JP7040011B2 - 車両用動力伝達装置の制御装置 - Google Patents

車両用動力伝達装置の制御装置 Download PDF

Info

Publication number
JP7040011B2
JP7040011B2 JP2017252414A JP2017252414A JP7040011B2 JP 7040011 B2 JP7040011 B2 JP 7040011B2 JP 2017252414 A JP2017252414 A JP 2017252414A JP 2017252414 A JP2017252414 A JP 2017252414A JP 7040011 B2 JP7040011 B2 JP 7040011B2
Authority
JP
Japan
Prior art keywords
thrust
target
power transmission
vehicle
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017252414A
Other languages
English (en)
Other versions
JP2019116960A (ja
Inventor
邦雄 服部
浩爾 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017252414A priority Critical patent/JP7040011B2/ja
Priority to US16/232,562 priority patent/US10704686B2/en
Priority to CN201811595712.7A priority patent/CN109973644B/zh
Publication of JP2019116960A publication Critical patent/JP2019116960A/ja
Application granted granted Critical
Publication of JP7040011B2 publication Critical patent/JP7040011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/0846CVT using endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H37/022Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing the toothed gearing having orbital motion

Description

本発明は、動力源と駆動輪との間の動力伝達経路に設けられた無段変速機構を備える車両用動力伝達装置の制御装置に関するものである。
プライマリプーリとセカンダリプーリと前記各プーリの間に巻き掛けられた伝達要素とを有して動力源の動力を駆動輪側へ伝達する無段変速機構を備えた車両用動力伝達装置の制御装置が良く知られている。例えば、特許文献1に記載された車両の制御装置がそれである。この特許文献1には、車両加速度及びアクセル操作量に基づいて車両が駆動状態であるか被駆動状態であるかを判定すること、又、被駆動状態である場合には、駆動状態である場合と比べて、プライマリプーリの推力とセカンダリプーリの推力との比である推力比を大きくすることすなわちプライマリプーリの推力に基づいて算出するセカンダリプーリの推力を大きな値とすることが開示されている。
特開2010-107006号公報
ところで、実際の車速を目標車速に一致させるように動力源の出力トルクなどの操作量を変化させて自動的に車速を制御する、例えばクルーズコントロールなどの自動車速制御を実行する車両も良く知られている。このような自動車速制御では、実際の車速を目標車速に一致させるように動力源の出力トルクを変化させるので、駆動状態と被駆動状態との境界周辺で動力源の出力トルクが変動し易くされる。そうすると、被駆動状態と駆動状態とでセカンダリプーリの推力の目標値が異なる値とされる場合、被駆動状態と駆動状態との切り替わりに伴ってセカンダリプーリの推力が変動し易くされる。セカンダリプーリの推力の変動は、例えばセカンダリプーリへ供給される油圧の元圧を吐出するオイルポンプの負荷を変動させる為、そのオイルポンプを駆動する動力源の出力トルクが変動させられて、無段変速機構への入力トルクも変動させられる。又、無段変速機構では、入力トルクの変動によって、駆動系の動力伝達効率等も変わることがある。その為、状況を的確に把握して、狙い通りの駆動トルクを実現することが難しくなって、車速の制御性が低下する可能性がある。例えば、実際の車速が目標車速に収束していくときの状態と比べて大きな変動幅で実際の車速が目標車速を挟んで変動し、目標車速に収束し難くなる可能性がある。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、自動車速制御が実行中である場合に、伝達要素の滑りを抑制又は防止しつつ、車速の制御性を向上させることができる車両用動力伝達装置の制御装置を提供することにある。
第1の発明の要旨とするところは、(a)プライマリプーリとセカンダリプーリと前記各プーリの間に巻き掛けられた伝達要素とを有して動力源の動力を駆動輪側へ伝達する無段変速機構を備えた車両用動力伝達装置の、制御装置であって、(b)実際の車速を目標車速に一致させるように前記車速の制御に用いる動力関連値を変化させる自動車速制御を実行する自動車速制御部と、(c)前記動力関連値に基づいて車両が駆動状態であるか被駆動状態であるかを判定する状態判定部と、(d)前記被駆動状態である場合には、前記駆動状態である場合と比べて、前記プライマリプーリの油圧アクチュエータによって付与される前記伝達要素を挟圧する前記プライマリプーリの推力に基づいて算出する、前記セカンダリプーリの油圧アクチュエータによって付与される前記伝達要素を挟圧する前記セカンダリプーリの推力の目標値を、大きな値とする目標推力算出部と、(e)前記自動車速制御が実行中である場合には、前記自動車速制御が実行中でない場合と比べて、前記被駆動状態であると判定される前記動力関連値の領域が広がるように、前記駆動状態であるとの判定から前記被駆動状態であるとの判定への切替えに用いられる第1所定判定閾値と前記被駆動状態であるとの判定から前記駆動状態であるとの判定への切替えに用いられる第2所定判定閾値との差を大きくする閾値設定部とを、含むことにある。
また、第2の発明は、前記第1の発明に記載の車両用動力伝達装置の制御装置において、前記動力関連値は、前記動力源の出力トルク、前記無段変速機構への入力トルク、又は前記駆動輪におけるトルクである。
また、第3の発明は、前記第1の発明又は第2の発明に記載の車両用動力伝達装置の制御装置において、前記目標推力算出部は、前記無段変速機構の目標変速比を実現する、前記プライマリプーリの推力と前記セカンダリプーリの推力との比である推力比を、前記無段変速機構への入力トルクに基づいて算出するものであり、前記目標推力算出部は、前記推力比を用いて、前記プライマリプーリの推力に基づいて前記セカンダリプーリの推力の目標値を算出するものであり、前記推力比は、前記被駆動状態の場合の方が前記駆動状態の場合と比べて、前記プライマリプーリの推力と前記セカンダリプーリの推力の目標値との差を広げる値が予め定められていることにある。
また、第4の発明は、前記第1の発明から第3の発明の何れか1つに記載の車両用動力伝達装置の制御装置において、前記セカンダリプーリの推力の目標値を算出する基になる前記プライマリプーリの推力は、前記伝達要素の滑り防止の為に必要な前記プライマリプーリにおける滑り限界推力である。
また、第5の発明は、前記第4の発明に記載の車両用動力伝達装置の制御装置において、前記目標推力算出部は、前記セカンダリプーリの推力の目標値として、前記プライマリプーリにおける滑り限界推力に基づいて算出した前記セカンダリプーリの推力と、前記伝達要素の滑り防止の為に必要な前記セカンダリプーリにおける滑り限界推力とのうちの大きい方の推力を選択することにある。
また、第6の発明は、前記第5の発明に記載の車両用動力伝達装置の制御装置において、前記目標推力算出部は、前記セカンダリプーリの推力の目標値に基づいて前記プライマリプーリの推力の目標値を算出することにある。
また、第7の発明は、前記第1の発明から第6の発明の何れか1つに記載の車両用動力伝達装置の制御装置において、前記車両用動力伝達装置は、前記動力源の前記動力が伝達される入力回転部材と前記駆動輪へ前記動力を出力する出力回転部材との間に並列に設けられた、前記動力を前記入力回転部材から前記出力回転部材へ各々伝達することが可能な複数の動力伝達経路を備えるものであり、前記複数の動力伝達経路は、ギヤ段を有するギヤ機構を介した第1動力伝達経路と、前記無段変速機構を介した第2動力伝達経路とを有していることにある。
前記第1の発明によれば、自動車速制御が実行中である場合には、自動車速制御が実行中でない場合と比べて、被駆動状態であると判定される動力関連値の領域が広がるように、駆動状態であるとの判定から被駆動状態であるとの判定への切替えに用いられる第1所定判定閾値と被駆動状態であるとの判定から駆動状態であるとの判定への切替えに用いられる第2所定判定閾値との差が大きくされるので、自動車速制御の実行中は被駆動状態との判定と駆動状態との判定との切替えに伴うセカンダリプーリの推力の変動が生じ難くされる。これにより、自動車速制御の実行中において、車速の制御性が向上させられる。又、第1所定判定閾値と第2所定判定閾値との差は被駆動状態であると判定される動力関連値の領域が広がる側に大きくされるので、駆動状態と比べてセカンダリプーリの推力の目標値が大きな値とされる被駆動状態と判定され易くされる。これにより、セカンダリプーリの推力が不足することによる伝達要素の滑りが生じ難くされる。よって、自動車速制御が実行中である場合に、伝達要素の滑りを抑制又は防止しつつ、車速の制御性を向上させることができる。
また、前記第2の発明によれば、前記動力関連値は、動力源の出力トルク、無段変速機構への入力トルク、又は駆動輪におけるトルクであるので、自動車速制御が適切に実行される。
また、前記第3の発明によれば、無段変速機構の目標変速比を実現する推力比が無段変速機構への入力トルクに基づいて算出され、又、その推力比が用いられて、プライマリプーリの推力に基づいてセカンダリプーリの推力の目標値が算出されるので、無段変速機構への入力トルクに応じた、無段変速機構の目標変速比が実現されるセカンダリプーリの推力が適切に得られる。又、前記推力比は、被駆動状態の場合の方が駆動状態の場合と比べて、プライマリプーリの推力とセカンダリプーリの推力の目標値との差を広げる値が予め定められているので、被駆動状態である場合には駆動状態である場合と比べてセカンダリプーリの推力の目標値が大きな値とされる。
また、前記第4の発明によれば、セカンダリプーリの推力の目標値を算出する基になるプライマリプーリの推力は、伝達要素の滑り防止の為に必要なプライマリプーリにおける滑り限界推力であるので、伝達要素の滑りが抑制又は防止されるセカンダリプーリの推力が適切に得られる。
また、前記第5の発明によれば、セカンダリプーリの推力の目標値として、プライマリプーリにおける滑り限界推力に基づいて算出したセカンダリプーリの推力と、セカンダリプーリにおける滑り限界推力とのうちの大きい方の推力が選択されるので、伝達要素の滑りが抑制又は防止されつつ無段変速機構の目標変速比が実現されるセカンダリプーリの推力が適切に得られる。
また、前記第6の発明によれば、セカンダリプーリの推力の目標値に基づいてプライマリプーリの推力の目標値が算出されるので、伝達要素の滑りが抑制又は防止されつつ無段変速機構の目標変速比が実現されるプライマリプーリの推力が適切に得られる。又、セカンダリプーリの推力とプライマリプーリの推力とが、各々、伝達要素の滑りの防止にとって過度に大きな値とされない。
