WO2012023470A1 - 無アルカリガラス - Google Patents

無アルカリガラス Download PDF

Info

Publication number
WO2012023470A1
WO2012023470A1 PCT/JP2011/068252 JP2011068252W WO2012023470A1 WO 2012023470 A1 WO2012023470 A1 WO 2012023470A1 JP 2011068252 W JP2011068252 W JP 2011068252W WO 2012023470 A1 WO2012023470 A1 WO 2012023470A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
glass
free glass
temperature
content
Prior art date
Application number
PCT/JP2011/068252
Other languages
English (en)
French (fr)
Inventor
貴弘 川口
三和 晋吉
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to EP11818112.2A priority Critical patent/EP2607326B1/en
Priority to CN201180039911.XA priority patent/CN103068758B/zh
Priority to US13/817,196 priority patent/US9023744B2/en
Priority to KR1020137004364A priority patent/KR101779033B1/ko
Publication of WO2012023470A1 publication Critical patent/WO2012023470A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an alkali-free glass, and more particularly to an alkali-free glass suitable for an organic EL display.
  • Organic EL displays are thin and excellent in moving picture display and have low power consumption. Therefore, they are used for applications such as mobile phone displays.
  • Glass plates are widely used as substrates for organic EL displays.
  • the glass plate for this application is mainly required to have the following characteristics. (1) In order to prevent a situation in which alkali ions are diffused into the semiconductor material formed in the heat treatment step, substantially no alkali metal oxide is contained. (2) It is excellent in productivity to reduce the cost of the glass plate. Excellent devitrification resistance and meltability. (3) In the manufacturing process of p-Si • TFT, the strain point is high in order to reduce thermal shrinkage.
  • the strain point is a characteristic that becomes an index of heat resistance. As the strain point is higher, thermal shrinkage is less likely to occur in the manufacturing process of the p-Si • TFT.
  • Patent Document 1 discloses a glass plate having a high strain point.
  • the organic EL display is composed of two glass plates, a negative electrode such as metal, an organic light emitting layer, a positive electrode such as ITO, a sealing material, and the like.
  • an organic resin such as an epoxy resin has been used as a sealing material.
  • an organic resin material has a problem of causing deterioration of an organic light emitting layer because it has a low oxygen and moisture barrier property (gas barrier property). It was. For this reason, the research which raises the airtightness inside a display using a glass sealing material is actively performed, and has already been put into practical use in some organic EL displays.
  • the thermal expansion coefficient tends to be higher, and the thermal expansion coefficient is usually 60 to 80 ⁇ 10 ⁇ 7 / ° C.
  • the higher the strain point the lower the thermal expansion coefficient of the glass plate.
  • the thermal expansion coefficient is less than 40 ⁇ 10 ⁇ 7 / ° C. (see Patent Document 1).
  • the glass plate for organic EL display is required to have a thermal expansion coefficient that matches the thermal expansion coefficient of the glass sealing material.
  • the present invention is excellent in productivity (especially devitrification resistance), and matches the thermal expansion coefficient of the glass sealing material, and by creating an alkali-free glass having a high strain point, the production cost of the glass plate
  • the technical problem is to secure the airtightness inside the organic EL display while reducing the cost of the glass plate and to reduce the thermal shrinkage of the glass plate in the manufacturing process of the p-Si • TFT.
  • the present inventor has found that the above technical problem can be solved by strictly regulating the glass characteristics of the alkali-free glass, and proposes as the present invention. That is, the alkali-free glass of the present invention contains substantially no alkali metal oxide, has a strain point higher than 680 ° C., and has an average coefficient of thermal expansion of 40 to 60 ⁇ 10 ⁇ 7 in a temperature range of 30 to 380 ° C. The liquid phase temperature is lower than 1220 ° C.
  • substantially no alkali metal oxide means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) in the glass composition is 1000 ppm (mass) or less. Refers to the case.
  • the strain point refers to a value measured based on the method of ASTM C336.
  • the “average thermal expansion coefficient in the temperature range of 30 to 380 ° C.” can be measured with a dilatometer or the like.
  • “Liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat, and then holding it in a temperature gradient furnace for 24 hours to precipitate crystals. It can be calculated by measuring the temperature.
  • the alkali-free glass of the present invention has a glass composition of SiO 2 55 to 70%, Al 2 O 3 10 to 20%, B 2 O 3 0.1 to 4.5%, MgO as a glass composition. It contains 0 to 1%, CaO 5 to 15%, SrO 0.5 to 5% and BaO 5 to 15%.
  • the alkali-free glass of the present invention is characterized in that the molar ratio SiO 2 / Al 2 O 3 is 4.5 to 8.
  • the alkali-free glass of the present invention is characterized in that the molar ratio CaO / BaO is 0.5 to 10.
  • the alkali-free glass of the present invention is characterized by further containing 0.001 to 1% by mass of SnO.
  • the alkali-free glass of the present invention is characterized in that the temperature at 10 2.5 poise is 1660 ° C. or lower.
  • the “temperature at 10 2.5 poise” can be measured by the platinum ball pulling method.
  • the alkali-free glass of the present invention is characterized by having a viscosity at a liquidus temperature of 10 4.8 poise or more.
  • the “viscosity at the liquidus temperature” can be measured by a platinum ball pulling method.
  • the alkali-free glass of the present invention is characterized by being formed by an overflow downdraw method.
  • the alkali-free glass of the present invention is characterized by being used for an organic EL device, particularly an organic EL display.
  • the alkali-free glass according to the embodiment of the present invention contains substantially no alkali metal oxide, has a strain point higher than 680 ° C., and an average coefficient of thermal expansion in the temperature range of 30 to 380 ° C. of 40 to 60 ⁇ 10. -7 / ° C and the liquidus temperature is lower than 1220 ° C.
  • the reason for limiting the glass properties in this way is shown below.
  • the strain point is higher than 680 ° C., preferably 690 ° C. or higher, more preferably 700 ° C. or higher, and further preferably 710 ° C. or higher. In this way, thermal contraction of the glass substrate can be suppressed in the manufacturing process of the p-Si • TFT.
  • the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. is 40 to 60 ⁇ 10 ⁇ 7 / ° C., preferably 40 to 55 ⁇ 10 ⁇ 7 / ° C. (however, 40 ⁇ 10 ⁇ 7 / ° C.), more preferably 40 to 50 ⁇ 10 ⁇ 7 / ° C., still more preferably 40 to 48 ⁇ 10 ⁇ 7 / ° C., particularly preferably 42 to 48 ⁇ 10 ⁇ 7 / ° C., most preferably It is preferably 42 to 46 ⁇ 10 ⁇ 7 / ° C. In this way, it becomes easy to match the thermal expansion coefficient of the glass sealing material.
  • the metal member (electrode or the like) is higher than the thermal expansion coefficient of the glass plate in the same manner as the glass sealing material. Therefore, from the viewpoint of preventing peeling of the metal member, it is significant to regulate the average thermal expansion coefficient in the temperature range of 30 to 380 ° C. within the above range.
