WO2012017772A1 - セルロース系樹脂 - Google Patents

セルロース系樹脂 Download PDF

Info

Publication number
WO2012017772A1
WO2012017772A1 PCT/JP2011/065450 JP2011065450W WO2012017772A1 WO 2012017772 A1 WO2012017772 A1 WO 2012017772A1 JP 2011065450 W JP2011065450 W JP 2011065450W WO 2012017772 A1 WO2012017772 A1 WO 2012017772A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
group
cardanol
acid
derivative
Prior art date
Application number
PCT/JP2011/065450
Other languages
English (en)
French (fr)
Inventor
修吉 田中
位地 正年
成日 文
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201180036655.9A priority Critical patent/CN103025764B/zh
Priority to US13/813,610 priority patent/US9340625B2/en
Priority to JP2012527644A priority patent/JP5846120B2/ja
Priority to EP11814402.1A priority patent/EP2602267B1/en
Publication of WO2012017772A1 publication Critical patent/WO2012017772A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof

Definitions

  • the present invention relates to a cellulose resin.
  • Bioplastics made from plants can contribute to oil depletion countermeasures and global warming countermeasures, and in addition to general products such as packaging, containers, and fibers, they are also being used in durable products such as electronic devices and automobiles.
  • Cellulose is a polymer in which ⁇ -glucose is polymerized, but has high crystallinity, so it is hard and brittle and has no thermoplasticity. Furthermore, since it contains many hydroxy groups, its water absorption is high and its water resistance is low. Therefore, various studies for improving the characteristics of cellulose have been conducted.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-255801 discloses a biodegradable graft polymer having thermoplasticity obtained by ring-opening graft polymerization of ⁇ -caprolactone to cellulose acetate having a hydroxy group. Yes.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-8035 discloses a fiber substrate made of aramid pulp and cellulose fiber, a filler made of calcium carbonate and cashew dust, and a binder made of phenol resin.
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-32869 discloses a friction material formed using a base substrate made of aramid fibers and cellulose fibers, a filler made of graphite and cashew dust, and an organic-inorganic composite binder. Has been. It is described that this friction material is applied to clutch facing of a power transmission system such as an automobile.
  • Non-Patent Document 1 (George John et al., Polymer Bulletin, 22, p.89-94 (1989)) describes a grafting reaction in which a paper sheet is immersed in cardanol and the cardanol is bound to cellulose constituting the paper sheet. It is described that the water resistance of paper can be improved by performing the above. In this grafting reaction, it is described that a terminal double bond of cardanol and a hydroxy group of cellulose are bonded in the presence of boron trifluoride diethyl ether (BF 3 -OEt 2 ).
  • boron trifluoride diethyl ether BF 3 -OEt 2
  • Cellulosic bioplastics are insufficient in strength, heat resistance, water resistance, thermoplasticity, and impact resistance due to the influence of the characteristics of cellulose itself, especially for application to durable products such as exteriors for electronic devices. There is a need to improve these properties.
  • Cellulosic bioplastics can also be reduced in heat resistance and strength (especially rigidity) by adding a plasticizer to improve the thermoplasticity, or by reducing the uniformity of the plasticizer and bleeding out the plasticizer. Problem of seeping out).
  • a plasticizer made of petroleum raw material
  • the plant utilization rate (vegetability) is lowered.
  • the soft component may bleed out during molding, thereby hindering moldability.
  • An object of the present invention is to provide a cellulose resin having improved impact resistance as well as thermoplasticity, heat resistance, strength, moldability and water resistance.
  • a cellulose resin in which cardanol or a derivative thereof and a flexible component are bonded to cellulose or a derivative thereof.
  • a resin composition containing the above cellulose resin as a base resin.
  • a molding material comprising the above resin composition is provided.
  • a cellulose resin having improved impact resistance as well as thermoplasticity, heat resistance, strength and water resistance.
  • the cellulosic resin of one embodiment of the present invention is obtained by chemically bonding (hereinafter “grafted”) cardanol or a derivative thereof (hereinafter “cardanol component”) and a flexible component to cellulose (or a derivative thereof).
  • grafted chemically bonding
  • cardanol component a derivative thereof
  • flexible component to cellulose (or a derivative thereof).
  • Impact resistance can be improved by grafting a cardanol component to cellulose (or a derivative thereof) and a flexible component.
  • the soft component is chemically bonded to cellulose (or a derivative thereof), bleeding out of the soft component can be suppressed.
  • Cellulose is a linear polymer of ⁇ -glucose represented by the following formula (1), and each glucose unit has three hydroxy groups. Utilizing these hydroxy groups, the cardanol component can be grafted.
  • Cellulose is the main component of vegetation and is obtained by separating other components such as lignin from vegetation. In addition to those obtained in this manner, cotton or pulp having a high cellulose content can be purified or used as it is.
  • the polymerization degree of cellulose is preferably in the range of 50 to 5000, more preferably 100 to 3000, as the glucose polymerization degree. If the degree of polymerization is too low, the strength, heat resistance, etc. of the produced resin may not be sufficient. On the other hand, if the degree of polymerization is too high, the melt viscosity of the produced resin becomes too high, which may hinder molding.
  • Cellulose (or a derivative thereof) may be mixed with chitin or chitosan having a similar structure. When mixed, 30% by mass or less is preferable, and 20% by mass or less is preferable, 10 mass% or less is still more preferable.
  • examples of the cellulose derivative include those obtained by acylating, etherifying, or grafting a part of these hydroxy groups.
  • organic acid esters such as cellulose acetate, cellulose butyrate, and cellulose propionate
  • inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate
  • cellulose acetate propionate cellulose acetate butyrate, and cellulose acetate
  • Examples include hybrid esters such as phthalate and cellulose nitrate acetate; etherified celluloses such as methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
  • cellulose grafted with styrene (meth) acrylic acid, (meth) acrylic acid ester, ⁇ -caprolactone, lactide, glycolide and the like.
  • acylated cellulose, etherified cellulose, and grafted cellulose may be used alone or in combination of two or more.
  • cellulose for example, at least one acylated cellulose selected from cellulose acetate, cellulose propionate, and cellulose butyrate in which a part of the hydroxy group is acylated is preferably used. be able to.
  • cellulose derivative is used to include both a cellulose compound and a compound having a cellulose skeleton obtained by introducing a functional group biologically or chemically from cellulose as a raw material.
  • Cardanol is a component contained in cashew nut shells, and is an organic compound composed of a phenol moiety and a linear hydrocarbon moiety represented by the following formula (2).
  • a cardanol component obtained by extraction and purification from cashew nut shell liquid can be used.
  • the linear hydrocarbon portion of cardanol contributes to the improvement of the flexibility and hydrophobicity of the resin, and the phenol portion has a phenolic hydroxyl group rich in reactivity used for grafting.
  • a cardanol component is grafted to cellulose (or a derivative thereof)
  • a cellulose-based structure in which the cardanol component is imparted in a brush shape is formed.
  • mechanical interaction is caused by the interaction between the grafted cardanols.
  • Properties particularly toughness
  • thermoplasticity can be imparted
  • water resistance can be improved by the hydrophobicity of cardanol.
  • Grafting can be performed by a dehydration bond reaction between the phenolic hydroxyl group of the cardanol component and the hydroxy group in cellulose (or a derivative thereof).
  • a dehydration catalyst such as sulfuric acid, toluenesulfonic acid or hydrogen chloride can be added.
  • the cellulose carbon atom to which the hydroxy group in cellulose (or a derivative thereof) is bonded is linked to the cardanol carbon atom to which the phenolic hydroxyl group of the cardanol component is bonded through an oxygen atom.
  • grafting can be performed using a polyfunctional compound capable of reacting with a hydroxyl group and a phenolic hydroxyl group of cardanol.
  • a polyfunctional compound capable of reacting with a hydroxyl group and a phenolic hydroxyl group of cardanol.
  • the cellulose carbon atom to which the hydroxy group in cellulose (or a derivative thereof) is bonded and the cardanol carbon atom to which the phenolic hydroxyl group of the cardanol component is bonded are connected via an organic linking group. According to such grafting, the graft reaction efficiency can be improved and side reactions can be suppressed.
  • the organic linking group is selected from a first bond selected from an ester bond, an ether bond and a urethane bond bonded to the cellulose carbon atom, and an ester bond, an ether bond and a urethane bond bonded to the cardanol carbon atom.
  • a second bond may be included.
  • this polyfunctional compound and cardanol are bonded using the phenolic hydroxyl group of this cardanol and the functional group of this polyfunctional compound to obtain a cardanol derivative. Then, the obtained cardanol derivative and cellulose (or a derivative thereof) are bonded using the hydroxy group of the cellulose (or a derivative thereof) and the functional group of the cardanol derivative (a functional group derived from a polyfunctional compound). Can do.
  • the hydroxyl group of cellulose (or a derivative thereof) and the phenolic hydroxyl group of the cardanol component are eliminated to form a graft bond, and the hydrophobic structure of cardanol is introduced into the cellulose (or a derivative thereof). Water resistance can be improved.
  • the use of the phenolic hydroxyl group of cardanol and the hydroxy group of cellulose can improve the efficiency of the grafting reaction, the molecular structure formed, and the water resistance. From the point of view, it is preferable.
  • Such grafting is more efficient because it uses a highly reactive phenolic hydroxyl group compared to grafting that utilizes unsaturated bonds (double bonds) in the linear hydrocarbon portion of cardanol. Grafting can be realized.
  • the phenol part of cardanol reacts with cellulose and is immobilized, so that the interaction between the linear hydrocarbon parts of the grafted cardanol is increased and the mechanical properties are increased. It is possible to obtain the desired improvement effect. Furthermore, in this embodiment, since the phenolic hydroxyl group of cardanol is eliminated and grafted, it is advantageous from the viewpoint of improving water resistance (suppressing water absorption) as compared with grafting not using phenolic hydroxyl group. .
  • the polyfunctional compound and the organic linking group preferably include a hydrocarbon group, and the hydrocarbon group preferably has 1 or more carbon atoms, more preferably 2 or more, and preferably 20 or less carbon atoms, or 14 or less carbon atoms. Is more preferable, and 8 or less is more preferable. If the number of carbon atoms is too large, the molecule becomes too large and the reactivity decreases, and as a result, it may be difficult to increase the grafting rate.
  • a divalent group is preferable, and a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a decamethylene group, a dodecamethylene group, Divalent linear aliphatic hydrocarbon group such as hexadecamemethylene group (particularly linear alkylene group); cycloheptane ring, cyclohexane ring, cyclooctane ring, bicyclopentane ring, tricyclohexane ring, bicyclooctane ring, bicyclononane
  • a divalent alicyclic hydrocarbon group such as a ring or a tricyclodecane ring; a divalent aromatic hydrocarbon group such as a benzene ring, a naphthalene ring or a biphenylene
  • the rigidity of the resin can be improved due to their rigidity.
  • the hydrocarbon group is a linear aliphatic hydrocarbon group, the toughness of the resin can be improved due to its flexibility.
  • the functional group of the polyfunctional compound is preferably a group selected from a carboxyl group, a carboxylic anhydride group, a carboxylic acid halide group (particularly a carboxylic acid chloride group), an epoxy group, an isocyanate group, and a halogen group.
  • a carboxyl group, a carboxylic acid anhydride group, a halogen group (particularly a chloride group), and an isocyanate group are preferable.
  • As the functional group to be reacted with the phenolic hydroxyl group of cardanol, a carboxylic anhydride group, a halogen group (especially a chloride group) and an isocyanate group are particularly preferable.
  • a carboxylic acid halide group (particularly a carboxylic acid chloride group) and an isocyanate group are particularly preferable.
  • the carboxylic acid halide group can be formed by acid-haliding a carboxyl group before grafting.
  • polyfunctional compounds include dicarboxylic acids, carboxylic anhydrides, dicarboxylic acid halides, monochlorocarboxylic acids, and diisocyanates.
  • dicarboxylic acid include malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, pentadecanedicarboxylic acid, and hexadecanedicarboxylic acid
  • carboxylic acid anhydrides include these dicarboxylic acids.
  • dicarboxylic acid halide include acid halides of these dicarboxylic acids.
  • Monochlorocarboxylic acids include monochloroacetic acid, 3-chloropropionic acid, 3-fluoropropionic acid, 4-chlorobutyric acid, 4-fluorobutyric acid, 5-chlorovaleric acid, 5-fluorovaleric acid, 6-chlorohexanoic acid, 6 -Fluorohexanoic acid, 8-chlorooctanoic acid, 8-fluorooctanoic acid, 12-chlorododecanoic acid, 12-fluorododecanoic acid, 18-chlorostearic acid, 18-fluorostearic acid.
  • Diisocyanates include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6-hexamethylene diisocyanate (HDI), Isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate (HMDI: hydrogenated MDI) And the like.
  • a functional group of such a polyfunctional compound and a phenolic hydroxyl group of cardanol are reacted to form a cardanol derivative, and this cardanol derivative and cellulose (or a derivative thereof) are combined with the hydroxy group of cellulose (or a derivative thereof) and this It can couple
  • a carboxylic acid-based polyfunctional compound (dicarboxylic acid, carboxylic acid anhydride or monochlorocarboxylic acid) is reacted with cardanol, the phenolic hydroxyl group of this cardanol and the functional group of this polyfunctional compound (carboxyl group, carboxylic acid anhydride) Group or a halogen group (especially a chloride group) is reacted to form a cardanol derivative, and the remaining functional group (carboxyl group) is converted into a carboxylic acid halide group (particularly a carboxylic acid chloride group).