また、前記第7の発明によれば、入力回転部材と出力回転部材との間に並列に設けられた、ギヤ段を有するギヤ機構を介した第1動力伝達経路と無段変速機構を介した第2動力伝達経路との複数の動力伝達経路が備えられた車両用動力伝達装置において、自動車速制御が実行中である場合に、伝達要素の滑りを抑制又は防止しつつ、車速の制御性を向上させることができる。
本発明が適用される車両の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。 無段変速機構の構成を説明する為の図である。 変速制御の為に必要な推力を説明する為の一例を示す図である。 図3のt2時点における各推力の関係の一例を示す図である。 必要最小限の推力で目標の変速とベルト滑り防止とを両立する為の制御構造を示すブロック図である。 セカンダリプーリ側の推力の算出に用いる推力比を算出する為の推力比マップの一例を示す図である。 プライマリプーリ側の推力の算出に用いる推力比を算出する為の推力比マップの一例を示す図である。 セカンダリ差推力を算出する為の差推力マップの一例を示す図である。 プライマリ差推力を算出する為の差推力マップの一例を示す図である。 自動車速制御に関連する制御作動を説明するブロック図である。 電子制御装置の制御作動の要部すなわち自動車速制御が実行中である場合にベルト滑りを抑制又は防止しつつ車速の制御性を向上させる為の制御作動を説明するフローチャートである。
本発明の実施形態において、入力側のプーリである前記プライマリプーリと出力側のプーリである前記セカンダリプーリとは、各々、例えば固定シーブと可動シーブとそれらの固定シーブ及び可動シーブの間の溝幅を変更する為の推力を付与する前記油圧アクチュエータとを有する。前記車両用動力伝達装置を備える車両は、前記油圧アクチュエータに供給される作動油圧としてのプーリ油圧をそれぞれ独立に制御する油圧制御回路を備える。この油圧制御回路は、例えば前記油圧アクチュエータへの作動油の流量を制御することにより結果的にプーリ油圧を生じるように構成されても良い。このような油圧制御回路により、前記プライマリプーリ及び前記セカンダリプーリにおける各推力(=プーリ油圧×受圧面積)が各々制御されることで、前記伝達要素の滑りを防止しつつ目標の変速が実現されるように変速制御が実行される。前記プライマリプーリと前記セカンダリプーリとの間に巻き掛けられた前記伝達要素は、無端環状のフープと、そのフープに沿って厚さ方向に多数連ねられた厚肉板片状のブロックであるエレメントとを有する無端環状の圧縮式の伝動ベルト、又は、交互に重ねられたリンクプレートの端部が連結ピンによって相互に連結された無端環状のリンクチェーンを構成する引張式の伝動ベルトなどである。前記無段変速機構は、公知のベルト式の無段変速機である。広義には、このベルト式の無段変速機の概念にチェーン式の無段変速機を含む。
また、前記目標推力算出部は、前記無段変速機構の変速比と前記無段変速機構への入力トルクを元にしたトルクとに基づいて前記滑り限界推力を算出する。これにより、プライマリプーリにおける伝達要素の滑りを防止することができるプライマリプーリの推力の目標値が適切に算出される。又、セカンダリプーリにおける伝達要素の滑りを防止することができるセカンダリプーリの推力の目標値が適切に算出される。尚、変速比は、「入力側の回転部材の回転速度/出力側の回転部材の回転速度」である。例えば、前記無段変速機構の変速比は、「プライマリプーリの回転速度/セカンダリプーリの回転速度」である。又、前記複数の動力伝達経路を備える車両用動力伝達装置の変速比は、「入力回転部材の回転速度/出力回転部材の回転速度」である。変速比におけるハイ側は、変速比が小さくなる側である高車速側である。変速比におけるロー側は、変速比が大きくなる側である低車速側である。例えば、最ロー側変速比は、最も低車速側となる最低車速側の変速比であり、変速比が最も大きな値となる最大変速比である。
また、前記第1動力伝達経路は、前記第1動力伝達経路に設けられた第1係合装置の係合によって形成される。又、前記第2動力伝達経路は、前記第2動力伝達経路に設けられた第2係合装置の係合によって形成される。
また、前記動力源は、例えば燃料の燃焼によって動力を発生するガソリンエンジンやディーゼルエンジン等のエンジンである。又、前記車両は、前記動力源として、このエンジンに加えて、又は、このエンジンに替えて、電動機等を備えていても良い。
以下、本発明の実施例を図面を参照して詳細に説明する。
図1は、本発明が適用される車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御機能及び制御系統の要部を説明する図である。図1において、車両10は、動力源として機能するエンジン12と、駆動輪14と、エンジン12と駆動輪14との間の動力伝達経路に設けられた車両用動力伝達装置16とを備えている。以下、車両用動力伝達装置16を動力伝達装置16という。
動力伝達装置16は、非回転部材としてのケース18内において、エンジン12に連結された流体式伝動装置としての公知のトルクコンバータ20、トルクコンバータ20に連結された入力軸22、入力軸22に連結された無段変速機構24、同じく入力軸22に連結された前後進切替装置26、前後進切替装置26を介して入力軸22に連結されて無段変速機構24と並列に設けられたギヤ機構28、無段変速機構24及びギヤ機構28の共通の出力回転部材である出力軸30、カウンタ軸32、出力軸30及びカウンタ軸32に各々相対回転不能に設けられて噛み合う一対のギヤから成る減速歯車装置34、カウンタ軸32に相対回転不能に設けられたギヤ36、ギヤ36に連結されたデフギヤ38等を備えている。又、動力伝達装置16は、デフギヤ38に連結された左右の車軸40を備えている。入力軸22は、エンジン12の動力が伝達される入力回転部材である。出力軸30は、駆動輪14へエンジン12の動力を出力する出力回転部材である。前記動力は、特に区別しない場合にはトルクや力も同意である。
このように構成された動力伝達装置16において、エンジン12から出力される動力は、トルクコンバータ20、前後進切替装置26、ギヤ機構28、減速歯車装置34、デフギヤ38、車軸40等を順次介して、左右の駆動輪14へ伝達される。又は、動力伝達装置16において、エンジン12から出力される動力は、トルクコンバータ20、無段変速機構24、減速歯車装置34、デフギヤ38、車軸40等を順次介して、左右の駆動輪14へ伝達される。
上述したように、動力伝達装置16は、エンジン12と駆動輪14との間の動力伝達経路PTに並列に設けられた、ギヤ機構28及び無段変速機構24を備えている。具体的には、動力伝達装置16は、入力軸22と出力軸30との間の動力伝達経路PTに並列に設けられた、ギヤ機構28及び無段変速機構24を備えている。つまり、動力伝達装置16は、入力軸22と出力軸30との間に並列に設けられた、エンジン12の動力を入力軸22から出力軸30へ各々伝達することが可能な複数の動力伝達経路を備えている。複数の動力伝達経路は、ギヤ機構28を介した第1動力伝達経路PT1と、無段変速機構24を介した第2動力伝達経路PT2とを有している。すなわち、動力伝達装置16は、第1動力伝達経路PT1と第2動力伝達経路PT2との複数の動力伝達経路を、入力軸22と出力軸30との間に並列に備えている。第1動力伝達経路PT1は、エンジン12の動力を入力軸22からギヤ機構28を介して駆動輪14へ伝達する動力伝達経路である。第2動力伝達経路PT2は、エンジン12の動力を入力軸22から無段変速機構24を介して駆動輪14へ伝達する動力伝達経路である。
動力伝達装置16では、エンジン12の動力を駆動輪14へ伝達する動力伝達経路が、車両10の走行状態に応じて第1動力伝達経路PT1と第2動力伝達経路PT2とで切り替えられる。その為、動力伝達装置16は、第1動力伝達経路PT1と第2動力伝達経路PT2とを選択的に形成する複数の係合装置を備えている。複数の係合装置は、第1クラッチC1、第1ブレーキB1、及び第2クラッチC2を含んでいる。第1クラッチC1は、第1動力伝達経路PT1に設けられており、第1動力伝達経路PT1を選択的に接続したり、切断したりする係合装置であって、前進時に、係合されることで第1動力伝達経路PT1を形成する第1係合装置である。第1ブレーキB1は、第1動力伝達経路PT1に設けられており、第1動力伝達経路PT1を選択的に接続したり、切断したりする係合装置であって、後進時に、係合されることで第1動力伝達経路PT1を形成する係合装置である。第1動力伝達経路PT1は、第1クラッチC1又は第1ブレーキB1の係合によって形成される。第2クラッチC2は、第2動力伝達経路PT2に設けられており、第2動力伝達経路PT2を選択的に接続したり、切断したりする係合装置であって、係合されることで第2動力伝達経路PT2を形成する第2係合装置である。第2動力伝達経路PT2は、第2クラッチC2の係合によって形成される。第1クラッチC1、第1ブレーキB1、及び第2クラッチC2は、何れも油圧アクチュエータによって摩擦係合させられる公知の油圧式の湿式の摩擦係合装置である。第1クラッチC1及び第1ブレーキB1は、各々、後述するように、前後進切替装置26を構成する要素の1つである。
エンジン12は、電子スロットル装置や燃料噴射装置や点火装置などのエンジン12の出力制御に必要な種々の機器を有するエンジン制御装置42を備えている。エンジン12は、後述する電子制御装置90によって、運転者による車両10に対する駆動要求量に対応するアクセルペダルの操作量であるアクセル操作量θaccに応じてエンジン制御装置42が制御されることで、エンジントルクTeが制御される。
トルクコンバータ20は、エンジン12に連結されたポンプ翼車20p、及び入力軸22に連結されたタービン翼車20tを備えている。動力伝達装置16は、ポンプ翼車20pに連結された機械式のオイルポンプ44を備えている。オイルポンプ44は、エンジン12により回転駆動されることにより、無段変速機構24を変速制御したり、無段変速機構24におけるベルト挟圧力を発生させたり、前記複数の係合装置の各々の係合や解放などの作動状態を切り替えたりする為の作動油圧の元圧を、車両10に備えられた油圧制御回路46へ供給する。
前後進切替装置26は、ダブルピニオン型の遊星歯車装置26p、第1クラッチC1、及び第1ブレーキB1を備えている。遊星歯車装置26pは、入力要素としてのキャリア26cと、出力要素としてのサンギヤ26sと、反力要素としてのリングギヤ26rとの3つの回転要素を有する差動機構である。キャリア26cは、入力軸22に連結されている。リングギヤ26rは、第1ブレーキB1を介してケース18に選択的に連結される。サンギヤ26sは、入力軸22回りにその入力軸22に対して同軸心に相対回転可能に設けられた小径ギヤ48に連結されている。キャリア26cとサンギヤ26sとは、第1クラッチC1を介して選択的に連結される。
ギヤ機構28は、小径ギヤ48と、ギヤ機構カウンタ軸50と、ギヤ機構カウンタ軸50回りにそのギヤ機構カウンタ軸50に対して同軸心に相対回転不能に設けられて小径ギヤ48と噛み合う大径ギヤ52とを備えている。大径ギヤ52は、小径ギヤ48よりも大径である。又、ギヤ機構28は、ギヤ機構カウンタ軸50回りにそのギヤ機構カウンタ軸50に対して同軸心に相対回転可能に設けられたアイドラギヤ54と、出力軸30回りにその出力軸30に対して同軸心に相対回転不能に設けられてアイドラギヤ54と噛み合う出力ギヤ56とを備えている。出力ギヤ56は、アイドラギヤ54よりも大径である。従って、ギヤ機構28は、入力軸22と出力軸30との間の動力伝達経路PTにおいて、1つのギヤ段が形成される。ギヤ機構28は、ギヤ段を有するギヤ機構である。ギヤ機構28は、更に、ギヤ機構カウンタ軸50回りに、大径ギヤ52とアイドラギヤ54との間に設けられて、これらの間の動力伝達経路を選択的に接続したり、切断したりする噛合式クラッチD1を備えている。噛合式クラッチD1は、第1動力伝達経路PT1を選択的に接続したり、切断したりする係合装置であって、係合されることで第1動力伝達経路PT1を形成する係合装置である。噛合式クラッチD1は、第1クラッチC1又は第1ブレーキB1と共に係合されることで第1動力伝達経路PT1を形成する係合装置であり、前記複数の係合装置に含まれる。噛合式クラッチD1は、動力伝達装置16に備えられた不図示の油圧アクチュエータの作動によって作動状態が切り替えられる。