  • the liquidus temperature is less than 1220 ° C., preferably 1200 ° C. or less, more preferably 1190 ° C. or less, and further preferably 1180 ° C. or less. If it does in this way, it will become easy to prevent the situation where devitrification crystal occurs at the time of glass manufacture, and productivity falls. Furthermore, since it becomes easy to shape
  • the liquidus temperature is an index of devitrification resistance. The lower the liquidus temperature, the better the devitrification resistance.
  • the temperature at 10 2.5 poise is preferably 1660 ° C. or lower, 1650 ° C. or lower, particularly 1640 ° C. or lower.
  • the temperature at 10 2.5 poise increases, glass melting becomes difficult and the production cost of the glass plate increases.
  • the temperature at 10 2.5 poise corresponds to the melting temperature, and the lower this temperature, the better the meltability.
  • the viscosity is 10 4.8 poise or more at the liquidus temperature, 10 5.0 poise or more, 10 5.2 poise or higher, particularly preferably at least 10 5.5 poise.
  • the liquid phase viscosity is an index of moldability. The higher the liquid phase viscosity, the better the moldability.
  • the alkali-free glass of the present embodiment has a glass composition in terms of mass%, SiO 2 55 to 70%, Al 2 O 3 10 to 20%, B 2 O 3 0.1 to 4.5%, MgO 0 to 1. %, CaO 5-15%, SrO 0.5-5%, BaO 5-15%.
  • % display represents the mass%.
  • SiO 2 is a component that forms a glass skeleton.
  • the SiO 2 content is preferably 55 to 70%, 55 to 68%, particularly 58 to 65%.
  • the content of SiO 2 is less than 55%, it is difficult to increase the strain point. In addition, the acid resistance decreases and the density becomes too high.
  • the content of SiO 2 is more than 70%, the high-temperature viscosity is increased and the meltability is lowered, and devitrification crystals such as cristobalite are liable to precipitate, and the liquidus temperature is increased.
  • Al 2 O 3 is a component that forms a glass skeleton, a component that increases the strain point, and a component that further suppresses phase separation.
  • the content of Al 2 O 3 is preferably 10 to 20%, 12 to 20%, particularly preferably 14 to 20%.
  • the content of Al 2 O 3 is less than 10%, the strain point is lowered and the glass is easily phase separated.
  • the content of Al 2 O 3 is more than 20%, devitrification crystals such as mullite and anorthite are liable to precipitate, and the liquidus temperature becomes high.
  • the molar ratio SiO 2 / Al 2 O 3 is an important component ratio in order to achieve both a high strain point and high devitrification resistance. As described above, both components have an effect of increasing the strain point. However, when the amount of SiO 2 is relatively increased, devitrification crystals such as cristobalite are likely to precipitate. On the other hand, when the amount of Al 2 O 3 is relatively large, alkaline earth aluminosilicate devitrified crystals such as mullite and anorthite are likely to precipitate. Therefore, the molar ratio SiO 2 / Al 2 O 3 is preferably 4.5 to 8, 4.5 to 7, 5.5 to 7, particularly 6 to 7.
  • B 2 O 3 is a component that enhances meltability and increases devitrification resistance.
  • the content of B 2 O 3 is preferably 0.1 to 4.5%, 0.1 to 4%, 0.1 to 3.5%, particularly preferably 0.1 to 3%.
  • BHF resistance buffered hydrofluoric acid resistance
  • MgO is a component that lowers the high temperature viscosity and increases the meltability.
  • the MgO content is preferably 0 to 1%, 0 to 0.8%, 0.1 to 0.8%, particularly preferably 0.1 to 0.5%. If the content of MgO is more than 1%, the devitrification resistance tends to be lowered, and the thermal expansion coefficient becomes too low, and the difference in thermal expansion coefficient from the glass sealing material becomes too large.
  • CaO is a component that lowers the high-temperature viscosity without significantly lowering the strain point and remarkably increases the meltability, and also effectively increases the thermal expansion coefficient.
  • CaO is a component that lowers the raw material cost because the introduced raw material is relatively inexpensive among alkaline earth metal oxides.
  • the CaO content is preferably 5 to 15%, 5 to 12%, 5 to 10%, particularly preferably 5 to 8%. When the content of CaO is less than 5%, it is difficult to enjoy the above effect. On the other hand, if the content of CaO is more than 15%, the glass tends to devitrify and the thermal expansion coefficient becomes too high.
  • SrO is a component that suppresses phase separation and increases devitrification resistance. Furthermore, it is a component that lowers the high-temperature viscosity without increasing the strain point and increases the meltability, and also suppresses the rise in the liquidus temperature.
  • the SrO content is preferably 0.5 to 5%, 0.5 to 4%, particularly preferably 0.5 to 3.5%. When the content of SrO is less than 0.5%, it is difficult to enjoy the effect of suppressing phase separation and the effect of improving devitrification resistance. On the other hand, when the SrO content is more than 5%, strontium silicate devitrification crystals are likely to precipitate, and devitrification resistance is likely to be lowered.
  • BaO is a component that remarkably increases devitrification resistance among alkaline earth metal oxides.
  • the BaO content is preferably 5 to 15%, 5 to 14%, 5 to 13%, and particularly preferably 5 to 12%.
  • the content of BaO is less than 5%, the liquidus temperature becomes high and the devitrification resistance decreases.
  • the content of BaO is more than 15%, the high-temperature viscosity becomes too high, and the meltability is lowered.
  • devitrified crystals containing BaO are liable to precipitate and the liquidus temperature is increased.
  • the molar ratio CaO / BaO is an important component ratio in order to achieve both a high strain point and high devitrification resistance and to reduce the manufacturing cost of the glass plate.
  • the molar ratio CaO / BaO is preferably 0.5 to 10, 1 to 9, 1.5 to 8, 1.5 to 7, and particularly preferably 1.8 to 6.
  • the molar ratio CaO / BaO is smaller than 0.5, in addition to the high temperature viscosity becoming too high, the raw material cost is likely to rise.
  • the molar ratio CaO / BaO is larger than 10, the liquidus temperature becomes high, devitrification resistance is lowered, and as a result, it becomes difficult to form a glass plate.
  • the following components may be added.
  • the content of the other components other than the above components is preferably 10% or less, particularly 5% or less in total, from the viewpoint of accurately enjoying the effects of the present embodiment.
  • SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity.
  • the SnO 2 content is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, particularly preferably 0.05 to 0.3%. If the content of SnO 2 is more than 1%, SnO 2 devitrified crystals are likely to precipitate. Incidentally, when the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the above-mentioned effects.
  • SnO 2 is suitable as a fining agent, but as long as the glass properties are not impaired, as a fining agent, 5% of metal powder such as F 2 , Cl 2 , SO 3 , C, Al or Si is used. Can be added. Further, as a fining agent, also CeO 2 or the like may be added up to 5%.
  • As 2 O 3 and Sb 2 O 3 are also effective as fining agents.
  • the alkali-free glass of this embodiment does not completely exclude the inclusion of these components, but it is preferable not to use these components as much as possible from an environmental viewpoint.
