WO2019167507A1 - 自動変速機のロックアップ制御装置および制御方法 - Google Patents

自動変速機のロックアップ制御装置および制御方法 Download PDF

Info

Publication number
WO2019167507A1
WO2019167507A1 PCT/JP2019/002621 JP2019002621W WO2019167507A1 WO 2019167507 A1 WO2019167507 A1 WO 2019167507A1 JP 2019002621 W JP2019002621 W JP 2019002621W WO 2019167507 A1 WO2019167507 A1 WO 2019167507A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
target
converter
lock
engine
Prior art date
Application number
PCT/JP2019/002621
Other languages
English (en)
French (fr)
Inventor
直泰 池田
旭明 王
泰弘 遠藤
阿希 早川
孝治 齊藤
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020502871A priority Critical patent/JPWO2019167507A1/ja
Publication of WO2019167507A1 publication Critical patent/WO2019167507A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a lockup control device and control method for an automatic transmission mounted on a vehicle.
  • the actual differential pressure of the lockup clutch has a hydraulic response delay with respect to the command differential pressure. Therefore, if a differential pressure instruction for the lockup clutch is issued based on the target differential rotation speed calculated based on the current operating state, the response to the actual clutch operation is delayed with respect to the requested clutch operation of the lockup clutch currently requested. There was a problem that occurred.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to suppress a delay in response of an actual clutch operation to a requested clutch operation when a lockup clutch is engaged / released.
  • the present invention includes a torque converter, a lock-up clutch, and a transmission controller.
  • the transmission controller calculates the converter torque by feedforward compensation based on the target differential speed and feedback compensation based on the differential speed deviation, and the target lockup torque calculated by subtracting the converter torque from the input torque to the torque converter.
  • a lockup control unit that outputs the obtained differential pressure is provided.
  • the lock-up control unit uses the input information of the operation state used for calculating the target lock-up torque as pre-read input information pre-read based on the response delay time of the actual differential pressure with respect to the command differential pressure.
  • 1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to an embodiment is applied. It is a shift schedule figure which shows an example of the D range continuously variable transmission schedule used when the continuously variable transmission control in automatic transmission mode is performed by a variator. It is a schematic block diagram which shows the lockup control apparatus of an Example. It is a block block diagram which shows each block which comprises the lockup control part of a CVT control unit. It is a detailed block diagram which shows the target calculation block, torque capacity calculation block, and realization block which comprise a lockup control part. It is a flowchart which shows the flow of the lockup control process performed in the lockup control part of the CVT control unit of an Example. It is a characteristic view which shows the target value characteristic, actual value characteristic, and prefetch characteristic for demonstrating the method of prefetching.
  • the lockup control device in the embodiment is applied to an engine vehicle equipped with a belt-type continuously variable transmission (an example of an automatic transmission) configured by a torque converter, a forward / reverse switching mechanism, a variator, and a final reduction mechanism.
  • a belt-type continuously variable transmission an example of an automatic transmission
  • a torque converter configured by a torque converter, a forward / reverse switching mechanism, a variator, and a final reduction mechanism.
  • FIG. 1 shows a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to an embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6. Yes.
  • the belt type continuously variable transmission CVT is configured by incorporating the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5 in a transmission case (not shown).
  • the engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver.
  • the engine 1 includes an output torque control actuator 10 that performs torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like. For example, fuel cut control is executed during coasting by an accelerator release operation.
  • the torque converter 2 is a starting element by a fluid coupling having a torque increasing function and a torque fluctuation absorbing function.
  • the torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements.
  • the pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22.
  • the turbine runner 24 is connected to the torque converter output shaft 21.
  • the stator 26 is provided in the transmission case via the one-way clutch 25.
  • the forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates.
  • the forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected.
  • the reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected.
  • the forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
  • the variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and continuously changes the transmission gear ratio (ratio of variator input rotation to variator output rotation) by changing the belt contact diameter.
  • a gear shifting function is provided.
  • the primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45.
  • the secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b arranged on the same axis as the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46.
  • the pulley belt 44 is stretched around a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43.
  • the pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements.
  • the pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
  • the final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the final speed reduction mechanism 5 is a speed reduction gear mechanism that includes an output gear 52 provided on the variator output shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on the outer peripheral position of the differential case. And a gear 55.
  • the differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
  • the engine vehicle control system includes a hydraulic control unit 7, a CVT control unit 8, and an engine control unit 9.
  • the CVT control unit 8 and the engine control unit 9 which are electronic control systems are connected by a CAN communication line 13 which can exchange information with each other.
  • the hydraulic control unit 7 performs primary pressure Ppri guided to the primary pressure chamber 45, secondary pressure Psec guided to the secondary pressure chamber 46, forward clutch pressure Pfc to the forward clutch 31, reverse brake pressure Prb to the reverse brake 32, and the like. It is a unit that regulates pressure.
  • the hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. .
  • the hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76. Each solenoid valve 72, 73, 74, 75, 76 performs a pressure adjustment operation according to a control command value (indicated current) output from the CVT control unit 8.
  • the line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL according to the line pressure command value output from the CVT control unit 8.
  • the line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
  • the primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure in accordance with the primary pressure command value output from the CVT control unit 8.
  • the secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
  • the select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the reverse brake pressure Prb commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value or the reverse brake pressure command value output from the CVT control unit 8. To do.
  • the lock-up pressure solenoid valve 76 adjusts to a lock-up hydraulic pressure Plu for engaging / slipping / releasing the lock-up clutch 20 according to the command current Alu output from the CVT control unit 8.
  • the CVT control unit 8 performs line pressure control, shift control, forward / reverse switching control, lockup control, and the like.
  • line pressure control a command value for obtaining a target line pressure corresponding to the accelerator opening is output to the line pressure solenoid valve 72.
  • shift control when the target gear ratio (target primary rotation Npri * ) is determined, a command value for obtaining the determined target gear ratio (target primary rotation Npri * ) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74.
  • the forward / reverse switching control a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position.
  • lockup control the command current Alu for controlling the lockup hydraulic pressure Plu for engaging / slipping / releasing the lockup clutch 20 is output to the lockup pressure solenoid valve 76.
  • the CVT control unit 8 includes a primary rotation sensor 90, a vehicle speed sensor 91, a secondary pressure sensor 92, an oil temperature sensor 93, an inhibitor switch 94, a brake switch 95, a turbine rotation sensor 96, a secondary rotation sensor 97, a primary pressure sensor 98, and the like. Sensor information and switch information are input.
  • the engine control unit 9 receives sensor information from the engine rotation sensor 12, accelerator opening sensor 14, and the like.
  • the CVT control unit 8 requests the engine control information and the accelerator opening information to the engine control unit 9, the CVT control unit 8 receives information on the engine speed Ne and the accelerator opening APO via the CAN communication line 13. Further, when requesting engine torque information to the engine control unit 9, information on the actual engine torque Te estimated in the engine control unit 9 is received via the CAN communication line 13.
  • FIG. 2 shows an example of the D range continuously variable transmission schedule used when the variator 4 executes the continuously variable transmission control in the automatic transmission mode when the D range is selected.
  • the “D range shift mode” is an automatic shift mode in which the gear ratio is automatically changed steplessly in accordance with the vehicle operating state.
  • the shift control in the “D range shift mode” is performed by operating points on the D range continuously variable shift schedule of FIG. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14) ( VSP, APO) determines the target primary rotational speed Npri * . Then, the pulley primary pressure control is performed so that the actual primary rotational speed Npri from the primary rotational sensor 90 matches the target primary rotational speed Npri * .
  • the D range continuously variable transmission schedule used in the “D range speed change mode” has a gear ratio range of the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO).
  • the gear ratio is set to change steplessly. For example, when the vehicle speed VSP is constant, and shifting the downshift direction to perform the increased target primary rotation speed Npri * the accelerator depression operation, the target primary rotation speed Npri * decreases Doing accelerator return operation up Shift in the shift direction.
  • the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases.
  • FIG. 3 shows the lock-up control device of the embodiment.
  • lockup is abbreviated as “LU”
  • feedforward is abbreviated as “F / F”
  • feedback is abbreviated as “F / B”.
  • the drive system to which the lockup control device is applied includes an engine 1 (driving drive source), a torque converter 2 having a lockup clutch 20, a forward / reverse switching mechanism 3, and a variator 4 ( A speed change mechanism), a final reduction mechanism 5, and a drive wheel 6.
  • engine 1 driving drive source
  • torque converter 2 having a lockup clutch 20, a forward / reverse switching mechanism 3, and a variator 4 ( A speed change mechanism), a final reduction mechanism 5, and a drive wheel 6.
  • the control system to which the lockup control device is applied includes a CVT control unit 8, an engine control unit 9, and a lockup pressure solenoid valve 76.