  • Grafting can be performed by reacting this cardanol derivative with cellulose (or a derivative thereof) and reacting the hydroxy group of the cellulose (or derivative thereof) with the carboxylic acid halide group of the cardanol derivative. In this case, grafting can be performed very efficiently.
  • the cellulose carbon atom to which the hydroxy group of cellulose (or a derivative thereof) is bonded and the hydrocarbon group of the polyfunctional compound are, for example, an ester bond, an ether bond or a urethane bond
  • the cardanol carbon atom which is preferably bonded via an ester bond and the phenolic hydroxyl group of the cardanol component is bonded to the hydrocarbon group of the polyfunctional compound is, for example, an ester bond, an ether bond or a urethane bond, preferably an ester bond. Alternatively, they are bonded through an ether bond.
  • Cardanol is preferably converted to a saturated bond by hydrogenation of an unsaturated bond (double bond) of the linear hydrocarbon portion of cardanol.
  • the conversion rate (hydrogenation rate) of unsaturated bonds by hydrogenation is preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the residual ratio of unsaturated bonds in cardanol after hydrogenation is preferably 0.2 or less, more preferably 0.1 or less.
  • the cardanol component is grafted to cellulose (or its derivatives) while the unsaturated hydrocarbons are contained in the linear hydrocarbon moiety, side reactions are likely to occur, and the grafting may not be performed efficiently or may be grafted. In some cases, the solubility of the product in the solvent may be significantly reduced.
  • grafting a cardanol derivative in which unsaturated bonds in the straight-chain hydrocarbon moiety are sufficiently converted to saturated bonds by hydrogenation side reactions are suppressed and grafting can be performed efficiently. It is possible to suppress a decrease in solubility of the chemical product in a solvent.
  • the method for hydrogenation is not particularly limited, and a normal method can be used.
  • the catalyst include noble metals such as palladium, ruthenium, and rhodium, nickel, or a metal selected from these metals supported on a support such as activated carbon, activated alumina, or diatomaceous earth.
  • a reaction system a batch system in which a reaction is performed while suspending and stirring a powdered catalyst, or a continuous system using a reaction tower filled with a molded catalyst can be employed.
  • the solvent for hydrogenation may not be used depending on the method of hydrogenation. However, when a solvent is used, alcohols, ethers, esters, and saturated hydrocarbons are usually used.
  • the reaction temperature at the time of hydrogenation is not particularly limited, but can usually be set to 20 to 250 ° C., preferably 50 to 200 ° C. If the reaction temperature is too low, the hydrogenation rate will be slow, and conversely if too high, the decomposition products may increase.
  • the hydrogen pressure at the time of hydrogenation is usually 10 to 80 kgf / cm 2 (9.8 ⁇ 10 5 to 78.4 ⁇ 10 5 Pa), preferably 20 to 50 kgf / cm 2 (19.6 ⁇ 10 5 to 49). 0.0 ⁇ 10 5 Pa).
  • Hydrogenation can be performed either before the cardanol derivative is formed, after the cardanol derivative is formed, before grafting, or after the cardanol derivative is grafted, from the viewpoint of hydrogenation or grafting reaction efficiency, etc. Before the grafting of the cardanol derivative is preferable, and before the formation of the cardanol derivative is more preferable.
  • the ratio (grafting rate) of the cardanol component bound to the cellulose (or derivative thereof) to the cellulose (or derivative thereof) is the number of cardanol components added per glucose unit (average value) of the cellulose (or derivative thereof), That is, it is represented by the number of hydroxyl groups bonded to the cardanol component (hydroxyl substitution degree, DS CD ) (average value).
  • DS CD is preferably 0.1 or more, more preferably 0.2 or more, and may be set to 0.4 or more. If the DS CD is too low, the effect of grafting may not be sufficiently obtained.
  • the maximum value of DS CD is theoretically “3”, but is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less, from the viewpoint of ease of production (grafting). Further, the DS CD may be 1 or less, and a sufficient improvement effect can be obtained. As DS CD increases, tensile fracture strain (toughness) increases while maximum strength (tensile strength, bending strength) tends to decrease. Therefore, it is preferable to set appropriately according to desired characteristics.
  • a specific reactive hydrocarbon compound may be grafted to cellulose (or a derivative thereof). Thereby, a cellulose resin can be improved to a desired characteristic.
  • This reactive hydrocarbon compound is a compound having at least one functional group capable of reacting with a hydroxy group in cellulose (or a derivative thereof), for example, a hydrocarbon having a carboxyl group, a carboxylic acid halide group, or a carboxylic acid anhydride group.
  • Compounds. Specific examples include at least one compound selected from monocarboxylic acids such as aliphatic monocarboxylic acids, aromatic monocarboxylic acids, and alicyclic monocarboxylic acids, acid halides thereof, and acid anhydrides thereof.
  • Aliphatic monocarboxylic acids include fatty acids having straight or branched side chains.
  • Aromatic monocarboxylic acids include those in which a carboxyl group is directly bonded to an aromatic ring, and those in which a carboxyl group is bonded to an aromatic ring via an alkylene group (for example, a methylene group or an ethylene group) Are combined).
  • Alicyclic monocarboxylic acids include those in which a carboxyl group is directly bonded to the alicyclic ring, those in which a carboxyl group is bonded to the alicyclic ring via an alkylene group (eg, methylene group, ethylene group) (aliphatic carboxylic acid to the alicyclic ring). Group to which a group is bonded).
  • the reactive hydrocarbon compound preferably has 1 to 32 carbon atoms, and more preferably 1 to 20 carbon atoms.
  • the number of carbon atoms is too large, the molecule becomes too large and the reaction efficiency is lowered due to steric hindrance, and as a result, it becomes difficult to increase the grafting rate.
  • This reactive hydrocarbon compound is effective in improving the characteristics particularly when it is arranged so as to fill a gap portion of a three-dimensional structure composed of a grafted cardanol component.
  • this reactive hydrocarbon compound is an aromatic hydrocarbon group or an alicyclic hydrocarbon group, it is particularly effective for improving rigidity and heat resistance, and particularly when it is an aliphatic hydrocarbon group. Effective for improving toughness.
  • aliphatic monocarboxylic acids used as reactive hydrocarbon compounds include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecyl Acids, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, lactelic acid, etc.
  • Saturated fatty acids of these unsaturated acids such as butenoic acid, pentenoic acid, hexenoic acid, octenoic acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid; and their derivatives. These may further have a substituent.
  • Aromatic monocarboxylic acids used as reactive hydrocarbon compounds include those having a carboxyl group introduced into a benzene ring such as benzoic acid; aromatic carboxylic acids having an alkyl group introduced into a benzene ring such as toluic acid; phenyl An aliphatic carboxylic acid group introduced into a benzene ring such as acetic acid and phenylpropionic acid; an aromatic carboxylic acid having two or more benzene rings such as biphenyl carboxylic acid and biphenyl acetic acid; naphthalene carboxylic acid, tetralin carboxylic acid, etc. Examples thereof include aromatic carboxylic acids having a condensed ring structure; derivatives thereof.
  • Examples of the alicyclic monocarboxylic acid used as the reactive hydrocarbon compound include those in which a carboxyl group is introduced into an alicyclic ring such as cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, and cyclooctanecarboxylic acid; and alicyclic rings such as cyclohexylacetic acid. Those having an aliphatic carboxylic acid group introduced; derivatives thereof.
  • the reactive functional group in these reactive hydrocarbon compounds may be any functional group that can react with the hydroxy group of cellulose, such as a carboxyl group, a carboxylic acid halide group (particularly a carboxylic acid chloride group), or a carboxylic acid anhydride group.
  • a carboxyl group, a carboxylic acid halide group (particularly a carboxylic acid chloride group), or a carboxylic acid anhydride group may be mentioned.
  • a carboxyl group and a carboxylic acid halide group are preferable, and a carboxylic acid chloride group is particularly preferable.
  • Examples of carboxylic acid halide groups (particularly carboxylic acid chloride groups) include acid halide groups (particularly acid chloride groups) in which the carboxyl groups of the above-mentioned various carboxylic acids are acid-halogenated.
  • the reactive hydrocarbon compound used in the present embodiment is at least one monocarboxylic acid selected from an aromatic carboxylic acid and an alicyclic carboxylic acid, its acid halide or the like, particularly from the viewpoint of the rigidity (bending strength, etc.) of the resin.
  • the acid anhydride is preferred.
  • a structure in which an acyl group derived from at least one monocarboxylic acid selected from an aromatic carboxylic acid and an alicyclic carboxylic acid is added to the hydroxy group by adding such a reactive hydrocarbon compound to the hydroxy group of cellulose ( That is, a structure in which a hydrogen atom of a hydroxy group of cellulose is substituted with an acyl group is obtained.
  • Addition number of reactive hydrocarbon compound per glucose unit of cellulose (or a derivative thereof) (addition number of acyl group) (average value), that is, the number of hydroxy groups bonded to the reactive hydrocarbon compound (hydroxyl substitution degree, DS XX ) (average value) is preferably from 0.1 to 0.6, more preferably from 0.1 to 0.5, from the viewpoint of obtaining a desired effect.
  • the number of hydroxyl groups remaining per glucose unit after grafting of the cardanol component and the reactive hydrocarbon compound (hydroxyl residual degree, DS OH ) (average value) is 0 from the viewpoint of sufficiently securing water resistance. .9 or less is preferable, and 0.7 or less is more preferable.
  • This reactive hydrocarbon compound can be grafted in the grafting step of the cardanol component. This makes it possible to graft uniformly. In this case, these may be added simultaneously or separately, but the grafting reaction efficiency can be improved by grafting the cardanol component and then grafting by adding a reactive hydrocarbon compound.
  • the soft component it is preferable to use at least one selected from a reactive thermoplastic polyurethane elastomer (reactive TPU), a reactive silicone, and a reactive rubber.
  • reactive TPU reactive thermoplastic polyurethane elastomer
  • reactive silicone reactive silicone
  • reactive rubber reactive rubber
  • a TPU having an isocyanate group can be used as the reactive TPU.
  • Reactive TPU can be bound to cellulose (or a derivative thereof) via a urethane bond formed by the reaction of the isocyanate group of the reactive TPU and the hydroxy group of cellulose (or a derivative thereof).
  • reactive TPU those produced using a polyol, a diisocyanate, and a chain extender can be used.
  • this polyol examples include polyester polyol, polyester ether polyol, polycarbonate polyol, and polyether polyol.
  • polyester polyol examples include aliphatic dicarboxylic acids (succinic acid, adipic acid, sebacic acid, azelaic acid, etc.), aromatic dicarboxylic acids (phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc.), and alicyclic dicarboxylic acids.
  • Polyvalent carboxylic acids such as acids (hexahydrophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, etc.) or their acid esters or acid anhydrides, ethylene glycol, 1,3-propylene glycol, 1,2-propylene Glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,3-octane Diols, polyhydric alcohols such as 1,9-nonanediol or Polyester polyols obtained by dehydration condensation reaction of a mixture of these; polylactone diols obtained by ring-opening polymerization of lactones monomer ⁇ - caprolactone, and the like.
  • acids hexahydrophthalic acid, hexahydr
  • polyester ether polyol examples include aliphatic dicarboxylic acids (succinic acid, adipic acid, sebacic acid, azelaic acid, etc.), aromatic dicarboxylic acids (phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc.), alicyclic Polycarboxylic acids such as dicarboxylic acids (hexahydrophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, etc.) or their acid esters or anhydrides, and diethylene glycol or alkylene oxide adducts (propylene oxide adducts, etc.) And a compound obtained by a dehydration condensation reaction with a glycol or the like or a mixture thereof.
  • aliphatic dicarboxylic acids succinic acid, adipic acid, sebacic acid, azelaic acid, etc.
  • aromatic dicarboxylic acids
  • polycarbonate polyol examples include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6
  • One or more polyhydric alcohols such as hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, and diethylene carbonate
  • Polycarbonate polyol obtained by reacting with dimethyl carbonate, diethyl carbonate or the like. Further, it may be a copolymer of polycaprolactone polyol (PCL) and polyhexamethylene carbonate (PHL).
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol and the like obtained by polymerizing cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran, and copolyethers thereof.
  • Examples of the diisocyanate used for forming TPU include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6- Hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate Methyloctane, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate Doo (hydrogenated MDI; HMDI) or the like.
  • MDI 4,4'-diphenylmethane diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • MDI 4,4'-diphenylmethane diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • a both-end isocyanate prepolymer in which these diisocyanates are bonded to both ends of the above polyol is also preferably used.
  • a low molecular weight polyol can be used as a chain extender used for forming TPU.
  • the low molecular weight polyol include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 -Aliphatic polyols such as hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, 1,4-cyclohexanedimethanol, glycerin; Aromatic glycols such as 1,4-dimethylolbenzene, bisphenol A, ethylene oxide or propylene oxide adducts of bisphenol A are listed.
  • TPUs obtained from these raw materials may be used alone or in combination.
  • the reactive TPU is synthesized using the above-mentioned raw materials, for example, using the usual TPU production method, except that the obtained TPU is reacted with the hydroxy group of the cellulose component to obtain a synthetic condition that allows grafting. can do.
  • the obtained TPU can have an unreacted isocyanate group. Since this unreacted isocyanate group can react with the hydroxy group of cellulose (or a derivative thereof), the resulting TPU can be used as a reactive TPU, i.e. grafted to cellulose (or a derivative thereof).
