WO2012020818A1 - 金属張積層板 - Google Patents

金属張積層板 Download PDF

Info

Publication number
WO2012020818A1
WO2012020818A1 PCT/JP2011/068340 JP2011068340W WO2012020818A1 WO 2012020818 A1 WO2012020818 A1 WO 2012020818A1 JP 2011068340 W JP2011068340 W JP 2011068340W WO 2012020818 A1 WO2012020818 A1 WO 2012020818A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
liquid crystal
crystal polymer
metal foil
clad laminate
Prior art date
Application number
PCT/JP2011/068340
Other languages
English (en)
French (fr)
Inventor
有起 岡崎
慎悟 安藤
昭平 荒井
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201180038727.3A priority Critical patent/CN103069933B/zh
Priority to JP2012528710A priority patent/JP5611355B2/ja
Priority to KR1020137006182A priority patent/KR101913368B1/ko
Publication of WO2012020818A1 publication Critical patent/WO2012020818A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]

Definitions

  • the present invention relates to a metal-clad laminate, and more particularly, to a metal-clad laminate having a liquid crystal polymer layer and excellent high-frequency electrical characteristics.
  • FPC flexible circuit board
  • the FPC has no problem in operation if the wiring to be connected is correctly wired on the substrate.
  • the operation speed of the electronic circuit is increased, the above-mentioned requirements alone are not sufficient, and the FPC is required to cope with the higher frequency.
  • Characteristic impedance is a function of dielectric permittivity, dielectric thickness, circuit thickness, and circuit line width.
  • impedance matching it is necessary to increase the dielectric thickness, which has a particularly large effect, and to reduce the thickness tolerance.
  • impedance matching is performed using a copper-clad laminate obtained by forming polyimide with a small dielectric thickness tolerance into a thickness of 38 to 50 ⁇ m.
  • polyimide has a large moisture absorption rate and dielectric loss tangent, and does not have sufficient electrical characteristics to be used as a material for a high-frequency substrate in the GHz band that will be developed in the future.
  • Liquid crystal polymer is a resin characterized by a low dielectric constant and a low dielectric loss tangent, and a circuit board using the same resin as an insulating layer reduces transmission loss in the high frequency region compared to the case where other resins are used as an insulating layer. Has an effect.
  • a substrate material disclosed in Patent Document 1 can be cited.
  • the surface roughness Rz is 2.5 with respect to the surface of the metal foil in contact with the liquid crystal polymer in order to increase the interlayer adhesion strength (peel strength) between the liquid crystal polymer film and the metal foil.
  • the protrusions are formed and roughened so as to be as large as ⁇ 4.0 ⁇ m, but there is a problem that the signal transmission characteristics in the high frequency region are not yet sufficient.
  • a metal-clad laminate having a liquid crystal polymer layer in general, a laminate of a liquid crystal polymer film and a metal foil forming the liquid crystal polymer layer is conveyed and heated by a highly productive roll-to-roll method.
  • a method of continuously thermocompression bonding between a pair of pressure rolls has been proposed.
  • the metal foil is sufficiently adhered by thermocompression bonding, but in order to maintain the dimensional characteristics of the laminate, it is necessary to perform thermocompression bonding while suppressing the fluidity of the liquid crystal polymer molecules during lamination, Thermocompression bonding conditions that maintain the thickness tolerance of the liquid crystal polymer layer are required.
  • An object of the present invention is to provide a metal-clad laminate that has a small dielectric thickness tolerance that contributes to a characteristic impedance tolerance and a small signal transmission loss in a high-frequency region in order to cope with higher frequency transmission signals. .
  • the present inventors have used a metal-clad laminate having a liquid crystal polymer as a dielectric layer, using a film having a small thickness tolerance for the liquid crystal polymer layer, and reducing the surface unevenness of the metal foil. As a result, it has been found that a circuit board having both characteristic impedance matching and low transmission loss in the high frequency region can be obtained, and the present invention has been completed.
  • the gist of the present invention is as follows. (1) In a metal-clad laminate having a metal foil on one side or both sides of a liquid crystal polymer layer, the metal foil has a projection on the surface layer part of which the surface in contact with the liquid crystal polymer layer is roughened, The aspect ratio (H / L) represented by the ratio of the height H of the protrusion to the width L of the root portion is in the range of 3 to 20, and the height of the protrusion is in the range of 0.1 to 2 ⁇ m.
  • the metal-clad laminate is characterized in that the liquid crystal polymer layer has a thickness of 10 to 200 ⁇ m and a film thickness tolerance is less than 6%.
  • the metal-clad laminate of the present invention it is possible to achieve both characteristic impedance matching and low transmission loss in a high-frequency region, excellent interlayer adhesion between the liquid crystal polymer layer and the metal foil, and satisfy the quality required for high-frequency circuits. Can do.
  • FIG. 1 is a schematic cross-sectional observation view of a projection on a surface layer portion of a roughened metal foil used in the present invention.
  • the liquid crystal polymer that forms the liquid crystal polymer layer is preferably a wholly aromatic liquid crystal polymer, that is, a liquid crystal polymer that does not contain an aliphatic long chain and is substantially composed of only aromatics, and among them, the following formula (1) As shown, a polyester composed of 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid is more preferable.
  • m and n in a following formula are positive numbers which show the existing molar ratio of each structural unit.
  • the liquid crystal polymer preferably has a transition temperature to an optically anisotropic molten phase in the range of 200 to 400 ° C., particularly in the range of 250 to 350 ° C. in terms of heat resistance and workability.
  • a lubricant, an antioxidant, and a filler can be blended with the liquid crystal polymer forming the liquid crystal polymer layer as long as the characteristics are not impaired.