  • the CVT control unit 8 is provided with a lockup control unit 80 that changes the clutch state of the lockup clutch 20 to the engaged state / slip engaged state / released state according to various requests.
  • the lockup control in the lockup control unit 80 estimates the target driving force Fd * intended by the driver, and locks up the clutch so that the actual driving force Fd output to the driving wheels 6 becomes the target driving force Fd *. 20 slip control is performed. At this time, the target driving force Fd * is converted into the target engine speed Ne * in order to improve the controllability in the slip control.
  • the converter torque Tcnv is calculated by executing control (F / F control + F / B control) for converging the actual engine speed Ne to the target engine speed Ne * . Then, as shown in FIG.
  • Tadj Tcnv + Tlu relationship that holds, calculates a target LU torque TLU of the lockup clutch 20 *, the target LU torque TLU * the obtained command current Alu lockup pressure solenoid valve 76 Output to.
  • the target driving force Fd * intended by the driver can be realized during the slip control of the lockup clutch 20. it can.
  • FIG. 4 shows each block constituting the lockup control unit 80 of the CVT control unit 8.
  • the block configuration of the lockup control unit 80 will be described with reference to FIG.
  • the lockup control unit 80 includes a driving force demand block 81, a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85, as shown in FIG.
  • the driving force demand block 81 calculates the target driving force Fd * based on the accelerator opening APO and the vehicle speed VSP, and converts the target driving force Fd * into the target engine speed Ne * using the engine overall performance characteristics.
  • the profile of the target engine speed Ne * is calculated.
  • the engagement request flag is output when the profile of the target engine speed Ne * is realized by the clutch slip control.
  • a release request flag is output when a profile of the target engine speed Ne * is realized by clutch slip control.
  • the request arbitration block 82 receives the engagement request flag and the release request flag from the driving force demand block 81, calculates a lockup request from various requests, and arbitrates the request to determine the priority.
  • Various requirements include basic requirements, DP requirements (DP stands for Driving pleasure), drivability requirements, protection requirements, FS requirements (FS stands for Fail Safe), technical limit requirements, other system requirements, coast slip requirements, Etc.
  • the target calculation block 83 inputs the immediate release request flag, the release request flag, the slip request flag, and the engagement request flag from the request arbitration block 82, and calculates the target differential rotation speed ⁇ N * as a differential rotation target from these LU requests. .
  • the target calculation block 83 the target engine speed Ne * calculated by the driving force demand block 81 is input.
  • the torque capacity calculation block 84 inputs the target differential rotation speed ⁇ N * , the look-ahead turbine rotation speed Ntpre, and the actual engine rotation speed Ne from the target calculation block 83. Then, the command torque (target LU torque Tlu * ) for realizing the target differential rotation speed ⁇ N * is calculated by calculating the corrected engine torque Tadj and the converter torque Tcnv (F / F control + F / B control).
  • the realization block 85 receives the target LU torque Tlu * from the torque capacity calculation block 84, converts the target lockup torque Tlu * into the lockup hydraulic pressure Plu, and further converts the lockup hydraulic pressure Plu into the command current Alu.
  • FIG. 5 shows a target calculation block 83, a torque capacity calculation block 84, and a realization block 85 that constitute the lockup control unit 80.
  • the detailed configuration of each of the blocks 83, 84, and 85 will be described below with reference to FIG.
  • the target calculation block 83 includes a pre-read turbine rotational speed calculator 83a and a first subtractor 83b.
  • the prefetch turbine rotational speed calculator 83a inputs the prefetch speed ratio of the variator 4 and the secondary rotational speed Nsec from the secondary rotational sensor 97, and calculates the prefetch turbine rotational speed Ntpre that compensates for the hydraulic response delay in the lockup hydraulic control.
  • the look-ahead gear ratio of the variator 4 is a gear ratio that is estimated to be reached when the hydraulic response delay time elapses, using the gear ratio, the speed ratio progress speed, and the hydraulic response delay time at that time.
  • the first subtractor 83b calculates the target differential rotation speed ⁇ N * based on the difference between the target engine speed Ne * calculated by the driving force demand block 81 and the prefetch turbine speed Ntpre calculated by the prefetch turbine speed calculator 83a. To do.
  • the torque capacity calculation block 84 has a look-ahead engine torque calculator 84a, a first adder 84b, a pump load torque calculator 84c, and a second differentiator 84d in the corrected engine torque calculation area 841.
  • the look-ahead engine torque calculator 84a receives the accelerator opening APO and the actual engine speed Ne, and uses a total engine performance map to estimate the look-ahead engine torque estimated to vary from the current engine torque to the hydraulic response delay time. ⁇ Tepre is calculated.
  • the current engine torque is acquired from the current accelerator opening APO, the actual engine speed Ne, and the engine overall performance map.
  • the engine torque ⁇ Tepre for the look-ahead is calculated by using the change rate of the accelerator opening APO and the actual engine speed Ne and the hydraulic response delay time, and the change width (positive or negative) of the engine torque from the current time until the hydraulic response delay time elapses. To do.
  • the first adder 84b calculates the pre-read engine torque Tepre by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ⁇ Tepre from the pre-read engine torque calculator 84a.
  • the pump load torque calculator 84c calculates a pump load torque Top that is a load torque by the oil pump 70 when being rotated by the engine 1.
  • the torque capacity calculation block 84 includes an F / F compensator 84e, a third difference unit 84f, a fourth difference unit 84g, an F / B compensator 84h, a minimum value selector 84i, and a second adder 84j. In the converter torque calculation area 842.
  • the third subtractor 84f inputs the actual engine rotational speed Ne from the engine rotational sensor 12 and the prefetch turbine rotational speed Ntpre calculated by the prefetch turbine rotational speed calculator 83a. Then, the actual differential speed ⁇ N is calculated from the difference between the actual engine speed Ne and the look-ahead turbine speed Ntpre.
  • the F / B compensator 84h receives the difference rotational speed deviation ⁇ from the fourth differentiator 84g and performs PI feedback control on the converter torque F / B compensation calculated value Tcnv_fb (c) corresponding to the differential rotational speed deviation ⁇ . (P: proportional, I: integral).
  • This F / B compensator 84h when the coast slip request is made due to the establishment of the coast slip control start condition in the request arbitration block 82, the converter torque F / B compensation component calculated value Tcnv_fb (c) up to that point is initialized. Reset to.
  • the minimum value selector 84i inputs the converter torque F / B compensation calculated value Tcnv_fb (c) from the F / B compensator 84h and the upper limit torque value Tcnv_max for the converter torque F / B compensation. Then, the converter torque F / B compensation Tcnv_fb is output by selecting the minimum value.
  • the fixed value K is set to be the upper limit torque value Tcnv_max that promotes the increase of the target LU torque Tlu * in the slip engagement scene of the lockup clutch 20.
  • the fixed value K is set to a torque value that is too low, the corrected engine torque Tadj that is the input torque to the torque converter 2 may not be exceeded due to the sum of the converter torque F / F compensation Tcnv_ff and the fixed value K. . That is, the target LU torque Tlu * does not become zero during the slip release scene of the lockup clutch 20, and the lockup clutch 20 cannot be released. Therefore, the fixed value K is a torque value that can exceed the corrected engine torque Tadj, which is the input torque to the torque converter 2, by considering the slip release scene of the lockup clutch 20 and the sum of the fixed value K and the converter torque F / F compensation. Set to the minimum value.
  • the second adder 84j adds the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i to calculate the converter torque Tcnv.
  • the torque capacity calculation block 84 includes a fifth differentiator 84k outside the corrected engine torque calculation area 841 and the converter torque calculation area 842.
  • the fifth subtractor 84k calculates the target LU torque Tlu * by subtracting the corrected engine torque Tadj from the second subtractor 84d and the converter torque Tcnv from the second adder 84j.
  • the realization block 85 includes a torque ⁇ hydraulic converter 85a and a hydraulic ⁇ current converter 85b.
  • the torque ⁇ hydraulic pressure converter 85a converts the target LU torque Tlu * input from the torque capacity calculation block 84 into the LU hydraulic pressure Plu.
  • the hydraulic pressure ⁇ current converter 85b converts the LU hydraulic pressure Plu input from the torque ⁇ hydraulic converter 85a into an instruction current Alu.
  • FIG. 6 shows the flow of lockup control processing executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment.
  • FIG. 6 shows the flow of lockup control processing executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment.
  • This process is repeatedly performed in a predetermined control cycle.
  • step S1 following the start, the pre-reading turbine rotational speed Ntpre is calculated, and the process proceeds to step S2.
  • the look-ahead turbine speed Ntpre is the turbine speed that compensates for the hydraulic response delay in the lock-up hydraulic control.
  • the prefetch turbine rotational speed Ntpre is calculated in the prefetch turbine rotational speed calculator 83 a based on the prefetch speed ratio of the variator 4 and the secondary rotational speed Nsec from the secondary rotation sensor 97.
  • step S2 following the calculation of the pre-reading turbine rotational speed Ntpre in step S1, a pre-reading engine torque Tepre is calculated, and the process proceeds to step S3.
  • the look-ahead engine torque Tepre is an engine torque that compensates for the hydraulic response delay in the lockup hydraulic control.
  • the pre-read engine torque Tepre is calculated by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ⁇ Tepre in the pre-read engine torque calculator 84a and the first adder 84b.
  • step S3 following the calculation of the pre-reading engine torque Tepre in step S2, a corrected engine torque Tadj is calculated, and the process proceeds to step S4.
  • the corrected engine torque Tadj is an engine torque input to the torque converter 2.
  • the corrected engine torque Tadj is calculated in the second subtractor 84d by the difference between the pre-read engine torque Tepre and the pump load torque Top.
  • step S4 subsequent to the calculation of the correction engine torque Tadj in step S3, based on the target rotational speed difference .DELTA.N *, calculates the converter torque F / F compensation min Tcnv_ff in accordance with the target rotational speed difference .DELTA.N *, step S5 Proceed to
  • the target differential speed ⁇ N * is calculated in the first subtractor 83b based on the difference between the target engine speed Ne * and the look-ahead turbine speed Ntpre.