  • Can be The charging ratio of each raw material can be expressed by an equivalent ratio of the isocyanate group of the diisocyanate to the total amount of the hydroxy group of the polyol and the hydroxy group of the chain extender, and 1.05 isocyanate group per 1 equivalent of this total hydroxy group. -2.0 equivalents are preferred, and 1.05-1.5 equivalents are more preferred.
  • the molecular weight of the reactive TPU is preferably 10,000 or more, more preferably 30,000 or more, from the viewpoint of obtaining a sufficient impact resistance improving effect. Moreover, 1 million or less is preferable from a viewpoint on manufacture, and 300,000 or less is more preferable. This molecular weight can be determined as a number average molecular weight by GPC (standard sample: polystyrene).
  • the grafting of the reactive TPU can be performed by an addition reaction between the isocyanate group of the reactive TPU and the hydroxy group of cellulose (or a derivative thereof).
  • the cellulose carbon atom to which the hydroxy group in cellulose (and its derivative) is bonded and the TPU carbon atom to which the isocyanate group of the reactive TPU is bonded are linked via a urethane bond.
  • the reactive silicone in the present embodiment has a main skeleton of silicone and a functional group (reactive functional group A) that can be bonded by reacting with a hydroxy group of cellulose.
  • a reactive silicone is preferably a polydimethylsiloxane derivative containing a main chain composed of repeating units of dimethylsiloxane and a group containing the reactive functional group bonded to the main chain.
  • an organic group containing another group such as a phenyl group or a polyether group may be included in part.
  • the molecular weight of the reactive silicone is preferably 900 or more, more preferably 2000 or more, further preferably 3000 or more, more preferably 100,000 or less, and more preferably 50000 or less as the number average molecular weight (g / mol). From the viewpoint of improving impact resistance while ensuring the properties such as strength of the cellulose resin obtained by grafting of the cardanol component, it is preferable to set the molecular weight in such a range.
  • the number average molecular weight a measurement value (calibrated with a polystyrene standard sample) measured by GPC analysis of a 0.1% chloroform solution of the sample can be adopted.
  • the functional group equivalent of the reactive functional group of the reactive silicone is preferably 900 g / mol or more, more preferably 2000 g / mol or more, still more preferably 3000 g / mol or more, from the viewpoint of reactivity and impact resistance improving effect. 100000 g / mol or less is preferable, and 50000 g / mol or less is more preferable.
  • the reactive functional group A of the reactive silicone is preferably one that easily reacts with the hydroxy group of cellulose (or a derivative thereof), particularly preferably an isocyanate group or a carboxylic acid halide group (particularly a carboxylic acid chloride group).
  • the carboxylic acid halide group can be formed by acid-haliding a carboxyl group before grafting.
  • the carbon atom to which the hydroxy group of cellulose (or a derivative thereof) is bonded and the group containing the isocyanate group of the reactive silicone are The bonded silicon atoms are linked via a urethane bond.
  • the carbon atom to which the hydroxy group of cellulose (or a derivative thereof) is bonded to the carboxylic acid halide group of the reactive silicone is linked via an ester bond.
  • Reactive silicone S A having such reactive functional groups A is a polyfunctional compound having a reactive functional group A
  • a modified silicone S C can be formed by reacting with.
  • the reactive functional group A and the reactive functional group B may be the same functional group.
  • a diisocyanate (polyfunctional compound) and a modified silicone (S C ) having a hydroxy group can be reacted to bond one isocyanate group of the diisocyanate and a hydroxy group of the modified silicone (S C ) (urethane bond). Formation).
  • the reactive silicone S A which is formed by using such a polyfunctional compound grafted, cellulose carbon atom to which the hydroxy group in the cellulose (or derivative thereof) is attached, the reactive functional modified silicone S C
  • the polysiloxane silicon atom to which the group containing the group C is bonded is linked through an organic linking group.
  • the organic linking group includes a first bond selected from an ester bond, an ether bond and a urethane bond on the cellulose carbon atom side, and an amide bond, an ester bond, an ether bond and a urethane bond on the polysiloxane silicon atom side.
  • a second bond may be included.
  • Modified silicone S C having a reactive functional group C has a backbone composed of repeating units of dimethylsiloxane, reactive functional part of its side chain or terminal methyl groups may react with the multifunctional compound
  • a modified polydimethylsiloxane substituted with a group containing a group C (for example, an organic substituent) is preferable.
  • the reactive functional group C is preferably any one of an amino group, an epoxy group, a hydroxy group, and a carboxyl group. When the modified silicone has such a reactive functional group C, the reaction with the polyfunctional compound is facilitated.
  • Such modified silicone S C may be used ordinary ones and commercial products prepared according to the process.
  • the reactive functional group C contained in the modified silicone S C may be mentioned those represented by the following formula (3) to (11).
  • R 1 to R 10 , R 12 and R 13 each represent a divalent organic group.
  • the divalent organic group include an alkylene group such as a methylene group, an ethylene group, a propylene group, and a butylene group, an alkylarylene group such as a phenylene group and a tolylene group, — (CH 2 —CH 2 —O) c — (c is An oxyalkylene group such as — [CH 2 —CH (CH 3 ) —O] d — (d represents an integer of 1 to 50), a polyoxyalkylene group, — (CH 2 ) E -NHCO- (e represents an integer of 1 to 8).
  • an alkylene group is preferable, and an ethylene group and a propylene group are particularly preferable.
  • R 11 represents an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, etc. Is mentioned. Moreover, you may have one or more unsaturated bonds in the structure of the said alkyl group.
  • Such modified silicone S C are readily available commercially, for example, the following commercial products.
  • Examples of the single-terminal amino-modified silicone include commercial products manufactured by Momentive Performance Materials LLC: TSF4700 and TSF4701.
  • side-chain both-end type (side-chain amino / both-end methoxy) amino-modified silicone commercially available products from Shin-Etsu Chemical Co., Ltd .: KF-857, KF-8001, KF-862, X-22-9192, KF-858 Can be mentioned.
  • side chain type epoxy-modified silicone commercially available products from Shin-Etsu Chemical Co., Ltd .: X-22-343, KF-101, KF-1001, X-22-2000, X-22-2046, KF-102, X- 22-4741, KF-1002, and X-22-3000T.
  • the one-end type epoxy-modified silicone there is a commercial product manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-173DX.
  • Examples of the side-chain both-end type epoxy-modified silicone include commercially available product X-22-9002 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples of commercially available carbinol-modified silicones include the following.
  • Examples of the side chain carbinol-modified silicone include commercial products manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-4039 and X-22-4015.
  • Examples of the double-ended carbinol-modified silicone include commercial products manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-160AS, KF-6001, KF-6002, and KF-6003.
  • Examples of the single-ended carbinol-modified silicone include commercial products manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-170BX and X-22-170DX.
  • Examples of commercially available carboxyl-modified silicones include the following.
  • Examples of the side chain carboxyl-modified silicone include a commercial product manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-3701E.
  • Examples of the both-end-type carboxyl-modified silicone include a commercial product manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-162.
  • the one-end type carboxyl-modified silicone there is a commercial product manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-3710.
  • the polyfunctional compound and the organic linking group preferably include a hydrocarbon group, and the hydrocarbon group preferably has 1 or more carbon atoms, more preferably 2 or more, and preferably 20 or less carbon atoms, or 14 or less carbon atoms. Is more preferable, and 8 or less is more preferable. When there are too many carbon atoms, a molecule
  • numerator may become large too much and the reactivity may fall.
  • a divalent group is preferable, and a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a decamethylene group, a dodecamethylene group, Divalent linear aliphatic hydrocarbon group such as hexadecamemethylene group (particularly linear alkylene group); cycloheptane ring, cyclohexane ring, cyclooctane ring, bicyclopentane ring, tricyclohexane ring, bicyclooctane ring, bicyclononane
  • a divalent alicyclic hydrocarbon group such as a ring or a tricyclodecane ring; a divalent aromatic hydrocarbon group such as a benzene ring, a naphthalene ring or a biphenylene
  • the reactive functional group of the polyfunctional compound is preferably a group selected from a carboxyl group, a carboxylic acid anhydride group, a carboxylic acid halide group (particularly a carboxylic acid chloride group), an epoxy group, an isocyanate group, and a halogen group.
  • a carboxyl group, a carboxylic acid anhydride group, a halogen group (particularly a chloride group), and an isocyanate group are preferable.
  • an isocyanate group or a carboxylic acid halide group is particularly preferable.
  • a carboxyl group, a carboxylic acid halide group (particularly a carboxylic acid chloride group) and an isocyanate group are particularly preferable.
  • the carboxylic acid halide group can be formed by acid-haliding a carboxyl group before bonding.
  • polyfunctional compounds include dicarboxylic acids, carboxylic anhydrides, dicarboxylic acid halides, monochlorocarboxylic acids, and diisocyanates.
  • dicarboxylic acid include malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, pentadecanedicarboxylic acid, and hexadecanedicarboxylic acid
  • carboxylic acid anhydrides include these dicarboxylic acids.
  • dicarboxylic acid halide include acid halides of these dicarboxylic acids.
  • Monochlorocarboxylic acids include monochloroacetic acid, 3-chloropropionic acid, 3-fluoropropionic acid, 4-chlorobutyric acid, 4-fluorobutyric acid, 5-chlorovaleric acid, 5-fluorovaleric acid, 6-chlorohexanoic acid, 6 -Fluorohexanoic acid, 8-chlorooctanoic acid, 8-fluorooctanoic acid, 12-chlorododecanoic acid, 12-fluorododecanoic acid, 18-chlorostearic acid, 18-fluorostearic acid.
  • Diisocyanates include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6-hexamethylene diisocyanate (HDI), Isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate (HMDI: hydrogenated MDI) And the like.
  • Reactive rubber grafting As the reactive rubber, a flexible rubber-like substance having a reactive functional group capable of reacting with and binding to the hydroxy group of cellulose (or a derivative thereof) can be used, and natural rubber-type and synthetic rubber-type rubber-like substances are used. be able to.
  • Natural rubber is a substance mainly composed of cis-polyisoprene [(C 5 H 8 ) n ] contained in the sap of rubber tree (rubber tree), and is produced by addition polymerization in vivo. It is. In the sap, there is a latex in which organic components are dispersed in an aqueous solution, and this is collected, purified, coagulated and dried, and is called raw rubber.
  • the natural rubber polyisoprene has some structural differences compared to polyisoprene (a kind of synthetic rubber) obtained by chemically polymerizing isoprene.
  • synthetic polyisoprene cannot obtain a 100% cis isomer at present and contains a small amount of trans isomer.
  • Natural rubber contains trace amounts of proteins and fatty acids in addition to polyisoprene, but synthetic polyisoprene has no such impurities.
  • Cis-type polyisoprene has a structure in which molecular chains are bent and easily takes an irregular shape. Many gaps are generated between molecular chains and molecular differences, and intermolecular forces are relatively small. Therefore, crystallization between molecules hardly occurs and it has a soft property and is suitable as a flexible component.
  • some are made of trans-type polyisoprene commonly known as gutta percha or gutta percha
  • gutta percha commonly known as gutta percha
  • gutta percha a linear structure
  • the intermolecular force acts strongly because the distance between the molecular chain is close. Therefore, it causes microcrystallization between molecules, becomes a hard resinous substance, and is not suitable as a flexible component.
  • the reactive natural rubber in the present embodiment is obtained by adding a reactive functional group capable of reacting with a hydroxy group of cellulose (or a derivative thereof) to the natural rubber having cis-polyisoprene as a main component.
  • This reactive natural rubber reacts with the hydroxy groups of cellulose (or its derivatives) against unsaturated bonds and other functional groups in natural rubber (for example, epoxy groups formed by oxidizing unsaturated bonds).
  • It can be prepared by adding a compound having a functional group that can be bonded (epoxy group, carboxyl group, acid chloride group, isocyanate group, etc.).
  • Such reactive natural rubber may contain, in addition to these reactive functional groups, a functional group that enhances compatibility with the cellulosic resin. Examples of such a functional group include a phenyl group, a polyether group, and a hydroxy group.
  • the reactive synthetic rubber in the present embodiment is obtained by adding a reactive functional group capable of reacting with a hydroxy group of cellulose (or a derivative thereof) to synthetic rubber.
  • a reactive functional group capable of reacting with a hydroxy group of cellulose (or a derivative thereof)
  • synthetic rubber acrylic rubber (ACM), nitrile rubber (NBR), isoprene rubber (IR), ethylene propylene rubber (EPM, EPDM), epichlorohydrin rubber (CO, ECO), styrene-butadiene rubber (SBR), butadiene
  • acrylic rubber ACM
  • NBR nitrile rubber
  • IR isoprene rubber
  • EPM ethylene propylene rubber
  • EPM epichlorohydrin rubber
  • CO epichlorohydrin rubber
  • SBR styrene-butadiene rubber
  • butadiene examples thereof include rubber (BR) and polyisobutylene (butyl rubber IIR).
  • This reactive natural rubber is a functional group (epoxy group, carboxyl group, acid chloride group) that can react with the hydroxyl group of cellulose (or its derivatives) to unsaturated bonds and other functional groups in synthetic rubber. And a compound having an isocyanate group or the like).
  • a reactive synthetic rubber may contain, in addition to these reactive functional groups, a functional group that enhances compatibility with the cellulosic resin. Examples of such a functional group include a phenyl group, a polyether group, and a hydroxy group.