  • Examples of a method for forming a liquid crystal polymer layer by forming a liquid crystal polymer into a film include a T-die method, a laminate stretching method, and an inflation method.
  • a method for forming a liquid crystal polymer layer by forming a liquid crystal polymer into a film include a T-die method, a laminate stretching method, and an inflation method.
  • stress is applied not only in the mechanical axis direction of the film (MD direction) but also in the direction perpendicular to this (TD direction), so the balance of mechanical properties in the MD and TD directions. A good film is obtained.
  • the thickness range of the liquid crystal polymer layer is 10 to 200 ⁇ m, preferably 25 to 100 ⁇ m. If the thickness of the liquid crystal polymer layer is less than 10 ⁇ m, it will be easily torn and difficult to handle.
  • the liquid crystal polymer layer has a thickness tolerance within 6% with respect to the thickness in order to achieve characteristic impedance matching, and preferably has a thickness tolerance within 5%.
  • the film thickness tolerance with respect to the thickness of the liquid crystal polymer layer is a value obtained by multiplying the standard deviation of the measured thickness data by 3 times.
  • Such a liquid crystal polymer layer can be obtained by using a commercially available liquid crystal polymer film. For example, BIAC (registered trademark) manufactured by Japan Gore-Tex Corporation can be used.
  • the material of the metal foil used in the present invention is not particularly limited, and examples thereof include gold, silver, copper, stainless steel, nickel, and aluminum. From the viewpoints of electrical conductivity, ease of handling, price, etc., copper foil and stainless steel foil are preferably used.
  • copper foil any copper foil produced by a rolling method or an electrolytic method can be used.
  • the thickness of the metal foil is preferably 1 to 100 ⁇ m, more preferably 5 to 70 ⁇ m, and particularly preferably 8 to 20 ⁇ m. It is preferable to reduce the thickness of the metal foil because it is easy to form a fine pattern in circuit processing. However, if it is too thin, the metal foil is prone to wrinkles in the manufacturing process of the metal-clad laminate, and the circuit processing is performed. Even in the wiring board, the wiring is easily broken, and the reliability as the wiring board may be lowered. On the other hand, when the circuit is formed by etching the metal foil if the thickness is too thick, the side surface of the circuit is likely to be tapered, which is disadvantageous for fine pattern formation.
  • the roughened shape (uneven shape) obtained by roughening the surface of the metal foil and the height of the unevenness are important.
  • Rz which is often used as an index for detecting surface irregularities, represents ten-point average roughness, and is measured in accordance with JIS B0601.
  • the diameter of the contact terminal is larger than the protrusion used for the roughening treatment, and the size of the protrusion (unevenness) formed by the roughening treatment.
  • Shape the projection of the roughened surface of the metal foil is obtained using the width L of the root portion of the projection and the height H of the projection as an index for evaluating the degree of the roughening treatment.
  • the object shape was defined.
  • the measurement is performed by setting the magnification so that the entire protrusion formed on the surface layer portion by the roughening process is within the observation visual field.
  • a protrusion used for the roughening process of metal foil Preferably, it was chosen from 1 type of metals chosen from the group which consists of Cu, Ni, Co, Cr, Zn, and Mo, or at least this group A metal alloy containing one or more elements can be given.
  • the height H of the projection In the measurement of the height H of the projection, the height from the interface between the metal foil base material and the projection to the apex of the projection is measured by a method of observing the cross section of the metal foil.
  • the height H of the protrusions In the metal foil used in the present invention, the height H of the protrusions is in the range of 0.1 to 2 ⁇ m, preferably in the range of 0.1 to 1 ⁇ m. When the height of the protrusion exceeds 2 ⁇ m, there arises a problem that the transmission loss in the high frequency region of the obtained metal-clad laminate increases.
  • the height of the protrusions is less than 0.1 ⁇ m, it is extremely difficult to obtain high adhesion strength according to the present invention, circuit peeling may occur when the metal foil is processed, and swelling or heat treatment such as soldering may occur. Problems such as peeling occur.
  • the aspect ratio of the protrusion is calculated by measuring the width L of the root portion of the protrusion and calculating the ratio of the height H of the protrusion to the width L (H / L) of the protrusion.
  • the aspect ratio of the protrusion is in the range of 3 to 20, preferably in the range of 3 to 15. If the aspect ratio exceeds 20, the shape of the protrusion becomes too sharp, and the protrusion will be detached when transported by roll-to-roll, causing appearance defects such as dents on the laminate, and wiring. There is a risk of short-circuiting. When the aspect ratio is less than 3, protrusions are easily removed from the resin layer, and it is extremely difficult to obtain high adhesion strength according to the present invention.
  • the surface roughness Rz of the surface of the metal foil subjected to the roughening treatment is 0.3 ⁇ m or more. It is preferably less than 2.5 ⁇ m, and more preferably 0.5 ⁇ m or more and less than 2.0 ⁇ m.
  • the metal foil those satisfying the above requirements can be appropriately selected from commercially available products, and examples thereof include trade name AMFN manufactured by JX Nippon Mining & Metals.
  • the liquid crystal polymer layer is formed from a liquid crystal polymer film
  • the liquid crystal polymer film and the metal foil are preferably roll-shaped from the viewpoint of productivity of the metal-clad laminate.
  • a metal-clad laminate can be obtained by a process with good productivity by continuously transporting them in a roll-to-roll manner and pressing them in the process.
  • a suitable method for producing a metal-clad laminate is to laminate a liquid crystal polymer film and a metal foil, and bond them by thermocompression bonding.
  • thermocompression bonding it is preferable to use a pair of metal pressure rolls not covered with rubber as pressure rolls from the viewpoint of uniformity of the bonded state.
