバルブ118からの推力比制御油圧Pτが入出力ポート114kへ流通することが許容される。
また、制御油圧PDS1が油室114dへ供給されると、中心線より右側半分に示すようにスプール弁子114aがその制御油圧PDS1に応じた推力によりスプリング114bの付勢力に抗してアップシフト位置側へ移動させられ、ライン油圧Pが制御油圧PDS1に対応する流量で入力ポート114iから入出力ポート114jを経て入力側油圧シリンダ42cへ供給されると共に、入出力ポート114kが遮断されて変速比コントロールバルブDN116側への作動油の流通が阻止される。これにより、入力側油圧シリンダ42c内の流量が増大させられ、入力側油圧シリンダ42cにより入力側可動シーブ42bのシーブ位置Xが入力側固定シーブ42a側へ移動させられ、入力側可変プーリ42のV溝幅が狭くされて変速比γが小さくされる。すなわち無段変速機18がアップシフトされる。尚、このとき出力側可変プーリ46のV溝幅が広くされるが、後述するように挟圧力コントロールバルブ110により伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cのベルト挟圧Pdが調圧させられる。
また、制御油圧PDS2が油室116dへ供給されると、中心線より左側半分に示すようにスプール弁子116aがその制御油圧PDS2に応じた推力によりスプリング116bの付勢力に抗してダウンシフト位置側へ移動させられ、入力側油圧シリンダ42cの作動油が制御油圧PDS2に対応する流量で入出力ポート114jから入出力ポート114kさらに入出力ポート116jを経て排出ポートEXから排出される。これにより、入力側油圧シリンダ42c内の流量が減少させられ、入力側油圧シリンダ42cにより入力側可動シーブ42bのシーブ位置Xが入力側固定シーブ42aとは反対側へ移動させられ、入力側可変プーリ42のV溝幅が広くされて変速比γが大きくされる。すなわち無段変速機18がダウンシフトされる。尚、このとき出力側可変プーリ46のV溝幅が狭くされ、後述するように挟圧力コントロールバルブ110により伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cのベルト挟圧Pdが調圧させられる。
このように、ライン油圧Pは変速制御圧Pinの元圧となるものであって、制御油圧PDS1が出力されると変速比コントロールバルブUP114に入力されたライン油圧Pが入力側油圧シリンダ42cへ供給されて変速制御圧Pinが高められて連続的にアップシフトされ、制御油圧PDS2が出力されると入力側油圧シリンダ42cの作動油が排出ポートEXから排出されて変速制御圧Pinが低められて連続的にダウンシフトされる。
前記シーブ位置Xは、変速比γが1であるときの入力側可動シーブ42bの位置を基準位置すなわちシーブ位置X=0として、軸と平行方向におけるその基準位置からの入力側可動シーブ42bの絶対位置を表すものである。例えば、入力側固定シーブ42a側を正(+)とし、入力側固定シーブ42aとは反対側を負(−)とする(図1参照)。
また、制御油圧PDS1は変速比コントロールバルブDN116の油室116cに供給され、制御油圧PDS2に拘らずその変速比コントロールバルブDN116を閉じ状態としてダウンシフトを制限する一方、制御油圧PDS2は変速比コントロールバルブUP114の油室114cに供給され、制御油圧PDS1に拘らずその変速比コントロールバルブUP114を閉じ状態としてアップシフトを禁止するようになっている。つまり、制御油圧PDS1および制御油圧PDS2が共に供給されないときはもちろんであるが、制御油圧PDS1および制御油圧PDS2が共に供給されるときにも、変速比コントロールバルブUP114および変速比コントロールバルブDN116は何れも原位置に保持されている閉じ状態とされる。これにより、電気系統の故障などでソレノイド弁DS1、DS2の一方が機能しなくなり、制御油圧PDS1または制御油圧PDS2が最大圧で出力され続けるオンフェール時となった場合でも、急なアップシフトやダウンシフトが生じたり、その急変速に起因してベルト滑りが発生したりすることが防止される。
前記挟圧力コントロールバルブ110は、軸方向へ移動可能に設けられることにより入力ポート110iを開閉してライン油圧Pを入力ポート110iから出力ポート110tを経て出力側可変プーリ46および推力比コントロールバルブ118へベルト挟圧Pdを供給可能にするスプール弁子110aと、そのスプール弁子110aを開弁方向へ付勢する付勢手段としてのスプリング110bと、そのスプリング110bを収容し且つスプール弁子110aに開弁方向の推力を付与するために制御油圧PSLSを受け入れる油室110cと、スプール弁子110aに閉弁方向の推力を付与するために出力ポート110tから出力されたベルト挟圧Pdを受け入れるフィードバック油室110dと、スプール
弁子110aに閉弁方向の推力を付与するためにモジュレータ油圧Pを受け入れる油室110eとを備えている。
このように構成された挟圧力コントロールバルブ110において、伝動ベルト48が滑りを生じないように制御油圧PSLSをパイロット圧としてライン油圧Pが連続的に調圧制御されることにより、出力ポート110tからベルト挟圧Pdが出力される。このように、ライン油圧Pはベルト挟圧Pdの元圧となるものである。尚、出力ポート110tと出力側油圧シリンダ46cとの間の油路には油圧センサ130が設けられており、この油圧センサ130によりベルト挟圧Pdが検出される。
前記推力比コントロールバルブ118は、軸方向へ移動可能に設けられることにより入力ポート118iを開閉してライン油圧Pを入力ポート118iから出力ポート118tを経て変速比コントロールバルブDN116へ推力比制御油圧Pτを供給可能にするスプール弁子118aと、そのスプール弁子118aを開弁方向へ付勢する付勢手段としてのスプリング118bと、そのスプリング118bを収容し且つスプール弁子118aに開弁方向の推力を付与するためにベルト挟圧Pdを受け入れる油室118cと、スプール弁子118aに閉弁方向の推力を付与するために出力ポート118tから出力された推力比制御油圧Pτを受け入れるフィードバック油室118dとを備えている。
このように構成された推力比コントロールバルブ118において、油室118cにおけるベルト挟圧Pdの受圧面積をa、フィードバック油室118dにおける推力比制御油圧Pτの受圧面積をb、スプリング118bの付勢力をFとすると、次式(3)で平衡状態となる。従って、推力比制御油圧Pτは、次式(4)で表され、ベルト挟圧Pdに比例する。
τ×b=Pd×a+F ・・・(3)
τ=Pd×(a/b)+F/b ・・・(4)