  • the grafting treatment can be performed by heating cellulose (or a derivative thereof), a cardanol component, a soft component, and optionally a reactive hydrocarbon compound in a solvent capable of dissolving them at an appropriate temperature.
  • cellulose is difficult to dissolve in ordinary solvents, it can be dissolved in dimethylsulfoxide-amine solvents, dimethylformamide-chloral-pyridine solvents, dimethylacetamide-lithium chloride solvents, imidazolium ionic liquids, and the like.
  • a cellulose derivative whose solubility has been changed by preliminarily binding carboxylic acid or alcohol to a part of cellulose hydroxy group and reducing intermolecular force can be used.
  • An acylated cellulose in which a hydrogen atom of a hydroxy group is substituted with an acyl group such as an acetyl group, a propionyl group, or a butyryl group is preferable, and cellulose acetate that is acetated (acetylated) using acetic acid or acetic acid chloride is particularly preferable.
  • Acetic acid, propionic acid, butyric acid, and halides and anhydrides of these acids used for these acylations are included in the above-mentioned reactive hydrocarbon compounds.
  • Part or all of the hydrogen compound can be added (grafted) to the hydroxy group of the cellulose prior to grafting of the cardanol component.
  • the grafting treatment of the soft component can also be performed on a cardanol-added cellulose resin grafted with a cardanol component (reactive hydrocarbon if necessary).
  • grafting can be performed by adding the reactive TPU to a heated cardanol-added cellulose resin and mixing them.
  • the reaction temperature can be set to, for example, 150 to 200 ° C.
  • the reaction time can be set to, for example, 10 minutes to 4 hours.
  • the addition amount of the reactive TPU is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount of the reactive TPU and cardanol-added cellulose resin, from the viewpoint of obtaining a sufficient impact resistance improvement effect. Preferably, 5 mass% or more is more preferable. In view of securing other characteristics such as the strength of the resin, the amount of reactive TPU added is preferably 50% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the reactive silicone can be added to and mixed with a cardanol-added cellulose resin dissolved in a solvent such as dehydrated dioxane.
  • the reaction temperature can be set, for example, at 80 to 150 ° C., and the reaction time can be set, for example, at 1 to 5 hours. By making the reaction temperature sufficiently high, it becomes easy to make the reaction system uniform. By setting the reaction temperature within an appropriate temperature range, thermal decomposition of the cardanol-added cellulose resin or reactive silicone can be prevented.
  • the amount of the reactive silicone added is preferably 0.5% by mass or more, preferably 1% by mass or more, based on the total amount of the reactive silicone and cardanol-added cellulose resin, from the viewpoint of obtaining a sufficient impact resistance improvement effect. Is more preferable, and 2 mass% or more is more preferable. In view of securing other properties such as the strength of the resin, the amount of reactive silicone added is preferably 50% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the amount of the reactive rubber added is 1 mass with respect to the total charged amount of the reactive rubber and the cardanol-added cellulose resin from the viewpoint of obtaining a sufficient impact resistance improving effect.
  • % Or more preferably 3% by mass or more, more preferably 5% by mass or more. From the viewpoint of securing other properties such as the strength of the resin, it is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the amount (bound amount) of the bonded flexible component in the total amount (including cardanol component) of the cellulosic resin is preferably 0.5% by mass or more, from the viewpoint of obtaining a sufficient impact resistance improving effect, and 1% by mass or more. Is more preferable.
  • the amount of bonding is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the binding amount is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more.
  • the amount of bonding is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more.
  • the binding amount is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more.
  • the number of hydroxyl groups remaining per glucose unit of the cellulose resin after grafting (hydroxyl residual degree, DS OH ) (average value) is preferably 0.9 or less, 0.7 or less is more preferable.
  • the hydroxy group of cellulose is acylated with the above-mentioned reactive hydrocarbon, and the grafting of the cardanol component and the flexible component as described above.
  • the hydroxy group of cellulose is preferably appropriately acylated (particularly acetylated) before grafting of the cardanol component and the soft component.
  • the number of acyl groups added (average value) per glucose unit of cellulose (or a derivative thereof), that is, the number of acylated hydroxy groups (hydroxyl substitution degree, DS AC ) (average value) has a sufficient acylation effect.
  • a grafting ratio of cardanol component (DS CD) and the grafting ratio of the soft ingredient is preferably 2.7 or less hydroxyl substitution degree DS AC by the acylation, more is 2.5 or less Preferably, 2.2 or less is more preferable.
  • the acyl group to be added by this acylation is preferably at least one selected from an acetyl group, a propionyl group, and a butyryl group.
  • the degree of substitution in the case of acetylation is indicated as DS Ace
  • the degree of substitution in the case of propionylation is indicated as DS Pr
  • the degree of substitution in the case of butyrylation is indicated as DS Bu .
  • the cellulose resin of the present embodiment has a total mass ratio (plant component ratio) of the cellulose component and the cardanol component to the entire cellulose resin after grafting of 50%.
  • the above is preferable, and 60% or more is more preferable.
  • the cellulose component corresponds to the structure represented by the above formula (1) in which the hydroxy group is not acylated or grafted, and the cardanol component is calculated to correspond to the structure represented by the above formula (2). To do.
  • thermoplasticity and elongation at break can be further improved by adding a plasticizer.
  • plasticizers include phthalate esters such as dibutyl phthalate, diaryl phthalate, diethyl phthalate, dimethyl phthalate, di-2-methoxyethyl phthalate, ethyl phthalyl ethyl glycolate, and methyl phthalyl ethyl glycolate; Tartrate esters such as dibutyl tartrate; adipates such as dioctyl adipate and diisononyl adipate; polyhydric alcohol esters such as triacetin, diacetyl glycerol, tripropionitrile glycerol and glycerol monostearate; triethyl phosphate, triphenyl phosphate, Phosphate esters, phthalate esters such as dibutyl phthalate, diaryl phthalate, diethyl phthalate, dimethyl phthalate
  • plasticizers include cyclohexanedicarboxylic acid esters such as dihexylcyclohexanedicarboxylate, dioctylcyclohexanedicarboxylate, and di-2-methyloctylcyclohexanedicarboxylate; trimexates such as dihexyl trimellitic acid, diethylhexyl trimellitic acid, and dioctyl trimellitic acid.
  • Mellitic acid esters pyromellitic acid esters such as dihexyl pyromellitic acid, diethylhexyl pyromellitic acid, and dioctyl pyromellitic acid.
  • Plasticizers can also be used. When such a plasticizer is used, the compatibility between the cellulose resin of the present embodiment and the plasticizer can be improved, so that the effect of adding the plasticizer can be further improved.
  • an inorganic or organic granular or fibrous filler can be added as necessary.
  • a filler By adding a filler, strength and rigidity can be further improved.
  • the filler include mineral particles (talc, mica, calcined siliceous clay, kaolin, sericite, bentonite, smectite, clay, silica, quartz powder, glass beads, glass powder, glass flake, milled fiber, wallast.
  • organic fibers natural fibers, papers, etc.
  • inorganic fibers glass fibers, asbestos fibers, carbon fibers, silica fibers, silica / alumina fibers, wollastonite, zirconia fibers, potassium titanate fibers) Etc.
  • metal fibers can be used alone or in combination of two or more.
  • a flame retardant can be added to the cellulose-based resin of the present embodiment as necessary. By adding a flame retardant, flame retardancy can be imparted.
  • the flame retardant include metal hydrates such as magnesium hydroxide, aluminum hydroxide, and hydrotalcite, basic magnesium carbonate, calcium carbonate, silica, alumina, talc, clay, zeolite, brominated flame retardant, three Examples thereof include antimony oxide, phosphoric acid flame retardants (aromatic phosphate esters, aromatic condensed phosphate esters, etc.), compounds containing phosphorus and nitrogen (phosphazene compounds), and the like. These flame retardants can be used alone or in combination of two or more.
  • a flame retardant a reaction product of phosphorus oxide, phosphoric acid or a derivative thereof and cardanol, or a polymer of these reaction products can be used.
  • a flame retardant for example, a reaction product obtained by reacting phosphorus oxide (P 2 0 5 ) or phosphoric acid (H 3 PO 4 ) with a phenolic hydroxyl group of cardanol, or hexamethylenetetramine is added to this reaction product.
  • a polymer obtained by polymerization is exemplified.
  • the impact resistance improver can be added to the cellulose-based resin of the present embodiment as necessary.
  • the impact resistance can be improved by adding an impact resistance improver.
  • the impact resistance improver include rubber components and silicone compounds.
  • the rubber component include natural rubber, epoxidized natural rubber, and synthetic rubber.
  • an organic polysiloxane formed by polymerization of alkylsiloxane, alkylphenylsiloxane, or the like, or a side chain or a terminal of the organic polysiloxane is polyether, methylstyryl, alkyl, higher fatty acid ester, alkoxy
  • a cardanol polymer containing cardanol as a main component may be used. Since such an impact resistance improver is excellent in compatibility with the cellulose resin in the present embodiment, a higher impact resistance improvement effect can be obtained.
  • formanol is added to cardanol, and a cardanol polymer obtained by reaction of this with an unsaturated bond in the linear hydrocarbon of cardanol, or cardanol, sulfuric acid, phosphoric acid, diethoxytrifluoroboron, etc.
  • Examples thereof include a cardanol polymer obtained by adding a catalyst and reacting unsaturated bonds in a linear hydrocarbon of cardanol.
  • additives that are applied to ordinary resin compositions such as a colorant, an antioxidant, and a heat stabilizer may be added as necessary.
  • thermoplastic resin may be added to the cellulose-based resin of the present embodiment as necessary.
  • various mixing agents and a cellulose resin are hand-mixing, a well-known mixer,
  • a well-known mixer for example, it can be produced by melt-mixing with a compounding device such as a tumbler mixer, ribbon blender, single-screw or multi-screw mixer / extruder, kneader kneader, kneading roll, etc., and granulating into an appropriate shape if necessary.
  • a compounding device such as a tumbler mixer, ribbon blender, single-screw or multi-screw mixer / extruder, kneader kneader, kneading roll, etc.
  • various additives and a resin dispersed in a solvent such as an organic solvent are mixed, and if necessary, a coagulation solvent is added to mix the various additives and the resin. And then the solvent is evaporated.
  • the cellulosic resin according to the embodiment described above can be used as a base resin of a molding material.
  • a molding material made of a resin composition containing the cellulose-based resin as a base resin is suitable for a molded body such as a casing such as an exterior for an electronic device.
  • the base resin means a main component in the composition, and means that other components are allowed to be contained within a range that does not interfere with the function of the main component.
  • this main component accounts for preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and particularly preferably 90% by mass or more in the composition. To do.
  • the cardanol component was prepared and grafted according to Synthesis Examples 1 to 3 below to obtain a cardanol-added cellulose resin.
  • Reactive TPU soft component
  • reactive TPU was grafted to cardanol-added cellulose resin according to Example 1.
  • reactive silicone soft component was produced according to Synthesis Example 7, and grafting of reactive silicone onto cardanol-added cellulose resin was performed according to Example 2.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight, and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of cardanol-grafted cellulose acetate.
  • the obtained sample (cardanol grafted cellulose acetate) was measured by 1 H-NMR (manufactured by Bruker, product name: AV-400, 400 MHz).
  • DS CD was 0.30 and DS BC was 0.14. there were.
  • the obtained polyester polyol had a hydroxyl value of 54, and the number average molecular weight was 2000 as a result of measurement by GPC (gel permeation chromatography, standard sample: polystyrene).
  • the isocyanate group content was measured every 30 minutes, and when the same isocyanate content as the calculated value was reached, heating was stopped and the mixture was allowed to cool to obtain a double-ended isocyanate prepolymer.
  • the isocyanate content of the obtained terminal isocyanate prepolymer was 3.5% by mass.
  • the molecular weight of the obtained reactive TPU was measured by GPC (standard sample: polystyrene), and the number average molecular weight was 220,000.
  • Example 1 The reactive TPU (C-1) of Synthesis Example 6 was bonded to the cardanol-added cellulose resin (A-2) of Synthesis Example 3 to obtain a reactive TPU-grafted cellulose resin.
  • a reactive TPU-grafted cellulose resin was prepared according to the following.
  • the obtained cellulose resin was press-molded under the following conditions to obtain a molded body.
  • Molded body size (molded body 1): thickness: 2 mm, width: 13 mm, length: 80 mm, Molded body size (molded body 2): thickness: 4 mm, width: 10 mm, length: 80 mm.
  • the obtained molded body was evaluated according to the following. The results are shown in Table 1.
  • the glass transition temperature was measured by DSC (product name: DSC6200, manufactured by Seiko Instruments Inc.).
  • No exudation or peeling on the surface of the molded body
  • Exudation or peeling on a part of the surface of the molded body (less than 20% of the surface of the molded body)
  • X Exudation or peeling on the surface of the molded body (20% or more of the surface of the molded body).
  • Example 1 (cardanol-added cellulose resin grafted with reactive TPU), Comparative Example 1 (cardanol-added cellulose resin not grafted with reactive TPU), Comparative Example 2 (non-reacted with cardanol-added cellulose resin)
  • a comparative example 3 (a composition containing a polyol, a diisocyanate, and a cardanol-added cellulose resin) that is a raw material of the reactive TPU and a cardanol grafted with the reactive TPU. It can be seen that the added cellulose-based resin has improved impact resistance while maintaining good strength, heat resistance (Tg), and water resistance.