  • a rubber-coated metal pressure roll can also be used, but in that case, a pressure roll press at 250 ° C or higher is performed due to problems such as the heat resistance of the adhesive bonding the coated rubber and the metal roll. Difficult to do. Therefore, when a rubber-coated metal pressure roll is used, only a liquid crystal polymer having a low melting point can be applied, and the resulting metal-clad laminate has low heat resistance and no solder heat resistance.
  • the surface of the metal pressure roll needs to be heated by some means.
  • heating by a dielectric heating method or a heat medium circulation method can be exemplified.
  • methods such as installing a pressure roll in a constant temperature booth or applying hot air to the roll surface can be used, and these can be used in combination.
  • the surface temperature of the pressure roll can be kept within 8 ° C. with respect to the width direction of the roll, whereby the metal-clad laminate is excellent in the peel strength between the metal and the liquid crystal polymer layer and has little variation. It can be.
  • a metal pressure roll not covered with rubber in this way, the surface of the roll can be easily heated.
  • the surface temperature of the metal pressure roll is preferably lower in the range of 5 to 100 ° C. than the thermal deformation temperature of the liquid crystal polymer film, more preferably 30 to 90 ° C. lower than the thermal deformation temperature of the liquid crystal polymer film. Is good.
  • the surface temperature of the metal pressure roll is lower than the heat distortion temperature of the liquid crystal polymer film by more than 100 ° C., the film and the metal foil may not be sufficiently bonded. Further, if the surface temperature of the metal pressure roll is lower than the heat distortion temperature of the liquid crystal polymer film by less than 5 ° C., the flow of the film becomes remarkable at the time of pressure bonding, resulting in a laminate having a poor appearance.
  • the thermal deformation temperature of the liquid crystal polymer film refers to a film subjected to thermocompression bonding using a thermomechanical analyzer, a width of 2 mm, a length of 30 mm, a distance between chucks of 15 mm, a load of 5 g, and a temperature rising rate of 5 ° C./min.
  • the amount of thermal expansion in the length direction of the test piece is measured under the conditions, and the inflection point is indicated.
  • the pressure at the time of pressure bonding is not particularly limited as long as it can be uniformly applied in the width direction, but is preferably 5 to 200 kN / m, more preferably 70 to 150 kN / m.
  • the adhesive surface between the liquid crystal polymer layer and the metal foil has a 180 ° delamination strength between the metal foil and the liquid crystal polymer layer at room temperature of the adhesive surface of 0.5 to 5 kN / m or more. And more preferably 0.8 to 2.0 kN / m.
  • the metal-clad laminate of the present invention uses a metal foil having a large aspect ratio of protrusions on the surface of the metal foil and a relatively low height of the protrusions. It has features such as fine pitch processability and low signal transmission loss in the high frequency region.
  • the metal-clad laminate of the present invention is particularly useful as a material suitable for use in high-frequency circuit boards and high-density wiring boards.
  • a laminate having a three-layer structure of metal foil / liquid crystal polymer film / metal foil is manufactured by thermocompression bonding with one metal foil superimposed on each side of one liquid crystal polymer film. Is possible.
  • processing conditions and measurement (evaluation) conditions are as follows.
  • Examples 1 to 3 An electrolytic copper foil 1 having a thickness of 12 ⁇ m is superimposed on both sides of a liquid crystal polymer film (Japan Gore-Tex Co., Ltd., trade name BIAC, heat distortion temperature 300 ° C.) having a thickness of 50 ⁇ m and a thickness tolerance of 5.0%.
  • the metal-clad laminate according to Example 1 was manufactured by continuous thermocompression bonding between metal pressure rolls not covered with rubber.
  • the metal-clad laminates according to Examples 2 and 3 were manufactured by continuous thermocompression bonding on both surfaces of the liquid crystal polymer film in the same manner as described above.
  • the liquid crystal polymer film and the electrolytic copper foil are both long rolls, and are placed in a constant temperature booth during lamination to have a surface temperature of 240 ° C. (temperature difference within 8 ° C. in the width direction).
  • the metal pressure roll (diameter 350 mm) set to) was continuously thermocompression bonded at a pressure of 120 kN / m at 4 m / min.
  • As the metal pressure roll a plurality of heat generating coils embedded in the roll, which can be adjusted so that a difference in the outer circumference of the metal pressure roll surface in the roll width direction at the time of heating and pressurization is difficult to be applied. .
  • the surface in contact with the liquid crystal polymer film is roughened, and as shown in FIG. 1, the height H of the protrusions formed on the surface layer portion, and The ratio (H / L, aspect ratio) of the height H of the projection to the width L of the root portion of the projection was as shown in Table 1, respectively. Further, the surface roughness Rz of the roughened surface was as shown in Table 1. The evaluation results of the obtained metal-clad laminate are shown together in Table 1.
  • An electrolytic copper foil having a thickness of 12 ⁇ m, and the protrusion formed by the roughening treatment has an aspect ratio (H / L) and a height H as shown in Table 1, and has a surface roughness Rz.
  • a metal-clad laminate was produced and evaluated in the same manner as in Example 1 except that electrolytic copper foil was used.
  • the metal-clad laminate of the present invention is a circuit board material that is characterized by excellent characteristic impedance matching and low transmission loss, and is particularly useful as a material that is suitable for high-frequency circuit boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 伝送周波数の高周波化に対応するために、特性インピーダンス公差に寄与する誘電体厚み公差が小さく、且つ高周波領域における信号の伝送損失が少ない金属張積層板を提供する。 液晶ポリマー層の片面又は両面に金属箔を有する金属張積層板において、金属箔は、液晶ポリマー層と接する面が粗化処理されて表層部に突起物を有し、該突起物の根本部分の幅Lに対する突起物の高さHの比で表されるアスペクト比(H/L)が3~20の範囲であると共に、突起物の高さが0.1~2μmの範囲であり、液晶ポリマー層は、10~200μmの厚さを有して、膜厚公差が6%未満であることを特徴とする金属張積層板である。