  • As 2 O 3 tends to decrease solarization when contained in a large amount in the glass, its content is preferably 1% or less, 0.5% or less, particularly preferably 0.1% or less. It is desirable not to contain it.
  • “substantially does not contain As 2 O 3 ” refers to the case where the content of As 2 O 3 in the glass composition is less than 0.05%.
  • the content of Sb 2 O 3 is preferably 2% or less, 1% or less, and particularly preferably 0.5% or less, and it is desirable not to contain it substantially.
  • “substantially does not contain Sb 2 O 3 ” refers to a case where the content of Sb 2 O 3 in the glass composition is less than 0.05%.
  • Cl has an effect of promoting the melting of the alkali-free glass. For this reason, if Cl is added, the melting temperature can be lowered and the action of the clarifying agent can be promoted. As a result, it is possible to extend the life of the glass manufacturing kiln while reducing the melting cost. However, if the content of Cl is too large, the strain point decreases, so the Cl content is preferably 3% or less, 1% or less, and particularly preferably 0.5% or less.
  • a raw material for introducing Cl a raw material such as an alkaline earth metal oxide chloride such as strontium chloride or aluminum chloride can be used as a raw material for introducing Cl.
  • ZnO is a component that enhances the meltability. However, if ZnO is contained in a large amount, the glass tends to devitrify and the strain point tends to decrease.
  • the content of ZnO is preferably 0 to 5%, 0 to 3%, 0 to 0.5%, particularly preferably 0 to 0.3%, and is desirably substantially not contained.
  • substantially does not contain ZnO refers to a case where the content of ZnO in the glass composition is 0.2% or less.
  • P 2 O 5 is a component that increases the strain point. However, if P 2 O 5 is contained in a large amount, the glass is likely to undergo phase separation.
  • the content of P 2 O 5 is preferably 0 to 1.5%, 0 to 1.2%, particularly preferably 0 to 1%.
  • TiO 2 is a component that lowers the viscosity at high temperature and increases the meltability, and is a component that suppresses solarization. However, if a large amount of TiO 2 is contained, the glass is colored and the transmittance tends to decrease. .
  • the content of TiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, particularly preferably 0 to 0.02%.
  • Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, if the content of these components is more than 5%, the density tends to increase.
  • the alkali-free glass of this embodiment is preferably formed by the overflow down draw method.
  • the overflow down draw method molten glass overflows from both sides of a heat-resistant bowl-shaped structure, and the molten glass overflows and joins at the lower end of the bowl-shaped structure to produce a glass plate by drawing downward. Is the method.
  • the surface to be the surface of the glass plate is not in contact with the bowl-shaped refractory and is molded in a free surface state. For this reason, the glass plate which is unpolished and has a good surface quality can be manufactured at low cost.
  • the structure and material of the bowl-shaped structure used in the overflow downdraw method are not particularly limited as long as desired dimensions and surface accuracy can be realized.
  • the method of applying a force when performing downward stretch molding is not particularly limited.
  • a method of rotating and stretching a heat-resistant roll having a sufficiently large width in contact with the glass plate may be adopted, or a plurality of pairs of heat-resistant rolls may be used only in the vicinity of the end face of the glass plate. You may employ
  • a glass plate can be formed by, for example, a downdraw method (slot down method, etc.), a float method, or the like.
  • the alkali-free glass of this embodiment is preferably used for an organic EL device, particularly an organic EL display.
  • a panel manufacturer of an organic EL display manufactures a plurality of devices on a large glass plate formed by a glass manufacturer, and then cuts and cuts each device in order to reduce costs (so-called multi-surface processing). ).
  • multi-surface processing the devices themselves are becoming larger, and a large glass plate is required in order to obtain a large number of these devices. Since the alkali-free glass of the present embodiment has a low liquidus temperature and a high liquidus viscosity, it can easily form a large glass substrate and satisfy such a requirement.
  • Tables 1 and 2 show examples of the alkali-free glass of the present invention (sample Nos. 1 to 11) and comparative examples (samples No. 12 to 16).
  • a glass batch in which glass raw materials were prepared so as to have the glass composition shown in the table was placed in a platinum crucible and melted at 1600 to 1650 ° C. for 24 hours.
  • the mixture was stirred and homogenized using a platinum stirrer.
  • the molten glass was poured out onto a carbon plate, formed into a plate shape, and then gradually cooled at a temperature near the annealing point for 30 minutes.
  • the density is a value measured by the well-known Archimedes method.
  • the average coefficient of thermal expansion CTE in the temperature range of 30 to 380 ° C. is a value measured with a dilatometer.
  • strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on the method of ASTM C336.
  • the temperatures at high temperature viscosities of 10 4 dPa ⁇ s, 10 3 dPa ⁇ s, and 10 2.5 dPa ⁇ s are values measured by the platinum ball pulling method.
  • the liquid phase temperature TL passes through a standard sieve 30 mesh (500 ⁇ m), puts the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat, and holds it in a temperature gradient furnace for 24 hours to determine the temperature at which crystals precipitate. It is a measured value.
  • the liquidus viscosity log 10 ⁇ TL is a value obtained by measuring the viscosity of the glass at the liquidus temperature TL by the platinum ball pulling method.
  • Sample No. Nos. 1 to 11 do not contain an alkali metal oxide, have an average coefficient of thermal expansion CTE of 40 to 60 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 30 to 380 ° C., a strain point higher than 680 ° C., and a liquidus temperature. It was 1220 ° C. or lower. Therefore, sample no. Nos. 1 to 11 are considered to be suitably usable as substrates for organic EL displays.
  • sample No. Nos. 12 to 14 are inferior in moldability because of high liquidus temperature and low devitrification resistance.
  • Sample No. No. 15 has a low thermal expansion coefficient, and it is difficult to match the thermal expansion coefficient of the glass sealing material.
  • the alkali-free glass of the present invention is a cover glass for an image sensor such as a flat panel display substrate such as a liquid crystal display and an EL display, and a charge coupled device (CCD) and an equal magnification proximity solid-state imaging device (CIS). It can be suitably used for a substrate, a cover glass, a substrate for organic EL lighting, and the like, and can be particularly suitably used as a substrate for an organic EL display.
  • a cover glass for an image sensor such as a flat panel display substrate such as a liquid crystal display and an EL display, and a charge coupled device (CCD) and an equal magnification proximity solid-state imaging device (CIS).
  • CCD charge coupled device
  • CIS equal magnification proximity solid-state imaging device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の無アルカリガラスは、実質的にアルカリ金属酸化物を含有せず、歪点が680℃より高く、30~380℃の温度範囲における平均熱膨張係数が40~55×10-7/℃であり、液相温度が1200℃より低いことを特徴とする。また、本発明の無アルカリガラスは、ガラス組成として、質量%で、SiO 55~70%、Al 10~20%、B 0.1~4.5%、MgO 0~1%、CaO 5~15%、SrO 0.5~5%、BaO 5~15%を含有することを特徴とする。