  • step S5 following the calculation of the converter torque F / F compensation amount Tcnv_ff in step S4, the converter torque F / B compensation calculated value Tcnv_fb (c ) And the process proceeds to step S6.
  • the converter torque F / B compensation calculated value Tcnv_fb (c) is calculated by the F / B compensator 84h as the converter torque F / B compensation for matching the actual slip rotation speed with the target slip rotation speed.
  • step S6 following the calculation of converter torque F / B compensation calculation value Tcnv_fb (c) in step S5, converter torque F / B compensation calculation value Tcnv_fb (c) is the upper limit of converter torque F / B compensation. It is determined whether or not the torque value is equal to or less than Tcnv_max. If YES (Tcnv_fb (c) ⁇ Tcnv_max), the process proceeds to step S7. If NO (Tcnv_fb (c)> Tcnv_max), the process proceeds to step S8.
  • step S7 following the determination that Tcnv_fb (c) ⁇ Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the converter torque F / B compensation calculated value Tcnv_fb (c), and the process proceeds to step S9. move on.
  • step S8 following the determination that Tcnv_fb (c)> Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the upper limit torque value Tcnv_max for the converter torque F / B compensation, and the process proceeds to step S9. .
  • the selection of the converter torque F / B compensation Tcnv_fb in steps S6 to S8 is performed in the minimum value selector 84i.
  • step S9 following the setting of the converter torque F / B compensation Tcnv_fb in step S7 or step S8, the converter torque Tcnv is calculated, and the process proceeds to step S10.
  • the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i.
  • step S10 following calculation of converter torque Tcnv in step S9, target LU torque Tlu * is calculated, and the process proceeds to step S11.
  • the target LU torque Tlu * is calculated by subtracting the corrected engine torque Tadj calculated in step S3 and the converter torque Tcnv calculated in step S9 in the fifth differentiator 84k.
  • step S11 following the calculation of the target LU torque Tlu * in step S10, the torque LU pressure converter 85a converts the target LU torque Tlu * into the LU oil pressure Plu, and the process proceeds to step S12.
  • step S12 following the conversion to the LU hydraulic pressure Plu in step S11, the hydraulic pressure ⁇ current converter 85b converts the LU hydraulic pressure Plu to the command current Alu, and the process proceeds to step S13.
  • step S13 following the conversion to the instruction current Alu in step S12, the instruction current Alu is output to the lockup pressure solenoid valve 76, and the process proceeds to the end.
  • Hydraulic instruction (indicated differential pressure) does not take into account hydraulic response delay.
  • ⁇ The engine torque is slow at the current value.
  • ⁇ F / F compensation value of converter torque is slow at current value. It turned out that.
  • the inventors of the present invention focused on the point that the problem of the comparative example is not matched in time within the control, and made the pre-reading of the turbine speed and the pre-reading of the engine torque as items. That is, the pre-read input information (pre-read turbine speed) pre-read based on the response delay time of the actual differential pressure with respect to the command differential pressure (command current Alu) is used as the operation state input information used for calculating the target lockup torque Tlu *. Ntpre, pre-reading engine torque Tepre).
  • the pre-reading method responds with a certain dead time and time constant to the target value, as shown in FIG. A signal was created from the above to shorten the dead time.
  • the time alignment of the control is taken, to have a response that can follow the target rotational speed difference .DELTA.N *, consistency of the actual rotational speed difference .DELTA.N to the target rotational speed difference .DELTA.N * is The required drivability can be realized.
  • the lockup clutch 20 can be immediately released. In the non-failure state, since pre-reading, the value deviation and rise timing are slightly different from the actual ones, but as a basic idea, these variations are compensated by F / B control.
  • step S1 a pre-reading turbine rotational speed Ntpre is calculated.
  • step S2 the prefetch engine torque Tepre is calculated.
  • step S3 a corrected engine torque Tadj is calculated.
  • step S4 based on the target rotational speed difference .DELTA.N *, the converter torque F / F compensation min Tcnv_ff in accordance with the target rotational speed difference .DELTA.N * is calculated.
  • step S5 a converter torque F / B compensation calculated value Tcnv_fb (c) corresponding to the differential rotational speed deviation ⁇ is calculated based on the differential rotational speed deviation ⁇ .
  • step S6 the converter torque F / B compensation calculated value Tcnv_fb (c) is equal to or less than the upper limit torque value Tcnv_max. That is, if it is determined in step S6 that the converter torque F / B compensation calculated value Tcnv_fb (c) is equal to or less than the upper limit torque value Tcnv_max, the process proceeds to step S7.
  • step S7 the converter torque F / B compensation calculation value Tcnv_fb (c) is used as it is as the converter torque F / B compensation Tcnv_fb.
  • step S6 determines whether the converter torque F / B compensation calculated value Tcnv_fb (c) exceeds the upper limit torque value Tcnv_max. That is, if it is determined in step S6 that the converter torque F / B compensation calculated value Tcnv_fb (c) exceeds the upper limit torque value Tcnv_max, the process proceeds to step S8. In step S8, upper limit torque value Tcnv_max is used as converter torque F / B compensation Tcnv_fb.
  • step S9 converter torque Tcnv is calculated by adding converter torque F / F compensation Tcnv_ff and converter torque F / B compensation Tcnv_fb.
  • step S10 the target LU torque Tlu * is calculated by subtracting the converter torque Tcnv from the corrected engine torque Tadj.
  • step S11 the target LU torque Tlu * is converted into the LU hydraulic pressure Plu.
  • step S12 the LU hydraulic pressure Plu is converted into the command current Alu.
  • step S13 the command current Alu is output to the lockup pressure solenoid valve 76.
  • the torque converter 2, the lockup clutch 20, and the transmission controller (CVT control unit 8) are provided.
  • the torque converter 2 is interposed between the travel drive source (engine 1) and the speed change mechanism (variator 4).
  • the lock-up clutch 20 is provided in the torque converter 2 and directly connects the torque converter input shaft and the torque converter output shaft by fastening.
  • the transmission controller (CVT control unit 8) controls the engagement / slip / release of the lock-up clutch 20.
  • the transmission controller (CVT control unit 8) calculates the converter torque Tcnv by feedforward compensation based on the target differential rotational speed ⁇ N * and feedback compensation based on the differential rotational speed deviation ⁇ , and the input torque (correction engine) to the torque converter 2 is calculated.
  • a lockup control unit 80 is provided that outputs a command differential pressure (command current Alu) that obtains a target lockup torque Tlu * calculated by subtracting the converter torque Tcnv from the torque Tadj).
  • the lock-up control unit 80 pre-reads the input information of the operation state used for calculating the target lock-up torque Tlu * based on the pre-read input information (pre-read turbine rotational speed) based on the response delay time of the actual differential pressure with respect to the command differential pressure. Ntpre, pre-reading engine torque Tepre).
  • Ntpre pre-reading engine torque Tepre
  • the lockup control unit 80 pre-reads the turbine rotational speed information used for the calculation of the converter torque Tcnv based on the response delay time of the actual differential pressure with respect to the indicated differential pressure (indicated current Alu). Ntpre.
  • the converter torque Tcnv based on the pre-read future value can be calculated when calculating the converter torque Tcnv.
  • the transmission mechanism is a variator 4 using a belt-type continuously variable transmission mechanism.
  • the lockup control unit 80 acquires the pre-reading turbine rotational speed Ntpre based on the pre-reading gear ratio of the variator 4 and the secondary rotational speed Nsec of the variator 4. In this way, by acquiring the pre-reading turbine rotational speed Ntpre from the pre-reading gear ratio of the variator 4 and the secondary rotational speed Nsec, the pre-reading turbine rotational speed Ntpre is more accurate than in the case of acquiring it by the change gradient of the turbine rotational speed Nt. Can be obtained. That is, the pre-reading gear ratio of the variator 4 is obtained as more accurate information than in the case of pre-reading the turbine speed Nt because the gear ratio progress speed is monitored in the shift control.
  • the driving source for traveling is the engine 1.
  • the lockup control unit 80 converts the target driving force Fd * requested by the driver into a target engine speed Ne * of the engine 1.
  • a target differential rotational speed ⁇ N * which is input information for feedforward compensation, is calculated from the difference between the target engine rotational speed Ne * and the pre-read turbine rotational speed Ntpre. In this way, by calculating the target differential rotational speed ⁇ N * from the difference between the target engine rotational speed Ne * and the look-ahead turbine rotational speed Ntpre, the target difference of the actual differential rotational speed ⁇ N in a scene where the turbine rotational speed Nt varies.
  • the followability with respect to the rotational speed ⁇ N * can be improved. That is, in a kick-down operation scene or the like due to an accelerator sudden depression operation, the followability to the target differential rotation speed ⁇ N * is improved, and an unintended slip-up of the lockup clutch 20 is prevented.
  • the lockup control unit 80 sets the engine torque information used for calculating the input torque (corrected engine torque Tadj) to the torque converter 2 to the response delay time of the actual differential pressure with respect to the indicated differential pressure (indicated current Alu). Based on the pre-read engine torque Tepre pre-read based on this.
  • the engine torque information to the pre-read engine torque Tepre, it is possible to improve the followability of the actual engine speed Ne to the target engine speed Ne * in a scene where the engine torque Te varies. That is, the followability to the target engine speed Ne * is improved in an accelerator depressing operation scene, a shift scene during LU engagement, and the like.
  • the lockup control unit 80 an example is shown in which the prefetch turbine rotational speed Ntpre and the prefetch engine torque Tepre are used as the prefetch input information.
  • the lockup control unit may be an example in which only the pre-reading turbine rotational speed is used as the pre-reading input information or only the pre-reading engine torque is used.
  • the slip control of the lock-up clutch 20 an example is shown in which control for realizing the target driving force Fd * intended by the driver is performed.
  • the slip control of the lock-up clutch may be an example in which the control is performed by determining the target slip rotation speed as described in the prior art publication.
  • the lockup control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission.
  • the lock-up control device of the present invention may be applied to a vehicle equipped with a stepped transmission called step AT or a vehicle equipped with a continuously variable transmission with a sub-transmission as an automatic transmission.
  • the applied vehicle is not limited to an engine vehicle, and can be applied to a hybrid vehicle in which an engine and a motor are mounted on a traveling drive source, an electric vehicle in which a motor is mounted on a traveling drive source, and the like.