Description

金属張積層板
 本発明は金属張積層板に関し、詳しくは、液晶ポリマー層を有して、高周波電気特性に優れた金属張積層板に関するものである。
 現在、電子機器の多くには小型化、軽量化による機器内部の空間的制約によって、配線や基板を曲げることのできるフレキシブル回路基板(以下これをFPCとする)が多用されている。更に最近では、機器の高性能化に伴い、伝送信号の高周波化への対応が必要とされている。
 従来、MHz程度の動作速度で使用されていた電子回路では、FPCは接続すべき配線が正しく基板上で配線されていれば動作に問題は発生しなかった。しかし、電子回路の動作速度が速くなると、上記要求条件のみでは十分ではなくなり、FPCでも高周波化に対応することが必要とされている。
 信号の伝送経路にインピーダンスが変化する点があると、その点で電磁波の反射が生じ、電気信号のロスや信号波形の乱れなどの不都合が生じる。そのため、高周波信号の伝送あるいは長距離伝送のためには、FPCの特性インピーダンスを機器本体回路のインピーダンスと整合させることが必要である。
 特性インピーダンスは、誘電体の誘電率、誘電体厚み、回路厚み、回路線幅の関数で示され、インピーダンス整合においては、特に影響の大きい誘電体厚みを厚くすること、そして厚み公差を低減させる必要がある。一般には、誘電体厚み公差が小さいポリイミドを厚さ38~50μmに製膜した銅張積層板を用いてインピーダンス整合を行っている。しかしながら、ポリイミドは、吸湿率、誘電正接が大きく、今後進展するGHz帯での高周波基板の材料として用いるのに十分な電気特性を有するものではない。
 伝送周波数の高周波化が必要とされるなか、高周波に対応する代表的な基板として、液晶ポリマーを基材層とした回路基板が好適に用いられている。液晶ポリマーは低誘電率、低誘電正接を特徴とした樹脂であり、同樹脂を絶縁層とした回路基板は、他の樹脂を絶縁層として用いる場合と比較して高周波領域の伝送損失を低減させる効果を有している。
 更に、高周波領域における特性インピーダンス制御において、フィルム厚み公差の少ない液晶ポリマーを適用した金属張積層板としては、特許文献1に示された基板材料が挙げられる。この文献に記載された積層板では、液晶ポリマーフィルムと金属箔間の層間接着強度(ピール強度)を高めるために、金属箔の液晶ポリマーと接する面に対して、表面粗さRzが2.5~4.0μmと大きくなるように、突起物を形成させて粗化処理しているが、高周波領域における信号の伝送特性が未だ十分でないという問題がある。
 一方で、液晶ポリマー層を有する金属張積層板を製造する場合、一般に、液晶ポリマー層を形成する液晶ポリマーフィルムと金属箔との積層板を生産性の高いロールトゥロール方式で搬送し、加熱しながら一対の加圧ロール間を通して連続的に熱圧着する方法が提案されている。この方法において、熱圧着により金属箔と十分に密着させているが、積層板の寸法特性を維持するためには、積層時に液晶ポリマー分子の流動性を抑制させながら熱圧着を行う必要があり、液晶ポリマー層の厚み公差を維持する熱圧着条件が必要となる。
特開2005-219379号公報
 本発明の目的は、伝送信号の高周波化に対応するために、特性インピーダンス公差に寄与する誘電体厚み公差が小さく、且つ高周波領域における信号の伝送損失が少ない金属張積層板を提供することにある。
 本発明者らは、上記目的を達成すべく、液晶ポリマーを誘電体層とした金属張積層板において、液晶ポリマー層に厚み公差の小さいフィルムを用いること、且つ、金属箔の表面凹凸形状を小さくすることで、高周波領域における特性インピーダンス整合と低伝送損失を両立した回路基板が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、次のとおりである。
(1)液晶ポリマー層の片面又は両面に金属箔を有する金属張積層板において、金属箔は、液晶ポリマー層と接する面が粗化処理されて表層部に突起物を有し、該突起物の根本部分の幅Lに対する突起物の高さHの比で表されるアスペクト比(H/L)が3~20の範囲であると共に、突起物の高さが0.1~2μmの範囲であり、液晶ポリマー層は、10~200μmの厚さを有して、膜厚公差が6%未満であることを特徴とする金属張積層板。
(2)粗化処理が施されている金属箔の面の表面粗さRzが0.3μm以上2.5μm未満である(1)に記載の金属張積層板。
(3)液晶ポリマー層を形成する液晶ポリマーフィルムと金属箔とを、一対の金属加圧ロール間で加熱圧着して得られたものである(1)又は(2)記載の金属張積層板。
(4)液晶ポリマーフィルムの熱変形温度が260~350℃の範囲にある(3)記載の金属張積層板。
(5)常温における金属箔と液晶ポリマー層との180°層間剥離強さが0.5~5kN/mである(1)~(4)のいずれかに記載の金属張積層板。
 本発明の金属張積層板によれば、高周波領域における特性インピーダンス整合と低伝送損失を両立でき、液晶ポリマー層と金属箔との層間密着性に優れ、高周波用回路に要求される品質を満たすことができる。
図1は、本発明に用いられている粗化処理された金属箔表層部の突起物を断面観察概略図である。
 以下、本発明の実施の形態について詳細に説明する。
 液晶ポリマー層を形成する液晶ポリマーは、全芳香族液晶ポリマー、すなわち、脂肪族長鎖を含まず実質的に芳香族のみで構成される液晶ポリマーが好ましく、さらにそのなかでも、下記式(1)で表されるように、6-ヒドロキシ-2-ナフトエ酸とp-ヒドロキシ安息香酸とからなるポリエステルがより好ましい。なお、下記式中のmおよびnは、各構成単位の存在モル比を示す正の数である。
Figure JPOXMLDOC01-appb-I000001
 