そして、制御油圧PDS1および制御油圧PDS2が共に供給されないか、或いは所定圧以上の制御油圧PDS1および所定圧以上の制御油圧PDS2がともに供給されて、変速比コントロールバルブUP114および変速比コントロールバルブDN116が何れも原位置に保持されている閉じ状態とされたときには、推力比制御油圧Pτが入力側油圧シリンダ42cに供給されることから、変速制御圧Pinが推力比制御油圧Pτと一致させられる。つまり、推力比コントロールバルブ118により変速制御圧Pinとベルト挟圧Pdとの比率を予め定められた関係に保つ推力比制御油圧Pτすなわち変速制御圧Pinが出力される。
例えば、入力軸回転速度センサ56や車速センサ58の精度上所定車速V’以下の低車速状態では入力軸回転速度NINや車速Vの検出精度が劣ることから、このような低車速走行時や発進時には、例えば制御油圧PDS1および制御油圧PDS2を共に供給せず変速比コントロールバルブUP114および変速比コントロールバルブDN116を何れも閉じ状態とする所謂閉じ込み制御を実行する。これにより、低車速走行時や発進時には変速制御圧Pinとベルト挟圧Pdとの比率を予め定められた関係とするようにベルト挟圧Pdに比例する変速制御圧Pinが入力側油圧シリンダ42cへ供給されて、車両停車時から極低車速時における伝動ベルト48のベルト滑りが防止されると共に、このとき例えば最大変速比γmaxに対応する推力比τ(=出力側油圧シリンダ推力WOUT/入力側油圧シリンダ推力WIN;WOUTはベルト挟圧Pd×出力側油圧シリンダ46cの受圧面積SOUT、WINは変速制御圧Pin×入力側油圧シリンダ42cの受圧面積SIN)より大きな推力比τが可能なように上記式(4)の右辺第1項の(a/b)やF/bが設定されていると、最大変速比γmax又はその近傍の変速比γmax’にて良好な発進が行われる。また、上記所定車速V’は、所定回転部材の回転速度例えば入力軸回転速度NINが検出不可能な回転速度となる車速Vとして予め定められた下限の車速であって、例えば2km/h程度に設定されている。
図4は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。目標シーブ位置設定手段150は、無段変速機18を変速制御するための目標値として目標シーブ位置Xtを設定する。具体的には、目標シーブ位置設定手段150は、入力軸回転速度NINの目標入力軸回転速度NIN を設定する目標入力回転設定手段152と、目標入力軸回転速度NIN を目標変速比γに変換する目標変速比算出手段154とを備え、目標変速比γをシーブ位置Xに変換して目標シーブ位置Xtを設定する。
例えば、前記目標入力回転設定手段152は、図5に示すようなアクセル開度Accをパラメータとして車速Vと無段変速機18の目標入力回転速度である目標入力軸回転速度NIN との予め定められて記憶された関係(変速マップ)から実際の車速Vおよびアクセル開度Accで示される車両状態に基づいて入力軸回転速度NINの目標入力軸回転速度NIN を設定する。
また、前記目標変速比算出手段154は、電子制御装置50に供給された出力軸回転速度NOUTを表す信号に基づいて出力軸回転速度NOUTを読み込むと共に、前記目標入力回転設定手段152により設定された目標入力軸回転速度NIN とその出力軸回転速度NOUTとに基づいて目標変速比γ(=NIN /NOUT)を算出する。
また、前記目標シーブ位置設定手段150は、変速比γとその変速比γに対して一義的に定まるシーブ位置Xとの予め定められて記憶された図示しない関係(シーブ位置マップ)から前記目標変速比算出手段154により算出された目標変速比γに基づいて目標シーブ位置Xtを設定する。本実施例の変速制御は、無段変速機18を変速制御するための目標値として上記目標シーブ位置Xtを設定し、実際のシーブ位置(以下、実シーブ位置という)Xが目標シーブ位置Xtとなるように変速を行うものである。
推定差圧算出手段166は、変速制御弁(変速比コントロールバルブUP114および変速比コントロールバルブDN116)の上流側油圧であるライン油圧Pと下流側油圧である変速制御圧Pinとのバルブ差圧の推定値(以下、推定バルブ差圧という)ΔPを算出する。具体的には、推定差圧算出手段166は、変速制御圧Pinの推定値(以下、推定Pin圧という)を算出する推定Pin算出手段168と、実際のライン油圧Pの推定値(以下、推定ライン油圧という)を算出する推定P算出手段170とを備え、その推定Pin圧と推定ライン油圧とに基づいて推定バルブ差圧ΔPを算出する。
例えば、前記推定Pin算出手段168は、次式(8)〜(10)に従って推定Pin圧を算出する。尚、kINは入力側油圧シリンダ42cの遠心油圧係数、a、b、c、dは実験的に求められた係数、TINは無段変速機18への入力トルク、Pdは油圧センサ130により検出されたベルト挟圧、kOUTは出力側油圧シリンダ46cの遠心油圧係数である。
推定Pin圧=(WIN−kIN×NIN )/SIN ・・・(8)
IN=WOUT/(a+b×log10γ+c×TIN+d×NIN) ・・・(9)
OUT=Pd×SOUT+kOUT×NOUT ・・・(10)
また、上記入力トルクTINは、エンジントルク推定値TE0、トルクコンバータ14のトルク比t、および入力慣性トルク等から算出される。例えば、このエンジントルク推定値TE0はスロットル弁開度θTHをパラメータとしてエンジン回転速度Nとエンジントルク推定値TE0との予め実験的に求めて記憶された図示しない関係(エンジントルクマップ)から実際のエンジン回転速度Nおよびスロットル弁開度θTHに基づいて算出され、トルク比tは(NIN/N)の関数であり、入力慣性トルクは入力軸回転速度NINの時間変化量から算出される。
また、前記推定P算出手段170は、例えばライン油圧制御指令信号SPLとライン油圧Pとの予め実験的に求められて記憶された図示しない関係(ライン油圧特性)から電子制御装置50により出力されているライン油圧制御指令信号SPLに基づいて推定ライン油圧を算出する。
また、前記推定差圧算出手段166は、前記推定P算出手段170により算出された推定ライン油圧と前記推定Pin算出手段168により算出された推定Pin圧とに基づいて推定バルブ差圧ΔP(=推定ライン油圧−推定Pin圧)の演算値を算出する。
変速制御手段172は、前記目標シーブ位置設定手段150により設定された目標シーブ位置Xtとするために必要な作動油の出力流量Qを算出する。そして、その出力流量Qが得られる為の変速指令値としての変速制御指令信号Sを算出し、その変速制御指令信号Sを油圧制御回路100へ出力して無段変速機18の変速を実行する。例えば、変速制御手段172は、図6に示すような流量Qをパラメータとして推定バルブ差圧ΔPと変速制御指令信号SとしてのDuty値(駆動指令値)との予め実験的に求められて記憶された関係(逆変換流量マップ)から上記出力流量Qおよび前記推定差圧算出手段166により算出された推定バルブ差圧ΔPに基づいてDuty値を設定し、そのDuty値を油圧制御回路100へ出力して変速比γを連続的に変化させる。