第1動力伝達経路PT1は、噛合式クラッチD1と、噛合式クラッチD1よりも入力軸22側に設けられた、第1クラッチC1又は第1ブレーキB1とが共に係合されることで形成される。第1クラッチC1の係合により前進用の動力伝達経路が形成される一方で、第1ブレーキB1の係合により後進用の動力伝達経路が形成される。動力伝達装置16では、第1動力伝達経路PT1が形成されると、エンジン12の動力を入力軸22からギヤ機構28を経由して出力軸30へ伝達することができる動力伝達可能状態とされる。一方で、第1動力伝達経路PT1は、第1クラッチC1及び第1ブレーキB1が共に解放されると、又は、噛合式クラッチD1が解放されると、動力伝達が不能なニュートラル状態とされる。
図2は、無段変速機構24の構成を説明する為の図である。図1、図2において、無段変速機構24は、入力軸22と同軸心に設けられて入力軸22と一体的に連結されたプライマリ軸58と、プライマリ軸58に連結された有効径が可変のプライマリプーリ60と、出力軸30と同軸心に設けられたセカンダリ軸62と、セカンダリ軸62に連結された有効径が可変のセカンダリプーリ64と、それら各プーリ60,64の間に巻き掛けられた伝達要素としての伝動ベルト66とを備えている。無段変速機構24は、各プーリ60,64と伝動ベルト66との間の摩擦力を介して動力伝達が行われる公知のベルト式の無段変速機であり、エンジン12の動力を駆動輪14側へ伝達する。前記摩擦力は、挟圧力も同意であり、ベルト挟圧力ともいう。このベルト挟圧力は、無段変速機構24における伝動ベルト66のトルク容量であるベルトトルク容量Tcvtである。
プライマリプーリ60は、プライマリ軸58に連結された固定シーブ60aと、固定シーブ60aに対してプライマリ軸58の軸心回りの相対回転不能且つ軸心方向の移動可能に設けられた可動シーブ60bと、可動シーブ60bに対してプライマリ推力Winを付与する油圧アクチュエータ60cとを備えている。プライマリ推力Winは、固定シーブ60aと可動シーブ60bとの間のV溝幅を変更する為のプライマリプーリ60の推力(=プライマリ圧Pin×受圧面積)である。つまり、プライマリ推力Winは、油圧アクチュエータ60cによって付与される伝動ベルト66を挟圧するプライマリプーリ60の推力である。プライマリ圧Pinは、油圧制御回路46によって油圧アクチュエータ60cへ供給される油圧であり、プライマリ推力Winを生じさせるプーリ油圧である。又、セカンダリプーリ64は、セカンダリ軸62に連結された固定シーブ64aと、固定シーブ64aに対してセカンダリ軸62の軸心回りの相対回転不能且つ軸心方向の移動可能に設けられた可動シーブ64bと、可動シーブ64bに対してセカンダリ推力Woutを付与する油圧アクチュエータ64cとを備えている。セカンダリ推力Woutは、固定シーブ64aと可動シーブ64bとの間のV溝幅を変更する為のセカンダリプーリ64の推力(=セカンダリ圧Pout×受圧面積)である。つまり、セカンダリ推力Woutは、油圧アクチュエータ64cによって付与される伝動ベルト66を挟圧するセカンダリプーリ64の推力である。セカンダリ圧Poutは、油圧制御回路46によって油圧アクチュエータ64cへ供給される油圧であり、セカンダリ推力Woutを生じさせるプーリ油圧である。
無段変速機構24では、後述する電子制御装置90により駆動される油圧制御回路46によってプライマリ圧Pin及びセカンダリ圧Poutが各々調圧制御されることにより、プライマリ推力Win及びセカンダリ推力Woutが各々制御される。これにより、無段変速機構24では、各プーリ60,64のV溝幅が変化して伝動ベルト66の掛かり径(=有効径)が変更され、変速比γcvt(=プライマリ回転速度Npri/セカンダリ回転速度Nsec)が変化させられると共に、伝動ベルト66が滑りを生じないようにベルト挟圧力が制御される。つまり、プライマリ推力Win及びセカンダリ推力Woutが各々制御されることで、伝動ベルト66の滑りであるベルト滑りが防止されつつ無段変速機構24の変速比γcvtが目標変速比γcvttgtとされる。尚、プライマリ回転速度Npriはプライマリ軸58の回転速度であり、セカンダリ回転速度Nsecはセカンダリ軸62の回転速度である。
無段変速機構24では、プライマリ圧Pinが高められると、プライマリプーリ60のV溝幅が狭くされて変速比γcvtが小さくされる。変速比γcvtが小さくされることは、無段変速機構24がアップシフトされることである。無段変速機構24では、プライマリプーリ60のV溝幅が最小とされるところで、最ハイ側変速比γminが形成される。この最ハイ側変速比γminは、無段変速機構24により形成できる変速比γcvtの範囲のうちの最も高車速側となる最高車速側の変速比γcvtであり、変速比γcvtが最も小さな値となる最小変速比である。一方で、無段変速機構24では、プライマリ圧Pinが低められると、プライマリプーリ60のV溝幅が広くされて変速比γcvtが大きくされる。変速比γcvtが大きくされることは、無段変速機構24がダウンシフトされることである。無段変速機構24では、プライマリプーリ60のV溝幅が最大とされるところで、最ロー側変速比γmaxが形成される。この最ロー側変速比γmaxは、無段変速機構24により形成できる変速比γcvtの範囲のうちの最も低車速側となる最低車速側の変速比γcvtであり、変速比γcvtが最も大きな値となる最大変速比である。尚、無段変速機構24では、プライマリ推力Winとセカンダリ推力Woutとによりベルト滑りが防止されつつ、プライマリ推力Winとセカンダリ推力Woutとの相互関係にて目標変速比γcvttgtが実現されるものであり、一方の推力のみで目標の変速が実現されるものではない。後述するように、プライマリ圧Pinとセカンダリ圧Poutとの相互関係で、プライマリ推力Winとセカンダリ推力Woutとの比である推力比τ(=Wout/Win)が変更されることにより無段変速機構24の変速比γcvtが変更される。推力比τは、セカンダリ推力Woutのプライマリ推力Winに対する比の値である。例えば推力比τが大きくされる程、変速比γcvtが大きくされる、すなわち無段変速機構24はダウンシフトされる。
出力軸30は、セカンダリ軸62に対して同軸心に相対回転可能に配置されている。第2クラッチC2は、セカンダリプーリ64と出力軸30との間の動力伝達経路に設けられている。第2動力伝達経路PT2は、第2クラッチC2が係合されることで形成される。動力伝達装置16では、第2動力伝達経路PT2が形成されると、エンジン12の動力を入力軸22から無段変速機構24を経由して出力軸30へ伝達することができる動力伝達可能状態とされる。一方で、第2動力伝達経路PT2は、第2クラッチC2が解放されると、ニュートラル状態とされる。無段変速機構24の変速比γcvtは、第2動力伝達経路PT2における変速比に相当する。
動力伝達装置16では、第1動力伝達経路PT1における変速比γgear(=入力軸回転速度Nin/出力軸回転速度Nout)であるギヤ機構28の変速比ELは、第2動力伝達経路PT2における最大変速比である無段変速機構24の最ロー側変速比γmaxよりも大きな値に設定されている。すなわち、変速比ELは、最ロー側変速比γmaxよりもロー側の変速比に設定されている。ギヤ機構28の変速比ELは、動力伝達装置16における第1速変速比γ1に相当し、無段変速機構24の最ロー側変速比γmaxは、動力伝達装置16における第2速変速比γ2に相当する。このように、第2動力伝達経路PT2は、第1動力伝達経路PT1よりもハイ側の変速比が形成される。尚、入力軸回転速度Ninは入力軸22の回転速度であり、出力軸回転速度Noutは出力軸30の回転速度である。
車両10では、ギヤ走行モードでの走行とベルト走行モードでの走行とを選択的に行うことが可能である。ギヤ走行モードは、第1動力伝達経路PT1を用いて走行する走行モードであって、動力伝達装置16において第1動力伝達経路PT1が形成された状態とする走行モードである。ベルト走行モードは、第2動力伝達経路PT2を用いて走行する走行モードであって、動力伝達装置16において第2動力伝達経路PT2が形成された状態とする走行モードである。ギヤ走行モードでは、前進走行を可能とする場合、第1クラッチC1及び噛合式クラッチD1が係合され且つ第2クラッチC2及び第1ブレーキB1が解放される。ギヤ走行モードでは、後進走行を可能とする場合、第1ブレーキB1及び噛合式クラッチD1が係合され且つ第2クラッチC2及び第1クラッチC1が解放される。ベルト走行モードでは、第2クラッチC2が係合され且つ第1クラッチC1及び第1ブレーキB1が解放される。このベルト走行モードでは前進走行が可能となる。
ギヤ走行モードは、車両停止中を含む比較的低車速領域において選択される。ベルト走行モードは、中車速領域を含む比較的高車速領域において選択される。ベルト走行モードのうちの中車速領域でのベルト走行モードでは噛合式クラッチD1が係合される一方で、ベルト走行モードのうちの高車速領域でのベルト走行モードでは噛合式クラッチD1が解放される。高車速領域でのベルト走行モードにて噛合式クラッチD1が解放されるのは、例えばベルト走行モードでの走行中のギヤ機構28等の引き摺りをなくすと共に、高車速においてギヤ機構28や遊星歯車装置26pの構成部材である例えばピニオン等が高回転化するのを防止する為である。
車両10は、動力伝達装置16の制御装置を含むコントローラとしての電子制御装置90を備えている。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置90は、エンジン12の出力制御、無段変速機構24の変速制御やベルト挟圧力制御、前記複数の係合装置(C1,B1,C2,D1)の各々の作動状態を切り替える油圧制御等を実行する。電子制御装置90は、必要に応じてエンジン制御用、油圧制御用等に分けて構成される。
電子制御装置90には、車両10に備えられた各種センサ等(例えば各種回転速度センサ70、72,74,76、アクセル操作量センサ78、スロットル開度センサ80、シフトポジションセンサ82など)による各種検出信号等(例えばエンジン回転速度Ne、入力軸回転速度Ninと同値となるプライマリ回転速度Npri、セカンダリ回転速度Nsec、車速Vに対応する出力軸回転速度Nout、運転者の加速操作の大きさを表すアクセル操作量θacc、スロットル開度tap、車両10に備えられたシフトレバー84の操作ポジションPOSshなど)が、それぞれ供給される。又、電子制御装置90からは、車両10に備えられた各装置(例えばエンジン制御装置42、油圧制御回路46など)に各種指令信号(例えばエンジン12を制御する為のエンジン制御指令信号Se、無段変速機構24の変速やベルト挟圧力等を制御する為の油圧制御指令信号Scvt、前記複数の係合装置の各々の作動状態を制御する為の油圧制御指令信号Scbdなど)が、それぞれ出力される。尚、入力軸回転速度Nin(=プライマリ回転速度Npri)はタービン回転速度でもあり、又、プライマリ回転速度Npriはプライマリプーリ60の回転速度でもあり、又、セカンダリ回転速度Nsecはセカンダリプーリ64の回転速度でもある。又、電子制御装置90は、プライマリ回転速度Npriとセカンダリ回転速度Nsecとに基づいて無段変速機構24の実際の変速比γcvtである実変速比γcvt(=Npri/Nsec)を算出する。