 液晶ポリマーは、耐熱性、加工性の点で200~400℃の範囲内、特に250~350℃の範囲内に光学的に異方性の溶融相への転移温度を有するものが好ましい。また、液晶ポリマー層を形成する液晶ポリマーに対して、その特性を損なわない範囲で、例えば滑剤、酸化防止剤、充填剤などを配合することもできる。
 液晶ポリマーをフィルム化して液晶ポリマー層を形成する方法としては、例えば、Tダイ法、ラミネート体延伸法、インフレーション法などが挙げられる。インフレーション法やラミネート体延伸法では、フィルムの機械軸方向(MD方向)だけでなく、これと直行する方向(TD方向)にも応力が加えられるため、MD方向とTD方向における機械的性質のバランスのとれたフィルムが得られる。
 液晶ポリマー層の厚み範囲は、10~200μmであり、好ましくは25~100μmである。液晶ポリマー層の厚みが、10μmに満たないと容易に裂けるため取り扱いが困難となる。また、液晶ポリマー層は、特性インピーダンス整合をとるために、厚みに対して膜厚公差が6%以内に収まるようにし、好ましくは膜厚公差が5%以内である。ここで、液晶ポリマー層の厚みに対する膜厚公差は、測定した厚みデータの標準偏差に3倍を乗じて求めた値である。このような液晶ポリマー層は市販の液晶ポリマーフィルムを使用することによって可能であり、例えばジャパンゴアテックス株式会社製BIAC(登録商標)などを用いることができる。
 本発明に用いる金属箔の材質は特に制限はなく、例えば金、銀、銅、ステンレス、ニッケル、アルミニウムなどが例示される。導電性、取扱いの容易性、価格等の観点から、銅箔やステンレス箔が好適に用いられる。銅箔としては、圧延法や電解法によって製造されるいずれのものでも使用することができる。
 金属箔の厚さとしては1~100μmが好ましく、より好ましくは5~70μm、特に好ましくは8~20μmの範囲であるのが良い。金属箔の厚さを薄くすることは、回路加工においてファインパターンを形成し易いという点で好ましいが、薄過ぎると金属張積層板の製造工程で金属箔に皺が生じ易いほか、回路加工された配線基板においても配線の破断が生じ易く、配線基板としての信頼性が低下する恐れがある。一方、厚過ぎると金属箔をエッチング加工して回路を形成する際に、回路側面にテーパーが生じ易く、ファインパターン形成に不利が生じる。
 本発明においては、金属箔の表面を粗化処理した粗化形状(凹凸形状)とその凹凸の高さが重要である。表面の凹凸を検出する指標としてよく使われるRzは十点平均粗さを表すものであり、JIS B0601に準拠して測定される。しかし、Rzは金属箔の自体の大きなうねり指標としては有効であるが、粗化処理に使用される突起物よりも接触端子の径が大きく、粗化処理により形成された突起物のサイズ(凹凸形状)を表すことができない。そのため、本発明では、粗化処理の程度を評価するための指標として、断面観察による突起物の根本部分の幅Lと、突起物の高さHとを用いて、金属箔粗化面の突起物形状を規定した。断面観察による手法では、粗化処理により表層部に形成された突起物の全体が観察視野に収まるように、倍率を設定して計測を行う。なお、金属箔の粗化処理に用いる突起物として、好ましくは、Cu、Ni、Co、Cr、Zn、及びMoからなる群から選ばれた1種の金属、又は、少なくともこの群から選ばれた一種以上の元素を含んだ金属合金を挙げることができる。
 突起物の高さHの計測では、金属箔の断面観察による手法で、金属箔母材と突起物との界面から、突起物の頂点までの高さを測定する。本発明で用いる金属箔は、突起物の高さHが0.1~2μmの範囲であり、好ましくは0.1μm以上1μm未満の範囲である。突起物の高さが2μmを超えると、得られる金属張積層板の高周波領域における伝送損失が大きくなるという問題が発生する。突起物の高さが0.1μm未満では、本発明によっても高い密着強度を得ることが極めて困難であり、金属箔を加工した際に回路の剥がれが生じたり、はんだ付けなどの熱処理時に膨れや剥がれなどの問題が発生する。
 突起物のアスペクト比は、突起物の根本部分の幅Lを計測し、突起物の根本部分の幅Lに対する突起物の高さHの比(H/L)として算出する。突起物のアスペクト比しては、3~20の範囲であり、好ましくは3~15の範囲である。アスペクト比が20を超えると、突起物の形状が鋭利になりすぎて、ロール・トゥ・ロールによる搬送時に突起物が離脱してしまい、積層板の打痕などの外観不良を発生させたり、配線間をショートさせる恐れがある。アスペクト比が3未満では、樹脂層から突起物が抜けやすくなり、本発明によっても高い密着強度を得ることが極めて困難である。なお、本発明で使用する金属箔の粗化処理の程度をRz(十点平均粗さ)で表すと、粗化処理が施されている金属箔の面の表面粗さRzは0.3μm以上2.5μm未満であることが好ましく、0.5μm以上2.0μm未満であることがより好ましい。金属箔は、上記要件を満たすものを市販品から適宜選択して使用することができ、例えばJX日鉱日石金属株式会社製、商品名AMFNが例示される。
 液晶ポリマー層を液晶ポリマーフィルムから形成する場合、液晶ポリマーフィルムと金属箔は、金属張積層板の生産性の観点から、いずれもロール状のものを用いるのが好ましい。以下で説明するように、これらをロール・トゥ・ロールで連続的に搬送し、その過程で圧着することで、生産性の良いプロセスで金属張積層板を得ることができる。
 好適な金属張積層板の製造方法は、液晶ポリマーフィルムと金属箔とを重ね合わせ、熱圧着して接着し、積層する。熱圧着は、接合状態の均一性という観点から、加圧ロールとして、ゴム被覆されていない一対の金属加圧ロールを使用するのが良い。ゴム被覆された金属加圧ロールを用いることも出来るが、その場合、被覆ゴムと金属ロールとを接着している接着剤の耐熱性などの問題から、250℃以上での加圧ロールプレスを実施することが困難となる。したがって、ゴム被覆された金属加圧ロールを用いる場合、融点の低い液晶ポリマーしか適用できず、結果として得られる金属張積層板の耐熱性が低くなり、はんだ耐熱性を有さなくなる。