ベルト挟圧力設定手段174は、例えば図7に示すような伝達トルクに対応するアクセル開度Accをパラメータとして変速比γとベルト挟圧力Pdとのベルト滑りが生じないように予め実験的に求められて記憶された関係(ベルト挟圧力マップ)から実際の変速比γおよびアクセル開度Accで示される車両状態に基づいてベルト挟圧力Pdを設定する。つまり、ベルト挟圧力設定手段174は、ベルト挟圧力Pdが得られる為の出力側油圧シリンダ46cのベルト挟圧Pdを設定する。
ベルト挟圧力制御手段176は、前記ベルト挟圧力設定手段174により設定されたベルト挟圧力Pdが得られる為の出力側油圧シリンダ46cのベルト挟圧Pdに調圧する挟圧力制御指令信号Sを油圧制御回路100へ出力してベルト挟圧力Pdすなわち可変プーリ42、46と伝動ベルト48との間の摩擦力を増減させる。
油圧制御回路100は、上記変速制御指令信号Sに従って無段変速機18の変速が実行されるようにソレノイド弁DS1およびソレノイド弁DS2を作動させて入力側油圧シリンダ42cへの作動油の供給・排出量を制御すると共に、上記挟圧力制御指令信号Sに従ってベルト挟圧力Pdが増減されるようにリニアソレノイド弁SLSを作動させてベルト挟圧Pdを調圧する。
エンジン出力制御手段178は、エンジン12の出力制御の為にエンジン出力制御指令信号S、例えばスロットル信号や噴射信号や点火時期信号などをそれぞれスロットルアクチュエータ76や燃料噴射装置78や点火装置80へ出力する。例えば、エンジン出力制御手段178は、アクセル開度Accに応じたスロットル開度θTHとなるように電子スロットル弁30を開閉するスロットル信号をスロットルアクチュエータ76へ出力してエンジントルクTを制御する。
キックダウン判定手段132は、キックダウンスイッチ69がオンとされたことに基づいて、ダウン変速を実行させる。キックダウンスイッチ69は、例えばアクセル開度Acc=100%に対応するアクセルペダル68の踏込量を上回ってアクセルペダル68が踏み込まれた場合のように、予め定められた所定の踏込量となるようにアクセルペダル68が踏み込まれた場合にオンとされる。キックダウン判定手段132は、ダウン変速実行時における無段変速機18の入力軸回転速度の目標値として、キックダウン目標回転速度NIN KDを設定する。キックダウン判定手段132によってダウン変速の実行が判定される場合においては、前記目標入力回転設定手段152によって算出される目標入力軸回転速度NIN に代えて、キックダウン目標回転速度NIN KDが無段変速機18の入力軸回転速度の目標値とされる。
前述のように、前記目標入力回転設定手段152は、例えば図5に示す変速マップに基づいてアクセル開度Accおよび車速Vから目標入力軸回転速度NIN を設定するものとされていた。一方、キックダウン判定手段132は、キックダウンによるダウン変速のための予め定められて記憶された関係に基づいて、キックダウンによるダウン変速における無段変速機18の入力軸回転速度としてキックダウン目標回転速度NIN KDを設定する。前述のようにアクセル開度Acc=100%とされた場合にキックダウン判定手段132がダウン変速を実行するものとされている場合の前記関係は、図5において破線で表わされている。具体的には例えば、キックダウン判定手段132は、ダウン変速を実行すると判断した場合には、判断時の車速と図5における破線で表わされた関係とに基づいて、キックダウン目標回転速度NIN KDを設定する。なお、図5に例示するように、キックダウン目標回転速度NIN KDの設定のための前記関係と、前記目標入力回転設定手段152により目標入力軸回転速度NIN が設定される際の図5に示した関係とを比べると、同一の車速および同一のアクセル開度の場合、キックダウン目標回転速度NIN KDの値は、目標入力軸回転速度NIN よりも高い値に設定されるものとされている。
車速制限手段134は、例えばASL(アジャスタブル スピードリミッタ)などと呼ばれるものであって、車速設定スイッチ75によって運転者によって車速制限制御の実行が指示されている場合に、車速センサ58によって検出される車速Vが、車速設定スイッチ75によって運転者により設定される設定車速VSETを上回ることがないように車速制限制御を実行する。
具体的には車速制限手段134は、車速センサ58によって検出される車速Vが、車速設定スイッチ75によって運転者により設定される設定車速VSETを下回っている場合には、アクセルペダル68の操作量であるアクセル開度Accに応じたスロットル開度θTHをスロットルアクチュエータ76に対して指示することにより加速を行なう。また、車速Vが設定車速VSETを上回っている場合には、例えばスロットルバルブの開度θTHを調節することなどにより車速Vを前記設定車速VSETまで減速させるとともに、その設定車速VSETとなるように車速Vを維持させる。すなわち、スロットル開度θTHは、アクセル開度Accに対応するスロットル開度の値よりも小さい値が指示される。車速制限手段134により車速制限制御が実行される場合においては、前記エンジン出力制御手段178によって設定されるスロットル開度θTHに代えて、車速制限手段134によって設定されるスロットル開度θTHの値に基づいてエンジン12の制御が行なわれる。
ここで、車速設定スイッチ75は、例えば操縦席近傍に配設され、運転者によって操作されるものであって、車速制限手段134による車速制限制御の実行の開始および終了のための指示を受け付ける実行スイッチと、車速制限制御実行時における設定車速VSETの値の設定を受け付ける車速設定スイッチとを含んで構成されている。
オーバーライド制御実行手段136は、前記車速制限手段134による車速制限制御の実行中において、前記キックダウン判定手段132によりキックダウンによるダウン変速の実行が判断された場合に、車速制限制御の実行を中止してダウン変速を実行するオーバーライド制御を実行する。言いかえれば、車速制限手段134による車速制限制御の実行中においては、キックダウンスイッチ69は車速制限制御の終了スイッチとしても作動する。具体的には、オーバーライド制御実行手段136は、無段変速機18の入力軸回転速度NINの目標値NIN の値を、前記車速制限手段134による車速制限制御の実行中の目標値NIN ASLから、キックダウン判定手段132によって設定されるキックダウン目標回転速度NIN KDに変更する。ここで、前記車速制限手段134による車速制限制御の実行中の入力軸回転速度の目標値NIN ASLは、例えば車速制限手段134により設定車速VSETとなるように設定されていたスロットル開度θTHと、図5に示す関係とから目標入力回転設定手段152により算出される。