  • the cellulose resin of Example 1 grafted with reactive TPU showed comparable or better meltability under the same molding conditions as compared with the cardanol-added cellulose resin of Comparative Example 1 without grafting reactive TPU, It showed good thermoplasticity.
  • the content of the one-to-one reactant of the carbinol-modified silicone component and the toluene diisocyanate component was It was 90 mass% or more.
  • Example 2 The isocyanate-modified silicone of Synthesis Example 7 was bonded to the cardanol-added cellulose resin of Synthesis Example 2 to obtain a silicone-grafted cellulose resin. Specifically, a silicone-grafted cellulose resin was prepared according to the following.
  • Example 2 cardanol-added cellulose resin grafted with a silicone component
  • Comparative Example 4 cardanol-added cellulose resin not grafted with a silicone component
  • Comparative Example 5 non-reactive with cardanol-added cellulose resin
  • the cellulose resin of Example 2 grafted with the silicone component showed meltability equal to or higher than that of the cardanol-added cellulose resin of Comparative Example 4 in which the silicone component was not grafted, under the same molding conditions. It showed thermoplasticity.
  • a chlorinated hydrogenated cardanol was prepared according to the following.
  • the glass transition temperature was measured by DSC (product name: DSC6200, manufactured by Seiko Instruments Inc.).
  • the total content (mass%) of the plant components relative to the entire sample was determined.
  • the cellulose component corresponds to the structure represented by the above formula (1) in which the hydroxy group is not acylated or grafted
  • the cardanol component is calculated to correspond to the structure represented by the above formula (2). did.
  • the obtained sample (grafted cellulose acetate) was measured by 1 H-NMR (manufactured by Bruker, product name: AV-400, 400 MHz), the DS CD was 0.80.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 16 g of grafted cellulose acetate.
  • the obtained sample (grafted cellulose acetate) was measured by 1 H-NMR (manufactured by Bruker, product name: AV-400, 400 MHz), the DS CD was 0.50.
  • Cellulose acetate butyrate 10 g (hydroxy group amount 0.011 mol) was dissolved in 200 mL of dehydrated dioxane, and 2.5 mL (0.018 mol) of triethylamine was added as a reaction catalyst and an acid scavenger.
  • To this solution was added 100 mL of a dioxane solution in which 13 g (0.035 mol) of the chlorinated hydrogenated cardanol prepared in Reference Synthesis Example 2 was dissolved, and the mixture was heated to reflux at 100 ° C. for 5 hours.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight, and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate butyrate.
  • Cellulose acetate propionate 10 g (hydroxy group amount 0.010 mol) was dissolved in 200 mL of dehydrated dioxane, and 2.5 mL (0.018 mol) of triethylamine was added as a reaction catalyst and an acid scavenger.
  • To this solution was added 100 mL of a dioxane solution in which 13 g (0.035 mol) of the chlorinated hydrogenated cardanol prepared in Reference Synthesis Example 2 was dissolved, and the mixture was heated to reflux at 100 ° C. for 5 hours.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate.
  • Cellulose acetate propionate 10 g (hydroxy group amount 0.010 mol) was dissolved in 200 mL of dehydrated dioxane, and 2.5 mL (0.018 mol) of triethylamine was added as a reaction catalyst and an acid scavenger.
  • Dioxane in which 4.5 g (0.012 mol) of the chlorinated hydrogenated cardanol prepared in Reference Synthesis Example 2 and 2.8 g (0.020 mol) of benzoyl chloride (BC) manufactured by Tokyo Chemical Industry Co., Ltd. were dissolved in this solution. 100 mL of the solution was added, and the mixture was heated to reflux at 100 ° C. for 5 hours.
  • the reaction solution was slowly added dropwise to 3 L of methanol with stirring to cause reprecipitation, and the solid was separated by filtration.
  • the solid separated by filtration was air-dried overnight and further vacuum-dried at 105 ° C. for 5 hours to obtain 13 g of grafted cellulose acetate.
  • the carboxylated hydrogenated cardanol thus prepared was bonded to cellulose (manufactured by Nippon Paper Chemical Co., Ltd., trade name: KC Flock W-50G) to obtain grafted cellulose.
  • grafted cellulose was prepared according to the following.
  • Reference Comparative Example 1 The cellulose acetate before grafting used in Reference Example 1 was used as a comparative sample.
  • the cellulose acetate was evaluated in the same manner as in Reference Example 1. The results are shown in Table 101C.
  • the cellulose acetate did not melt even when heated and did not show thermoplasticity. Further, since the molding could not be performed, the bending test could not be performed.
  • Reference Comparative Example 3 A cellulose acetate resin composition was prepared according to the same amount and method as in Reference Comparative Example 2 except that the amount of triethyl citrate added was changed to 56% by mass with respect to the entire resin composition.
  • Reference Comparative Example 4 A cellulose acetate resin composition was prepared according to the same amount and method as in Reference Comparative Example 2, except that the amount of triethyl citrate added was changed to 34% by mass with respect to the entire resin composition.
  • grafted cellulose acetate was prepared according to the following.
  • the cellulose acetate did not melt even when heated and did not show thermoplasticity. Further, since the molding could not be performed, the bending test could not be performed.
  • the cellulose acetate was evaluated in the same manner as in Reference Example 1. The results are shown in Table 102.
  • the cellulose acetate did not melt even when heated and did not show thermoplasticity. Further, since the molding could not be performed, the bending test could not be performed.
  • Reference Comparative Example 8 A cellulose acetate resin composition was prepared according to the same amount and method as in Reference Comparative Example 7, except that the amount of triethyl citrate added was changed to 40% by mass with respect to the entire resin composition.
  • the cellulose acetate butyrate and cellulose acetate propionate melted when heated and had thermoplastic properties, but had a very high melt viscosity and were difficult to mold, so a bending test could not be performed.
  • Cardanol represented by the above formula (2) having an unsaturated bond (manufactured by Tohoku Kako Co., Ltd., LB-7000: about 5% 3-pentadecylphenol, about 35% 3-pentadecylphenol monoene, 3-pentadecyl)
  • the unsaturated bond of about 20% phenoldiene and about 40% 3-pentadecylphenoltriene) and the hydroxy group of cellulose (manufactured by Nippon Paper Chemical Co., Ltd., trade name: KC Flock W-50G) are chemically bonded, Cardanol grafted cellulose was obtained.
  • cardanol-grafted cellulose was prepared according to the following.
  • the product was filtered, washed with acetone, extracted with Soxhlet, and vacuum-dried at 105 ° C. for 5 hours to obtain 2.5 g of a target cardanol-grafted cellulose composition.
  • the DS CD determined from the recovered amount was 0.16.
  • the cardanol-grafted cellulose resin of this Reference Example is a cellulose derivative before grafting that does not exhibit thermoplasticity ( Cellulose acetate) shows superior bending characteristics with thermoplasticity (press formability) without lowering the plant component ratio, and further improved tensile properties (especially breaking strain) and water resistance (water absorption). ing.
  • the cardanol-grafted cellulose resin of this reference example is a cellulose derivative (cellulose) before grafting. Bending characteristics, tensile characteristics and water resistance are improved as compared with those obtained by adding a plasticizer to (acetate), and high heat resistance (glass transition temperature) is obtained without lowering the plant component ratio.
  • Reference Examples 21 to 22 and Reference Comparative Examples 6 to 8 are examples in which the acetyl group added to the hydroxy group of cellulose was increased compared to Reference Examples 1 to 20 and Reference Comparative Examples 1 to 5. Even in such a case, when Reference Examples 21 to 22 and Reference Comparative Example 6 are compared, the cardanol-grafted cellulose resin of this Reference Example is compared with the cellulose derivative before grafting which does not exhibit thermoplasticity. Without lowering the plant component ratio, thermoplasticity is exhibited and excellent bending properties are obtained, and tensile properties (particularly breaking strain) and water resistance are improved.
  • the cardanol-grafted cellulose resin of this Reference Example is more flexible than the one obtained by adding a plasticizer to the cellulose derivative before grafting ( In particular, bending strength), tensile properties and water resistance are improved, and high heat resistance is obtained without lowering the plant component ratio.
  • thermoplasticity can be imparted to the cellulosic resin, and excellent heat resistance can be obtained.
  • thermoplasticity can be imparted to the cellulosic resin, and excellent bending properties, tensile properties (particularly, breaking strain) and water resistance can be obtained.
  • Reference Examples 23 to 25 and Reference Comparative Examples 9 to 12 are examples of cellulose resins prepared using a cellulose derivative in which a butyryl group or a propionyl group is added to a hydroxy group in addition to an acetyl group. Even in such a case, when comparing Reference Examples 23 to 25 and Reference Comparative Examples 9 and 10, the cardanol-grafted cellulose resin of this Reference Example is a plant component compared to the cellulose derivative before grafting. Excellent thermoplasticity and bending properties can be obtained without lowering the rate, and tensile properties (especially breaking strain) and water resistance are improved.
  • the cardanol-grafted cellulose resin of this Reference Example is more flexible than the one obtained by adding a plasticizer to the cellulose derivative before grafting (In particular, bending strength), tensile properties and water resistance are improved, and high heat resistance is obtained without lowering the plant component ratio.
  • Reference Example 26 is an example of a cellulose-based resin prepared using cellulose in which an acyl group such as an acetyl group is not added to the hydroxy group of cellulose. Even in such a case, when the reference example 26 and the reference comparative example 13 are compared, the cardanol grafted cellulose resin of this reference example is obtained by adding a plasticizer to the cellulose derivative (cellulose acetate) of the reference comparative example 13. Bending characteristics (especially bending strength), tensile characteristics and water resistance are improved compared to those obtained (the weight fraction of the cellulose component is the same), and high heat resistance is obtained without lowering the plant component ratio. .
  • the water resistance is improved, and a cellulose resin having good thermoplasticity (press moldability) and sufficient heat resistance. Can provide. Further, high bending characteristics can be obtained for the press-molded body, and tensile characteristics (particularly toughness) can be improved for the film molded body.