 金属加圧ロールの表面は何らかの手段で加温されていることが必要である。その手段は特に制限されないが、誘電加熱方式や熱媒循環方式による加温を例示することができる。その他、加圧ロールを恒温ブース内に設置することやロール表面に熱風をあてる等の手法も挙げられ、これらを併用することもできる。このような手段によって加圧ロールの表面温度をロールの幅方向に対して8℃以内とすることができ、これによって金属と液晶ポリマー層の剥離強さに優れ、そのバラツキの少ない金属張積層板とすることができる。また、このようにゴム被覆されていない金属加圧ロールを用いることで、ロール表面の加温が簡便に行なうことができる。金属加圧ロールの表面温度は、液晶ポリマーフィルムの熱変形温度より5~100℃の範囲で低いことが好ましく、より好ましくは、液晶ポリマーフィルムの熱変形温度より30~90℃低い温度とするのが良い。金属加圧ロールの表面温度が、液晶ポリマーフィルムの熱変形温度より100℃を超えて低い温度であると、フィルムと金属箔が十分に接着しないことがある。また、金属加圧ロールの表面温度が、液晶ポリマーフィルムの熱変形温度より5℃未満で低いようにすると、圧着時にフィルムの流動が著しくなり、外観が不良な積層板となる。なお、液晶ポリマーフィルムの熱変形温度とは、熱機械分析装置を用いて、熱圧着に供するフィルムを幅2mm長さ30mm、チャック間距離15mmにて、荷重5g、昇温速度5℃/分の条件で試験片の長さ方向の熱膨張量を測定し、その変曲点を示す。また、圧着時の圧力は、幅方向に均一に加圧できる範囲であれば、特に限定されないが、5~200kN/mであることが好ましく、70~150kN/mであることがより好ましい。
 本発明の積層板において、上記液晶ポリマー層と金属箔との接着面については、その接着面の常温における金属箔と液晶ポリマー層との180°層間剥離強さが0.5~5kN/m以上であることが好ましく、より好ましくは0.8~2.0kN/mである。
 本発明の金属張積層板は、金属箔表面の突起物のアスペクト比が大きく、且つ、突起物の高さが比較的低い金属箔を用いていることから、液晶ポリマー層と十分な接着力を確保でき、且つファインピッチ加工性や高周波領域おける信号伝送損失が小さいなどの特長を有する。本発明の金属張積層板は、特に高周波回路基板や高密度配線基板に適して使用される材料として有用である。なお、本発明においては、液晶ポリマー層の両面に金属箔を有するようにしてもよい。例えば1枚の液晶ポリマーフィルムの両面に、それぞれ1枚の金属箔を重ね合わせた状態で熱圧着することにより、金属箔/液晶ポリマーフィルム/金属箔の3層構造を有する積層板を製造することが可能である。
 次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、後述する本発明の実施例において、特にことわりのない限り、加工条件、測定(評価)条件は下記によるものである。
[突起物の形状とサイズの測定]
 粗化処理により突起物が形成された金属箔をクロスセクションポリッシャにて断面加工し、断面SEM観察を行い、観察画像にて突起物の高さHと突起物の根本部分の幅Lのサイズを計測した。該突起物の高さHと根本部分の幅Lは、観察画像より任意に5点以上選択し、その平均値を記録した。
[表面粗度の測定]
 JIS B 0601に準じて、触針式表面粗さ測定器(TENCOR社製、TENCOR P-10)を使用して、測定幅200μmの条件でRzを測定した。
[層間剥離強さ]
 JISC 6471 8.1 方法B(180°方向引き剥がし)に準じて、幅1mmの金属箔を引き剥がして測定した。層間剥離強さは、金属張積層板から任意に採取した試験片3個以上を測定し、その平均値を記録した。
[フィルム厚み公差の測定]
 金属張積層板から市販のエッチング液で金属箔を除去した液晶ポリマーフィルムの厚みを、ダイヤルゲージを使用して測定した。測定点数は任意の点より30点以上測定し、測定データの平均値(Ave.)に対する標準偏差に3倍を乗じた値(3σ)の比(3σ/Ave.)を100分率で表したものを公差とした。
[伝送損失の測定]
 液晶ポリマーフィルムの両面に金属箔を設けた両面金属張積層板において、両方の金属箔に回路加工を施し、一方がグランド、他方が信号線の導体2層からなる伝送線路(マイクロストリップライン)を作製した。この伝送線路の特性インピーダンスは50Ωとなるように回路の導体幅と導体厚みを調整した。伝送線路の設計は高周波回路設計用のソフトウェア(アジレント・テクノロジー社製、Advanced Design System)用いて行った。伝送線路の両末端には測定用に信号線・グランド2本からなる等間隔のパッドを配置した。伝送損失は、マイクロ波用ピコプローブ(GGB社製)とネットワークアナライザ(アジレント・テクノロジー社製、E8364B)を用いてSパラメータを測定することで算出した。
(実施例1~3)
 厚さ50μm、膜厚公差5.0%の液晶ポリマーフィルム(ジャパンゴアテックス株式会社製、商品名BIAC、熱変形温度300℃)の両面に対して、それぞれ厚さ12μmの電解銅箔1を重ね合わせ、ゴム被覆されていない金属加圧ロール間で連続熱圧着して、実施例1に係る金属張積層板を製造した。また、厚さ12μmの電解銅箔2及び3を用いて、上記と同様にして液晶ポリマーフィルムの両面に連続熱圧着して、実施例2及び3に係る金属張積層板を製造した。
 詳しくは、上記液晶ポリマーフィルムと上記電解銅箔は、いずれも長尺のロール状のものを使用し、積層時に恒温ブース内に設置し表面温度を240℃(幅方向での温度差8℃以内)に設定した金属加圧ロール(直径350mm)を用い、4m/分で圧力120kN/mの条件で連続的に熱圧着を行った。なお、金属加圧ロールには、ロールの内部に埋設した複数の発熱コイルで、加熱加圧時におけるロール幅方向の金属加圧ロール表面の外周差が生じにくいように調整可能なものを適用した。
 これらの実施例で使用した電解銅箔は、いずれも液晶ポリマーフィルムに接する面が粗化処理されており、図1に示すように、表層部に形成された突起物の高さH、及び、突起物の根本部分の幅Lに対する突起物の高さHの比(H/L、アスペクト比)は、それぞれ表1に示すとおりであった。また、粗化処理された面の表面粗さRzは表1に示すとおりであった。得られた金属張積層板の評価結果について、あわせて表1に示す。
(比較例1~4)
 厚さ12μmの電解銅箔であって、粗化処理によって形成された突起物が表1に示すようなアスペクト比(H/L)と高さHを有し、かつ、表面粗さRzを持つ電解銅箔を使用した以外は、実施例1と同様にして金属張積層板を製造し、評価した。
Figure JPOXMLDOC01-appb-T000002
 