前述のように、車速制限手段134により車速制限制御が行なわれる場合においては、スロットル開度θTHの値は、運転者によって操作されるアクセルペダル68のアクセル開度Accに対応する値よりも小さくされる場合がある。そのため、車速制限手段134により車速制限制御が行なわれる場合においては、無段変速機18の目標入力軸回転速度NIN ASLの値は、運転者によって操作されるアクセルペダル68のアクセル開度Accに対応するスロットル開度θTHの場合の目標入力軸回転速度NIN よりも小さくされる場合がある。一方、キックダウン判定手段132によりキックダウンによるダウン変速が実行される場合の無段変速機18の入力軸回転速度であるキックダウン目標回転速度NIN KDは、キックダウン判定手段132によりキックダウンが行なわれない走行状態における目標入力軸回転速度NIN と比べて、同一の車速および同一のアクセル開度においてはよりも高い値に設定されるものとされている。
かかる場合においては、オーバーライド制御実行手段136によりオーバーライド制御が実行される際に、目標入力軸回転速度NIN が車速制限手段134による目標入力軸回転速度NIN ASLからキックダウン判定手段132によるキックダウン目標回転速度NIN KDまで大きく変化させられることとなる。このような大きな変化が短時間のうちに行なわれると、無段変速機18における応答の遅れなどにより、加速応答の悪化などのドライバビリティの悪化などを生ずるおそれがあった。
本実施例の目標シーブ位置設定手段150は、目標入力回転速度変化設定手段156を含んで構成されている。目標入力回転速度変化設定手段156は、オーバーライド制御実行手段136によりオーバーライド制御が実行される際、すなわち、目標入力軸回転速度NIN が車速制限手段134による目標入力軸回転速度NIN ASLからキックダウン判定手段132によるキックダウン目標回転速度NIN KDまで大きく変化させられる際に、過渡的に時間変化する目標入力軸回転速度NIN OR(t)を設定する。すなわち、過渡的に時間変化する目標入力軸回転速度NIN OR(t)が入力軸回転速度の目標値の過渡変化に対応し、キックダウン目標回転速度NIN KDが、最終目標回転速度に対応する。
この目標入力回転速度変化設定手段156によって設定される目標入力軸回転速度NIN の過渡的な時間変化は、前記オーバーライド制御実行手段136によらずキックダウンによるダウン変速が実行される場合の目標入力軸回転速度NIN の時間変化とは異なるものとなる。例えば、前記オーバーライド制御実行手段136によらずキックダウンによるダウン変速が実行される場合には、スロットルセンサ60によって検出されるスロットル開度θTHおよび車速センサ58によって検出される車速Vと、図5に示す関係とから目標入力回転設定手段152により算出される目標入力軸回転速度NIN から、キックダウン判定手段132によるキックダウン目標回転速度NIN KDまで瞬時に切り換えられる。
図8は、目標入力回転速度変化設定手段156によって設定される目標入力軸回転速度NIN の一例を説明する図である。図8においては、アクセル開度Accの時間変化と目標入力回転速度変化設定手段156によって設定される目標入力軸回転速度NIN の時間変化とが共通する時間軸(横軸)を用いて表わされている。なお図8には、実線で表わされたCase1および破線で表わされたCase2の2種類の目標入力軸回転速度NIN の例が示されており、これらは異なるアクセル開度Accの変化、すなわち異なるアクセルペダル68の踏込量および踏込速度に対応している。なお、本実施例においては、図1に示すようにエンジン12の出力軸はトルクコンバータ14および前後進切換装置16などを介して連結されており、トルクコンバータ14の損失や前後進切換装置16のギヤ比などを考慮することにより目標入力軸回転速度NIN とエンジン12の目標回転速度N とは一対一の関係とすることができる。
図8において、時刻t1においてオーバーライド制御実行手段136によりオーバーライド制御の実行が開始される。具体的には、目標入力回転速度変化設定手段156によって目標入力軸回転速度NIN の時間変化であるNIN OR(t)(以下、「目標回転速度変化NIN OR(t)」という。)が設定され、時刻t1までの目標値であるNIN ASLからキックダウン目標回転速度NIN KDまで上昇させる。図8に示すように、目標回転速度変化NIN OR(t)においては、オーバーライド制御の実行開始直後、すなわち時刻t1の直後に、目標入力回転速度NIN は、初期ダウンシフト量NIN INITだけ上昇させられる。その後、目標入力回転速度NIN は、上昇勾配dNIN /dtによりキックダウン目標回転速度NIN KDまで増加させられる。上昇勾配dNIN /dtは、例えば、図8において目標入力回転速度NIN が、初期ダウンシフト量NIN INITだけ上昇させられた後に増加させられる際の時間変化における接線の傾きに対応する。
このようにすれば、目標入力回転速度NIN は、時刻t1までの目標値であるNIN ASLから初期ダウンシフト量NIN INITだけ上昇させられた後、キックダウン目標回転速度NIN KDまで上昇勾配dNIN /dtにより上昇させられるので、NIN ASLからキックダウン目標回転速度NIN KDまで上昇させる場合に比べて無段変速機18が変更する変速比の幅が小さくなり、変速により加速度を得られるまでの時間が短くなる。また、オーバーライド制御の実行開始直後からエンジン回転速度が高回転に貼りつくことがない。
ここで、前記初期ダウンシフト量NIN INITおよび上昇勾配dNIN /dtはそれぞれ、キックダウン判定手段132によりキックダウンの判定が行なわれる際のアクセルペダル68の操作量であるアクセル開度の変化量ΔAcc、およびアクセルペダルの操作速度であるアクセル開度の変化速度dAcc/dtの値が大きいほど、大きな値にされる。アクセル開度の変化量ΔAccおよびアクセル開度の変化速度dAcc/dtは運転者の加速意図が大きい場合に対応する。なお、アクセル開度の変化速度dAcc/dtは図8に示すアクセル開度Accの時間変化における傾きに対応する。このようにすれば、運転者の加速意図が大きい場合において、ダウン変速の変速比幅を大きくし、得られる車両加速度を大きくすることができる。