Description

無アルカリガラス
 本発明は、無アルカリガラスに関し、特に有機ELディスプレイに好適な無アルカリガラスに関する。
 有機ELディスプレイ等の電子デバイスは、薄型で動画表示に優れ、消費電力も少ないことから、携帯電話のディスプレイ等の用途に使用されている。
 有機ELディスプレイの基板として、ガラス板が広く使用されている。この用途のガラス板には、主に以下の特性が要求される。
(1)熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を防止するため、実質的にアルカリ金属酸化物を含有しないこと。
(2)ガラス板を低廉化するため、生産性に優れること。特に耐失透性や溶融性に優れること。
(3)p-Si・TFTの製造工程において、熱収縮を低減するため、歪点が高いこと。
 (3)について詳述する。p-Si・TFTの製造工程には400~600℃の熱処理工程が存在し、この熱処理工程でガラス板に熱収縮と呼ばれる微小な寸法変化が生じる。熱収縮が大きいと、TFTの画素ピッチにズレが生じ、表示不良の原因となる。ディスプレイの高精細化に伴い、数ppm程度の寸法収縮でも表示不良となるおそれがあり、低熱収縮のガラス板が要求されている。なお、ガラス板が受ける熱処理温度が高い程、寸法収縮が大きくなる。
 ガラス板の熱収縮を低減する方法として、ガラス板を成形した後、徐冷点付近でアニール処理を行う方法がある。しかし、アニール処理は長時間を要するため、ガラス板の製造コストが高騰してしまう。
 他の方法として、ガラス板の歪点を高くする方法がある。歪点は、耐熱性の指標になる特性である。歪点が高い程、p-Si・TFTの製造工程で熱収縮が生じ難くなる。例えば、特許文献1には、高歪点のガラス板が開示されている。
特表2009-525942号公報
 ところで、有機ELディスプレイは、2枚のガラス板、金属等の陰電極、有機発光層、ITO等の陽電極、封止材等で構成される。
 従来、封止材としてエポキシ樹脂等の有機樹脂が使用されてきたが、有機樹脂系材料は、酸素や水分の遮断性(ガスバリア性)が低いため、有機発光層の劣化を惹起する問題があった。このため、ガラス封止材を用いて、ディスプレイ内部の気密性の高める研究が盛んに行われており、既に一部の有機ELディスプレイにおいて実用化されている。
 ガラス封止材は、低融点である程、熱膨張係数が高くなる傾向にあり、通常、その熱膨張係数は60~80×10-7/℃である。一方、ガラス板は、高歪点である程、熱膨張係数が低くなる傾向にあり、通常、その熱膨張係数は40×10-7/℃未満である(特許文献1参照)。上記の通り、現状、ガラス封止材とガラス板の熱膨張係数差が大きい状態になっている。このため、有機ELディスプレイ用ガラス板には、上記の(1)~(3)に加えて、熱膨張係数がガラス封止材の熱膨張係数に整合していることが要求される。ガラス封止材とガラス板の熱膨張係数差が大きいと、封止部分にかかる応力が大きくなって、封止部分が応力破壊し易くなり、ディスプレイ内部の気密性を確保し難くなる。この応力破壊を抑制するために、ガラス封止材に多量の低膨張フィラーを添加する方法もある。しかし、低膨張フィラーを過剰に添加すると、ガラス封止材の流動性が低下して、封止不良が発生し易くなる。この結果、ディスプレイ内部の気密性を確保し難くなる。よって、ガラス板の歪点を高めつつ、ガラス封止材の熱膨張係数に整合させて、ディスプレイ内部の気密性を確保することは困難であった。
 そこで、本発明は、生産性(特に耐失透性)に優れると共に、ガラス封止材の熱膨張係数に整合し、しかも歪点が高い無アルカリガラスを創案することにより、ガラス板の製造コストを低廉化しつつ、有機ELディスプレイ内部の気密性を確保し、且つp-Si・TFTの製造工程におけるガラス板の熱収縮を低減することを技術的課題とする。
 本発明者は、種々の実験を繰り返した結果、無アルカリガラスのガラス特性を厳密に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の無アルカリガラスは、実質的にアルカリ金属酸化物を含有せず、歪点が680℃より高く、30~380℃の温度範囲における平均熱膨張係数が40~60×10-7/℃であり、液相温度が1220℃より低いことを特徴とする。ここで、「実質的にアルカリ金属酸化物を含有せず」とは、ガラス組成中のアルカリ金属酸化物(LiO、NaO、KO)の含有量が1000ppm(質量)以下の場合を指す。歪点は、ASTM C336の方法に基づいて測定した値を指す。なお、「30~380℃の温度範囲における平均熱膨張係数」は、ディラトメーター等で測定可能である。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶の析出する温度を測定することにより算出可能である。
 第二に、本発明の無アルカリガラスは、ガラス組成として、質量%で、SiO 55~70%、Al 10~20%、B 0.1~4.5%、MgO 0~1%、CaO 5~15%、SrO 0.5~5%、BaO 5~15%を含有することを特徴とする。
 第三に、本発明の無アルカリガラスは、モル比SiO/Alが4.5~8であることを特徴とする。
 第四に、本発明の無アルカリガラスは、モル比CaO/BaOが0.5~10であることを特徴とする。
 第五に、本発明の無アルカリガラスは、更に、SnOを0.001~1質量%含むことを特徴とする。
 第六に、本発明の無アルカリガラスは、102.5ポアズにおける温度が1660℃以下であることを特徴とする。なお、「102.5ポアズにおける温度」は、白金球引き上げ法で測定可能である。
 第七に、本発明の無アルカリガラスは、液相温度における粘度が104.8ポアズ以上であることを特徴とする。なお、「液相温度における粘度」は、白金球引き上げ法で測定可能である。
 第八に、本発明の無アルカリガラスは、オーバーフローダウンドロー法で成形されてなることを特徴とする。
 第九に、本発明の無アルカリガラスは、有機ELデバイス、特に有機ELディスプレイに用いることを特徴とする。
 本発明の実施形態に係る無アルカリガラスは、実質的にアルカリ金属酸化物を含有せず、歪点が680℃より高く、30~380℃の温度範囲における平均熱膨張係数が40~60×10-7/℃であり、液相温度が1220℃より低い。このようにガラス特性を限定した理由を以下に示す。
 本実施形態の無アルカリガラスにおいて、歪点は680℃超であり、好ましくは690℃以上、より好ましくは700℃以上、更に好ましくは710℃以上である。このようにすれば、p-Si・TFTの製造工程において、ガラス基板の熱収縮を抑制することができる。