 本発明の金属張積層板は、特性インピーダンス整合性に優れ、伝送損失が低いことを特長とする回路基板材料であり、特に高周波回路基板に適して使用される材料として有用である。また、従来より課題であった低誘電材料に対して密着強度(層間密着強度)が高く、信頼性の高い基板を提供することができ、種種の電子回路産業での利用が可能である。

Claims (5)

  1.  液晶ポリマー層の片面又は両面に金属箔を有する金属張積層板において、金属箔は、液晶ポリマー層と接する面が粗化処理されて表層部に突起物を有し、該突起物の根本部分の幅Lに対する突起物の高さHの比で表されるアスペクト比(H/L)が3~20の範囲であると共に、突起物の高さが0.1~2μmの範囲であり、液晶ポリマー層は、10~200μmの厚さを有して、膜厚公差が6%未満であることを特徴とする金属張積層板。
  2.  粗化処理が施されている金属箔の面の表面粗さRzが0.3μm以上2.5μm未満である請求項1に記載の金属張積層板。
  3.  液晶ポリマー層を形成する液晶ポリマーフィルムと金属箔とを、一対の金属加圧ロール間で加熱圧着して得られたものである請求項1又は2記載の金属張積層板。
  4.  液晶ポリマーフィルムの熱変形温度が260~350℃の範囲にある請求項3記載の金属張積層板。
  5.  常温における金属箔と液晶ポリマー層との180°層間剥離強さが0.5~5kN/mである請求項1~4のいずれかに記載の金属張積層板。
PCT/JP2011/068340 2010-08-12 2011-08-11 金属張積層板 WO2012020818A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180038727.3A CN103069933B (zh) 2010-08-12 2011-08-11 覆金属层叠板
JP2012528710A JP5611355B2 (ja) 2010-08-12 2011-08-11 金属張積層板
KR1020137006182A KR101913368B1 (ko) 2010-08-12 2011-08-11 금속장 적층판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-180682 2010-08-12
JP2010180682 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012020818A1 true WO2012020818A1 (ja) 2012-02-16

Family

ID=45567778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068340 WO2012020818A1 (ja) 2010-08-12 2011-08-11 金属張積層板

Country Status (5)