シフトレバー84の操作ポジションPOSshは、例えばP,R,N,D操作ポジションである。P操作ポジションは、動力伝達装置16がニュートラル状態とされ且つ出力軸30が回転不能に機械的に固定された動力伝達装置16のPポジションを選択するパーキング操作ポジションである。動力伝達装置16のニュートラル状態は、例えば第1クラッチC1、第1ブレーキB1、及び第2クラッチC2が共に解放されることで実現される。つまり、動力伝達装置16のニュートラル状態は、第1動力伝達経路PT1及び第2動力伝達経路PT2が何れも形成されていない状態である。R操作ポジションは、ギヤ走行モードにて後進走行を可能とする動力伝達装置16のRポジションを選択する後進走行操作ポジションである。N操作ポジションは、動力伝達装置16がニュートラル状態とされた動力伝達装置16のNポジションを選択するニュートラル操作ポジションである。D操作ポジションは、ギヤ走行モードにて前進走行を可能とするか、又は、ベルト走行モードにて無段変速機構24の自動変速制御を実行して前進走行を可能とする動力伝達装置16のDポジションを選択する前進走行操作ポジションである。
電子制御装置90は、車両10における各種制御を実現する為に、エンジン制御手段すなわちエンジン制御部92、変速制御手段すなわち変速制御部94、自動車速制御手段すなわち自動車速制御部96、及び状態判定手段すなわち状態判定部98を備えている。
エンジン制御部92は、予め実験的に或いは設計的に求められて記憶された関係すなわち予め定められた関係である例えば駆動力マップにアクセル操作量θacc及び車速Vを適用することで目標駆動力Fwtgtを算出する。エンジン制御部92は、その目標駆動力Fwtgtが得られる目標エンジントルクTetgtを設定し、その目標エンジントルクTetgtが得られるようにエンジン12を制御するエンジン制御指令信号Seをエンジン制御装置42へ出力する。
変速制御部94は、車両停止中に、操作ポジションPOSshがP操作ポジション又はN操作ポジションである場合には、ギヤ走行モードへの移行に備えて、噛合式クラッチD1を係合する油圧制御指令信号Scbdを油圧制御回路46へ出力する。変速制御部94は、車両停止中に、操作ポジションPOSshがP操作ポジション又はN操作ポジションからD操作ポジションとされた場合、第1クラッチC1を係合する油圧制御指令信号Scbdを油圧制御回路46へ出力する。これにより、走行モードが前進走行を可能とするギヤ走行モードへ移行させられる。変速制御部94は、車両停止中に、操作ポジションPOSshがP操作ポジション又はN操作ポジションからR操作ポジションとされた場合、第1ブレーキB1を係合する油圧制御指令信号Scbdを油圧制御回路46へ出力する。これにより、走行モードが後進走行を可能とするギヤ走行モードへ移行させられる。
変速制御部94は、操作ポジションPOSshがD操作ポジションである場合、ギヤ走行モードとベルト走行モードとを切り替える切替制御を実行する。具体的には、変速制御部94は、ギヤ走行モードにおけるギヤ機構28の変速比ELに対応する第1速変速段と、ベルト走行モードにおける無段変速機構24の最ロー側変速比γmaxに対応する第2速変速段とを切り替える為の所定のヒステリシスを有した、予め定められた関係である有段変速マップとしてのアップシフト線及びダウンシフト線に、車速V及びアクセル操作量θaccを適用することで変速の要否を判断し、その判断結果に基づいて走行モードを切り替える。
変速制御部94は、ギヤ走行モードでの走行中にアップシフトを判断してベルト走行モードへ切り替える場合、第1クラッチC1を解放して第2クラッチC2を係合するようにクラッチを掴み替えるクラッチツゥクラッチ変速を行う油圧制御指令信号Scbdを油圧制御回路46へ出力する。これにより、動力伝達装置16における動力伝達経路PTは、第1動力伝達経路PT1から第2動力伝達経路PT2へ切り替えられる。このように、変速制御部94は、第1クラッチC1の解放と第2クラッチC2の係合とによる有段変速制御によって、第1動力伝達経路PT1が形成された状態であるギヤ走行モードから第2動力伝達経路PT2が形成された状態であるベルト走行モードへ切り替える動力伝達装置16のアップシフトを実行する。本実施例では、ギヤ走行モードからベルト走行モードへ切り替える動力伝達装置16のアップシフトを有段アップシフトと称する。
変速制御部94は、ベルト走行モードでの走行中にダウンシフトを判断してギヤ走行モードへ切り替える場合、第2クラッチC2を解放して第1クラッチC1を係合するようにクラッチを掴み替えるクラッチツゥクラッチ変速を行う油圧制御指令信号Scbdを油圧制御回路46へ出力する。これにより、動力伝達装置16における動力伝達経路PTは、第2動力伝達経路PT2から第1動力伝達経路PT1へ切り替えられる。このように、変速制御部94は、第2クラッチC2の解放と第1クラッチC1の係合とによる有段変速制御によって、第2動力伝達経路PT2が形成された状態であるベルト走行モードから第1動力伝達経路PT1が形成された状態であるギヤ走行モードへ切り替える動力伝達装置16のダウンシフトを実行する。本実施例では、ベルト走行モードからギヤ走行モードへ切り替える動力伝達装置16のダウンシフトを有段ダウンシフトと称する。
ギヤ走行モードとベルト走行モードとを切り替える切替制御では、噛合式クラッチD1が係合された中車速領域でのベルト走行モードの状態を経由することで、上記クラッチツゥクラッチ変速によるトルクの受け渡しを行うだけで第1動力伝達経路PT1と第2動力伝達経路PT2とが切り替えられるので、切替えショックが抑制される。
変速制御部94は、ベルト走行モードにおいては、無段変速機構24のベルト滑りが発生しないようにしつつ無段変速機構24の目標変速比γcvttgtを達成するように、プライマリ圧Pinとセカンダリ圧Poutとを制御する油圧制御指令信号Scvtを油圧制御回路46へ出力して、無段変速機構24の変速を実行する。この油圧制御指令信号Scvtは、プライマリ圧Pinを目標プライマリ圧Pintgtとする為のプライマリ指示圧Spin、及びセカンダリ圧Poutを目標セカンダリ圧Pouttgtとする為のセカンダリ指示圧Spoutである。
目標プライマリ圧Pintgtは、プライマリプーリ60の目標推力すなわちプライマリ推力Winの目標値であるプライマリ目標推力Wintgtを生じさせるプライマリ圧Pinの目標値である。目標セカンダリ圧Pouttgtは、セカンダリプーリ64の目標推力すなわちセカンダリ推力Woutの目標値であるセカンダリ目標推力Wouttgtを生じさせるセカンダリ圧Poutの目標値である。プライマリ目標推力Wintgt及びセカンダリ目標推力Wouttgtの算出では、必要最小限の推力で無段変速機構24のベルト滑りを防止する為に必要となる推力である必要推力が考慮される。この必要推力は、無段変速機構24のベルト滑りが発生する直前の推力であるベルト滑り限界推力Wlmtである。本実施例では、ベルト滑り限界推力Wlmtを滑り限界推力Wlmtと称する。
具体的には、変速制御部94は、プライマリ目標推力Wintgt及びセカンダリ目標推力Wouttgtを各々算出する、目標推力算出手段すなわち目標推力算出部95を機能的に備えている。目標推力算出部95は、セカンダリ目標推力Wouttgtとして、プライマリプーリ60における滑り限界推力Wlmtであるプライマリ側滑り限界推力Winlmtに基づいて算出したセカンダリ推力Woutと、セカンダリプーリ64における滑り限界推力Wlmtであるセカンダリ側滑り限界推力Woutlmtとのうちの大きい方の推力を選択する。プライマリ側滑り限界推力Winlmtに基づいて算出したセカンダリ推力Woutは、後述するように、セカンダリプーリ64側にて変速制御の為に必要な推力であるセカンダリ側変速制御推力Woutshである。このように、目標推力算出部95は、プライマリ推力Winに基づいてセカンダリ目標推力Wouttgtを算出する。セカンダリ目標推力Wouttgtを算出する基になるプライマリ推力Winは、プライマリ側滑り限界推力Winlmtである。
目標推力算出部95は、プライマリ目標推力Wintgtとして、セカンダリ目標推力Wouttgtに基づいて算出したプライマリ推力Winを設定する。セカンダリ目標推力Wouttgtに基づいて算出したプライマリ推力Winは、後述するように、プライマリプーリ60側にて変速制御の為に必要な推力であるプライマリ側変速制御推力Winshである。又、目標推力算出部95は、後述するように、目標変速比γcvttgtと実変速比γcvtとの変速比偏差Δγcvt(=γcvttgt-γcvt)に基づいたプライマリ推力Winのフィードバック制御により、プライマリ側変速制御推力Winshを補正する、すなわちプライマリ目標推力Wintgtを補正する。
前述したプライマリ側変速制御推力Winshの補正では、変速比偏差Δγcvtに替えて、変速比γcvtと1対1に対応するパラメータにおける目標値と実際値との偏差が用いられても良い。例えば、プライマリ側変速制御推力Winshの補正では、プライマリプーリ60における目標プーリ位置Xintgtと実プーリ位置Xin(図2参照)との偏差ΔXin(=Xintgt-Xin)、セカンダリプーリ64における目標プーリ位置Xouttgtと実プーリ位置Xout(図2参照)との偏差ΔXout(=Xouttgt-Xout)、プライマリプーリ60における目標ベルト掛かり径Rintgtと実ベルト掛かり径Rin(図2参照)との偏差ΔRin(=Rintgt-Rin)、セカンダリプーリ64における目標ベルト掛かり径Routtgtと実ベルト掛かり径Rout(図2参照)との偏差ΔRout(=Routtgt-Rout)、目標プライマリ回転速度Npritgtと実プライマリ回転速度Npriとの偏差ΔNpri(=Npritgt-Npri)などを用いることができる。
前述した変速制御の為に必要な推力は、目標の変速を実現する為に必要な推力であって、目標変速比γcvttgt及び目標変速速度dγtgtを実現する為に必要な推力である。変速速度dγは、例えば単位時間当たりの変速比γcvtの変化量(=dγcvt/dt)である。本実施例では、変速速度dγを、伝動ベルト66のエレメント1個当たりのプーリ位置移動量(=dX/dNelm)として定義する。「dX」は、単位時間当たりのプーリの軸方向変位量[mm/ms]であり、「dNelm」は、単位時間当たりにプーリに噛み込むエレメント数[個/ms]である。変速速度dγとしては、プライマリ変速速度dγin(=dXin/dNelmin)と、セカンダリ変速速度dγout(=dXout/dNelmout)とで表される。
具体的には、変速比γcvtが一定の状態となる定常状態での各プーリ60,64の推力をバランス推力Wblと称する。バランス推力Wblは定常推力でもある。プライマリプーリ60のバランス推力Wblはプライマリバランス推力Winblであり、セカンダリプーリ64のバランス推力Wblはセカンダリバランス推力Woutblであり、これらの比が推力比τ(=Woutbl/Winbl)である。一方で、定常状態にあるときに、各プーリ60,64の何れかの推力に、ある推力を加算又は減算すると、定常状態が崩れて変速比γcvtが変化し、加算又は減算した推力の大きさに応じた変速速度dγが生じる。この加算又は減算した推力のことを変速差推力ΔWと称する。以下、変速差推力ΔWを差推力ΔWという。差推力ΔWは過渡推力でもある。プライマリプーリ60側にて目標の変速を実現する場合の差推力ΔWは、プライマリプーリ60側換算の差推力ΔWとしてのプライマリ差推力ΔWinである。セカンダリプーリ64側にて目標の変速を実現する場合の差推力ΔWは、セカンダリプーリ64側換算の差推力ΔWとしてのセカンダリ差推力ΔWoutである。