Abstract

ベルト式無段変速機(CVT)は、トルクコンバータ(2)と、ロックアップクラッチ(20)と、CVTコントロールユニット(8)と、を備える。ロックアップ制御部(80)は、目標差回転数(ΔN*)に基づくフィードフォワード補償と差回転数偏差(δ)に基づくフィードバック補償によりコンバータトルク(Tcnv)を演算し、トルクコンバータ(2)に入力される補正エンジントルク(Tadj)からコンバータトルク(Tcnv)を差し引いて目標LUトルク(Tlu*)を求め、対応する指示電流(Alu)を出力する。演算に用いられる入力情報を、指示電流(Alu)に対する実差圧の応答遅れ時間に基づいて先読みされた先読みタービン回転数(Ntpre)、先読みエンジントルク(Tepre)とする。

Description

自動変速機のロックアップ制御装置および制御方法
 本発明は、車両に搭載される自動変速機のロックアップ制御装置および制御方法に関する。
 従来、ロックアップクラッチの目標差回転数に基づくフィードフォワード補償とフィードバック補償によりコンバータトルクを算出し、エンジントルクからコンバータトルクを差し引いた値に基づきロックアップクラッチの差圧を制御する車両のスリップロックアップ制御装置が知られている(例えば、特許文献1参照)。
 上記従来装置にあっては、ロックアップクラッチの実差圧は、指示差圧に対する油圧応答遅れがある。そのため、現在の運転状態に基づいて算出された目標差回転数に基づきロックアップクラッチの差圧指示を行うと、現在要求されているロックアップクラッチの要求クラッチ動作に対して実クラッチ動作に応答遅れが生じる、という問題があった。
 本発明は、上記問題に着目してなされたもので、ロックアップクラッチを締結/解放動作させる際、要求クラッチ動作に対する実クラッチ動作の応答遅れを抑制することを目的とする。
国際公開2017/154506号公報
 本発明は、トルクコンバータと、ロックアップクラッチと、変速機コントローラと、を備える。
 変速機コントローラに、目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを演算し、トルクコンバータへの入力トルクからコンバータトルクを差し引いて演算される目標ロックアップトルクを得る指示差圧を出力するロックアップ制御部を設ける。
 ロックアップ制御部は、目標ロックアップトルクの演算に用いられる運転状態の入力情報を、指示差圧に対する実差圧の応答遅れ時間に基づいて先読みされた先読み入力情報とする。
 このように、未来値を用いて目標ロックアップトルクを演算して指示差圧を出力することで、ロックアップクラッチを締結/解放動作させる際、要求クラッチ動作に対する実クラッチ動作の応答遅れを抑制することができる。
実施例の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す全体システム図である。 自動変速モードでの無段変速制御をバリエータにより実行する際に用いられるDレンジ無段変速スケジュールの一例を示す変速スケジュール図である。 実施例のロックアップ制御装置を示す概要構成図である。 CVTコントロールユニットのロックアップ制御部を構成する各ブロックを示すブロック構成図である。 ロックアップ制御部を構成する目標算出ブロックとトルク容量演算ブロックと実現ブロックを示す詳細構成図である。 実施例のCVTコントロールユニットのロックアップ制御部にて実行されるロックアップ制御処理の流れを示すフローチャートである。 先読みの仕方を説明するための目標値特性と実値特性と先読み特性を示す特性図である。
 以下、本発明の自動変速機のロックアップ制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。
 実施例におけるロックアップ制御装置は、トルクコンバータと前後進切替機構とバリエータと終減速機構により構成されるベルト式無段変速機(自動変速機の一例)を搭載したエンジン車に適用したものである。以下、実施例の構成を、「全体システム構成」、「ロックアップ制御装置の構成」、「ロックアップ制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す。以下、図1に基づいて、全体システム構成を説明する。
 エンジン車の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6,6と、を備えている。ここで、ベルト式無段変速機CVTは、トルクコンバータ2と前後進切替機構3とバリエータ4と終減速機構5を図外の変速機ケースに内蔵することにより構成される。
 エンジン1は、ドライバーによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクを制御可能である。このエンジン1は、スロットルバルブ開閉動作や燃料カット動作等によりトルク制御を行う出力トルク制御アクチュエータ10を有する。例えば、アクセル足離し操作によるコースト走行時、燃料カット制御が実行される。
 トルクコンバータ2は、トルク増大機能やトルク変動吸収機能を有する流体継手による発進要素である。トルクコンバータ2は、トルク増大機能やトルク変動吸収機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、ポンプインペラ23と、タービンランナ24と、ステータ26と、を構成要素とする。ポンプインペラ23は、エンジン出力軸11にコンバータハウジング22を介して連結される。タービンランナ24は、トルクコンバータ出力軸21に連結される。ステータ26は、変速機ケースにワンウェイクラッチ25を介して設けられる。
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数枚のクラッチプレートによる前進クラッチ31と、複数枚のブレーキプレートによる後退ブレーキ32と、を有する。前進クラッチ31は、Dレンジ等の前進走行レンジ選択時に前進クラッチ圧Pfcにより油圧締結される。後退ブレーキ32は、Rレンジ等の後退走行レンジ選択時に後退ブレーキ圧Prbにより油圧締結される。なお、前進クラッチ31と後退ブレーキ32は、Nレンジ(ニュートラルレンジ)の選択時には、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることでいずれも解放される。
 バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、プーリベルト44と、を有し、ベルト接触径の変化により変速比(バリエータ入力回転とバリエータ出力回転の比)を無段階に変化させる無段変速機能を備える。プライマリプーリ42は、バリエータ入力軸40の同軸上に配された固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bはプライマリ圧室45に導かれるプライマリ圧Ppriによりスライド動作する。セカンダリプーリ43は、バリエータ出力軸41の同軸上に配された固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bはセカンダリ圧室46に導かれるセカンダリ圧Psecによりスライド動作する。プーリベルト44は、プライマリプーリ42のV字形状をなすシーブ面と、セカンダリプーリ43のV字形状をなすシーブ面とに掛け渡されている。このプーリベルト44は、環状リングを内から外へ多数重ね合わせた2組の積層リングと、打ち抜き板材により形成され、2組の積層リングに沿って挟み込みにより環状に積層して取り付けられた多数のエレメントにより構成されている。なお、プーリベルト44としては、プーリ進行方向に多数配列したチェーンエレメントを、プーリ軸方向に貫通するピンにより結合したチェーンタイプのベルトであっても良い。
 終減速機構5は、バリエータ出力軸41からのバリエータ出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、減速ギヤ機構として、バリエータ出力軸41に設けられたアウトプットギヤ52と、アイドラ軸50に設けられたアイドラギヤ53及びリダクションギヤ54と、デフケースの外周位置に設けられたファイナルギヤ55と、を有する。そして、差動ギヤ機構として、左右のドライブ軸51,51に介装されたディファレンシャルギヤ56を有する。
 エンジン車の制御系は、図1に示すように、油圧制御ユニット7と、CVTコントロールユニット8と、エンジンコントロールユニット9と、を備えている。電子制御系であるCVTコントロールユニット8とエンジンコントロールユニット9は、互いの情報を交換可能なCAN通信線13により接続されている。
 油圧制御ユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppri、セカンダリ圧室46に導かれるセカンダリ圧Psec、前進クラッチ31への前進クラッチ圧Pfc、後退ブレーキ32への後退ブレーキ圧Prb、等を調圧するユニットである。この油圧制御ユニット7は、走行用駆動源であるエンジン1により回転駆動されるオイルポンプ70と、オイルポンプ70からの吐出圧に基づいて各種の制御圧を調圧する油圧制御回路71と、を備える。油圧制御回路71には、ライン圧ソレノイド弁72と、プライマリ圧ソレノイド弁73と、セカンダリ圧ソレノイド弁74と、セレクトソレノイド弁75と、ロックアップ圧ソレノイド弁76と、を有する。なお、各ソレノイド弁72,73,74,75,76は、CVTコントロールユニット8から出力される制御指令値(指示電流)によって調圧動作を行う。
 ライン圧ソレノイド弁72は、CVTコントロールユニット8から出力されるライン圧指令値に応じ、オイルポンプ70からの吐出圧を、指令されたライン圧PLに調圧する。このライン圧PLは、各種の制御圧を調圧する際の元圧であり、駆動系を伝達するトルクに対してベルト滑りやクラッチ滑りを抑える油圧とされる。
 プライマリ圧ソレノイド弁73は、CVTコントロールユニット8から出力されるプライマリ圧指令値に応じ、ライン圧PLを元圧として指令されたプライマリ圧Ppriに減圧調整する。セカンダリ圧ソレノイド弁74は、CVTコントロールユニット8から出力されるセカンダリ圧指令値に応じ、ライン圧PLを元圧として指令されたセカンダリ圧Psecに減圧調整する。
 セレクトソレノイド弁75は、CVTコントロールユニット8から出力される前進クラッチ圧指令値又は後退ブレーキ圧指令値に応じ、ライン圧PLを元圧として指令された前進クラッチ圧Pfc又は後退ブレーキ圧Prbに減圧調整する。