 本実施形態の無アルカリガラスにおいて、30~380℃の温度範囲における平均熱膨張係数は40~60×10-7/℃であり、好ましくは40~55×10-7/℃(但し、40×10-7/℃を含まず)、より好ましくは40~50×10-7/℃、更に好ましくは40~48×10-7/℃、特に好ましくは42~48×10-7/℃、最も好ましくは42~46×10-7/℃である。このようにすれば、ガラス封止材の熱膨張係数に整合し易くなる。このため、封止部分の応力破壊を抑制できると共に、パネル製造工程における急加熱や急冷等の熱衝撃に耐えることも可能になり、パネル製造のスループットを高めることができる。一方、30~380℃の温度範囲における平均熱膨張係数が40×10-7/℃より低いと、ガラス封止材の熱膨張係数に整合し難くなるため、封止部分で応力破壊が発生し易くなる。また、30~380℃の温度範囲における平均熱膨張係数が60×10-7/℃より高いと、耐熱衝撃性が低くなり、パネル製造工程のスループットが低下するおそれがある。なお、有機ELディスプレイにおいて、金属部材(電極等)は、ガラス封着材の場合と同様にして、ガラス板の熱膨張係数より高い。よって、金属部材の剥離を防止する観点からも、30~380℃の温度範囲における平均熱膨張係数を上記範囲に規制する意義は大きい。
 本実施形態の無アルカリガラスにおいて、液相温度は1220℃未満、好ましくは1200℃以下、より好ましくは1190℃以下、更に好ましくは1180℃以下である。このようにすれば、ガラス製造時に失透結晶が発生して、生産性が低下する事態を防止し易くなる。更に、オーバーフローダウンドロー法で成形し易くなるため、ガラス板の表面品位を高めることが可能になると共に、ガラス板の製造コストを低廉化することができる。なお、液相温度は、耐失透性の指標であり、液相温度が低い程、耐失透性に優れる。
 本実施形態の無アルカリガラスにおいて、102.5ポアズにおける温度は1660℃以下、1650℃以下、特に1640℃以下が好ましい。102.5ポアズにおける温度が高くなると、ガラス溶解が困難になり、ガラス板の製造コストが高騰する。なお、102.5ポアズにおける温度は、溶融温度に相当し、この温度が低い程、溶融性に優れる。
 本実施形態の無アルカリガラスにおいて、液相温度における粘度は104.8ポアズ以上、105.0ポアズ以上、105.2ポアズ以上、特に105.5ポアズ以上が好ましい。このようにすれば、成形時に失透が生じ難くなるため、オーバーフローダウンドロー法でガラス板を成形し易くなる。この結果、ガラス板の表面品位を高めることが可能になり、またガラス板の製造コストを低廉化することができる。なお、液相粘度は成形性の指標であり、液相粘度が高い程、成形性に優れる。
 本実施形態の無アルカリガラスは、ガラス組成として、質量%で、SiO 55~70%、Al 10~20%、B 0.1~4.5%、MgO 0~1%、CaO 5~15%、SrO 0.5~5%、BaO 5~15%を含有することが好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は質量%を表す。
 SiOは、ガラスの骨格を形成する成分である。SiOの含有量は55~70%、55~68%、特に58~65%が好ましい。SiOの含有量が55%より少ないと、歪点を高めることが困難となる。また、耐酸性が低下すると共に、密度が高くなり過ぎる。一方、SiOの含有量が70%より多いと、高温粘度が高くなり、溶融性が低下することに加えて、クリストバライト等の失透結晶が析出し易くなり、液相温度が高くなる。
 Alは、ガラスの骨格を形成する成分であり、また歪点を高める成分であり、更に分相を抑制する成分である。Alの含有量は10~20%、12~20%、特に14~20%が好ましい。Alの含有量が10%より少ないと、歪点が低下し、またガラスが分相し易くなる。一方、Alの含有量が20%より多いと、ムライトやアノーサイト等の失透結晶が析出し易くなり、液相温度が高くなる。
 モル比SiO/Alは、高歪点と高い耐失透性を両立するために重要な成分比率である。上記の通り、両成分とも歪点を高める効果があるが、相対的にSiOの量が多くなると、クリストバライト等の失透結晶が析出し易くなる。一方、相対的にAlの量が多くなると、ムライトやアノーサイト等のアルカリ土類アルミノシリケート系の失透結晶が析出し易くなる。このため、モル比SiO/Alは4.5~8、4.5~7、5.5~7、特に6~7が好ましい。
 Bは、溶融性を高めると共に、耐失透性を高める成分である。Bの含有量は0.1~4.5%、0.1~4%、0.1~3.5%、特に0.1~3%が好ましい。Bの含有量が0.1%より少ないと、失透を抑制する効果が小さくなり、また液相温度が高くなる。更に、融剤としての働きが不十分となることに加えて、耐バッファードフッ酸性(耐BHF性)が低下する。一方、Bの含有量が4.5%より多いと、歪点が低下すると共に、耐酸性が低下する。
 MgOは、高温粘性を下げて、溶融性を高める成分である。MgOの含有量は0~1%、0~0.8%、0.1~0.8%、特に0.1~0.5%が好ましい。MgOの含有量が1%より多いと、耐失透性が低下し易くなることに加えて、熱膨張係数が低くなり過ぎて、ガラス封止材との熱膨張係数差が大きくなり過ぎる。
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分であると共に、熱膨張係数を効果的に高める成分である。また、CaOは、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は5~15%、5~12%、5~10%、特に5~8%が好ましい。CaOの含有量が5%より少ないと、上記効果を享受し難くなる。一方、CaOの含有量が15%より多いと、ガラスが失透し易くなると共に、熱膨張係数が高くなり過ぎる。
 SrOは、分相を抑制し、また耐失透性を高める成分である。更に、歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であると共に、液相温度の上昇を抑制する成分である。SrOの含有量は0.5~5%、0.5~4%、特に0.5~3.5%が好ましい。SrOの含有量が0.5%より少ないと、分相を抑制する効果や耐失透性を高める効果を享受し難くなる。一方、SrOの含有量が5%より多いと、ストロンチウムシリケート系の失透結晶が析出し易くなり、耐失透性が低下し易くなる。
 BaOは、アルカリ土類金属酸化物の中では、耐失透性を顕著に高める成分である。BaOの含有量は5~15%、5~14%、5~13%、特に5~12%が好ましい。BaOの含有量が5%より少ないと、液相温度が高くなって、耐失透性が低下する。一方、BaOの含有量が15%より多いと、高温粘度が高くなり過ぎて、溶融性が低下することに加えて、BaOを含む失透結晶が析出し易くなり、液相温度が高くなる。
 モル比CaO/BaOは、高歪点と高い耐失透性を両立すると共に、ガラス板の製造コストを低廉化するために重要な成分比率である。モル比CaO/BaOは0.5~10、1~9、1.5~8、1.5~7、特に1.8~6が好ましい。モル比CaO/BaOが0.5より小さいと、高温粘度が高くなり過ぎることに加えて、原料コストが高騰し易くなる。一方、モル比CaO/BaOが10より大きいと、液相温度が高くなって、耐失透性が低下し、結果として、ガラス板を成形し難くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。なお、上記成分以外の他成分の含有量は、本実施形態の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。SnOの含有量は0~1%、0.001~1%、0.01~0.5%、特に0.05~0.3%が好ましい。SnOの含有量が1%より多いと、SnOの失透結晶が析出し易くなる。なお、SnOの含有量が0.001%より少ないと、上記効果を享受し難くなる。