前述した変速制御の為に必要な推力は、一方の推力が設定された場合、目標変速比γcvttgtを維持する為の推力比τに基づいて一方の推力に対応する目標変速比γcvttgtを実現する為の他方のバランス推力Wblと、目標変速比γcvttgtが変化させられるときの目標変速速度dγtgtを実現する為の差推力ΔWとの和となる。目標変速速度dγtgtとしては、プライマリ目標変速速度dγintgtと、セカンダリ目標変速速度dγouttgtとで表される。プライマリ差推力ΔWinは、アップシフト状態であればゼロを超える正値すなわち「ΔWin>0」となり、ダウンシフト状態であればゼロ未満の負値すなわち「ΔWin<0」となり、変速比一定の定常状態であればゼロすなわち「ΔWin=0」となる。又、セカンダリ差推力ΔWoutは、アップシフト状態であればゼロ未満の負値すなわち「ΔWout<0」となり、ダウンシフト状態であればゼロを超える正値すなわち「ΔWout>0」となり、変速比一定の定常状態であればゼロすなわち「ΔWout=0」となる。
図3は、前述した変速制御の為に必要な推力を説明する為の図である。図4は、図3のt2時点における各推力の関係の一例を示す図である。図3、図4は、例えばセカンダリプーリ64側にてベルト滑り防止を実現するようにセカンダリ推力Woutを設定した場合に、プライマリプーリ60側にて目標のアップシフトを実現するときに設定されるプライマリ推力Winの一例を示している。図3において、t1時点以前或いはt3時点以降では、目標変速比γcvttgtが一定の定常状態にありΔWin=0とされるので、プライマリ推力Winはプライマリバランス推力Winbl(=Wout/τ)のみとなる。t1時点-t3時点では、目標変速比γcvttgtが小さくされるアップシフト状態にあるので、図4に示されるように、プライマリ推力Winはプライマリバランス推力Winblとプライマリ差推力ΔWinとの和となる。図4に示した各推力の斜線部分は、図3のt2時点の目標変速比γcvttgtを維持する為の各々のバランス推力Wblに相当する。
図5は、必要最小限の推力で目標の変速とベルト滑り防止とを両立する為の制御構造を示すブロック図であって、無段変速機構24における油圧制御すなわちCVT油圧制御を説明する図である。
図5において、変速制御部94は、目標変速比γcvttgtを算出する。具体的には、変速制御部94は、予め定められた関係である例えばCVT変速マップにアクセル操作量θacc及び車速Vを適用することで目標プライマリ回転速度Npritgtを算出する。変速制御部94は、目標プライマリ回転速度Npritgtに基づいて、無段変速機構24の変速後に達成すべき変速比γcvtである変速後目標変速比γcvttgtl(=Npritgt/Nsec)を算出する。変速制御部94は、例えば迅速且つ滑らかな変速が実現されるように予め定められた関係に、変速開始前の変速比γcvtと変速後目標変速比γcvttgtlとそれらの差とに基づいて、変速中の過渡的な変速比γcvtの目標値として目標変速比γcvttgtを決定する。例えば、変速制御部94は、変速中に変化させる目標変速比γcvttgtを、変速開始時から変速後目標変速比γcvttgtlに向かって変化する滑らかな曲線に沿って変化する経過時間の関数として決定する。この滑らかな曲線は、例えば1次遅れ曲線や2次遅れ曲線である。変速制御部94は、目標変速比γcvttgtを決定する際、その目標変速比γcvttgtに基づいて、変速中における目標変速速度dγtgtを算出する。変速が完了して目標変速比γcvttgtが一定の定常状態となれば、目標変速速度dγtgtはゼロとされる。
変速制御部94は、滑り限界推力Wlmtの算出に用いられるトルクである滑り限界推力算出用トルクTinを算出する。具体的には、変速制御部94は、予め定められた関係である例えばエンジントルクマップにスロットル開度tap及びエンジン回転速度Neを適用することでエンジントルクTeの推定値を算出する。変速制御部94は、エンジントルクTeの推定値と予め定められた関係である例えばトルクコンバータ20の特性とに基づいてタービントルクTtを算出する。このタービントルクTtは、無段変速機構24への入力トルクの推定値である。本実施例では、無段変速機構24への入力トルクの推定値をベルト部入力トルクTbと称する。基本的にはベルト部入力トルクTbが滑り限界推力算出用トルクTinとされれば良いが、ベルト部入力トルクTbがゼロのときに滑り限界推力Wlmtがゼロとされることは、ばらつき等を考慮すると好ましくない。又、車両10が被駆動状態にある場合、ベルト部入力トルクTbの負値における算出精度を考慮すると、ベルト部入力トルクTbに応じた所定トルクを用いることが好ましい。そこで、車両10が駆動状態にある場合の滑り限界推力算出用トルクTinは、ベルト部入力トルクTbに対して下限ガード処理が施された駆動時入力トルクTdrvが用いられる。又、車両10が被駆動状態にある場合の滑り限界推力算出用トルクTinは、ベルト部入力トルクTbに応じた被駆動時入力トルクTdrvnが用いられる。被駆動時入力トルクTdrvnは、ベルト部入力トルクTbの絶対値よりも大きな値として予め定められた正値のトルクである。変速制御部94は、車両10が駆動状態にある場合には、駆動時入力トルクTdrvとして、ベルト部入力トルクTbと下限トルクTinlimとのうちの大きい方のトルクを選択し、その駆動時入力トルクTdrvを滑り限界推力算出用トルクTinとする。下限トルクTinlimは、例えばベルト滑りを防止する為にばらつきを考慮して滑り限界推力算出用トルクTinを安全側に高くする為の予め定められた正値のトルクである。又、変速制御部94は、車両10が被駆動状態にある場合には、被駆動時入力トルクTdrvnを滑り限界推力算出用トルクTinとする。このように滑り限界推力算出用トルクTinは、無段変速機構24への入力トルクを元にしたトルク、すなわちベルト部入力トルクTbを元にしたトルクである。尚、車両10の駆動状態は、例えば車両10が加速する傾向にある状態であり、車両10の被駆動状態は、例えば車両10が減速する傾向にある状態である。
図5のブロックB1及びブロックB2において、目標推力算出部95は、実変速比γcvtと滑り限界推力算出用トルクTinとに基づいて滑り限界推力Wlmtを算出する。具体的には、目標推力算出部95は、次式(1)を用いてセカンダリ側滑り限界推力Woutlmtを算出する。目標推力算出部95は、次式(2)を用いてプライマリ側滑り限界推力Winlmtを算出する。次式(1)及び次式(2)において、「Tin」は滑り限界推力算出用トルクTin、「Tout」は滑り限界推力算出用トルクTinをセカンダリプーリ64側へ換算したトルク(=γcvt×Tin=(Rout/Rin)×Tin)、「α」は各プーリ60,64のシーブ角、「μin」はプライマリプーリ60における所定のエレメント・プーリ間摩擦係数、「μout」はセカンダリプーリ64における所定のエレメント・プーリ間摩擦係数、「Rin」は実変速比γcvtから一意的に算出されるプライマリプーリ60におけるベルト掛かり径、「Rout」は実変速比γcvtから一意的に算出されるセカンダリプーリ64におけるベルト掛かり径である(図2参照)。
Woutlmt=(Tout×cosα)/(2×μout×Rout)
=(Tin ×cosα)/(2×μout×Rin ) …(1)
Winlmt =(Tin ×cosα)/(2×μin ×Rin ) …(2)
図5のブロックB3及びブロックB6において、目標推力算出部95は、バランス推力Wblを算出する。つまり、目標推力算出部95は、プライマリ側滑り限界推力Winlmtに対するセカンダリバランス推力Woutbl、及びセカンダリ目標推力Wouttgtに対するプライマリバランス推力Winblをそれぞれ算出する。
具体的には、目標推力算出部95は、例えば図6に示すような推力比マップmap(τin)に、目標変速比γcvttgt及びプライマリ側安全率SFinの逆数SFin-1を適用することで目標変速比γcvttgtを実現する推力比τinを算出する。推力比マップmap(τin)は、目標変速比γcvttgtをパラメータとして予め定められたプライマリ側安全率の逆数SFin-1と推力比τinとの関係の一例を示す図である。推力比τinは、プライマリプーリ60側の推力に基づいてセカンダリプーリ64側の推力を算出するときに用いる推力比である。目標推力算出部95は、次式(3)を用いて、プライマリ側滑り限界推力Winlmt及び推力比τinに基づいてセカンダリバランス推力Woutblを算出する。プライマリ側安全率SFinは、例えば「Win/Winlmt」、又は、「Tin/Tb」であり、プライマリ側安全率の逆数SFin-1は、例えば「Winlmt/Win」、又は、「Tb/Tin」である。又、目標推力算出部95は、例えば図7に示すような推力比マップmap(τout)に、目標変速比γcvttgt及びセカンダリ側安全率SFoutの逆数SFout-1を適用することで目標変速比γcvttgtを実現する推力比τoutを算出する。推力比マップmap(τout)は、目標変速比γcvttgtをパラメータとして予め定められたセカンダリ側安全率の逆数SFout-1と推力比τoutとの関係の一例を示す図である。推力比τoutは、セカンダリプーリ64側の推力に基づいてプライマリプーリ60側の推力を算出するときに用いる推力比である。目標推力算出部95は、次式(4)を用いて、セカンダリ目標推力Wouttgt及び推力比τoutに基づいてプライマリバランス推力Winblを算出する。セカンダリ側安全率SFoutは、例えば「Wout/Woutlmt」、又は、「Tin/Tb」であり、セカンダリ側安全率の逆数SFout-1は、例えば「Woutlmt/Wout」、又は、「Tb/Tin」である。尚、推力比τは、車両10が駆動状態であるときには駆動領域の値が用いられ、又、車両10が被駆動状態であるときには被駆動領域の値が用いられる。逆数SFin-1,SFout-1は、バランス推力Wblの算出の度に算出されても良いが、安全率SFin、SFoutに所定の値(例えば1-1.5程度)を各々設定するならばその逆数を設定しても良い。
Woutbl=Winlmt×τin …(3)
Winbl=Wouttgt/τout …(4)
前述したように、滑り限界推力Winlmt,Woutlmtは、ベルト部入力トルクTbを元にした滑り限界推力算出用トルクTinに基づいて算出される。推力比τin,τoutを算出する基になる上記各安全率の逆数SFin-1,SFout-1は、ベルト部入力トルクTbに基づく値である。従って、目標推力算出部95は、無段変速機構24の目標変速比γcvttgtを実現する推力比τを、ベルト部入力トルクTbに基づいて算出する。
図5のブロックB4及びブロックB7において、目標推力算出部95は、差推力ΔWを算出する。つまり、目標推力算出部95は、セカンダリ差推力ΔWout及びプライマリ差推力ΔWinを算出する。
具体的には、目標推力算出部95は、例えば図8に示すような差推力マップmap(ΔWout)に、セカンダリ目標変速速度dγouttgtを適用することでセカンダリ差推力ΔWoutを算出する。差推力マップmap(ΔWout)は、予め定められたセカンダリ変速速度dγoutとセカンダリ差推力ΔWoutとの関係の一例を示す図である。目標推力算出部95は、プライマリプーリ60側のベルト滑りを防止する為に必要なセカンダリ推力として、セカンダリバランス推力Woutblにセカンダリ差推力ΔWoutを加算したセカンダリ側変速制御推力Woutsh(=Woutbl+ΔWout)を算出する。又、目標推力算出部95は、例えば図9に示すような差推力マップmap(ΔWin)に、プライマリ目標変速速度dγintgtを適用することでプライマリ差推力ΔWinを算出する。差推力マップmap(ΔWin)は、予め定められたプライマリ変速速度dγinとプライマリ差推力ΔWinとの関係の一例を示す図である。目標推力算出部95は、プライマリバランス推力Winblにプライマリ差推力ΔWinを加算してプライマリ側変速制御推力Winsh(=Winbl+ΔWin)を算出する。