  • the grafted cellulose resin of this reference example has a high plant component ratio and a high utilization ratio of the non-edible part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 セルロース又はその誘導体にカルダノール又はその誘導体と柔軟成分が結合されてなるセルロース系樹脂。

Description

セルロース系樹脂
 本発明は、セルロース系樹脂に関する。
 植物を原料とするバイオプラスチックは、石油枯渇対策や温暖化対策に寄与できるため、包装、容器、繊維などの一般製品に加え、電子機器、自動車等の耐久製品への利用も開始されている。
 しかし、通常のバイオプラスチック、例えば、ポリ乳酸、ポリヒドロキシアルカネート、デンプン変性物などは、いずれもデンプン系材料、すなわち可食部を原料としている。そのため、将来の食料不足への懸念から、非可食部を原料とする新しいバイオプラスチックの開発が求められている。
 非可食部を原料とするバイオプラスチックとしては、すでに、非可食部である木材や草木の主要成分であるセルロースを利用した種々のバイオプラスチックが開発され、製品化されている。
 セルロースは、β-グルコースが重合した高分子であるが、結晶性が高いため、硬くて脆く、熱可塑性もない。さらに、多くのヒドロキシ基を含有するため吸水性が高く、耐水性が低い。そこで、セルロースの特性を改善するための種々の検討が行われている。
 例えば、特許文献1(特開平11-255801号公報)には、ヒドロキシ基を有するセルロースアセテートにε-カプロラクトンを開環グラフト重合させてなる、熱可塑性を有する生分解性グラフト重合体が開示されている。
 一方、セルロース以外の非可食部成分を利用した材料の開発も行われている。例えば、カシューナッツの殻由来のカルダノールは、安定した生産量に加え、特徴的な分子構造から機能性にも優れているため、様々な用途に適用されている。
 カルダノールを利用した例として、特許文献2(特開平10-8035号公報)には、アラミドパルプとセルロース繊維からなる繊維基材、炭酸カルシウムとカシューダストからなる充填材、及びフェノール樹脂からなる結合材を用いて形成されたブレーキ用の摩擦材が開示されている。特許文献3(特開2001-32869号公報)には、アラミド繊維とセルロース繊維からなるベース基材、グラファイトとカシューダストからなる充填材、及び有機無機複合バインダを用いて形成された摩擦材が開示されている。この摩擦材は、自動車等の動力伝達系のクラッチフェーシングに適用されることが記載されている。
 非特許文献1(George John et al., Polymer Bulletin, 22, p.89-94(1989))には、紙シートをカルダノールに浸し、この紙シートを構成するセルロースにカルダノールを結合するグラフト化反応を行うことによって、紙の耐水性を向上できることが記載されている。このグラフト化反応においては、ボロントリフルオリドジエチルエーテル(BF-OEt)の存在下で、カルダノールの末端二重結合とセルロースのヒドロキシ基が結合することが記載されている。
特開平11-255801号公報 特開平10-8035号公報 特開2001-32869号公報
George John et al., Polymer Bulletin, 22, p.89-94(1989)
 セルロース系バイオプラスチックは、セルロース自体が持つ特性の影響により、強度や耐熱性、耐水性、熱可塑性、耐衝撃性が不十分であり、特に電子機器用外装などの耐久製品に適用するためには、これらの特性の改善が必要である。
 また、セルロース系バイオプラスチックは、熱可塑性を改善するために可塑剤を添加すると、耐熱性や強度(特に剛性)が低下したり、均一性の低下や可塑剤のブリードアウト(成形体表面への染みだし)の問題が生じたりする。また、石油原料からなる可塑剤を多量に添加すると、植物利用率(植物性)が低下する。さらに、耐衝撃性を改善させるため、通常の柔軟成分を添加すると、成形時にこの柔軟成分がブリードアウトして成形性に支障をきたす場合がある。
 本発明の目的は、熱可塑性、耐熱性、強度、成形性および耐水性とともに、耐衝撃性が改善されたセルロース系樹脂を提供することにある。
 本発明の一態様によれば、セルロース又はその誘導体にカルダノール又はその誘導体と柔軟成分が結合されてなるセルロース系樹脂が提供される。
 本発明の他の態様によれば、上記のセルロース系樹脂をベース樹脂として含む樹脂組成物が提供される。
 本発明の他の態様によれば、上記の樹脂組成物よりなる成形用材料が提供される。
 本発明の実施形態によれば、熱可塑性、耐熱性、強度および耐水性とともに、耐衝撃性が改善されたセルロース系樹脂を提供することができる。
 本発明の一実施形態のセルロース系樹脂は、セルロース(又はその誘導体)にカルダノール又はその誘導体(以下「カルダノール成分」)と柔軟成分を化学結合(以下「グラフト化」)させたものである。
 セルロース(又はその誘導体)にカルダノール成分をグラフト化することによって、機械的特性(特に靭性)及び耐水性を改善することができる。また、このグラフト化によって良好な熱可塑性が付与されるため、可塑剤の添加量を低減あるいは可塑剤を添加しなくてもよくなる。その結果、可塑剤を加えたセルロース系樹脂に比べて耐熱性や強度(特に剛性)の低下を抑えることができ、また樹脂の均質性を高めることができ、ブリードアウトの問題も解消できる。さらに、石油原料からなる可塑剤の添加量を低減または無添加にできるため、結果、植物性を高めることができる。加えて、セルロースとカルダノールは、いずれも植物の非可食部であるため、非可食部の利用率を高めることができる。
 セルロース(又はその誘導体)に、カルダノール成分をグラフト化するとともに、柔軟成分をグラフト化することにより、耐衝撃性を改善することができる。また、この柔軟成分は、セルロース(又はその誘導体)に化学結合しているため、柔軟成分のブリードアウトを抑えることができる。
 [セルロース又はその誘導体]
 まず、グラフト化前のセルロース(又はその誘導体)について詳細に説明する。
 セルロースは、下記式(1)で示されるβ-グルコースの直鎖状重合物であり、各グルコース単位は三つのヒドロキシ基を有している。これらのヒドロキシ基を利用して、カルダノール成分をグラフト化することができる。
Figure JPOXMLDOC01-appb-C000001
  セルロースは、草木類の主成分であり、草木類からリグニン等の他の成分を分離処理することによって得られる。このように得られたものの他、セルロース含有量の高い綿やパルプを精製してあるいはそのまま用いることができる。
 セルロース(又はその誘導体)の重合度は、グルコース重合度として、50~5000の範囲が好ましく、100~3000がより好ましい。重合度が低すぎると、製造した樹脂の強度、耐熱性などが十分でない場合がある。逆に、重合度が高すぎると、製造した樹脂の溶融粘度が高くなりすぎて成形に支障をきたす場合がある。
 セルロース(又はその誘導体)には、類似の構造のキチンやキトサンが混合されていてもよく、混合されている場合は、混合物全体に対して30質量%以下が好ましく、20質量%以下が好ましく、10質量%以下がさらに好ましい。
 ここでセルロース誘導体としては、これらのヒドロキシ基の一部をアシル化、エーテル化、又はグラフト化したものが挙げられる。具体的には、セルロースアセテート、セルロースブチレート、セルロースプロピオネート等の有機酸エステル;硝酸セルロース、硫酸セルロース、リン酸セルロース等の無機酸エステル;セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、硝酸酢酸セルロース等の混成エステル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のエーテル化セルロース等が挙げられる。また、スチレン、(メタ)アクリル酸、(メタ)アクリル酸エステル、ε-カプロラクトン、ラクチド、グリコリドなどをグラフト化させたセルロースが挙げられる。これらのアシル化セルロース、エーテル化セルロース、及びグラフト化セルロースは、単独で使用してもよいし、2種以上を併用してもよい。
 本実施形態におけるセルロース(又はその誘導体)は、例えば、そのヒドロキシ基の一部がアシル化された、セルロースアセテート、セルロースプロピオネート及びセルロースブチレートから選ばれる少なくとも一種のアシル化セルロースを好適に用いることができる。
 本明細書では、セルロース誘導体の用語は、セルロース化合物、及びセルロースを原料として生物的あるいは化学的に官能基を導入して得られるセルロース骨格を有する化合物のいずれも含む意味で用いる。
 [カルダノール成分のグラフト化]
 次に、セルロース(又はその誘導体)へのカルダノール成分のグラフト化について詳細に説明する。
 カルダノールは、カシューナッツの殻に含まれる成分であり、下記式(2)で示されるフェノール部分と直鎖状炭化水素部分からなる有機化合物である。カルダノールには、その直鎖状炭化水素部分Rにおいて不飽和結合数の異なる4種類が存在し、通常、これらの4成分の混合物である。すなわち、下記式(2)に記載した、3-ペンタデシルフェノール、3-ペンタデシルフェノールモノエン、3-ペンタデシルフェノールジエン、および3-ペンタデシルフェノールトリエンの混合物である。カシューナッツ殻液から抽出および精製して得られたカルダノール成分を用いることができる。
Figure JPOXMLDOC01-appb-C000002
  カルダノールの直鎖状炭化水素部分は樹脂の柔軟性と疎水性の向上に寄与し、フェノール部分はグラフト化に利用される反応性に富むフェノール性水酸基を有する。このようなカルダノール成分をセルロース(又はその誘導体)にグラフト化させると、カルダノール成分がブラシ状に付与されたセルロース系構造体が形成され、この結果、このグラフト化したカルダノール同士の相互作用によって機械的特性(特に靭性)を改善できるとともに、熱可塑性も付与でき、さらにカルダノールの疎水性によって耐水性を改善できる。
 グラフト化は、カルダノール成分のフェノール性水酸基とセルロース(又はその誘導体)中のヒドロキシ基との脱水結合反応によって行うことができる。その際、硫酸、トルエンスルホン酸、塩化水素などの脱水触媒を添加することができる。結果、セルロース(又はその誘導体)中のヒドロキシ基が結合しているセルロース炭素原子と、カルダノール成分のフェノール性水酸基が結合しているカルダノール炭素原子とが酸素原子を介して連結される。
 また、グラフト化は、ヒドロキシ基及びカルダノールのフェノール性水酸基と反応できる多官能化合物を用いて行うことができる。結果、セルロース(又はその誘導体)中のヒドロキシ基が結合しているセルロース炭素原子と、カルダノール成分のフェノール性水酸基が結合しているカルダノール炭素原子とが、有機連結基を介して連結される。このようなグラフト化によれば、グラフト反応効率を向上することができ、また副反応を抑制することができる。
 上記の有機連結基は、前記セルロース炭素原子に結合する、エステル結合、エーテル結合およびウレタン結合から選ばれる第1の結合と、前記カルダノール炭素原子に結合する、エステル結合、エーテル結合およびウレタン結合から選ばれる第2の結合を含むことができる。
 例えば、この多官能化合物とカルダノールとを、このカルダノールのフェノール性水酸基とこの多官能化合物の官能基を利用して結合し、カルダノール誘導体を得る。そして、得られたカルダノール誘導体とセルロース(又はその誘導体)とを、このセルロース(又はその誘導体)のヒドロキシ基とこのカルダノール誘導体の官能基(多官能化合物由来の官能基)を利用して結合することができる。
 上述のグラフト化によれば、セルロース(又はその誘導体)のヒドロキシ基とカルダノール成分のフェノール性水酸基を消失させてグラフト結合を形成するとともに、セルロース(又はその誘導体)にカルダノールの疎水性構造を導入することができ、耐水性を改善できる。
 カルダノール成分をセルロース(又はその誘導体)にグラフト化させるには、上述のように、カルダノールのフェノール性水酸基とセルロースのヒドロキシ基を利用することが、グラフト反応の効率や、形成した分子構造、耐水性の点から好ましい。このようなグラフト化は、カルダノールの直鎖状炭化水素部分中の不飽和結合(二重結合)を利用するグラフト化に比べて、反応性の高いフェノール性水酸基を利用するため、より効率的なグラフト化を実現できる。また、本実施形態のグラフト化によれば、カルダノールのフェノール部分がセルロースと反応して固定化されるため、グラフト化されたカルダノールの直鎖状炭化水素部分同士の相互作用が高まり、機械的特性の所望の改善効果を得ることが可能になる。さらに、本実施形態では、カルダノールのフェノール性水酸基を消失させてグラフト化するため、フェノール性水酸基を利用しないグラフト化に比べて、耐水性を改善する(吸水性を抑える)観点からも有利である。
 上記の多官能化合物および有機連結基は、炭化水素基を含むことが好ましく、この炭化水素基の炭素数は1以上が好ましく、2以上がより好ましく、また炭素数が20以下が好ましく、14以下がより好ましく、8以下がさらに好ましい。炭素数が多すぎると、分子が大きくなりすぎて反応性が低下し、その結果、グラフト化率を上げることが困難となる場合がある。このような炭化水素基としては、2価基が好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基などの2価の直鎖状脂肪族炭化水素基(特に直鎖状アルキレン基);シクロヘプタン環、シクロヘキサン環、シクロオクタン環、ビシクロペンタン環、トリシクロヘキサン環、ビシクロオクタン環、ビシクロノナン環、トリシクロデカン環などの2価の脂環式炭化水素基;ベンゼン環、ナフタレン環、ビフェニレン基などの2価の芳香族炭化水素基、これらの組み合わせからなる2価基が挙げられる。
 上記の炭化水素基が、芳香族炭化水素基や脂環式炭化水素基である場合、それらの剛直性から、樹脂の剛性を向上できる。一方、その炭化水素基が直鎖状脂肪族炭化水素基である場合、その柔軟性から、樹脂の靭性を向上できる。
 上記の多官能化合物の官能基としては、カルボキシル基、カルボン酸無水物基、カルボン酸ハライド基(特にカルボン酸クロライド基)、エポキシ基、イソシアネート基、ハロゲン基から選ばれる基が好ましい。中でもカルボキシル基、カルボン酸無水物基、ハロゲン基(特にクロライド基)、及びイソシアネート基が好ましい。カルダノールのフェノール性水酸基と反応させる官能基としては、特に、カルボン酸無水物基、ハロゲン基(特にクロライド基)及びイソシアネート基が好ましい。セルロースのヒドロキシ基と反応させる官能基としては、特にカルボン酸ハライド基(特にカルボン酸クロライド基)及びイソシアネート基が好ましい。カルボン酸ハライド基は、グラフト化前のカルボキシル基を酸ハライド化して形成することができる。