 上記の通り、SnOは、清澄剤として好適であるが、ガラス特性が損なわれない限り、清澄剤として、F、Cl、SO、C、或いはAl、Si等の金属粉末を5%まで添加することができる。また、清澄剤として、CeO等も5%まで添加することができる。
 清澄剤として、As、Sbも有効である。本実施形態の無アルカリガラスは、これらの成分の含有を完全に排除するものではないが、環境的観点から、これらの成分を極力使用しないことが好ましい。さらに、Asは、ガラス中に多量に含有させると、ソラリゼーションが低下する傾向にあるため、その含有量は1%以下、0.5%以下、特に0.1%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的にAsを含有しない」とは、ガラス組成中のAsの含有量が0.05%未満の場合を指す。また、Sbの含有量は2%以下、1%以下、特に0.5%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的にSbを含有しない」とは、ガラス組成中のSbの含有量が0.05%未満の場合を指す。
 Clは、無アルカリガラスの溶融を促進する効果がある。このため、Clを添加すれば、溶融温度を低温化できると共に、清澄剤の作用を促進することができる。この結果、溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることが可能となる。しかし、Clの含有量が多過ぎると、歪点が低下するため、Clの含有量は3%以下、1%以下、特に0.5%以下が好ましい。なお、Clの導入原料として、塩化ストロンチウム等のアルカリ土類金属酸化物の塩化物、或いは塩化アルミニウム等の原料を使用することができる。
 ZnOは、溶融性を高める成分であるが、多量にZnOを含有させると、ガラスが失透し易くなり、また歪点が低下し易くなる。ZnOの含有量は0~5%、0~3%、0~0.5%、特に0~0.3%が好ましく、実質的に含有しないことが望ましい。ここで、「実質的にZnOを含有しない」とは、ガラス組成中のZnOの含有量が0.2%以下の場合を指す。
 Pは、歪点を高める成分であるが、多量にPを含有させると、ガラスが分相し易くなる。Pの含有量は0~1.5%、0~1.2%、特に0~1%が好ましい。
 TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分であるが、多量にTiOを含有させると、ガラスが着色して、透過率が低下し易くなる。TiOの含有量は0~5%、0~3%、0~1%、特に0~0.02%が好ましい。
 Y、Nb、Laには、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量が各々5%より多いと、密度が増加し易くなる。
 本実施形態の無アルカリガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができる。なお、オーバーフローダウンドロー法で用いる樋状構造物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラス板に接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラス板の端面近傍のみに接触させて延伸する方法を採用してもよい。
 オーバーフローダウンドロー法以外にも、例えば、ダウンドロー法(スロットダウン法等)、フロート法等でガラス板を成形することも可能である。
 本実施形態の無アルカリガラスは、有機ELデバイス、特に有機ELディスプレイに用いることが好ましい。有機ELディスプレイのパネルメーカーでは、ガラスメーカーで成形された大型のガラス板の上に複数個分のデバイスを作製した後、デバイス毎に分割切断して、コストダウンを図っている(所謂、多面取り)。特にTV用途では、デバイス自体が大型化しており、これらのデバイスを多面取りするために、大型のガラス板が要求されている。本実施形態の無アルカリガラスは、液相温度が低く、また液相粘度が高いため、大型のガラス基板を成形し易く、このような要求を満たすことができる。
 以下、本発明の実施例を説明する。
 表1、2は、本発明の無アルカリガラスの実施例(試料No.1~11)と、比較例(試料No.12~16)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1600~1650℃で24時間溶融した。ガラスバッチの溶解にあたっては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した後、徐冷点付近の温度で30分間徐冷した。得られた各試料について、密度、30~380℃の温度範囲における平均熱膨張係数CTE、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度10dPa・sにおける温度、高温粘度10dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、液相温度TL、及び液相粘度log10ηTLを評価した。
 密度は、周知のアルキメデス法によって測定した値である。
 30~380℃の温度範囲における平均熱膨張係数CTEは、ディラトメーターで測定した値である。
 歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336の方法に基づいて測定した値である。
 高温粘度10dPa・s、10dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。
 液相粘度log10ηTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。
 表1、2から明らかなように、試料No.1~11は、アルカリ金属酸化物を含有せず、30~380℃の温度範囲における平均熱膨張係数CTEが40~60×10-7/℃、歪点が680℃より高く、液相温度が1220℃以下であった。したがって、試料No.1~11は、有機ELディスプレイの基板として好適に使用可能であると考えられる。
 一方、試料No.12~14は、液相温度が高く、耐失透性が低いため、成形性に劣っている。また、試料No.15は、熱膨張係数が低く、ガラス封止材の熱膨張係数に整合させ難いため、封止部分で応力破壊が発生するおそれがある。また、試料No.16は、熱膨張係数が高過ぎるため、耐熱衝撃性が低く、パネル製造工程のスループットを低下させるおそれがある。
 本発明の無アルカリガラスは、液晶ディスプレイ、ELディスプレイ等のフラットパネルディスプレイ基板、及び電荷結合素子(CCD)、等倍近接型固体撮像素子(CIS)等のイメージセンサー用のカバーガラス、太陽電池用の基板及びカバーガラス、有機EL照明用基板等に好適に使用可能であり、特に有機ELディスプレイ用基板として好適に使用可能である。