また、前記初期ダウンシフト量NIN INITおよび上昇勾配dNIN /dtはそれぞれ、車速制限手段134による車速制限制御実行時における入力軸回転速度NIN ASLの前記ダウン変速の終了時における最終目標回転速度であるキックダウン目標回転速度NIN KDからの偏差ΔNIN の値が大きいほど、大きな値にされる。このようにすれば、オーバーライド制御によらないキックダウンによるダウン変速における目標入力回転速度NIN の変化量よりも偏差ΔNIN が大きいオーバーライド制御において、ダウン変速に要する時間が長くなるのを抑制できる。
また、前記初期ダウンシフト量NIN INITおよび上昇勾配dNIN /dtはそれぞれ、車速Vの値が大きいほど、大きな値にされる。このようにすれば、車速Vが高く、ロードロードが大きく運転者が変速によって発生する車両加速度を感じられるまでの時間が比較的長い場合において、ダウン変速の変速比幅を大きくし、得られる車両加速度を大きくすることができる。
このように、目標入力回転速度変化設定手段156は、初期ダウンシフト量NIN INITおよび上昇勾配dNIN /dt、すなわち、目標回転速度変化NIN OR(t)を、アクセル開度の変化量ΔAcc、アクセル開度の変化速度dAcc/dt、車速V、および、偏差ΔNIN の少なくとも1つに基づいて設定する。
また、目標入力回転速度変化設定手段156は、目標回転速度変化NIN OR(t)を、その値が最終目標回転速度であるキックダウン目標回転速度NIN KDに近づくにつれて、目標回転速度変化NIN OR(t)の勾配dNIN OR(t)/dtがキックダウン目標回転速度NIN KDの勾配dNIN KD/dtに近づくように設定する。具体的には例えば図8に示すように、目標入力回転速度NIN は、時刻t1において初期ダウンシフト量NIN INITだけ上昇させられ、その後、上昇勾配dNIN /dtによりキックダウン目標回転速度NIN KDまで増加させられるが、キックダウン目標回転速度NIN KDに近づくにつれて、その勾配dNIN OR(t)/dtはキックダウン目標回転速度NIN KDの勾配dNIN KD/dtに近づく。そして、目標入力回転速度NIN は、緩やかにキックダウン目標回転速度NIN KDに近づく。このようにすれば、目標入力回転速度NIN の値がキックダウン目標回転速度NIN KDとなった際に急峻に変化することがなく、運転者に与える違和感を低減することができる。
図9は、電子制御装置50の制御作動における要部、具体的には無段変速機18におけるオーバーライド制御に関する制御作動を説明するフローチャートであって、繰り返し実行されるものである。
まず、車速制限手段134およびオーバーライド判定手段136に対応するステップ(以下「ステップ」を省略する。)S1においては、車速制限制御の実行中であるか否かが判断される。車速制限制御の実行中である場合には本ステップの判断が肯定され、S2が実行される。一方、車速制限制御の実行中でない場合には、本ステップの判断が否定され、S7が実行される。
続いて、キックダウン判定手段132およびオーバーライド判定手段136に対応するS2においては、キックダウンスイッチ69がオンとされたことに基づいてキックダウンによるダウン変速の実行が判定されたか否かが判断される。キックダウンによるダウン変速の実行が判定された場合には、本ステップの判断が肯定され、S3が実行される。一方、キックダウンによるダウン変速の実行が判定されない場合には、本ステップの判断は否定され、S7が実行される。
目標入力回転速度変化設定手段156に対応するS3は、車速制限制御の実行中にキックダウンによるダウン変速の実行が判断された場合に実行されるステップである。S3においては、無段変速機18の入力軸回転速度の目標値の過渡変化である目標入力軸回転速度NIN OR(t)が設定される。具体的には例えば、ダウン変速の実行直後における入力軸回転速度の目標値NIN の増加量である、初期ダウンシフト量NIN INITおよび、その初期ダウンシフト量NIN INITだけ増加させられた後における入力軸回転速度の目標値NIN の上昇勾配dNIN /dtの値が、アクセル開度の変化量ΔAcc、アクセル開度の変化速度dAcc/dt、車速V、および、前記偏差ΔNIN の少なくとも1つに基づいて設定される。
また、S3においては、目標回転速度変化NIN OR(t)は、その値が最終目標回転速度であるキックダウン目標回転速度NIN KDに近づくにつれて、目標回転速度変化NIN OR(t)の勾配dNIN OR(t)/dtがキックダウン目標回転速度NIN KDの勾配dNIN KD/dtに近づくように設定される。
目標シーブ位置設定手段150、変速制御手段172、ベルト挟圧力制御手段176、エンジン出力制御手段178などに対応するS4においては、S3において設定された目標入力軸回転速度NIN OR(t)に基づいて、無段変速機18のダウン変速が行なわれ、無段変速機18の入力軸回転速度NINが、車速制限制御中の値であるNIN ASLからダウン変速における最終目標回転速度であるキックダウン回転速度NIN KDまで変化させられる。
オーバーライド制御実行手段136に対応するS5においては、例えば入力軸回転速度センサ56によって検出される無段変速機18の入力軸回転速度NINの値が、キックダウンによるダウン変速の最終目標回転速度であるキックダウン回転速度NIN KDとなったか否かが判断される。入力軸回転速度NINの値が、キックダウン回転速度NIN KDとなった場合には本ステップの判断は肯定され、S6が実行される。一方、入力軸回転速度NINの値が、キックダウン回転速度NIN KDに達していない場合には本ステップの判断は否定され、S4が繰り返し実行され、ダウン変速が引き続き行なわれる。
S5の判断が肯定された場合、すなわち入力軸回転速度NINの値が、キックダウン回転速度NIN KDとなった場合に実行されるS6においては、オーバーライド制御、すなわち車速制限制御の実行中に行なわれるキックダウンによるダウン変速のための制御が終了させられる。
一方、目標入力回転設定手段152、変速制御手段172などに対応するS7は、S1の判断が否定された場合、およびS2の判断が否定された場合に実行されるステップである。このS7においては、通常の変速制御、すなわち例えば前述の図5に示すような変速マップと、実際の車速Vおよびアクセル開度Accとから得られる入力軸回転速度NINが目標入力軸回転速度NIN として設定され、実際の入力軸回転速度NINがこの目標入力軸回転速度NIN に追従するように変速制御が実行される。