 このような多官能化合物の具体例としては、ジカルボン酸、カルボン酸無水物、ジカルボン酸ハライド、モノクロロカルボン酸、ジイソシアネート類を挙げることができる。ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸が挙げられ、カルボン酸無水物としてはこれらのジカルボン酸の無水物が挙げられ、ジカルボン酸ハライドとしてはこれらのジカルボン酸の酸ハライドが挙げられる。モノクロロカルボン酸としては、モノクロロ酢酸、3-クロロプロピオン酸、3-フルオロプロピオン酸、4-クロロ酪酸、4-フルオロ酪酸、5-クロロ吉草酸、5-フルオロ吉草酸、6-クロロヘキサン酸、6-フルオロヘキサン酸、8-クロロオクタン酸、8-フルオロオクタン酸、12-クロロドデカン酸、12-フルオロドデカン酸、18-クロロステアリン酸、18-フルオロステアリン酸が挙げられる。ジイソシアネート類としては、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(HMDI:水素添加MDI)が挙げられる。これらの中でも、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)を好適に用いることができる。
 このような多官能化合物の官能基とカルダノールのフェノール性水酸基とを反応させてカルダノール誘導体を形成し、このカルダノール誘導体とセルロース(又はその誘導体)を、このセルロース(又はその誘導体)のヒドロキシ基とこのカルダノール誘導体の官能基(多官能化合物由来の官能基)を利用して結合することができる。
 例えば、カルボン酸系の多官能化合物(ジカルボン酸、カルボン酸無水物又はモノクロロカルボン酸)をカルダノールと反応させ、このカルダノールのフェノール性水酸基とこの多官能化合物の官能基(カルボキシル基、カルボン酸無水物基又はハロゲン基(特にクロライド基))とを反応させてカルダノール誘導体を形成し、残りの官能基(カルボキシル基)をカルボン酸ハライド基(特にカルボン酸クロライド基)に変換する。このカルダノール誘導体をセルロース(又はその誘導体)と反応させ、このセルロース(又はその誘導体)のヒドロキシ基とこのカルダノール誘導体のカルボン酸ハライド基とを反応させてグラフト化を行うことができる。この場合、極めて効率的にグラフト化を行うことができる。
 多官能化合物を用いたグラフト化の結果、セルロース(又はその誘導体)のヒドロキシ基が結合しているセルロース炭素原子と多官能化合物の炭化水素基とは、例えば、エステル結合、エーテル結合又はウレタン結合、好ましくはエステル結合を介して結合され、カルダノール成分のフェノール性水酸基が結合しているカルダノール炭素原子と多官能化合物の炭化水素基とは、例えば、エステル結合、エーテル結合又はウレタン結合、好ましくはエステル結合又はエーテル結合を介して結合される。
 カルダノールは、カルダノールの直鎖状炭化水素部分の不飽和結合(二重結合)が水素添加され飽和結合に変換されることが好ましい。水素添加による不飽和結合の変換率(水添率)は、90モル%以上が好ましく、95モル%以上がより好ましい。水素添加後のカルダノール中の不飽和結合の残存率(カルダノールの1分子当たりの不飽和結合の数)は、0.2個/分子以下が好ましく、0.1個/分子以下がより好ましい。
 直鎖状炭化水素部分に不飽和結合が多く含まれたままでカルダノール成分をセルロース(又はその誘導体)へグラフト化すると、副反応が起こりやすく、効率的にグラフト化が行われなかったり、グラフト化生成物の溶媒への溶解性が著しく低下したりする場合がある。水素添加を行って直鎖状炭化水素部分の不飽和結合が飽和結合に十分に変換されたカルダノール誘導体をグラフト化すると、副反応が抑制され、効率的にグラフト化を行うことができ、またグラフト化生成物の溶媒への溶解性低下を抑えることができる。
 水素添加する方法としては、特に限定されるものではなく、通常の方法を用いることができる。触媒としては、パラジウム、ルテニウム、ロジウムなどの貴金属またはニッケル、或いはこれらから選ばれる金属を活性炭素、活性アルミナ、珪藻土などの担体上に担持したものが挙げられる。反応方式としては、粉末状の触媒を懸濁攪拌しながら反応を行うバッチ方式や、成形した触媒を充填した反応塔を用いた連続方式を採用することができる。水素添加の際の溶媒は、水素添加の方式によっては用いなくてもよいが、溶媒を使用する場合は、通常、アルコール類、エーテル類、エステル類、飽和炭化水素類が挙げられる。水素添加の際の反応温度は、特に限定されないが、通常20~250℃、好ましくは50~200℃に設定できる。反応温度が低すぎると水素化速度が遅くなり、逆に高すぎると分解生成物が多くなる虞がある。水素添加の際の水素圧は、通常10~80kgf/cm(9.8×10~78.4×10Pa)、好ましくは20~50kgf/cm(19.6×10~49.0×10Pa)に設定できる。
 水素添加は、カルダノール誘導体を形成する前、カルダノール誘導体を形成した後グラフト化前、カルダノール誘導体のグラフト化後のいずれにおいても行うことができるが、水素添加やグラフト化の反応効率等の観点から、カルダノール誘導体のグラフト化前が好ましく、カルダノール誘導体の形成前がさらに好ましい。
 セルロース(又はその誘導体)に対する、当該セルロース(又はその誘導体)に結合したカルダノール成分の割合(グラフト化率)は、セルロース(又はその誘導体)のグルコース単位当たりのカルダノール成分の付加数(平均値)、すなわち、カルダノール成分と結合したヒドロキシ基の個数(水酸基置換度、DSCD)(平均値)によって表される。DSCDは、0.1以上が好ましく、0.2以上がより好ましく、0.4以上に設定してもよい。DSCDが低すぎると、グラフト化による効果が十分に得られない場合がある。
 DSCDの最大値は、理論上「3」であるが、製造(グラフト化)のし易さの観点から、2.5以下が好ましく、2以下がより好ましく、1.5以下がさらに好ましい。さらに、DSCDが1以下の場合であってもよく、十分な改善効果を得ることができる。DSCDが大きくなると、引張破断歪み(靱性)が高くなる一方で最大強度(引張強度、曲げ強度)が低下する傾向があるため、所望の特性に応じて適宜設定することが好ましい。
 カルダノール成分をグラフト化するとともに、特定の反応性炭化水素化合物を、セルロース(又はその誘導体)にグラフト化させてもよい。これにより、セルロース系樹脂を所望の特性に改善することができる。
 この反応性炭化水素化合物は、セルロース(又はその誘導体)中のヒドロキシ基と反応できる官能基を少なくとも一つ持つ化合物であり、例えばカルボキシル基、カルボン酸ハライド基またはカルボン酸無水物基を有する炭化水素化合物が挙げられる。具体的には、脂肪族モノカルボン酸、芳香族モノカルボン酸、脂環族モノカルボン酸等のモノカルボン酸から選ばれる少なくとも一種の化合物、その酸ハロゲン化物又はその酸無水物が挙げられる。脂肪族モノカルボン酸としては、直鎖状の又は分岐した側鎖をもつ脂肪酸が挙げられる。芳香族モノカルボン酸としては、芳香環にカルボキシル基が直接結合したもの、芳香環にアルキレン基(例えばメチレン基、エチレン基)を介してカルボキシル基が結合したもの(芳香環に脂肪族カルボン酸基が結合したもの)が挙げられる。脂環族モノカルボン酸としては、脂環にカルボキシル基が直接結合したもの、脂環にアルキレン基(例えばメチレン基、エチレン基)を介してカルボキシル基が結合したもの(脂環に脂肪族カルボン酸基が結合したもの)が挙げられる。
 この反応性炭化水素化合物は、炭素数が1~32の範囲にあることが好ましく、1~20の範囲にあることがより好ましい。炭素数が多すぎると、分子が大きくなりすぎて立体障害によって反応効率が低下し、その結果、グラフト化率を上げることが困難となる。
 この反応性炭化水素化合物は、特に、グラフト化されたカルダノール成分からなる立体構造の隙間部分を埋めるように配置された場合に特性改善に効果的である。
 この反応性炭化水素化合物の炭化水素基が、芳香族炭化水素基や脂環式炭化水素基の場合、特に剛性や耐熱性の改善に有効であり、また、脂肪族炭化水素基の場合は特に靭性の改善に有効である。
 反応性炭化水素化合物として用いられる脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸;ブテン酸、ペンテン酸、ヘキセン酸、オクテン酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸;それらの誘導体を挙げることができる。これらはさらに置換基を有してもよい。
 反応性炭化水素化合物として用いられる芳香族モノカルボン酸としては、安息香酸等のベンゼン環にカルボキシル基が導入されたもの;トルイル酸等のベンゼン環にアルキル基が導入された芳香族カルボン酸;フェニル酢酸、フェニルプロピオン酸等のベンゼン環に脂肪族カルボン酸基が導入されたもの;ビフェニルカルボン酸、ビフェニル酢酸等のベンゼン環を2個以上有する芳香族カルボン酸;ナフタリンカルボン酸、テトラリンカルボン酸等の縮合環構造を有する芳香族カルボン酸;それらの誘導体を挙げることができる。
 反応性炭化水素化合物として用いられる脂環族モノカルボン酸としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸等の脂環にカルボキシル基が導入されたもの;シクロヘキシル酢酸等の脂環に脂肪族カルボン酸基が導入されたもの;それらの誘導体が挙げられる。
 これらの反応性炭化水素化合物の構造中に有機シリコン化合物や有機フッ素化合物が付加されていると、耐水性などの一層の改善効果が得られる。
 これらの反応性炭化水素化合物中の反応性官能基は、セルロースのヒドロキシ基と反応できる官能基であればよく、カルボキシル基やカルボン酸ハライド基(特にカルボン酸クロライド基)、カルボン酸無水物基の他、エポキシ基、イソシアネート基、ハロゲン基(特にクロライド基)が挙げられる。これらの中でもカルボキシル基とカルボン酸ハライド基が好ましく、特にカルボン酸クロライド基が好ましい。カルボン酸ハライド基(特にカルボン酸クロライド基)としては、上記の各種カルボン酸のカルボキシル基が酸ハロゲン化された酸ハライド基(特に酸クロライド基)が挙げられる。
 本実施形態に用いる反応性炭化水素化合物は、特に樹脂の剛性(曲げ強度等)の観点から、芳香族カルボン酸および脂環族カルボン酸から選ばれる少なくとも一種のモノカルボン酸、その酸ハロゲン化物又はその酸無水物が好ましい。このような反応性炭化水素化合物がセルロースのヒドロキシ基に付加することにより、芳香族カルボン酸および脂環族カルボン酸から選ばれる少なくとも一種のモノカルボン酸由来のアシル基がヒドロキシ基に付加した構造(すなわち、セルロースのヒドロキシ基の水素原子がアシル基に置換された構造)が得られる。
 セルロース(又はその誘導体)のグルコース単位あたりの反応性炭化水素化合物の付加数(アシル基の付加数)(平均値)、すなわち、反応性炭化水素化合物と結合したヒドロキシ基の個数(水酸基置換度、DSXX)(平均値)は、所望の効果を得る点から、0.1以上0.6以下が好ましく、0.1以上0.5以下がより好ましい。また、カルダノール成分と反応性炭化水素化合物のグラフト化後のグルコース単位あたりの残存するヒドロキシ基の個数(水酸基残存度、DSOH)(平均値)は、耐水性を十分に確保する点から、0.9以下が好ましく、0.7以下がより好ましい。
 この反応性炭化水素化合物は、カルダノール成分のグラフト化工程においてグラフト化することができる。これにより均質にグラフト化することが可能になる。その際、これらを同時又は別途に添加してもよいが、カルダノール成分をグラフト化させた後に、反応性炭化水素化合物を添加してグラフト化させることにより、グラフト化反応効率を向上できる。
 [柔軟成分のグラフト化]
 柔軟成分としては、反応性熱可塑性ポリウレタンエラストマー(反応性TPU)、反応性シリコーン、反応性ゴムから選ばれる少なくとも一種を用いることが好ましい。
 [反応性TPUのグラフト化]
 反応性TPUとしては、イソシアネート基を有するTPUを用いることができる。反応TPUのイソシアネート基とセルロース(又はその誘導体)のヒドロキシ基との反応により形成されるウレタン結合を介して、反応性TPUをセルロース(又はその誘導体)に結合させることができる。
 反応性TPUは、ポリオール、ジイソシアネート、および鎖延長剤を用いて製造されるものを用いることができる。
 このポリオールとしては、ポリエステルポリオール、ポリエステルエーテルポリオール、ポリカーボネートポリオール、ポリエーテルポリオールが挙げられる。
 上記のポリエステルポリオールとしては、脂肪族ジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸等)、芳香族ジカルボン酸(フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等)、脂環族ジカルボン酸(ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等)等の多価カルボン酸又はこれらの酸エステルもしくは酸無水物と、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,3-オクタンジオール、1,9-ノナンジオール等の多価アルコール又はこれらの混合物との脱水縮合反応で得られるポリエステルポリオール;ε-カプロラクトン等のラクトンモノマーの開環重合で得られるポリラクトンジオール等が挙げられる。
 上記のポリエステルエーテルポリオールとしては、脂肪族ジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸等)、芳香族ジカルボン酸(フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等)、脂環族ジカルボン酸(ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等)等の多価カルボン酸又はこれらの酸エステルもしくは酸無水物と、ジエチレングリコールもしくはアルキレンオキサイド付加物(プロピレンオキサイド付加物等)等のグリコール等又はこれらの混合物との脱水縮合反応で得られる化合物が挙げられる。
 上記のポリカーボネートポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール等の多価アルコールの1種または2種以上と、ジエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等とを反応させて得られるポリカーボネートポリオールが挙げられる。また、ポリカプロラクトンポリオール(PCL)とポリヘキサメチレンカーボネート(PHL)との共重合体であってもよい。
 上記のポリエーテルポリオールとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテルをそれぞれ重合させて得られるポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等、及び、これらのコポリエーテルが挙げられる。
 TPUの形成に用いられるジイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(水素添加MDI;HMDI)等が挙げられる。これらの中でも、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)を好適なものとして用いることができる。さらに、上記のポリオールの両末端にこれらのジイソシアネートを結合させた、両末端イソシアネートプレポリマーも好ましく用いられる。
 TPUの形成に用いられる鎖延長剤としては、低分子量ポリオールが使用できる。この低分子量ポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、グリセリン等の脂肪族ポリオール;1,4-ジメチロールベンゼン、ビスフェノールA、ビスフェノールAのエチレンオキサイドもしくはプロピレンオキサイド付加物等の芳香族グリコールが挙げられる。
 これらの原料から得られるTPUは、単独で用いても、組み合わせて用いてもよい。