Claims (9)

  1.  実質的にアルカリ金属酸化物を含有せず、歪点が680℃より高く、30~380℃の温度範囲における平均熱膨張係数が40~60×10-7/℃であり、液相温度が1220℃より低いことを特徴とする無アルカリガラス。
  2.  ガラス組成として、質量%で、SiO 55~70%、Al 10~20%、B 0.1~4.5%、MgO 0~1%、CaO 5~15%、SrO 0.5~5%、BaO 5~15%を含有することを特徴とする請求項1に記載の無アルカリガラス。
  3.  モル比SiO/Alが4.5~8であることを特徴とする請求項1又は2に記載の無アルカリガラス。
  4.  モル比CaO/BaOが0.5~10であることを特徴とする請求項1~3のいずれか1項に記載の無アルカリガラス。
  5.  更に、SnOを0.001~1質量%含むことを特徴とする請求項1~4のいずれかに1項に記載の無アルカリガラス。
  6.  102.5ポアズにおける温度が1660℃以下であることを特徴とする請求項1~5のいずれか1項に記載の無アルカリガラス。
  7.  液相温度における粘度が104.8ポアズ以上であることを特徴とする請求項1~6のいずれか1項に記載の無アルカリガラス。
  8.  オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1~7のいずれか1項に記載の無アルカリガラス。
  9.  有機ELデバイスに用いることを特徴とする請求項1~8のいずれか1項に記載の無アルカリガラス。
PCT/JP2011/068252 2010-08-17 2011-08-10 無アルカリガラス WO2012023470A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11818112.2A EP2607326B1 (en) 2010-08-17 2011-08-10 Alkali-free glass
CN201180039911.XA CN103068758B (zh) 2010-08-17 2011-08-10 无碱玻璃
US13/817,196 US9023744B2 (en) 2010-08-17 2011-08-10 Alkali-free glass
KR1020137004364A KR101779033B1 (ko) 2010-08-17 2011-08-10 무알칼리 유리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-182068 2010-08-17
JP2010182068A JP5751439B2 (ja) 2010-08-17 2010-08-17 無アルカリガラス

Publications (1)

Publication Number Publication Date
WO2012023470A1 true WO2012023470A1 (ja) 2012-02-23

Family

ID=45605124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068252 WO2012023470A1 (ja) 2010-08-17 2011-08-10 無アルカリガラス

Country Status (7)

Country Link
US (1) US9023744B2 (ja)
EP (1) EP2607326B1 (ja)
JP (1) JP5751439B2 (ja)
KR (1) KR101779033B1 (ja)
CN (1) CN103068758B (ja)
TW (1) TWI593653B (ja)
WO (1) WO2012023470A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502929A (zh) * 2012-12-28 2016-04-20 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法
JP2016524583A (ja) * 2013-05-10 2016-08-18 コーニング インコーポレイテッド 低融点ガラス又は吸収薄膜を使用した透明ガラスシートのレーザー溶接

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570086B (zh) * 2010-11-08 2017-02-11 日本電氣硝子股份有限公司 無鹼玻璃
JP5680125B2 (ja) * 2012-04-11 2015-03-04 AvanStrate株式会社 ガラス板の製造方法
JP5651634B2 (ja) * 2012-04-11 2015-01-14 AvanStrate株式会社 ガラス板の製造方法
CN104350018B (zh) 2012-06-07 2018-10-19 Agc 株式会社 无碱玻璃及使用了该无碱玻璃的无碱玻璃板
WO2014087971A1 (ja) 2012-12-05 2014-06-12 旭硝子株式会社 無アルカリガラス基板
JP6037117B2 (ja) * 2012-12-14 2016-11-30 日本電気硝子株式会社 ガラス及びガラス基板
JP6365826B2 (ja) * 2013-07-11 2018-08-01 日本電気硝子株式会社 ガラス
CN105555725B (zh) * 2013-09-20 2020-04-14 Agc株式会社 无碱玻璃
JP6256744B2 (ja) * 2013-10-17 2018-01-10 日本電気硝子株式会社 無アルカリガラス板
CN116040940A (zh) * 2015-04-03 2023-05-02 日本电气硝子株式会社 玻璃
EP3303236B1 (en) 2015-06-02 2021-09-29 Corning Incorporated Laminated glass article with tinted layer
CN109071317A (zh) 2016-04-27 2018-12-21 Agc株式会社 无碱玻璃
TWI822657B (zh) 2016-05-04 2023-11-21 美商康寧公司 有色的鋁矽酸鹽玻璃成分和包括其之玻璃製品
JP7044064B2 (ja) * 2016-08-05 2022-03-30 Agc株式会社 無アルカリガラス基板、積層基板、およびガラス基板の製造方法
US11066326B2 (en) 2016-12-20 2021-07-20 Nippon Electric Glass Co., Ltd. Glass
KR102526728B1 (ko) * 2016-12-29 2023-04-27 코닝 인코포레이티드 솔라리제이션 저항성의 희토류 도핑된 유리들