 ロックアップ圧ソレノイド弁76は、CVTコントロールユニット8から出力される指示電流Aluに応じ、ロックアップクラッチ20を締結/スリップ締結/解放するロックアップ油圧Pluに調圧する。
 CVTコントロールユニット8は、ライン圧制御や変速制御や前後進切替制御やロックアップ制御、等を行う。ライン圧制御では、アクセル開度等に応じた目標ライン圧を得る指令値をライン圧ソレノイド弁72に出力する。変速制御では、目標変速比(目標プライマリ回転Npri*)を決めると、決めた目標変速比(目標プライマリ回転Npri*)を得る指令値をプライマリ圧ソレノイド弁73及びセカンダリ圧ソレノイド弁74に出力する。前後進切替制御では、選択されているレンジ位置に応じて前進クラッチ31と後退ブレーキ32の締結/解放を制御する指令値をセレクトソレノイド弁75に出力する。ロックアップ制御では、ロックアップクラッチ20を締結/スリップ締結/解放するロックアップ油圧Pluを制御する指示電流Aluをロックアップ圧ソレノイド弁76に出力する。
 CVTコントロールユニット8には、プライマリ回転センサ90、車速センサ91、セカンダリ圧センサ92、油温センサ93、インヒビタスイッチ94、ブレーキスイッチ95、タービン回転センサ96、セカンダリ回転センサ97、プライマリ圧センサ98、等からのセンサ情報やスイッチ情報が入力される。
 エンジンコントロールユニット9には、エンジン回転センサ12、アクセル開度センサ14、等からのセンサ情報が入力される。CVTコントロールユニット8は、エンジン回転情報やアクセル開度情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジン回転数Neやアクセル開度APOの情報を受け取る。さらに、エンジントルク情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジンコントロールユニット9において推定演算される実エンジントルクTeの情報を受け取る。
 図2は、Dレンジ選択時に自動変速モードでの無段変速制御をバリエータ4により実行する際に用いられるDレンジ無段変速スケジュールの一例を示す。
 「Dレンジ変速モード」は、車両運転状態に応じて変速比を自動的に無段階に変更する自動変速モードである。「Dレンジ変速モード」での変速制御は、車速VSP(車速センサ91)とアクセル開度APO(アクセル開度センサ14)により特定される図2のDレンジ無段変速スケジュール上での運転点(VSP,APO)により、目標プライマリ回転数Npri*を決める。そして、プライマリ回転センサ90からの実プライマリ回転数Npriを、目標プライマリ回転数Npri*に一致させるプーリ油圧制御により行われる。
 即ち、「Dレンジ変速モード」で用いられるDレンジ無段変速スケジュールは、図2に示すように、運転点(VSP,APO)に応じて最Low変速比と最High変速比による変速比幅の範囲内で変速比を無段階に変更するように設定されている。例えば、車速VSPが一定のときは、アクセル踏み込み操作を行うと目標プライマリ回転数Npri*が上昇してダウンシフト方向に変速し、アクセル戻し操作を行うと目標プライマリ回転数Npri*が低下してアップシフト方向に変速する。アクセル開度APOが一定のときは、車速VSPが上昇するとアップシフト方向に変速し、車速VSPが低下するとダウンシフト方向に変速する。
 [ロックアップ制御装置の構成]
 図3は、実施例のロックアップ制御装置を示す。以下、図3に基づいてロックアップ制御装置の概要構成を説明する。なお、以下では、ロックアップを“LU”と略称し、フィードフォワードを“F/F”と略称し、フィードバックを“F/B”と略称する。
 ロックアップ制御装置が適用される駆動系は、図3に示すように、エンジン1(走行用駆動源)と、ロックアップクラッチ20を有するトルクコンバータ2と、前後進切替機構3と、バリエータ4(変速機構)と、終減速機構5と、駆動輪6と、を備えている。
 ロックアップ制御装置が適用される制御系は、図3に示すように、CVTコントロールユニット8と、エンジンコントロールユニット9と、ロックアップ圧ソレノイド弁76と、を備えている。CVTコントロールユニット8には、ロックアップクラッチ20のクラッチ状態を、様々な要求に応じて締結状態/スリップ締結状態/解放状態とするロックアップ制御部80が設けられている。
 ロックアップ制御部80でのロックアップ制御は、運転者の意図する目標駆動力Fd*を推定し、駆動輪6へ出力される実駆動力Fdが目標駆動力Fd*になるようにロックアップクラッチ20のスリップ制御を行う点を特徴とする。その際、スリップ制御におけるコントロール性を高めるために、目標駆動力Fd*を目標エンジン回転数Ne*に変換する。この目標エンジン回転数Ne*に実エンジン回転数Neを収束させる制御(F/F制御+F/B制御)を実行することでコンバータトルクTcnvを演算する。そして、図3に示すように、Tadj=Tcnv+Tluの関係が成り立つことで、ロックアップクラッチ20の目標LUトルクTlu*を算出し、目標LUトルクTlu*を得る指示電流Aluをロックアップ圧ソレノイド弁76に出力する。このように、目標エンジン回転数Ne*を得るようにトルクコンバータ2のトルク比を制御することで、ロックアップクラッチ20のスリップ制御中、運転者の意図する目標駆動力Fd*を実現することができる。
 図4は、CVTコントロールユニット8のロックアップ制御部80を構成する各ブロックを示す。以下、図4に基づいてロックアップ制御部80のブロック構成を説明する。
 ロックアップ制御部80は、図4に示すように、駆動力デマンドブロック81と、要求調停ブロック82と、目標算出ブロック83と、トルク容量演算ブロック84と、実現ブロック85と、を有する。
 駆動力デマンドブロック81は、アクセル開度APOや車速VSPに基づいて目標駆動力Fd*を演算し、エンジン全性能特性を用いて目標駆動力Fd*を目標エンジン回転数Ne*に変換することで、目標エンジン回転数Ne*のプロファイルを演算する。そして、ロックアップクラッチ20の完全解放中、クラッチスリップ制御により目標エンジン回転数Ne*のプロファイルを実現するときに締結要求フラグを出力する。一方、ロックアップクラッチ20の完全締結中、クラッチスリップ制御により目標エンジン回転数Ne*のプロファイルを実現するときに解放要求フラグを出力する。
 要求調停ブロック82は、駆動力デマンドブロック81からの締結要求フラグと解放要求フラグを入力し、各種要求からロックアップ要求を演算し、要求を調停して優先順位を決める。各種要求としては、基本要求、DP要求(DPはDriving pleasureの略)、運転性要求、保護要求、FS要求(FSはFail Safeの略)、技術限界要求、ほかのシステム要求、コーストスリップ要求、等がある。
 目標算出ブロック83は、要求調停ブロック82からの即解放要求フラグ・解放要求フラグ・スリップ要求フラグ・締結要求フラグを入力し、これらのLU要求から差回転目標として目標差回転数ΔN*を演算する。なお、目標算出ブロック83では、駆動力デマンドブロック81により演算された目標エンジン回転数Ne*を入力する。
 トルク容量演算ブロック84は、目標算出ブロック83から目標差回転数ΔN*と先読みタービン回転数Ntpreと実エンジン回転数Neを入力する。そして、補正エンジントルクTadjの演算とコンバータトルクTcnvの演算(F/F制御+F/B制御)により、目標差回転数ΔN*を実現する指示トルク(目標LUトルクTlu*)を演算する。
 実現ブロック85は、トルク容量演算ブロック84から目標LUトルクTlu*を入力し、目標ロックアップトルクTlu*をロックアップ油圧Pluに変換し、さらに、ロックアップ油圧Pluを指示電流Aluに変換する。
 図5は、ロックアップ制御部80を構成する目標算出ブロック83とトルク容量演算ブロック84と実現ブロック85を示す。以下、図5に基づいて各ブロック83,84,85の詳細構成を説明する。
 目標算出ブロック83は、先読みタービン回転数算出器83aと、第1差分器83bと、を有する。
 先読みタービン回転数算出器83aは、バリエータ4の先読み変速比とセカンダリ回転センサ97からのセカンダリ回転数Nsecを入力し、ロックアップ油圧制御での油圧応答遅れ分を補償する先読みタービン回転数Ntpreを算出する。なお、バリエータ4の先読み変速比は、そのときの変速比と変速比進行速度と油圧応答遅れ時間を用い、油圧応答遅れ時間を経過したときに到達するであろうと推定される変速比とする。
 第1差分器83bは、駆動力デマンドブロック81により算出された目標エンジン回転数Ne*と先読みタービン回転数算出器83aにより算出された先読みタービン回転数Ntpreの差により目標差回転数ΔN*を算出する。
 トルク容量演算ブロック84は、先読み分エンジントルク算出器84aと、第1加算器84bと、ポンプ負荷トルク算出器84cと、第2差分器84dと、を補正エンジントルク演算エリア841に有する。
 先読み分エンジントルク算出器84aは、アクセル開度APOと実エンジン回転数Neを入力し、エンジン全性能マップを用いて現時点のエンジントルクから油圧応答遅れ時間までに変動すると推定される先読み分エンジントルクΔTepreを算出する。なお、現時点のエンジントルクは、現時点のアクセル開度APOと実エンジン回転数Neとエンジン全性能マップにより取得される。先読み分エンジントルクΔTepreは、アクセル開度APOや実エンジン回転数Neの変化速度と油圧応答遅れ時間を用い、現時点から油圧応答遅れ時間を経過するまでのエンジントルクの変化幅(正又は負)とする。
 第1加算器84bは、エンジンコントロールユニット9から取得した実エンジントルクTeと先読み分エンジントルク算出器84aからの先読み分エンジントルクΔTepreを加算することで、先読みエンジントルクTepreを算出する。
 ポンプ負荷トルク算出器84cは、エンジン1により回転駆動されるときのオイルポンプ70による負荷トルクであるポンプ負荷トルクTopを算出する。
 第2差分器84dは、第1加算器84bにより算出された先読みエンジントルクTepreとポンプ負荷トルク算出器84cにより算出されたポンプ負荷トルクTopの差により補正エンジントルクTadj(=Tepre-Top)を算出する。
 トルク容量演算ブロック84は、F/F補償器84eと、第3差分器84fと、第4差分器84gと、F/B補償器84hと、最小値選択器84iと、第2加算器84jと、をコンバータトルク演算エリア842に有する。