図10は、本実施例における電子制御装置50の制御作動を説明するタイムチャートである。図10においては、キックダウンスイッチ69の出力信号、車速制限手段132による車速制限制御の有無、アクセル開度Acc、入力軸回転速度の目標値NIN 、および車両加速度Gの時間変化をそれぞれ表わした図である。また、入力軸回転速度の目標値NIN 、および車両加速度Gの時間変化については、本実施例のオーバーライド制御の適用時が実線で、本実施例のオーバーライド制御の非適用時が破線でそれぞれ表わされている。
まず、時刻t11以前においては、車速設定スイッチ75により運転者により例えば車速Vが設定車速VSETを上回ることがないように車速制限制御の実行が指示されている。また、アクセル開度Accは比較的低い値とされており、図10には図示しない車速Vが設定車速VSETを下回っており、アクセル開度Accに対応したスロットル開度θTHが出力されている。
時刻t11においては、運転者によりアクセルペダル68が踏み込まれ、時刻t12まで維持される。このとき、アクセル開度Accは100%であるが、キックダウンスイッチ69についてはオンとされない位置までアクセルペダル68が踏み込まれる。従って、車速制限手段132による車速制限制御が引き続き実行される。具体的には、車速Vが設定車速VSETを上回ることがないように、スロットル開度θTHが調整される。すなわち、アクセル開度Accに対応する値よりも小さい値のスロットル開度θTHとされる。
時刻t12においては、運転者によりアクセルペダル68がさらに踏み込まれ、キックダウンスイッチ69がオンとされる。すなわちキックダウン判定手段132によりキックダウンによるダウン変速の実行が判定される。さらに車速制限制御の実行中においてキックダウンによるダウン変速の実行が判定されたとして、オーバーライド制御実行手段136によりオーバーライド制御の実行が判断される。
時刻t12から時刻t13までの間は、キックダウン判定手段132によるダウン変速のための変速制御に代えて、オーバーライド制御実行手段136によるオーバーライド制御が行なわれる。すなわち、目標入力回転速度変化設定手段156により設定された目標入力軸回転速度の過渡変化NIN OR(t)が、入力軸回転速度の目標値NIN とされる。具体的には、オーバーライド制御の実行開始時である時刻t12において、入力軸回転速度の目標値NIN は初期ダウンシフト量NIN INITだけ上昇させられる。その後、目標入力回転速度NIN は、上昇勾配dNIN /dtによりキックダウン目標回転速度NIN KDまで増加させられる。また、目標回転速度変化NIN OR(t)の値が最終目標回転速度であるキックダウン目標回転速度NIN KDに近づくにつれて、目標回転速度変化NIN OR(t)の勾配dNIN OR(t)/dtがキックダウン目標回転速度NIN KDの勾配dNIN KD/dtに近づくようにされている。
時刻t13においては、入力軸回転速度の目標値NIN がキックダウン目標回転速度NIN KDまで達し、キックダウンによるダウン変速が終了したとして、オーバーライド制御が終了する。時刻t13以降においては、キックダウンスイッチ69がオンとされているので、例えば図5において破線で表わされたキックダウン中における車速Vと目標入力軸回転速度NIN との関係に基づいて、入力軸の目標回転速度NIN が算出される。
一方、車速制限制御の実行中にキックダウンによるダウン変速の実行が判定された場合において、本実施例のオーバーライド制御が適用されない場合の入力軸回転速度NIN の一例が図10において破線で表わされている。具体的には、車速制限制御の実行中であってもキックダウンによるダウン変速の実行が判定された場合には、目標入力回転速度NIN は、キックダウンによる変速の実行が判断される時刻t12において、キックダウン目標回転速度NIN KDまで増加させられる。
また、図10においては、本実施例のオーバーライド制御が適用された場合の車両加速度Gの時間変化が実線で、適用されない場合の車両加速度Gの時間変化が破線でそれぞれ表わされている。これらを比較すると、本実施例のオーバーライド制御が適用された場合において、キックダウンによるダウン変速によって車両加速度Gの増加が得られるまでの時間tG1は、本実施例のオーバーライド制御が適用されない場合においてキックダウンによるダウン変速によって車両加速度Gの増加が得られるまでの時間tG2よりも短くなっている。すなわち、キックダウンスイッチ69がオンとされてから車両加速度Gが得られるまでの遅れが小さく、良好な応答が得られる。
前述の実施例によれば、オーバーライド制御実行手段136により、車速制限手段134による車速制限制御の実行中において(S1)キックダウンスイッチ69がオンとされキックダウン判定手段132によりダウン変速の実行が判断され(S2)、車速制限制御の実行が中止されてダウン変速が実行される場合において、目標回転速度変化設定手段156(S3)により、オーバーライド制御実行手段136によらずキックダウンによるダウン変速が実行される場合とは異なる無段変速機18の入力軸回転速度の目標値NIN の過渡変化NIN OR(t)が設定され、目標値に追従するように制御される(S4)ので、オーバーライド制御実行手段136によりキックダウンによるダウン変速が実行される場合においては、オーバーライド制御実行手段136によらずキックダウンによるダウン変速が実行される場合とは異なる入力軸回転速度の目標値NIN の過渡変化に応じて入力軸回転速度NINが変化させられ、加速応答性やドライバビリティが向上する。
また前述の実施例によれば、目標回転速度変化設定手段156(S3)は、運転者によって操作されるアクセルペダル68の操作量であるアクセル開度の変化量ΔAcc、アクセルペダル68の操作速度であるアクセル開度の変化速度dAcc/dt、車速V、および、車速制限手段134による車速制限制御実行時における入力軸回転速度NIN ASLの前記ダウン変速の終了時における最終目標回転速度であるキックダウン目標回転速度NIN KDからの偏差ΔNIN 、の少なくとも1つに基づいて、オーバーライド制御実行手段136によりダウン変速が実行される場合における無段変速機18の入力軸回転速度の目標値NIN の過渡変化NIN OR(t)を設定するので、加速応答性やドライバビリティが向上する。