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175242A (ja) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd 無アルカリガラス
JPH06144963A (ja) * 1992-10-30 1994-05-24 Ngk Spark Plug Co Ltd 薄型グレーズ基板
JPH08109037A (ja) * 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JP2002003240A (ja) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd 液晶ディスプレイ用ガラス基板
JP2009525942A (ja) 2006-02-10 2009-07-16 コーニング インコーポレイテッド 熱および化学安定性が高いガラス組成物ならびにその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083586B2 (ja) * 1991-04-26 2000-09-04 旭硝子株式会社 無アルカリガラス
US5116788A (en) * 1991-08-12 1992-05-26 Corning Incorporated Alkaline earth aluminoborosilicate glasses for flat panel displays
US5116787A (en) * 1991-08-12 1992-05-26 Corning Incorporated High alumina, alkaline earth borosilicate glasses for flat panel displays
GB9204537D0 (en) * 1992-03-03 1992-04-15 Pilkington Plc Alkali-free glass compositions
US5489558A (en) 1994-03-14 1996-02-06 Corning Incorporated Glasses for flat panel display
US6508083B1 (en) 1996-08-21 2003-01-21 Nippon Electric Glass Co., Ltd. Alkali-free glass and method for producing the same
US6069100A (en) * 1997-10-27 2000-05-30 Schott Glas Glass for lamb bulbs capable of withstanding high temperatures
DE19939789A1 (de) * 1999-08-21 2001-02-22 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
DE10005088C1 (de) * 2000-02-04 2001-03-15 Schott Glas Alkalihaltiges Aluminoborosilicatglas und seine Verwendung
US7211957B2 (en) * 2000-05-05 2007-05-01 Telux-Spezialglas Gmbh Alumino earth-alkali silicate glasses with high thermal capacity for light bulbs and use thereof
DE10022769A1 (de) * 2000-05-05 2001-11-08 Telux Lampenrohr Gmbh Thermisch hoch belastbare Alumoerdalkalisilikatgläser für Lampenkolben und Verwendung
CN1283574C (zh) * 2002-03-14 2006-11-08 碧悠国际光电股份有限公司 平面显示器用的基板玻璃
JP4977965B2 (ja) * 2005-05-02 2012-07-18 旭硝子株式会社 無アルカリガラスおよびその製造方法
US20080130171A1 (en) * 2006-11-30 2008-06-05 Francis Martin Behan Calcium aluminosilicate glasses for use as information recording medium substrates
JP5435394B2 (ja) * 2007-06-08 2014-03-05 日本電気硝子株式会社 強化ガラス基板及びその製造方法
CN101784494B (zh) * 2007-08-31 2013-01-30 旭硝子株式会社 玻璃板及其制造方法以及tft面板的制造方法
TWI570086B (zh) * 2010-11-08 2017-02-11 日本電氣硝子股份有限公司 無鹼玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175242A (ja) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd 無アルカリガラス
JPH06144963A (ja) * 1992-10-30 1994-05-24 Ngk Spark Plug Co Ltd 薄型グレーズ基板
JPH08109037A (ja) * 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JP2002003240A (ja) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd 液晶ディスプレイ用ガラス基板
JP2009525942A (ja) 2006-02-10 2009-07-16 コーニング インコーポレイテッド 熱および化学安定性が高いガラス組成物ならびにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2607326A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502929A (zh) * 2012-12-28 2016-04-20 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法
CN105502929B (zh) * 2012-12-28 2019-08-09 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法
JP2016524583A (ja) * 2013-05-10 2016-08-18 コーニング インコーポレイテッド 低融点ガラス又は吸収薄膜を使用した透明ガラスシートのレーザー溶接
JP2019512446A (ja) * 2013-05-10 2019-05-16 コーニング インコーポレイテッド 透明レーザー溶接領域を備える封止デバイス
US11711938B2 (en) 2013-05-10 2023-07-25 Corning Incorporated Sealed devices comprising transparent laser weld regions

Also Published As

Publication number Publication date
US9023744B2 (en) 2015-05-05
KR101779033B1 (ko) 2017-09-18
EP2607326B1 (en) 2018-03-07
TWI593653B (zh) 2017-08-01
EP2607326A4 (en) 2014-10-08
CN103068758B (zh) 2017-06-13
KR20140000197A (ko) 2014-01-02
TW201219332A (en) 2012-05-16
CN103068758A (zh) 2013-04-24
EP2607326A1 (en) 2013-06-26
JP5751439B2 (ja) 2015-07-22
JP2012041217A (ja) 2012-03-01
US20130244859A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5751439B2 (ja) 無アルカリガラス
JP6202353B2 (ja) 無アルカリガラス
JP5874316B2 (ja) 無アルカリガラス
JP5831838B2 (ja) 無アルカリガラス
JP6256744B2 (ja) 無アルカリガラス板
TWI570086B (zh) 無鹼玻璃
JP5757451B2 (ja) 無アルカリガラス
JP5729673B2 (ja) 無アルカリガラス
WO2016185976A1 (ja) 無アルカリガラス基板
JP7307407B2 (ja) 無アルカリガラス
WO2020080163A1 (ja) 無アルカリガラス板
JP7389400B2 (ja) 無アルカリガラス板
JP5988059B2 (ja) 無アルカリガラス
JP6631942B2 (ja) 無アルカリガラス板
JP6787872B2 (ja) 無アルカリガラス板
WO2021256466A1 (ja) 無アルカリガラス板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039911.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137004364

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011818112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817196

Country of ref document: US