 F/F補償器84eは、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)を入力し、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出する。
 第3差分器84fは、エンジン回転センサ12からの実エンジン回転数Neと、先読みタービン回転数算出器83aにより算出された先読みタービン回転数Ntpreを入力する。そして、実エンジン回転数Neと先読みタービン回転数Ntpreの差により実差回転数ΔNを算出する。
 第4差分器84gは、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)と、第3差分器84fからの実差回転数ΔN(=実スリップ回転数)を入力する。そして、目標差回転数ΔN*と実差回転数ΔNの差により差回転数偏差δを算出する。
 F/B補償器84hは、第4差分器84gからの差回転数偏差δを入力し、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を、PIフィードバック制御(P:比例、I:積分)により算出する。このF/B補償器84hは、要求調停ブロック82にてコーストスリップ制御の開始条件の成立によりコーストスリップ要求があると、それまでのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。
 最小値選択器84iは、F/B補償器84hからのコンバータトルクF/B補償分計算値Tcnv_fb(c)と、コンバータトルクF/B補償分の上限トルク値Tcnv_maxを入力する。そして、最小値選択によりコンバータトルクF/B補償分Tcnv_fbを出力する。
 ここで、コンバータトルクF/B補償分の上限トルク値Tcnv_maxは、
  Tcnv_max=Tadj-Tcnv_ff-K(K:固定値)  …(1)
であらわされる式(1)、つまり、補正エンジントルクTadjとコンバータトルクF/F補償分Tcnv_ffに応じた可変トルク値で与える。なお、固定値Kは、ロックアップクラッチ20のスリップ締結シーンのときに目標LUトルクTlu*の上昇を促す上限トルク値Tcnv_maxになるように設定する。しかし、固定値Kを低過ぎるトルク値に設定した場合、コンバータトルクF/F補償分Tcnv_ffと固定値Kの和により、トルクコンバータ2への入力トルクである補正エンジントルクTadjを超えないことがある。つまり、ロックアップクラッチ20のスリップ解放シーンのときに目標LUトルクTlu*がゼロとはならず、ロックアップクラッチ20を解放することができない。よって、固定値Kは、ロックアップクラッチ20のスリップ解放シーンを考慮し、コンバータトルクF/F補償分との和により、トルクコンバータ2への入力トルクである補正エンジントルクTadjを超え得るトルク値のうち最小域の値に設定する。
 第2加算器84jは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算し、コンバータトルクTcnvを算出する。
 トルク容量演算ブロック84は、補正エンジントルク演算エリア841とコンバータトルク演算エリア842の外部に第5差分器84kを有する。第5差分器84kは、第2差分器84dからの補正エンジントルクTadjと、第2加算器84jからのコンバータトルクTcnvを差し引いて目標LUトルクTlu*を算出する。
 実現ブロック85は、トルク→油圧変換器85aと、油圧→電流変換器85bと、を有する。トルク→油圧変換器85aは、トルク容量演算ブロック84から入力される目標LUトルクTlu*をLU油圧Pluに変換する。油圧→電流変換器85bは、トルク→油圧変換器85aから入力されたLU油圧Pluを指示電流Aluに変換する。
 [ロックアップ制御処理構成]
 図6は、実施例のCVTコントロールユニット8のロックアップ制御部80にて実行されるロックアップ制御処理の流れを示す。以下、実施例のロックアップ制御処理構成をあらわす図6の各ステップについて説明する。なお、この処理は、所定の制御周期により繰り返し処理動作が行われる。
 ステップS1では、スタートに続き、先読みタービン回転数Ntpreを算出し、ステップS2へ進む。
 ここで、先読みタービン回転数Ntpreとは、ロックアップ油圧制御での油圧応答遅れ分を補償するタービン回転数である。先読みタービン回転数Ntpreは、先読みタービン回転数算出器83aにおいて、バリエータ4の先読み変速比とセカンダリ回転センサ97からのセカンダリ回転数Nsecに基づいて算出される。
 ステップS2では、ステップS1での先読みタービン回転数Ntpreの算出に続き、先読みエンジントルクTepreを算出し、ステップS3へ進む。
 ここで、先読みエンジントルクTepreとは、ロックアップ油圧制御での油圧応答遅れ分を補償するエンジントルクである。先読みエンジントルクTepreは、先読み分エンジントルク算出器84aと第1加算器84bにおいて、エンジンコントロールユニット9から取得した実エンジントルクTeと先読み分エンジントルクΔTepreを加算することで算出される。
 ステップS3では、ステップS2での先読みエンジントルクTepreの算出に続き、補正エンジントルクTadjを算出し、ステップS4へ進む。
 ここで、補正エンジントルクTadjとは、トルクコンバータ2に入力されるエンジントルクである。補正エンジントルクTadjは、第2差分器84dにおいて、先読みエンジントルクTepreとポンプ負荷トルクTopの差により算出される。
 ステップS4では、ステップS3での補正エンジントルクTadjの算出に続き、目標差回転数ΔN*に基づいて、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出し、ステップS5へ進む。
 目標差回転数ΔN*は、第1差分器83bにおいて、目標エンジン回転数Ne*と先読みタービン回転数Ntpreの差により算出される。コンバータトルクF/F補償分Tcnv_ffは、目標差回転数ΔN*(=目標スリップ回転数)を入力するF/F補償器84eにおいて、目標差回転数ΔN*に収束させるロックアップトルクのF/F補償分として算出される。
 ステップS5では、ステップS4でのコンバータトルクF/F補償分Tcnv_ffの算出に続き、差回転数偏差δに基づいて、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を算出し、ステップS6へ進む。
 ここで、差回転数偏差δは、第4差分器84gにおいて、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)と、第3差分器84fからの実差回転数ΔN(=実スリップ回転数)の差により算出される。コンバータトルクF/B補償分計算値Tcnv_fb(c)は、F/B補償器84hにおいて、実スリップ回転数を目標スリップ回転数に一致させるコンバータトルクF/B補償分として算出される。
 ステップS6では、ステップS5でのコンバータトルクF/B補償分計算値Tcnv_fb(c)の算出に続き、コンバータトルクF/B補償分計算値Tcnv_fb(c)が、コンバータトルクF/B補償分の上限トルク値Tcnv_max以下であるか否かを判断する。YES(Tcnv_fb(c)≦Tcnv_max)の場合はステップS7へ進み、NO(Tcnv_fb(c)>Tcnv_max)の場合はステップS8へ進む。
 ステップS7では、ステップS6でのTcnv_fb(c)≦Tcnv_maxであるとの判断に続き、コンバータトルクF/B補償分Tcnv_fbを、コンバータトルクF/B補償分計算値Tcnv_fb(c)とし、ステップS9へ進む。
 ステップS8では、ステップS6でのTcnv_fb(c)>Tcnv_maxであるとの判断に続き、コンバータトルクF/B補償分Tcnv_fbを、コンバータトルクF/B補償分の上限トルク値Tcnv_maxとし、ステップS9へ進む。
 ここで、ステップS6~ステップS8によるコンバータトルクF/B補償分Tcnv_fbの選択は、最小値選択器84iにおいて行われる。
 ステップS9では、ステップS7又はステップS8でのコンバータトルクF/B補償分Tcnv_fbの設定に続き、コンバータトルクTcnvを算出し、ステップS10へ進む。
 ここで、コンバータトルクTcnvは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと、最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算することで算出される。
 ステップS10では、ステップS9でのコンバータトルクTcnvの算出に続き、目標LUトルクTlu*を算出し、ステップS11へ進む。
 ここで、目標LUトルクTlu*は、第5差分器84kにおいて、ステップS3にて算出された補正エンジントルクTadjと、ステップS9にて算出されたコンバータトルクTcnvを差し引くことで算出する。
 ステップS11では、ステップS10での目標LUトルクTlu*の算出に続き、トルク→油圧変換器85aにおいて、目標LUトルクTlu*をLU油圧Pluに変換し、ステップS12へ進む。
 ステップS12では、ステップS11でのLU油圧Pluへの変換に続き、油圧→電流変換器85bにおいて、LU油圧Pluを指示電流Aluに変換し、ステップS13へ進む。
 ステップS13では、ステップS12での指示電流Aluへの変換に続き、ロックアップ圧ソレノイド弁76へ指示電流Aluを出力し、エンドへ進む。
 次に、実施例の作用を、「比較例でのロックアップ制御とその課題について」、「ロックアップ制御作用」に分けて説明する。
 [比較例でのロックアップ制御とその課題について]
 比較例は、タービン回転数情報としてタービン回転センサからのセンサ値を用い、エンジントルク情報としてエンジンコントロールユニットから取得されるエンジントルク値を用いる。ロックアップクラッチの目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを算出する。そして、エンジントルクからコンバータトルクを差し引いて演算される目標ロックアップトルクを得る指示差圧を出力するものとする。
 この比較例の場合、目標ロックアップトルクを得る指示差圧の出力に対して実差圧は、図7に示すように、ある無駄時間と時定数を持って応答している。このため、トルク容量演算ブロックでの時間の整合性が、比較例制御ではとれていないことが分かった。
 そして、指示差圧の出力に対する実差圧の時間整合性がとれていないことで、下記に列挙するような課題が生じる。
(A) 差回転0の領域でキックダウンによるトルク急変動があると、ロックアップクラッチが意図せずにスリップする。