上記ブロックB3,B4における演算では、図6に示すような推力比マップmap(τin)や図8に示すような差推力マップmap(ΔWout)等の予め定められた物理特性図が用いられる。その為、油圧制御回路46等の個体差によりセカンダリバランス推力Woutblやセカンダリ差推力ΔWoutの算出結果には物理特性に対するばらつきが存在する。そこで、このような物理特性に対するばらつきを考慮する場合には、目標推力算出部95は、制御マージンWmgnをプライマリ側滑り限界推力Winlmtに加算しても良い。制御マージンWmgnは、セカンダリバランス推力Woutblやセカンダリ差推力ΔWoutの算出に関わる物理特性に対するばらつき分に対応する予め定められた所定推力である。上述したような物理特性に対するばらつきを考慮する場合には、目標推力算出部95は、前記式(3)に替えて、図5中に示す式「Woutbl=(Winlmt+Wmgn)×τin」を用いて、セカンダリバランス推力Woutblを算出する。尚、上記物理特性に対するばらつき分は、油圧制御指令信号Scvtに対する実際のプーリ油圧のばらつき分とは異なるものである。このプーリ油圧のばらつき分は、油圧制御回路46等のハードユニットによっては比較的大きな値となるが、上記物理特性に対するばらつき分は、上記プーリ油圧のばらつき分と比べて極めて小さな値である。
図5のブロックB5において、目標推力算出部95は、セカンダリ側滑り限界推力Woutlmtとセカンダリ側変速制御推力Woutshとのうちの大きい方の推力を、セカンダリ目標推力Wouttgtとして選択する。
図5のブロックB8において、目標推力算出部95は、フィードバック制御量Winfbを算出する。具体的には、目標推力算出部95は、例えば次式(5)に示すような予め定められたフィードバック制御式を用いて、実変速比γcvtを目標変速比γcvttgtと一致させる為のフィードバック制御量(=FB制御量)Winfbを算出する。次式(5)において、「Δγcvt」は変速比偏差Δγcvt、「Kp」は所定の比例定数、「Ki」は所定の積分定数、「Kd」は所定の微分定数である。目標推力算出部95は、プライマリ側変速制御推力Winshにフィードバック制御量Winfbを加算することで、フィードバック制御によりプライマリ側変速制御推力Winshを補正した後の値(=Winsh+Winfb)をプライマリ目標推力Wintgtとして算出する。
Winfb=Kp×Δγcvt+Ki×(∫Δγcvtdt)+Kd×(dΔγcvt/dt) …(5)
図5のブロックB9及びブロックB10において、変速制御部94は、目標推力を目標プーリ圧に変換する。具体的には、変速制御部94は、セカンダリ目標推力Wouttgt及びプライマリ目標推力Wintgtを、各々、各油圧アクチュエータ60c,64cの受圧面積に基づいて、目標セカンダリ圧Pouttgt(=Wouttgt/受圧面積)及び目標プライマリ圧Pintgt(=Wintgt/受圧面積)に各々変換する。変速制御部94は、目標セカンダリ圧Pouttgt及び目標プライマリ圧Pintgtを、各々、セカンダリ指示圧Spout及びプライマリ指示圧Spinとして設定する。
変速制御部94は、目標プライマリ圧Pintgt及び目標セカンダリ圧Pouttgtが得られるように、油圧制御指令信号Scvtとしてプライマリ指示圧Spin及びセカンダリ指示圧Spoutを油圧制御回路46へ出力する。油圧制御回路46は、その油圧制御指令信号Scvtに従ってプライマリ圧Pin及びセカンダリ圧Poutを各々調圧する。
自動車速制御部96は、実際の車速Vである実車速Vを目標車速Vtgtに一致させるように実車速Vの制御に用いる動力関連値を変化させる自動車速制御を実行する。実車速Vの制御に用いる動力関連値は、例えばエンジン12の出力トルクであるエンジントルクTe、タービントルクTtと同意の無段変速機構24への入力トルクであるベルト部入力トルクTb、車軸40におけるトルクであるドライブシャフトトルクTds、駆動輪14におけるトルクである駆動トルクTw、又は、駆動トルクTwと同意の駆動力Fwなどの操作量である。実車速Vの制御に用いる動力関連値は、エンジン12の動力の伝達過程の物理量である。自動車速制御は、例えば運転者により設定された目標車速Vtgtへ車速Vを追従させるように駆動力Fwを制御する公知のクルーズコントロールである。又は、自動車速制御は、例えば車速Vが運転者により設定された目標車速Vtgtを超えないように駆動力Fwを制御する公知の自動車速制限制御(ASL;Adjustable Speed Limiter)である。
図10は、自動車速制御に関連する制御作動を説明するブロック図である。図10のブロックB11において、自動車速制御部96は、運転者により設定された目標車速Vtgtに実車速Vを一致させる為の、自動車速制御に用いる駆動力Fwの目標値である車速制御用の目標駆動力Fwtgtvを算出する。
図10のブロックB12において、エンジン制御部92は、車速制御用の目標駆動力Fwtgtvを実現する為の車速制御用の目標エンジントルクTetgtvを算出する。この際、目標駆動力Fwtgtvが目標エンジントルクTetgtvへ変換されるが、この変換では後述するブロックB14にて算出された車速制御用の目標変速比γcvttgtvが用いられる。
図10のブロックB13において、エンジン制御部92は、例えば前記エンジントルクマップを用いて、車速制御用の目標エンジントルクTetgtが得られる車速制御用の目標スロットル開度taptgtvを算出する。エンジン制御部92は、車速制御用の目標エンジントルクTetgtが得られるように、スロットル開度tapを車速制御用の目標スロットル開度taptgtvとする為のエンジン制御指令信号Se、及び噴射信号や点火時期信号などのエンジン制御指令信号Seをエンジン制御装置42へ出力する。
図10のブロックB14において、変速制御部94は、予め定められた関係である例えば車速制御用のCVT変速マップに車速制御用の目標駆動力Fwtgtv及び車速Vを適用することで車速制御用の目標プライマリ回転速度Npritgtvを算出する。変速制御部94は、車速制御用の目標プライマリ回転速度Npritgtvに基づいて、車速制御用の目標変速比γcvttgtv(=Npritgtv/Nsec)を算出する。
図10のブロックB15において、変速制御部94及び目標推力算出部95は、車両制御用の目標プライマリ圧Pintgtv及び車両制御用の目標セカンダリ圧Pouttgtvを算出する。変速制御部94は、車両制御用の目標プライマリ圧Pintgtv及び車両制御用の目標セカンダリ圧Pouttgtvが得られるように、プライマリ圧Pin及びセカンダリ圧Poutを各々調圧する為の油圧制御指令信号Scvtを油圧制御回路46へ出力する。このブロックB15では、前述した図5のブロック図で説明したCVT油圧制御と同様の制御作動が実行される。
図10のブロックB16において、エンジン制御装置42は、エンジン制御指令信号Seに従ってエンジントルクTeを変化させる。又、油圧制御回路46は、油圧制御指令信号Scvtに従ってプライマリ圧Pin及びセカンダリ圧Poutを各々調圧する。これによって、自動車速制御において実車速Vが制御される。
状態判定部98は、自動車速制御部96による自動車速制御で用いられた動力関連値に基づいて車両10が駆動状態であるか被駆動状態であるかを判定する。この判定では、前述した動力関連値のうちのベルト部入力トルクTbが用いられる。状態判定部98は、ベルト部入力トルクTbが第1所定判定閾値T1未満である場合には、車両10が被駆動状態であると判定する。状態判定部98は、ベルト部入力トルクTbが第2所定判定閾値T2以上である場合には、車両10が駆動状態であると判定する。状態判定部98は、ベルト部入力トルクTbが第1所定判定閾値T1以上且つ第2所定判定閾値T2未満である場合には、車両10が駆動状態であるか被駆動状態であるかの判定を切り替えない、すなわち前回の判定結果を保持する。
第1所定判定閾値T1は、車両10が駆動状態であるか被駆動状態であるかの判定に用いられる予め定められた閾値であって、駆動状態であるとの判定から被駆動状態であるとの判定への切替えに用いられる所定の判定閾値である。第2所定判定閾値T2は、被駆動状態であるとの判定から駆動状態であるとの判定への切替えに用いられる予め定められた閾値である。第2所定判定閾値T2は、第1所定判定閾値T1よりも大きな値である。このように、車両10が駆動状態であるか被駆動状態であるかの判定には、判定の切替えにおけるハンチングを抑制する為に、第1所定判定閾値T1と第2所定判定閾値T2との差によるヒステリシスが設けられている。本実施例では、第1所定判定閾値T1と第2所定判定閾値T2との差をヒステリシスThysと称する。第1所定判定閾値T1にヒステリシスThysが加えられた値が第2所定判定閾値T2(=T1+Thys)である。
変速制御部94は、状態判定部98により車両10が駆動状態であると判定された場合には、滑り限界推力算出用トルクTinとして、駆動時入力トルクTdrvを算出する。変速制御部94は、状態判定部98により車両10が被駆動状態であると判定された場合には、滑り限界推力算出用トルクTinとして、被駆動時入力トルクTdrvnを算出する。
ここで、セカンダリ目標推力Wouttgtとしては、セカンダリ側滑り限界推力Woutlmtとセカンダリ側変速制御推力Woutshとのうちの大きい方の推力が選択される。セカンダリ側変速制御推力Woutshは、セカンダリバランス推力Woutbl(=Winlmt×τin)に基づく値であり、プライマリ側滑り限界推力Winlmtに基づいて算出したセカンダリ推力Woutである。従って、目標推力算出部95は、推力比τinを用いて、プライマリ推力Winに基づいてセカンダリ目標推力Wouttgtを算出する。この推力比τinは、図6の推力比マップmap(τin)に示すように、被駆動状態の場合の方が駆動状態の場合と比べて大きな値が予め定められている。つまり、推力比τinは、被駆動状態の場合の方が駆動状態の場合と比べて、プライマリ推力Winとセカンダリ目標推力Wouttgtとの差を広げる値が予め定められている。目標推力算出部95は、被駆動状態である場合には、駆動状態である場合と比べて、セカンダリ目標推力Wouttgtを大きな値とする。
ところで、前述した自動車速制御では、実車速VをフィードバックしてエンジントルクTeを変化させているので、駆動状態と被駆動状態との境界周辺でエンジントルクTeの周期的な変化が生じ易くされる。そうすると、図5に示すようなCVT油圧制御では、駆動状態と被駆動状態との切替えに伴うセカンダリ目標推力Wouttgtの変動が生じ易くされる。セカンダリ目標推力Wouttgtの変動によってセカンダリ圧Poutが変動させられる為、セカンダリ圧Poutの元圧を吐出するオイルポンプ44の負荷が変動させられる。これによって、オイルポンプ44を駆動するエンジン12の負荷が変動させられて、ベルト部入力トルクTbも変動させられる。又、無段変速機構24では、ベルト部入力トルクTbの変動によって駆動系の動力伝達効率等も変わる場合がある。その為、自動車速制御において、状況を的確に把握して車速制御用の目標駆動力Fwtgtvを実現することが難しくなって、車速Vの制御性が低下する可能性がある。
そこで、電子制御装置90は、自動車速制御の実行中には、車両10が駆動状態であるか被駆動状態であるかの判定におけるヒステリシスThysを大きくすることにより、駆動状態と被駆動状態との切替えに伴うセカンダリ目標推力Wouttgtの変動を生じ難くして車速Vの制御性を向上させる。
電子制御装置90は、上述した車速Vの制御性を向上させるという制御機能を実現する為に、更に、閾値設定手段すなわち閾値設定部99を備えている。
状態判定部98は、自動車速制御が実行中であるか否か、すなわち自動車速制御が作動中であるか否かを判定する。自動車速制御が作動中であるときは、例えば運転による目標駆動力Fwtgtではなく、自動車速制御における車速制御用の目標駆動力Fwtgtvが車両10の制御に反映されているときである。自動車速制御が作動中でないときは、例えば運転による目標駆動力Fwtgtが車両10の制御に反映されているときである。