Country Link
JP (1) JP5611355B2 (ja)
KR (1) KR101913368B1 (ja)
CN (1) CN103069933B (ja)
TW (1) TWI520841B (ja)
WO (1) WO2012020818A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012055A (ja) * 2013-06-27 2015-01-19 株式会社クラレ 回路基板およびその製造方法
JP2016010967A (ja) * 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 金属箔付き液晶ポリマーフィルムの製造方法、金属箔付き液晶ポリマーフィルム、多層プリント配線板の製造方法
KR20160065942A (ko) 2013-10-03 2016-06-09 주식회사 쿠라레 열가소성 액정 폴리머 필름, 회로 기판, 및 그들의 제조 방법
KR20190133701A (ko) 2017-03-30 2019-12-03 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박, 그리고 이를 이용한 동 클래드 적층판 및 프린트 배선판
WO2021193195A1 (ja) * 2020-03-24 2021-09-30 株式会社クラレ 金属張積層体の製造方法
WO2021193194A1 (ja) * 2020-03-24 2021-09-30 株式会社クラレ 金属張積層体の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470161B (zh) * 2015-12-10 2017-11-07 深圳市精诚达电路科技股份有限公司 一种监控fpc金手指金面粗糙的工艺方法
JP6764049B1 (ja) 2018-11-08 2020-09-30 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
TWI740515B (zh) 2019-12-23 2021-09-21 長春人造樹脂廠股份有限公司 液晶高分子膜及包含其之積層板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326405A (ja) * 1999-05-18 2000-11-28 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムの製造方法
JP2005001376A (ja) * 2003-05-21 2005-01-06 Kuraray Co Ltd フィルムの製造方法
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006278883A (ja) * 2005-03-30 2006-10-12 Furukawa Circuit Foil Kk 表面処理銅箔および該表面処理銅箔で作成した積層回路基板
JP2007146139A (ja) * 2005-10-26 2007-06-14 Sumitomo Chemical Co Ltd 樹脂含浸基材およびその製造方法
JP2010103339A (ja) * 2008-10-24 2010-05-06 Sumitomo Chemical Co Ltd 高周波回路基板
JP2010108251A (ja) * 2008-10-30 2010-05-13 Sumitomo Chemical Co Ltd 無線タグ及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632557B2 (ja) * 2001-02-19 2011-02-16 株式会社クラレ インフレーション製膜方法とその装置
JP4615226B2 (ja) * 2004-02-06 2011-01-19 古河電気工業株式会社 基板用複合材及びそれを用いた回路基板
JP4722507B2 (ja) * 2005-02-17 2011-07-13 新日鐵化学株式会社 繰り返し屈曲用途向け両面フレキシブル回路基板
JPWO2006109507A1 (ja) * 2005-03-31 2008-10-23 新日鐵化学株式会社 Hddサスペンション用積層体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326405A (ja) * 1999-05-18 2000-11-28 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムの製造方法
JP2005001376A (ja) * 2003-05-21 2005-01-06 Kuraray Co Ltd フィルムの製造方法
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006278883A (ja) * 2005-03-30 2006-10-12 Furukawa Circuit Foil Kk 表面処理銅箔および該表面処理銅箔で作成した積層回路基板
JP2007146139A (ja) * 2005-10-26 2007-06-14 Sumitomo Chemical Co Ltd 樹脂含浸基材およびその製造方法
JP2010103339A (ja) * 2008-10-24 2010-05-06 Sumitomo Chemical Co Ltd 高周波回路基板
JP2010108251A (ja) * 2008-10-30 2010-05-13 Sumitomo Chemical Co Ltd 無線タグ及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012055A (ja) * 2013-06-27 2015-01-19 株式会社クラレ 回路基板およびその製造方法
KR20160065942A (ko) 2013-10-03 2016-06-09 주식회사 쿠라레 열가소성 액정 폴리머 필름, 회로 기판, 및 그들의 제조 방법
US10765001B2 (en) 2013-10-03 2020-09-01 Kuraray Co., Ltd. Thermoplastic liquid crystal polymer film, circuit board, and methods respectively for manufacturing said film and said circuit board
JP2016010967A (ja) * 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 金属箔付き液晶ポリマーフィルムの製造方法、金属箔付き液晶ポリマーフィルム、多層プリント配線板の製造方法
KR20190133701A (ko) 2017-03-30 2019-12-03 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박, 그리고 이를 이용한 동 클래드 적층판 및 프린트 배선판
US10701811B2 (en) 2017-03-30 2020-06-30 Furukawa Electric Co., Ltd. Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
WO2021193195A1 (ja) * 2020-03-24 2021-09-30 株式会社クラレ 金属張積層体の製造方法
JPWO2021193195A1 (ja) * 2020-03-24 2021-09-30
WO2021193194A1 (ja) * 2020-03-24 2021-09-30 株式会社クラレ 金属張積層体の製造方法
JPWO2021193194A1 (ja) * 2020-03-24 2021-09-30
JP7182030B2 (ja) 2020-03-24 2022-12-01 株式会社クラレ 金属張積層体の製造方法
JP7182747B2 (ja) 2020-03-24 2022-12-02 株式会社クラレ 金属張積層体の製造方法

Also Published As

Publication number Publication date
JP5611355B2 (ja) 2014-10-22
TWI520841B (zh) 2016-02-11
TW201223750A (en) 2012-06-16
CN103069933A (zh) 2013-04-24
CN103069933B (zh) 2014-06-04
KR20130099935A (ko) 2013-09-06
JPWO2012020818A1 (ja) 2013-10-28
KR101913368B1 (ko) 2018-10-30

Similar Documents

Publication Publication Date Title
JP5611355B2 (ja) 金属張積層板
JP6656231B2 (ja) 金属張積層板の製造方法およびこれを用いた金属張積層板
JP6871910B2 (ja) 金属張積層板の製造方法および金属張積層板
JP4866853B2 (ja) 熱可塑性液晶ポリマーフィルムで被覆した配線基板の製造方法
JP6282230B2 (ja) フレキシブル金属張積層体およびその製造方法
KR102304510B1 (ko) 금속 클래드 적층판 및 그 제조방법
JP6019012B2 (ja) 高周波回路基板
JP2009172996A (ja) フレキシブル銅張積層板及びその製造方法
CN103648670B (zh) 轧制铜箔及其制造方法以及层叠板
TWI741912B (zh) 積層板、線路板及用於其之液晶高分子膜
CN112839812B (zh) 覆金属层压板以及用于制造覆金属层压板的方法
CN107278015B (zh) 铜箔、覆铜层叠板、以及柔性印刷基板和电子设备
JP5226035B2 (ja) 積層配線基板の製造法
JP2016141823A (ja) 表面処理銅箔及び積層板
JP4389627B2 (ja) フレキシブル金属積層板の製造方法
WO2021193385A1 (ja) 多層回路基板の製造方法
JP2008302696A (ja) フレキシブル金属箔積層板の製造方法
JP2007069617A (ja) フレキシブル金属箔積層板の製造方法
JP2008177243A (ja) 多層プリント配線板の製造方法
JP2021066089A (ja) フレキシブル基板の製造方法
TW202400848A (zh) 金屬層合材及其製造方法,以及印刷配線板
JP2004079594A (ja) 多層フレキシブル印刷配線板
JP2003118060A (ja) 耐熱性フレキシブル積層板の製造方法
JP2014130926A (ja) 金属張積層板及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038727.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816481

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012528710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137006182

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11816481

Country of ref document: EP

Kind code of ref document: A1