また前述の実施例によれば、目標回転速度変化設定手段156(S3)は、キックダウンによるダウン変速の実行開始時における入力軸回転速度の目標値の増加量である初期ダウンシフト量NIN INITと、該初期ダウンシフト量NIN INITだけ増加させられた後に最終目標回転速度であるキックダウン目標回転速度NIN KDまでの回転速度の変化率である上昇勾配dNIN /dtとによって、前記オーバーライド制御実行手段136により前記ダウン変速が実行される場合における入力軸回転速度の目標値NIN の過渡変化NIN OR(t)を設定する。したがって、オーバーライド判定手段136により車速制限手段134による車速制限制御の実行中にキックダウンスイッチ69がオンとされることによるダウン変速の実行が判断され、オーバーライド制御、すなわち車速制限制御の実行が中止されてダウン変速が実行される場合において(S1、S2)、無段変速機18の入力軸回転速度NINは、前記ダウン変速の実行開始時に前記初期ダウンシフト量NIN INITだけ増加上昇させられ、その後前記上昇勾配dNIN /dtに基づいてキックダウン目標回転速度NIN KDまで上昇するように過渡的に変化させられるので、前記ダウン変速の実行開始時からキックダウン目標回転速度NIN KDに貼りつくことがなく、加速応答性やドライバビリティが向上する。
また前述の実施例によれば、目標回転速度変化設定手段156(S3)は、入力軸回転速度の目標値の値NIN が最終目標回転速度であるキックダウン目標回転速度NIN KDに近づくにつれて、入力軸回転速度の目標値の過渡変化NIN OR(t)の勾配dNIN OR(t)/dtが最終目標回転速度であるキックダウン目標回転速度NIN KDの勾配dNIN KD/dtに近づくように、無段変速機18の入力軸回転速度の目標値の過渡変化NIN OR(t)を設定するので、オーバーライド判定手段136により車速制限手段134による車速制限制御の実行中にキックダウンスイッチ69がオンとされることによるダウン変速の実行が判断され、オーバーライド制御、すなわち車速制限制御の実行が中止されてダウン変速が実行される場合において(S1、S2)、無段変速機18の入力軸回転速度NINが過渡変化させられた後にキックダウン目標回転速度NIN KDとされる際に急激な変化となることが避けられるので、さらにドライバビリティの悪化を抑制することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例においては、無段変速機18としてはベルト式の無段変速機が用いられたが、これに限られない。変速比が変更可能な無段変速機であればよく、例えばトロイダル式の無段変速機であってもよい。
また、前述の実施例における入力軸回転速度NINやそれに関連する目標入力軸回転速度NIN などは、それら入力軸回転速度NINなどに替えて、エンジン回転速度Nやそれに関連する目標エンジン回転速度N など、或いはタービン回転速度Nやそれに関連する目標タービン回転速度N などであっても良い。従って、入力軸回転速度センサ56等の回転速度センサは、制御する必要がある回転速度に合わせて適宜備えられれば良い。
また、前述の実施例において、流体伝動装置としてロックアップクラッチ26が備えられているトルクコンバータ14が用いられていたが、ロックアップクラッチ26は必ずしも設けられなくてもよく、またトルクコンバータ14に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式動力伝達装置が用いられてもよい。
前述の実施例においては、目標入力回転速度変化設定手段156が設定する入力軸回転速度の目標値NIN の過渡変化NIN OR(t)において、前記初期ダウンシフト量NIN INITおよび上昇勾配dNIN /dtはそれぞれ、車速制限手段134による車速制限制御実行時における入力軸回転速度NIN ASLの前記ダウン変速の終了時における最終目標回転速度であるキックダウン目標回転速度NIN KDからの偏差ΔNIN の値が大きいほど、大きな値にされたが、この偏差ΔNIN に代えて、車速制限制御実行時における入力軸回転速度NIN ASLのスロットル開度θTHが100%である時の入力軸回転速度の目標値NIN 100からの偏差ΔNIN ’が用いられてもよい。すなわち、偏差ΔNIN ’の値が大きいほど、前記初期ダウンシフト量NIN INITおよび上昇勾配dNIN /dtがそれぞれ大きな値にされてもよい。
前述の実施例においては、キックダウン判定手段132はキックダウンスイッチ69がオンとされたことに基づいてキックダウンの実行を判断したが、これに限られない。例えば、アクセル開度センサ70によって検出されるアクセル開度Accの踏込み量ΔAccや踏込み速度dAcc/dtなどに基づいてキックダウンの実行を判断してもよい。
その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
18:ベルト式無段変速機(無段変速機)
50:電子制御装置
132:キックダウン判定手段
134:車速制限手段
136:オーバーライド制御実行手段
156:目標入力回転速度変化設定手段

Claims (4)

  1. 変速比を無段階に調節可能な無段変速機と、車速が設定車速を上回ることがないように駆動力源の出力を抑制する車速制限手段と、運転者のアクセルペダル操作によるダウン変速操作を検出するためのキックダウンスイッチと、
    前記車速制限手段による車速制限制御の実行中に前記キックダウンスイッチがオンとされることによるダウン変速の実行が判断された場合には、該車速制限制御の実行を中止して該ダウン変速を実行するオーバーライド制御実行手段と、を有する車両の駆動装置の制御装置であって、
    該オーバーライド制御実行手段により前記ダウン変速が実行される場合において、前記オーバーライド制御実行手段によらず前記ダウン変速が実行される場合とは異なる前記無段変速機の入力軸回転速度の目標値の過渡変化を設定する目標回転速度変化設定手段、
    を有することを特徴とする車両の駆動装置の制御装置。
  2. 前記目標回転速度変化設定手段は、運転者によって操作されるアクセルペダルの操作量、操作速度、車速、および、前記車速制限手段による車速制限制御実行時における入力軸回転速度の前記ダウン変速の終了時における最終目標回転速度からの偏差、の少なくとも1つに基づいて、前記オーバーライド制御実行手段により前記ダウン変速が実行される場合における前記無段変速機の入力軸回転速度の目標値の過渡変化を設定すること、
    を特徴とする請求項1に記載の車両の駆動装置の制御装置。
  3. 前記目標回転速度変化設定手段は、前記ダウン変速の実行開始時における入力軸回転速度の目標値の変化量である初期ダウンシフト量と、該初期ダウンシフト量から前記最終目標回転速度までの回転速度の変化率である上昇勾配とによって、前記オーバーライド制御実行手段により前記ダウン変速が実行される場合における前記無段変速機の入力軸回転速度の目標値の過渡変化を設定すること、
    を特徴とする請求項1または2に記載の車両の駆動装置の制御装置。