(B) トルク急変シーンにおいて回転数フィードバック制御を行うと、差圧応答性と差圧追従性が悪くなる。
(C) アクセル踏み戻し操作を行うと、実エンジン回転数の目標エンジン回転数への追従性が悪くなる。
(D) LU締結中、変速をし始めると、実エンジン回転数の目標エンジン回転数への追従性が悪くなる。
 そして、代表的な課題シーンとして、アクセル急踏み操作によるキックダウン操作シーンを検討した場合、油圧応答が遅い原因として、
・油圧指示(指示差圧)が油圧応答遅れを考慮していない。
・エンジントルクが現在値で遅い。
・コンバータトルクのF/F補償値が現在値で遅い。
ということが判明した。
 [ロックアップ制御作用]
 本発明者等は、上記比較例の課題が、制御内の時間の整合がとれていない点に着目し、タービン回転数の先読みとエンジントルクの先読みをアイテムとした。即ち、目標ロックアップトルクTlu*の演算に用いられる運転状態の入力情報を、指示差圧(指示電流Alu)に対する実差圧の応答遅れ時間に基づいて先読みされた先読み入力情報(先読みタービン回転数Ntpre、先読みエンジントルクTepre)とする構成を採用した。
 ここで、先読みの仕方としては、図7に示すように、目標値に対して実値はある無駄時間と時定数を持って応答しているため、先読みはそれよりも早い時定数で目標値から信号を作成し、無駄時間を短縮することとした。
 このように、未来値(=先読み値)を用いて目標ロックアップトルクTlu*を演算して指示差圧(指示電流Alu)を出力することで、指示差圧(指示電流Alu)の出力に対する実差圧の油圧応答遅れが相殺される。この結果、ロックアップクラッチ20を締結/解放動作させる際、要求クラッチ動作に対する実クラッチ動作の応答遅れを抑制することができる。
 この先読みを採用することで、制御内の時間の整合がとられ、目標差回転数ΔN*に追従できる応答性を持つことで、実差回転数ΔNの目標差回転数ΔN*に対する一致性が高くなり、要求される運転性が実現できる。また、他の故障検知によって故障時フェールセーフに入ると、ロックアップクラッチ20の即解放を達成できる。なお、非故障状態においては、先読みしているために値のズレや立ち上がりのタイミング等、実際とは多少違うものになるが、基本的な考えとして、これらのバラツキはF/B制御で補償される。
 次に、図6に示すフローチャートに基づいてロックアップ制御処理作用を説明する。
 制御が開始されると、図6のフローチャートにおいて、S1→S2→S3→S4→S5へと進む。ステップS1では、先読みタービン回転数Ntpreが算出される。ステップS2では、先読みエンジントルクTepreが算出される。ステップS3では、補正エンジントルクTadjが算出される。ステップS4では、目標差回転数ΔN*に基づいて、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffが算出される。ステップS5では、差回転数偏差δに基づいて、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)が算出される。
 ロックアップクラッチ20のスリップ制御中、Tcnv_fb(c)≦Tcnv_maxであるときは、S5からS6→S7→S9→S10→S11→S12→S13→エンドへと進む。即ち、ステップS6においてコンバータトルクF/B補償分計算値Tcnv_fb(c)が上限トルク値Tcnv_max以下であると判断されると、ステップS7へ進む。ステップS7においては、コンバータトルクF/B補償分計算値Tcnv_fb(c)がそのままコンバータトルクF/B補償分Tcnv_fbとして用いられる。
 一方、ロックアップクラッチ20のスリップ制御中、Tcnv_fb(c)>Tcnv_maxであるときは、S5からS6→S8→9→S10→S11→S12→S13→エンドへと進む。即ち、ステップS6においてコンバータトルクF/B補償分計算値Tcnv_fb(c)が上限トルク値Tcnv_maxを超えていると判断されると、ステップS8へ進む。ステップS8においては、上限トルク値Tcnv_maxがコンバータトルクF/B補償分Tcnv_fbとして用いられる。
 そして、ステップS9では、コンバータトルクF/F補償分Tcnv_ffとコンバータトルクF/B補償分Tcnv_fbを加算してコンバータトルクTcnvが算出される。ステップS10では、補正エンジントルクTadjからコンバータトルクTcnvを差し引くことで目標LUトルクTlu*が算出される。ステップS11では、目標LUトルクTlu*がLU油圧Pluに変換され、次のステップS12では、LU油圧Pluが指示電流Aluに変換される。そして、ステップS13へでは、ロックアップ圧ソレノイド弁76へ指示電流Aluが出力される。
 以上説明したように、実施例のベルト式無段変速機CVTのロックアップ制御装置にあっては、下記に列挙する効果が得られる。
 (1) トルクコンバータ2と、ロックアップクラッチ20と、変速機コントローラ(CVTコントロールユニット8)と、を備える。
 トルクコンバータ2は、走行用駆動源(エンジン1)と変速機構(バリエータ4)との間に介装される。
 ロックアップクラッチ20は、トルクコンバータ2に有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結する。
 変速機コントローラ(CVTコントロールユニット8)は、ロックアップクラッチ20の締結/スリップ/解放の制御を行う。
 変速機コントローラ(CVTコントロールユニット8)に、目標差回転数ΔN*に基づくフィードフォワード補償と差回転数偏差δに基づくフィードバック補償によりコンバータトルクTcnvを演算し、トルクコンバータ2への入力トルク(補正エンジントルクTadj)からコンバータトルクTcnvを差し引いて演算される目標ロックアップトルクTlu*を得る指示差圧(指示電流Alu)を出力するロックアップ制御部80を設ける。
 ロックアップ制御部80は、目標ロックアップトルクTlu*の演算に用いられる運転状態の入力情報を、指示差圧に対する実差圧の応答遅れ時間に基づいて先読みされた先読み入力情報(先読みタービン回転数Ntpre、先読みエンジントルクTepre)とする。
 このように、未来値を用いて目標ロックアップトルクTlu*を演算して指示差圧(指示電流Alu)を出力することで、ロックアップクラッチ20を締結/解放動作させる際、要求クラッチ動作に対する実クラッチ動作の応答遅れを抑制することができる。
 (2) ロックアップ制御部80は、コンバータトルクTcnvの演算に用いられるタービン回転数情報を、指示差圧(指示電流Alu)に対する実差圧の応答遅れ時間に基づいて先読みされた先読みタービン回転数Ntpreとする。
 このように、タービン回転数情報を、先読みタービン回転数Ntpreとすることで、コンバータトルクTcnvの演算の際、先読みした未来値によるコンバータトルクTcnvを演算することができる。
 (3) 変速機構は、ベルト式無段変速機構によるバリエータ4である。
 ロックアップ制御部80は、先読みタービン回転数Ntpreを、バリエータ4の先読み変速比とバリエータ4のセカンダリ回転数Nsecにより取得する。
 このように、バリエータ4の先読み変速比とセカンダリ回転数Nsecにより先読みタービン回転数Ntpreを取得することで、タービン回転数Ntの変化勾配等により取得する場合に比べ、精度の良い先読みタービン回転数Ntpreを取得することができる。即ち、バリエータ4の先読み変速比は、変速制御において変速比進行速度を監視しているため、タービン回転数Ntを先読みする場合に比べ、精度の良い情報として入手することができることによる。
 (4) 走行用駆動源は、エンジン1である。
 ロックアップ制御部80は、ドライバーが要求する目標駆動力Fd*をエンジン1の目標エンジン回転数Ne*に変換する。
 フィードフォワード補償の入力情報である目標差回転数ΔN*を、目標エンジン回転数Ne*と先読みタービン回転数Ntpreの差分により演算する。
 このように、目標差回転数ΔN*を、目標エンジン回転数Ne*と先読みタービン回転数Ntpreの差分により演算することで、タービン回転数Ntが変動するシーンにおいて、実差回転数ΔNの目標差回転数ΔN*に対する追従性を向上させることができる。即ち、アクセル急踏み操作によるキックダウン操作シーン等のとき、目標差回転数ΔN*への追従性が向上し、意図しないロックアップクラッチ20のスリップ発生が防止される。
 (5) ロックアップ制御部80は、トルクコンバータ2への入力トルク(補正エンジントルクTadj)の演算に用いられるエンジントルク情報を、指示差圧(指示電流Alu)に対する実差圧の応答遅れ時間に基づいて先読みされた先読みエンジントルクTepreとする。
 このように、エンジントルク情報を、先読みエンジントルクTepreとすることで、エンジントルクTeが変動するシーンにおいて、実エンジン回転数Neの目標エンジン回転数Ne*への追従性を向上させることができる。即ち、アクセル踏み戻し操作シーンやLU締結中の変速シーン等で、目標エンジン回転数Ne*への追従性が向上する。
 以上、本発明の自動変速機のロックアップ制御装置を実施例に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例では、ロックアップ制御部80として、先読み入力情報として、先読みタービン回転数Ntpreと先読みエンジントルクTepreを用いる例を示した。しかし、ロックアップ制御部としては、先読み入力情報として先読みタービン回転数のみを用いたり、先読みエンジントルクのみを用いたりする例としても良い。さらに、先読みタービン回転数や先読みエンジントルク以外の入力情報を先読みする例としても良い。
 実施例では、ロックアップクラッチ20のスリップ制御として、運転者の意図する目標駆動力Fd*を実現する制御を行う例を示した。しかし、ロックアップクラッチのスリップ制御としては、先行技術の公報に記載されているように、目標スリップ回転数を決めて制御を行うような例であっても良い。
 実施例では、本発明のロックアップ制御装置を、自動変速機としてベルト式無段変速機CVTを搭載したエンジン車に適用する例を示した。しかし、本発明のロックアップ制御装置は、自動変速機として、ステップATと呼ばれる有段変速機を搭載した車両や副変速機付き無段変速機を搭載した車両等に適用しても良い。また、適用される車両としても、エンジン車に限らず、走行用駆動源にエンジンとモータを搭載したハイブリッド車、走行用駆動源にモータを搭載した電気自動車等に対しても適用できる。