閾値設定部99は、状態判定部98により自動車速制御が作動中であると判定された場合には、状態判定部98により自動車速制御が作動中でないと判定された場合と比べて、被駆動状態であると判定されるベルト部入力トルクTbの領域が広がるように、第1所定判定閾値T1と第2所定判定閾値T2との差であるヒステリシスThysを大きくする。具体的には、閾値設定部99は、自動車速制御が作動中であるときのヒステリシスThysである制御作動中ヒステリシスThys1を、自動車速制御が作動中でないときのヒステリシスThysである制御非作動中ヒステリシスThys2よりも大きな値とする。すなわち、閾値設定部99は、自動車速制御が作動中であるときの第2所定判定閾値T2(=T1+Thys1)を、自動車速制御が作動中でないときの第2所定判定閾値T2(=T1+Thys2)よりも大きな値とする。制御作動中ヒステリシスThys1が制御非作動中ヒステリシスThys2よりも被駆動状態と判定される領域が広がる側に設定されることで、自動車速制御の作動中は大きな推力比τinが設定され易くされてセカンダリ推力Woutが小さくされ難くされる。従って、自動車速制御の作動中は、駆動状態と被駆動状態との切替えに伴うセカンダリ推力Woutの変動が生じ難くされて車速Vの制御性が向上させられることに加えて、ベルトトルク容量Tcvtが確保され易くされてベルト滑りが防止又は抑制され易くされる。このセカンダリ推力Woutの変動は例えばセカンダリ推力Woutのハンチングである。
図11は、電子制御装置90の制御作動の要部すなわち自動車速制御が実行中である場合にベルト滑りを抑制又は防止しつつ車速Vの制御性を向上させる為の制御作動を説明するフローチャートであり、例えば走行中に繰り返し実行される。この図11のフローチャートは、図5のブロック図で説明したCVT油圧制御内のセカンダリ側の目標推力演算部に対応する制御作動に関連している。
図11において、先ず、状態判定部98の機能に対応するステップ(以下、ステップを省略する)S10において、自動車速制御が作動中であるか否かが判定される。このS10の判断が肯定される場合は閾値設定部99及び状態判定部98の機能に対応するS20において、ベルト部入力トルクTbに基づいて車両10が駆動状態であるか被駆動状態であるかが判定される。この判定におけるヒステリシスThysとして、制御非作動中ヒステリシスThys2よりも大きな値となる制御作動中ヒステリシスThys1が設定される。「Tb<第1所定判定閾値T1」である場合は車両10が被駆動状態であると判定される。「Tb≧第2所定判定閾値T2(=T1+Thys1)」である場合は車両10が駆動状態であると判定される。「T1≦Tb<T1+Thys1」である場合は前回の判定結果が保持される。一方で、上記S10の判断が否定される場合は閾値設定部99及び状態判定部98の機能に対応するS30において、ベルト部入力トルクTbに基づいて車両10が駆動状態であるか被駆動状態であるかが判定される。ヒステリシスThysとして制御非作動中ヒステリシスThys2が設定される。「Tb<T1」である場合は車両10が被駆動状態であると判定される。「Tb≧T2(=T1+Thys2)」である場合は車両10が駆動状態であると判定される。「T1≦Tb<T1+Thys2」である場合は前回の判定結果が保持される。上記S20に次いで、又は、上記S30に次いで、変速制御部94の機能に対応するS40において、滑り限界推力算出用トルクTinが設定される。車両10が駆動状態であると判定された場合は滑り限界推力算出用トルクTinが駆動時入力トルクTdrvとされる。車両10が被駆動状態であると判定された場合は滑り限界推力算出用トルクTinが被駆動時入力トルクTdrvnとされる。次いで、目標推力算出部95の機能に対応するS50において、図6に示すような推力比マップmap(τin)を用いて推力比τinが算出される。例えば、図6に示すように、車両10が駆動状態であると判定された場合は推力比τinが推力比τ1とされる。車両10が被駆動状態であると判定された場合は推力比τinが推力比τ2とされる。ベルト部入力トルクTb(>0)に基づいて算出すると本来は推力比τinが駆動領域の推力比τ1とされるが、車両10が被駆動状態であると判定された場合は例えばベルト部入力トルクTbを負値とみなした値に基づいて推力比τinが被駆動領域の推力比τ2とされる。推力比τ2は推力比τ1よりも大きな値であるので、被駆動状態であると判定され易くされることでベルトトルク容量Tcvtが確保され易くされる。次いで、目標推力算出部95の機能に対応するS60において、セカンダリ側滑り限界推力Woutlmtとセカンダリ側変速制御推力Woutshとのうちの大きい方の推力がセカンダリ目標推力Wouttgtとして選択される。
上述のように、本実施例によれば、自動車速制御が実行中である場合には、自動車速制御が実行中でない場合と比べて被駆動状態であると判定されるベルト部入力トルクTbの領域が広がるように、第1所定判定閾値T1と第2所定判定閾値T2との差であるヒステリシスThysが大きくされるので、自動車速制御の実行中は被駆動状態との判定と駆動状態との判定との切替えに伴うセカンダリ推力Woutの変動が生じ難くされる。これにより、自動車速制御の実行中において、車速Vの制御性が向上させられる。又、ヒステリシスThysは被駆動状態であると判定されるベルト部入力トルクTbの領域が広がる側に大きくされるので、駆動状態と比べてセカンダリ目標推力Wouttgtが大きな値とされる被駆動状態と判定され易くされる。これにより、セカンダリ推力Woutが不足することによるベルト滑りが生じ難くされる。よって、自動車速制御が実行中である場合に、ベルト滑りを抑制又は防止しつつ、車速Vの制御性を向上させることができる。
また、本実施例によれば、自動車速制御において変化させられる、実車速Vの制御に用いる動力関連値は、エンジントルクTe、ベルト部入力トルクTb、又は駆動トルクTwなどであるので、自動車速制御が適切に実行される。
また、本実施例によれば、無段変速機構24の目標変速比γcvttgtを実現する推力比τがベルト部入力トルクTbに基づいて算出され、又、推力比τinが用いられて、プライマリ推力Winに基づいてセカンダリ目標推力Wouttgtが算出されるので、ベルト部入力トルクTbに応じた、目標変速比γcvttgtが実現されるセカンダリ推力Woutが適切に得られる。又、推力比τinは、被駆動状態の場合の方が駆動状態の場合と比べて、プライマリ推力Winとセカンダリ目標推力Wouttgtとの差を広げる値が予め定められているので、被駆動状態である場合には駆動状態である場合と比べてセカンダリ目標推力Wouttgtが大きな値とされる。
また、本実施例によれば、セカンダリ目標推力Wouttgtを算出する基になるプライマリ推力Winは、プライマリ側滑り限界推力Winlmtであるので、ベルト滑りが抑制又は防止されるセカンダリ推力Woutが適切に得られる。
また、本実施例によれば、セカンダリ目標推力Wouttgtとして、セカンダリ側変速制御推力Woutshとセカンダリ側滑り限界推力Woutlmtとのうちの大きい方の推力が選択されるので、ベルト滑りが抑制又は防止されつつ目標変速比γcvttgtが実現されるセカンダリ推力Woutが適切に得られる。
また、本実施例によれば、セカンダリ目標推力Wouttgtに基づいてプライマリ目標推力Wintgtが算出されるので、ベルト滑りが抑制又は防止されつつ目標変速比γcvttgtが実現されるプライマリ推力Winが適切に得られる。又、セカンダリ推力Woutとプライマリ推力Winとが、各々、ベルト滑りの防止にとって過度に大きな値とされない。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例では、入力軸22と出力軸30との間に並列に設けられた、ギヤ機構28を介した第1動力伝達経路PT1と無段変速機構24を介した第2動力伝達経路PT2との複数の動力伝達経路が備えられた動力伝達装置16の、電子制御装置90に本発明を適用したが、この態様に限らない。例えば、動力源と駆動輪との間の動力伝達経路に無段変速機構24のようなベルト式の無段変速機を単独で備える車両用動力伝達装置の、制御装置にも本発明を適用することができる。要は、プライマリプーリとセカンダリプーリと前記各プーリの間に巻き掛けられた伝達要素とを有して動力源の動力を駆動輪側へ伝達する無段変速機構を備えた車両用動力伝達装置の、制御装置であれば本発明を適用することができる。
また、前述の実施例では、自動車速制御において変化させられる、実車速Vの制御に用いる動力関連値として、エンジントルクTeなどを例示したが、この態様に限らない。例えば、この動力関連値は、自動車速制御において車速Vを制御する為に変化させることが可能な、スロットル開度tapなどの操作量であっても良い。
また、前述の実施例において、自動車速制御部96による自動車速制御では、実車速VをフィードバックしてエンジントルクTeを変化させたが、この態様に限らない。例えば、車両10の加速度を制御して車速Vを制御することも可能であるので、実際の加速度を制御量としてフィードバックしてエンジントルクTeなどの操作量を変化させても良い。
また、前述の実施例では、車両10が駆動状態であるか被駆動状態であるかを判定するときに用いる動力関連値としてベルト部入力トルクTbを例示したが、この態様に限らない。例えば、この動力関連値は、エンジントルクTeやベルト部入力トルクTbなどに関連するアクセル操作量θaccなどであっても良い。
また、前述の実施例における図11のフローチャートにおいて、S20の前に、制御作動中ヒステリシスThys1又は第2所定判定閾値T2(=T1+Thys1)を設定し、S30の前に、制御非作動中ヒステリシスThys2又は第2所定判定閾値T2(=T1+Thys2)を設定しても良いなど、図11のフローチャートは適宜変更され得る。尚、S20及びS30の前に、S10の判断結果に応じたヒステリシスThys又は第2所定判定閾値T2を設定する場合には、S20及びS30は一つのステップとすることが可能である。
また、前述の実施例では、第2クラッチC2は、セカンダリプーリ64と出力軸30との間の動力伝達経路に設けられていたが、この態様に限らない。例えば、セカンダリ軸62が出力軸30と一体的に連結されると共に、プライマリ軸58は第2クラッチC2を介して入力軸22と連結されても良い。つまり、第2クラッチC2は、プライマリプーリ60と入力軸22との間の動力伝達経路に設けられていても良い。
また、前述の実施例では、ギヤ機構28は、無段変速機構24の最ロー側変速比γmaxよりもロー側の変速比となる1つのギヤ段が形成されるギヤ機構であったが、この態様に限らない。例えば、ギヤ機構28は、変速比が異なる複数のギヤ段が形成されるギヤ機構であっても良い。つまり、ギヤ機構28は2段以上に変速される有段変速機であっても良い。又は、ギヤ機構28は、無段変速機構24の最ハイ側変速比γminよりもハイ側の変速比、及び/又は、最ロー側変速比γmaxよりもロー側の変速比を形成するギヤ機構であっても良い。
また、前述の実施例では、動力伝達装置16の走行モードを、予め定められたアップシフト線及びダウンシフト線を用いて切り替えたが、この態様に限らない。例えば、車速V及びアクセル操作量θaccに基づいて目標駆動力Fwtgtを算出し、その目標駆動力Fwtgtを満たすことができる変速比を設定することで、動力伝達装置16の走行モードを切り替えても良い。
また、前述の実施例では、流体式伝動装置としてトルクコンバータ20が用いられたが、この態様に限らない。例えば、トルクコンバータ20に替えて、トルク増幅作用のないフルードカップリングなどの他の流体式伝動装置が用いられても良い。或いは、この流体式伝動装置は必ずしも設けられなくても良い。又、ギヤ機構28を介した第1動力伝達経路PT1には、噛合式クラッチD1が設けられていたが、この噛合式クラッチD1は本発明を実施する上では、必ずしも設けられなくても良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
12:エンジン(動力源)
14:駆動輪
16:車両用動力伝達装置
22:入力軸(入力回転部材)
24:無段変速機構
28:ギヤ機構