  4. 前記目標回転速度変化設定手段は、該入力軸回転速度の目標値の値が前記最終目標回転速度に近づくにつれて、該入力軸回転速度の目標値の過渡変化の勾配が前記最終目標回転速度の勾配に近づくように、前記無段変速機の入力軸回転速度の目標値の過渡変化を設定すること、
    を特徴とする請求項3に記載の車両の駆動装置の制御装置。
JP2009010316A 2009-01-20 2009-01-20 車両の駆動装置の制御装置 Pending JP2010169128A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010316A JP2010169128A (ja) 2009-01-20 2009-01-20 車両の駆動装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010316A JP2010169128A (ja) 2009-01-20 2009-01-20 車両の駆動装置の制御装置

Publications (1)

Publication Number Publication Date
JP2010169128A true JP2010169128A (ja) 2010-08-05

Family

ID=42701475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010316A Pending JP2010169128A (ja) 2009-01-20 2009-01-20 車両の駆動装置の制御装置

Country Status (1)

Country Link
JP (1) JP2010169128A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136751A1 (ja) * 2014-03-10 2015-09-17 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
JP2015224730A (ja) * 2014-05-28 2015-12-14 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
JP2017509842A (ja) * 2014-02-12 2017-04-06 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド シフト抑制的制御のためのシステム及び方法
CN109751404A (zh) * 2017-11-07 2019-05-14 株式会社丰田自动织机 工业车辆的变速控制装置
US10933873B2 (en) 2019-05-13 2021-03-02 Hyundai Motor Company Apparatus and method for shift control in vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509842A (ja) * 2014-02-12 2017-04-06 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド シフト抑制的制御のためのシステム及び方法
WO2015136751A1 (ja) * 2014-03-10 2015-09-17 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
JP2015169314A (ja) * 2014-03-10 2015-09-28 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
CN106068411A (zh) * 2014-03-10 2016-11-02 爱信艾达株式会社 无级变速器的控制装置以及控制方法
US9995388B2 (en) 2014-03-10 2018-06-12 Aisin Aw Co., Ltd. Control device and control method for continuously variable transmission
JP2015224730A (ja) * 2014-05-28 2015-12-14 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
CN109751404A (zh) * 2017-11-07 2019-05-14 株式会社丰田自动织机 工业车辆的变速控制装置
US10933873B2 (en) 2019-05-13 2021-03-02 Hyundai Motor Company Apparatus and method for shift control in vehicle

Similar Documents

Publication Publication Date Title
JP4690255B2 (ja) ベルト式無段変速機の制御装置
JP4375321B2 (ja) 無段変速機の変速制御装置
JP4238895B2 (ja) 車両用無段変速機の変速制御装置
JP4277882B2 (ja) 無段変速機の変速制御装置
JP2008020055A (ja) ベルト式無段変速機の制御装置
JP2010169128A (ja) 車両の駆動装置の制御装置
JP4839988B2 (ja) 車両用無段変速機の制御装置
JP4736831B2 (ja) 車両用無段変速機の制御装置
JP2007177833A (ja) 車両用無段変速機の変速制御装置
JP4892969B2 (ja) 車両の制御装置
JP2010242935A (ja) 車両の制御装置
JP2008075736A (ja) 車両用無段変速機の変速制御装置
JP4882609B2 (ja) ベルト式無段変速機の変速制御装置
JP2008057588A (ja) 車両用無段変速機の変速制御装置
JP4893134B2 (ja) 車両用無段変速機の制御装置
JP4811151B2 (ja) 車両用無段変速機の変速制御装置
JP4735225B2 (ja) 無段変速機の油圧制御装置
JP2007177834A (ja) 無段変速機の制御装置
JP5125668B2 (ja) 車両用無段変速機の変速制御装置
JP4835257B2 (ja) 車両用無段変速機の変速制御装置
JP5120150B2 (ja) 車両用無段変速機の制御装置
JP2008095907A (ja) 車両用無段変速機の変速制御装置
JP2008101716A (ja) 車両用無段変速機の制御装置
JP4811153B2 (ja) 自動変速機の制御装置
JP3948399B2 (ja) 車両用動力伝達装置の油圧制御装置