Claims (6)

  1.  走行用駆動源と変速機構との間に介装されるトルクコンバータと、
     前記トルクコンバータに有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチと、
     前記ロックアップクラッチの締結/スリップ/解放の制御を行う変速機コントローラと、を備え、
     前記変速機コントローラに、目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを演算し、前記トルクコンバータへの入力トルクから前記コンバータトルクを差し引いて演算される目標ロックアップトルクを得る指示差圧を出力するロックアップ制御部を設け、
     前記ロックアップ制御部は、前記目標ロックアップトルクの演算に用いられる運転状態の入力情報を、前記指示差圧に対する実差圧の応答遅れ時間に基づいて先読みされた先読み入力情報とする、
     自動変速機のロックアップ制御装置。
  2.  請求項1に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、前記コンバータトルクの演算に用いられるタービン回転数情報を、前記指示差圧に対する実差圧の応答遅れ時間に基づいて先読みされた先読みタービン回転数とする、
     自動変速機のロックアップ制御装置。
  3.  請求項2に記載された自動変速機のロックアップ制御装置において、
     前記変速機構は、ベルト式無段変速機構によるバリエータであり、
     前記ロックアップ制御部は、前記先読みタービン回転数を、前記バリエータの先読み変速比と前記バリエータのセカンダリ回転数により取得する、
     自動変速機のロックアップ制御装置。
  4.  請求項2又は3に記載された自動変速機のロックアップ制御装置において、
     前記走行用駆動源は、エンジンであり、
     前記ロックアップ制御部は、ドライバーが要求する目標駆動力を前記エンジンの目標エンジン回転数に変換し、
     前記フィードフォワード補償の入力情報である目標差回転数を、前記目標エンジン回転数と前記先読みタービン回転数の差分により演算する、
     自動変速機のロックアップ制御装置。
  5.  請求項4に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、前記トルクコンバータへの入力トルクの演算に用いられるエンジントルク情報を、前記指示差圧に対する実差圧の応答遅れ時間に基づいて先読みされた先読みエンジントルクとする、
     自動変速機のロックアップ制御装置。
  6.  走行用駆動源と変速機構との間に介装されるトルクコンバータと、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチと、を備えた自動変速機のロックアップ制御方法であって、
     前記ロックアップクラッチのスリップ締結の要求時に、
     目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを求めるとともに、前記トルクコンバータへの入力トルクから前記コンバータトルクを差し引くことで目標ロックアップトルクを演算し、
     この目標ロックアップトルクを得る指示差圧を出力し、
     ここで、前記目標ロックアップトルクの演算に用いられる運転状態の入力情報を、前記指示差圧に対する実差圧の応答遅れ時間に基づいて先読みされた先読み入力情報とする、
     自動変速機のロックアップ制御方法。
PCT/JP2019/002621 2018-02-27 2019-01-28 自動変速機のロックアップ制御装置および制御方法 WO2019167507A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502871A JPWO2019167507A1 (ja) 2018-02-27 2019-01-28 自動変速機のロックアップ制御装置および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032650 2018-02-27
JP2018-032650 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167507A1 true WO2019167507A1 (ja) 2019-09-06

Family

ID=67805284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002621 WO2019167507A1 (ja) 2018-02-27 2019-01-28 自動変速機のロックアップ制御装置および制御方法

Country Status (2)

Country Link
JP (1) JPWO2019167507A1 (ja)
WO (1) WO2019167507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113525063A (zh) * 2021-07-22 2021-10-22 东风柳州汽车有限公司 混合动力驱动装置、汽车、控制方法、装置及存储介质
CN113623376A (zh) * 2020-05-09 2021-11-09 上海汽车集团股份有限公司 液力变矩器监测方法、设备及液力变矩器监测芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185015A (ja) * 2001-12-19 2003-07-03 Yanmar Agricult Equip Co Ltd 油圧式無段変速機構
JP2003269588A (ja) * 2002-03-15 2003-09-25 Toyota Motor Corp 無段変速機の入力回転速度予測装置、無段変速機の入力慣性トルク算出装置、それらのいずれかを含む無段変速機の制御装置、無段変速機の入力回転速度予測方法、無段変速機の入力慣性トルク算出方法及びそれらのいずれかを用いた無段変速機の制御方法
JP2006300206A (ja) * 2005-04-20 2006-11-02 Toyota Motor Corp 車両用ロックアップクラッチの制御装置
WO2016035170A1 (ja) * 2014-09-03 2016-03-10 日産自動車株式会社 車両のロックアップクラッチ制御装置
WO2017154506A1 (ja) * 2016-03-09 2017-09-14 ジヤトコ株式会社 車両のスリップロックアップ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185015A (ja) * 2001-12-19 2003-07-03 Yanmar Agricult Equip Co Ltd 油圧式無段変速機構
JP2003269588A (ja) * 2002-03-15 2003-09-25 Toyota Motor Corp 無段変速機の入力回転速度予測装置、無段変速機の入力慣性トルク算出装置、それらのいずれかを含む無段変速機の制御装置、無段変速機の入力回転速度予測方法、無段変速機の入力慣性トルク算出方法及びそれらのいずれかを用いた無段変速機の制御方法
JP2006300206A (ja) * 2005-04-20 2006-11-02 Toyota Motor Corp 車両用ロックアップクラッチの制御装置
WO2016035170A1 (ja) * 2014-09-03 2016-03-10 日産自動車株式会社 車両のロックアップクラッチ制御装置
WO2017154506A1 (ja) * 2016-03-09 2017-09-14 ジヤトコ株式会社 車両のスリップロックアップ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623376A (zh) * 2020-05-09 2021-11-09 上海汽车集团股份有限公司 液力变矩器监测方法、设备及液力变矩器监测芯片
CN113623376B (zh) * 2020-05-09 2022-09-30 上海汽车集团股份有限公司 液力变矩器监测方法、设备及液力变矩器监测芯片
CN113525063A (zh) * 2021-07-22 2021-10-22 东风柳州汽车有限公司 混合动力驱动装置、汽车、控制方法、装置及存储介质

Also Published As

Publication number Publication date
JPWO2019167507A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
US8062156B2 (en) Control device for continuously variable transmission
JP2007205529A (ja) 車両用制御装置
CN110388433B (zh) 车辆用动力传递装置的控制装置
WO2019167507A1 (ja) 自動変速機のロックアップ制御装置および制御方法
JP5376054B2 (ja) 車両用変速制御装置
CN110118249B (zh) 车辆用动力传递装置的控制装置
JP7024473B2 (ja) 車両の制御装置
JP6942238B2 (ja) 自動変速機のロックアップ制御装置および制御方法
US9416873B2 (en) Continuously variable transmission and control method therefor
JP7044896B2 (ja) 自動変速機のロックアップ制御装置
JP6971396B2 (ja) 自動変速機のロックアップ制御装置
JP2010276084A (ja) 無段変速機のニュートラル制御装置
WO2019167506A1 (ja) 自動変速機のロックアップ制御装置および制御方法
JP7057825B2 (ja) 自動変速機のロックアップ制御装置
JP5994663B2 (ja) 車両の制御装置
JP7133034B2 (ja) 車両及び車両の制御方法
JP2014152895A (ja) 車両用無段変速機の制御装置
JP6994118B2 (ja) 自動変速機の油圧制御装置および油圧制御方法
JP6921999B2 (ja) 自動変速機のロックアップ締結制御装置
JP5505324B2 (ja) 車両用ベルト式無段変速機の制御装置
JP7058909B2 (ja) ベルト式無段変速機の制御装置
WO2012098773A1 (ja) 無段変速機の変速制御装置
JP2901680B2 (ja) 無段変速機の制御装置
JP2020026811A (ja) 無段変速機の変速制御装置
JP2019158131A (ja) 無段変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760666

Country of ref document: EP

Kind code of ref document: A1