30:出力軸(出力回転部材)
60:プライマリプーリ
60c:油圧アクチュエータ
64:セカンダリプーリ
64c:油圧アクチュエータ
66:伝動ベルト(伝達要素)
90:電子制御装置(制御装置)
95:目標推力算出部
96:自動車速制御部
98:状態判定部
99:閾値設定部
PT1:第1動力伝達経路
PT2:第2動力伝達経路

Claims (7)

  1. プライマリプーリとセカンダリプーリと前記各プーリの間に巻き掛けられた伝達要素とを有して動力源の動力を駆動輪側へ伝達する無段変速機構を備えた車両用動力伝達装置の、制御装置であって、
    実際の車速を目標車速に一致させるように前記車速の制御に用いる動力関連値を変化させる自動車速制御を実行する自動車速制御部と、
    前記動力関連値に基づいて車両が駆動状態であるか被駆動状態であるかを判定する状態判定部と、
    前記被駆動状態である場合には、前記駆動状態である場合と比べて、前記プライマリプーリの油圧アクチュエータによって付与される前記伝達要素を挟圧する前記プライマリプーリの推力に基づいて算出する、前記セカンダリプーリの油圧アクチュエータによって付与される前記伝達要素を挟圧する前記セカンダリプーリの推力の目標値を、大きな値とする目標推力算出部と、
    前記自動車速制御が実行中である場合には、前記自動車速制御が実行中でない場合と比べて、前記被駆動状態であると判定される前記動力関連値の領域が広がるように、前記駆動状態であるとの判定から前記被駆動状態であるとの判定への切替えに用いられる第1所定判定閾値と前記被駆動状態であるとの判定から前記駆動状態であるとの判定への切替えに用いられる第2所定判定閾値との差を大きくする閾値設定部と
    を、含むことを特徴とする車両用動力伝達装置の制御装置。
  2. 前記動力関連値は、前記動力源の出力トルク、前記無段変速機構への入力トルク、又は前記駆動輪におけるトルクであることを特徴とする請求項1に記載の車両用動力伝達装置の制御装置。
  3. 前記目標推力算出部は、前記無段変速機構の目標変速比を実現する、前記プライマリプーリの推力と前記セカンダリプーリの推力との比である推力比を、前記無段変速機構への入力トルクに基づいて算出するものであり、
    前記目標推力算出部は、前記推力比を用いて、前記プライマリプーリの推力に基づいて前記セカンダリプーリの推力の目標値を算出するものであり、
    前記推力比は、前記被駆動状態の場合の方が前記駆動状態の場合と比べて、前記プライマリプーリの推力と前記セカンダリプーリの推力の目標値との差を広げる値が予め定められていることを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。
  4. 前記セカンダリプーリの推力の目標値を算出する基になる前記プライマリプーリの推力は、前記伝達要素の滑り防止の為に必要な前記プライマリプーリにおける滑り限界推力であることを特徴とする請求項1から3の何れか1項に記載の車両用動力伝達装置の制御装置。
  5. 前記目標推力算出部は、前記セカンダリプーリの推力の目標値として、前記プライマリプーリにおける滑り限界推力に基づいて算出した前記セカンダリプーリの推力と、前記伝達要素の滑り防止の為に必要な前記セカンダリプーリにおける滑り限界推力とのうちの大きい方の推力を選択することを特徴とする請求項4に記載の車両用動力伝達装置の制御装置。
  6. 前記目標推力算出部は、前記セカンダリプーリの推力の目標値に基づいて前記プライマリプーリの推力の目標値を算出することを特徴とする請求項5に記載の車両用動力伝達装置の制御装置。
  7. 前記車両用動力伝達装置は、前記動力源の前記動力が伝達される入力回転部材と前記駆動輪へ前記動力を出力する出力回転部材との間に並列に設けられた、前記動力を前記入力回転部材から前記出力回転部材へ各々伝達することが可能な複数の動力伝達経路を備えるものであり、
    前記複数の動力伝達経路は、ギヤ段を有するギヤ機構を介した第1動力伝達経路と、前記無段変速機構を介した第2動力伝達経路とを有していることを特徴とする請求項1から6の何れか1項に記載の車両用動力伝達装置の制御装置。
JP2017252414A 2017-12-27 2017-12-27 車両用動力伝達装置の制御装置 Active JP7040011B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017252414A JP7040011B2 (ja) 2017-12-27 2017-12-27 車両用動力伝達装置の制御装置
US16/232,562 US10704686B2 (en) 2017-12-27 2018-12-26 Control apparatus for vehicle drive-force transmitting apparatus
CN201811595712.7A CN109973644B (zh) 2017-12-27 2018-12-26 车辆用动力传递装置的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252414A JP7040011B2 (ja) 2017-12-27 2017-12-27 車両用動力伝達装置の制御装置

Publications (2)

Publication Number Publication Date
JP2019116960A JP2019116960A (ja) 2019-07-18
JP7040011B2 true JP7040011B2 (ja) 2022-03-23

Family

ID=66949532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252414A Active JP7040011B2 (ja) 2017-12-27 2017-12-27 車両用動力伝達装置の制御装置

Country Status (3)

Country Link
US (1) US10704686B2 (ja)
JP (1) JP7040011B2 (ja)
CN (1) CN109973644B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879196B2 (ja) * 2017-12-27 2021-06-02 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107006A (ja) 2008-10-31 2010-05-13 Toyota Motor Corp 車両の制御装置および制御方法
JP2016161023A (ja) 2015-02-27 2016-09-05 トヨタ自動車株式会社 車両の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2352991C (en) * 2000-07-24 2009-01-06 Honda Giken Kogyo Kabushiki Kaisha Shift control system for belt-type continuously variable transmission
JP4164057B2 (ja) * 2004-09-24 2008-10-08 ジヤトコ株式会社 ベルト式無段変速機
JP2006342837A (ja) * 2005-06-07 2006-12-21 Jatco Ltd ベルト式無段変速機を備えた車両の制御装置
JP2008020055A (ja) * 2006-06-15 2008-01-31 Toyota Motor Corp ベルト式無段変速機の制御装置
JP4525832B1 (ja) * 2009-04-15 2010-08-18 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP4847567B2 (ja) * 2009-08-26 2011-12-28 ジヤトコ株式会社 無段変速機及びその制御方法
CN103052832B (zh) * 2010-08-05 2015-08-05 丰田自动车株式会社 车辆用无级变速器的控制装置
US8914206B2 (en) * 2010-08-27 2014-12-16 Toyota Jidosha Kabushiki Kaisha Control device of continuously variable transmission for vehicle
JP5790173B2 (ja) * 2011-06-07 2015-10-07 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP2015034626A (ja) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 車両制御装置
CN106068410B (zh) * 2014-03-06 2018-01-05 本田技研工业株式会社 无级变速器的控制装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107006A (ja) 2008-10-31 2010-05-13 Toyota Motor Corp 車両の制御装置および制御方法
JP2016161023A (ja) 2015-02-27 2016-09-05 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
CN109973644A (zh) 2019-07-05
US20190195358A1 (en) 2019-06-27
CN109973644B (zh) 2020-11-03
US10704686B2 (en) 2020-07-07
JP2019116960A (ja) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7003653B2 (ja) 車両用動力伝達装置の制御装置
CN110388433B (zh) 车辆用动力传递装置的控制装置
JP6911711B2 (ja) 車両用動力伝達装置の制御装置
JP6992562B2 (ja) 車両用動力伝達装置の制御装置
JP6907960B2 (ja) 車両用動力伝達装置の制御装置
JP6879197B2 (ja) 車両用動力伝達装置の制御装置
JP7024473B2 (ja) 車両の制御装置
JP2019152295A (ja) 車両用動力伝達装置の制御装置
JP2019095013A (ja) 車両用動力伝達装置の制御装置
JP7040011B2 (ja) 車両用動力伝達装置の制御装置
JP6926973B2 (ja) 車両用動力伝達装置の制御装置
JP6984505B2 (ja) 車両用動力伝達装置の制御装置
JP6879196B2 (ja) 車両用動力伝達装置の制御装置
JP7139648B2 (ja) 車両用動力伝達装置の制御装置
JP6935763B2 (ja) 車両の制御装置
JP6859938B2 (ja) 変速機の制御装置
JP6958447B2 (ja) 無段変速機の制御装置
JP6947142B2 (ja) 車両用動力伝達装置の制御装置
JP6888536B2 (ja) 変速機の制御装置
JP6859941B2 (ja) 変速機の制御装置
JP6881291B2 (ja) 車両用動力伝達装置の制御装置
JP2019173769A (ja) 車両用動力伝達装置の制御装置
JP2019124229A (ja) 無段変速機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R151 Written notification of patent or utility model registration

Ref document number: 7040011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151