 反応性TPUは、得られたTPUがセルロース成分のヒドロキシ基と反応してグラフト化が可能である合成条件とする以外は、例えば上記の原料を用いて、通常のTPUの製造方法を用いて合成することができる。
 TPUの合成の際にイソシアネート成分を過剰に仕込むことによって、得られたTPUは未反応のイソシアネート基を有することができる。この未反応のイソシアネート基は、セルロース(又はその誘導体)のヒドロキシ基と反応することができるため、得られたTPUは、反応性TPUとして用いることができ、すなわち、セルロース(又はその誘導体)にグラフト化することができる。各原料の仕込み比は、ポリオールのヒドロキシ基と鎖延長剤のヒドロキシ基の合計量に対するジイソシアネートのイソシアネート基の当量比で表すことができ、この合計のヒドロキシ基1当量に対してイソシアネート基1.05~2.0当量が好ましく、1.05~1.5当量がより好ましい。
 反応性TPUの分子量は、十分な耐衝撃性改善効果を得る点から1万以上が好ましく、3万以上がより好ましい。また、製造上の観点から100万以下が好ましく、30万以下がより好ましい。この分子量は、GPC(標準試料:ポリスチレン)により数平均分子量として求めることができる。
 反応性TPUのグラフト化は、反応性TPUのイソシアネート基とセルロース(又はその誘導体)のヒドロキシ基との付加反応によって行うことができる。結果、セルロース(はその誘導体)中のヒドロキシ基が結合しているセルロース炭素原子と、反応性TPUのイソシアネート基が結合しているTPU炭素原子とが、ウレタン結合を介して連結される。
 [反応性シリコーンのグラフト化]
 本実施形態における反応性シリコーンは、シリコーンの主骨格と、セルロースのヒドロキシ基と反応して結合できる官能基(反応性官能基A)を有する。このような反応性シリコーンとしては、ジメチルシロキサンの繰り返し単位から構成される主鎖と、この主鎖に結合した前記反応性官能基を含有する基とを含むポリジメチルシロキサン誘導体が好ましい。側鎖のメチル基の代わりにフェニル基やポリエーテル基等の他の基を含む有機基を一部に含んでいてもよい。
 反応性シリコーンの分子量は、数平均分子量(g/mol)として、900以上が好ましく、2000以上がより好ましく、3000以上がさらに好ましく、また100000以下が好ましく、50000以下がより好ましい。カルダノール成分のグラフト化により得られるセルロース系樹脂の強度等の特性を確保しながら、耐衝撃性を改善する観点から、このような分子量の範囲に設定することが好ましい。なお、数平均分子量は、試料のクロロホルム0.1%溶液のGPC分析により測定した測定値(ポリスチレン標準試料で較正)を採用することができる。
 反応性シリコーンの反応性官能基の官能基当量は、反応性および耐衝撃性改善効果の観点から、900g/mol以上が好ましく、2000g/mol以上がより好ましく、3000g/mol以上がさらに好ましく、また、100000g/mol以下が好ましく、50000g/mol以下がより好ましい。
 反応性シリコーンの反応性官能基Aとしては、セルロース(又はその誘導体)のヒドロキシ基と反応しやすいものが好ましく、特にイソシアネート基、カルボン酸ハライド基(特にカルボン酸クロライド基)が好ましい。カルボン酸ハライド基は、グラフト化前のカルボキシル基を酸ハライド化して形成することができる。
 反応性シリコーンの反応性官能基Aがイソシアネート基である場合のグラフト化においては、セルロース(又はその誘導体)のヒドロキシ基が結合している炭素原子と、反応性シリコーンのイソシアネート基を含有する基が結合しているケイ素原子とが、ウレタン結合を介して連結される。
 反応性シリコーンの反応性官能基Aがカルボン酸ハライド基である場合のグラフト化においては、セルロース(又はその誘導体)のヒドロキシ基が結合している炭素原子と、反応性シリコーンのカルボン酸ハライド基を含有する基が結合しているケイ素原子とが、エステル結合を介して連結される。
 このような反応性官能基Aを有する反応性シリコーンSは、この反応性官能基Aを有する多官能化合物と、この多官能化合物の反応性官能基Bと反応し得る反応性官能基Cを有する変性シリコーンSとを反応させることにより形成できる。反応性官能基Aと反応性官能基Bは同種の官能基であってもよい。例えば、ジイソシアネート(多官能化合物)とヒドロキシ基を有する変性シリコーン(S)とを反応させ、ジイソシアネートの一方のイソシアネート基と変性シリコーン(S)のヒドロキシ基とを結合させることができる(ウレタン結合の形成)。
 このような多官能化合物を用いて形成した反応性シリコーンSをグラフト化した場合、セルロース(又はその誘導体)中のヒドロキシ基が結合しているセルロース炭素原子と、変性シリコーンSの反応性官能基Cを含む基が結合しているポリシロキサン珪素原子とが、有機連結基を介して連結される。この有機連結基は、前記セルロース炭素原子側の、エステル結合、エーテル結合およびウレタン結合から選ばれる第1の結合と、前記ポリシロキサン珪素原子側の、アミド結合、エステル結合、エーテル結合およびウレタン結合から選ばれる第2の結合を含むことができる。
 反応性官能基Cを有する変性シリコーンSは、ジメチルシロキサンの繰り返し単位から構成される主鎖を持ち、その側鎖または末端のメチル基の一部が上記多官能化合物と反応し得る反応性官能基Cを含む基(例えば有機置換基)で置換された変性ポリジメチルシロキサンであることが好ましい。この反応性官能基Cは、アミノ基、エポキシ基、ヒドロキシ基、カルボキシル基のいずれかであることが好ましい。変性シリコーンがこのような反応性官能基Cを有することによって、上記の多官能化合物との反応が容易になる。このような変性シリコーンSは、通常の方法に従って製造されるものや市販品を用いることができる。
 この変性シリコーンSに含まれる反応性官能基Cとしては、下記式(3)~(11)で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
  上記の式中、R~R10、R12、R13は、それぞれ2価の有機基を表す。2価の有機基としては、メチレン基、エチレン基、プロピレン基、ブチレン基等のアルキレン基、フェニレン基、トリレン基等のアルキルアリーレン基、-(CH-CH-O)-(cは1から50の整数を表す)、-〔CH-CH(CH)-O〕-(dは1から50の整数を表す)等のオキシアルキレン基やポリオキシアルキレン基、-(CH-NHCO-(eは1から8の整数を表す)を挙げることができる。これらのうち、アルキレン基が好ましく、特に、エチレン基、プロピレン基が好ましい。
 上記の式中、R11は、炭素数1~20のアルキル基を表す。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基などが挙げられる。また、上記アルキル基の構造中に、1つ以上の不飽和結合を有していてもよい。
 このような変性シリコーンSは、市販品として容易に入手でき、例えば以下の市販品が挙げられる。
 アミノ変性シリコーンの市販品は以下のものが挙げられる。
 側鎖型アミノ変性シリコーンとして、信越化学工業社製の市販品:KF-868、KF-865、KF-864、KF-859、KF-393、KF-860、KF-880、KF-8004、KF-8002、KF-8005、KF-867、X-22-3820W、KF-869、KF-861;東レ・ダウコーニング株式会社製の市販品:FZ3707、FZ3504、BY16-205、FZ3760、FZ3705、BY16-209、FZ3710、SF8417、BY16-849、BY16-850、BY16-879B、BY16-892、FZ3501、FZ3785、BY16-872、BY16-213、BY16-203、BY16-898、BY16-890;モメンティブ・パフォーマンス・マテリアルズ合同会社製の市販品:TSF4702、TSF4703、TSF4704、TSF4705、TSF4706が挙げられる。
 両末端型アミノ変性シリコーンとして、信越化学工業社製の市販品:PAM-E、KF-8010、X-22-161A、X-22-161B、KF-8012、KF-8008、X-22-1660B-3;東レ・ダウコーニング株式会社製の市販品:BY16-871、BY16-853C、BY16-853Uが挙げられる。
 片末端型アミノ変性シリコーンとして、モメンティブ・パフォーマンス・マテリアルズ合同会社製の市販品:TSF4700及びTSF4701が挙げられる。
 側鎖両末端型(側鎖アミノ・両末端メトキシ)アミノ変性シリコーンとして、信越化学工業社製の市販品:KF-857、KF-8001、KF-862、X-22-9192、KF-858が挙げられる。
 エポキシ変性シリコーンの市販品は以下のものが挙げられる。
 側鎖型エポキシ変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-343、KF-101、KF-1001、X-22-2000、X-22-2046、KF-102、X-22-4741、KF-1002、X-22-3000Tが挙げられる。
 両末端型エポキシ変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-163、KF-105、X-22-163A、X-22-163C、X-22169AS、X-22-169Bが挙げられる。
 片末端型エポキシ変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-173DXが挙げられる。
 側鎖両末端型エポキシ変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-9002が挙げられる。
 カルビノール変性シリコーンの市販品は以下のものが挙げられる。
 側鎖型カルビノール変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-4039、X-22-4015が挙げられる。
 両末端型カルビノール変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-160AS、KF-6001、KF-6002、KF-6003が挙げられる。
 片末端型カルビノール変性シリコーンとして、信越化学工業株式会社製の市販品:X-22-170BX、X-22-170DXが挙げられる。
 カルボキシル変性シリコーンの市販品は以下のものが挙げられる。
 側鎖型カルボキシル変性シリコーンとして、信越化学工業社製の市販品:X-22-3701Eが挙げられる。
 両末端型カルボキシル変性シリコーンとして、信越化学工業社製の市販品:X-22-162が挙げられる。
 片末端型カルボキシル変性シリコーンとして、信越化学工業社製の市販品:X-22-3710が挙げられる。
 上記の多官能化合物および有機連結基は、炭化水素基を含むことが好ましく、この炭化水素基の炭素数は1以上が好ましく、2以上がより好ましく、また炭素数が20以下が好ましく、14以下がより好ましく、8以下がさらに好ましい。炭素数が多すぎると、分子が大きくなりすぎて反応性が低下する場合がある。このような炭化水素基としては、2価基が好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基などの2価の直鎖状脂肪族炭化水素基(特に直鎖状アルキレン基);シクロヘプタン環、シクロヘキサン環、シクロオクタン環、ビシクロペンタン環、トリシクロヘキサン環、ビシクロオクタン環、ビシクロノナン環、トリシクロデカン環などの2価の脂環式炭化水素基;ベンゼン環、ナフタレン環、ビフェニレン基などの2価の芳香族炭化水素基、これらの組み合わせからなる2価基が挙げられる。
 上記の多官能化合物の反応性官能基としては、カルボキシル基、カルボン酸無水物基、カルボン酸ハライド基(特にカルボン酸クロライド基)、エポキシ基、イソシアネート基、ハロゲン基から選ばれる基が好ましい。中でもカルボキシル基、カルボン酸無水物基、ハロゲン基(特にクロライド基)、及びイソシアネート基が好ましい。セルロース(又はその誘導体)のヒドロキシ基に反応させる反応性官能基Aとしては、特に、イソシアネート基、カルボン酸ハライド基(特にカルボン酸クロライド基)が好ましい。変性シリコーンSの反応性官能基Cと反応させる反応性官能基Bとしては、特に、カルボキシル基、カルボン酸ハライド基(特にカルボン酸クロライド基)及びイソシアネート基が好ましい。カルボン酸ハライド基は、結合前のカルボキシル基を酸ハライド化して形成することができる。
 このような多官能化合物の具体例としては、ジカルボン酸、カルボン酸無水物、ジカルボン酸ハライド、モノクロロカルボン酸、ジイソシアネート類を挙げることができる。ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸が挙げられ、カルボン酸無水物としてはこれらのジカルボン酸の無水物が挙げられ、ジカルボン酸ハライドとしてはこれらのジカルボン酸の酸ハライドが挙げられる。モノクロロカルボン酸としては、モノクロロ酢酸、3-クロロプロピオン酸、3-フルオロプロピオン酸、4-クロロ酪酸、4-フルオロ酪酸、5-クロロ吉草酸、5-フルオロ吉草酸、6-クロロヘキサン酸、6-フルオロヘキサン酸、8-クロロオクタン酸、8-フルオロオクタン酸、12-クロロドデカン酸、12-フルオロドデカン酸、18-クロロステアリン酸、18-フルオロステアリン酸が挙げられる。ジイソシアネート類としては、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(HMDI:水素添加MDI)が挙げられる。これらの中でも、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)を好適に用いることができる。
 [反応性ゴムのグラフト化]
 反応性ゴムとしては、セルロース(又はその誘導体)のヒドロキシ基と反応し結合できる反応性官能基を有する柔軟なゴム状物質を用いることができ、天然ゴム系と合成ゴム系のゴム状物質を用いることができる。
 天然ゴム(NR)は、ゴムの木(ゴムノキ)の樹液に含まれるcis-ポリイソプレン[(C]を主成分とする物質であり、生体内での付加重合で生成したものである。樹液中では水溶液に有機成分が分散したラテックスとして存在し、これを集めて精製し凝固乾燥させたものを生ゴムという。
 イソプレンを化学的に重合させたポリイソプレン(合成ゴムの一種)に対して、天然ゴムのポリイソプレンは、いくらかの構造的違いを有する。まず、合成ポリイソプレンでは現在のところ100%シス体を得ることはできず、少量のトランス体が含まれている。また、天然ゴムはポリイソプレンの他に微量のタンパク質や脂肪酸を含むが、合成ポリイソプレンにはそのような不純物はない。
 シス型のポリイソプレンは、分子鎖が折れ曲がった構造をとって不規則な形を取りやすく、分子鎖と分子差の間に多くの隙間を生じ、分子間力が比較的小さくなる。そのため、分子同士の結晶化が起こりにくく、軟らかな性質を持つようになり、柔軟成分として適している。一方、トランス型のポリイソプレンからできているものもあるが(通称、ガタパーチャ又はグッタペルカ)、直線構造をとりやすく、分子鎖と分子鎖の距離が近くなるため、分子間力が強く作用する。そのため、分子間で微結晶化を引き起こし、硬い樹脂状の物質となり、柔軟成分として適さない。
 本実施形態における反応性天然ゴムとは、上記のcis-ポリイソプレンを主成分とする天然ゴムに、セルロース(又はその誘導体)のヒドロキシ基と反応し得る反応性官能基を付加させたものである。この反応性天然ゴムは、天然ゴム中の不飽和結合や他の官能基(例えば不飽和結合を酸化して形成したエポキシ基)に対して、セルロース(又はその誘導体)のヒドロキシ基と反応して結合できる官能基(エポキシ基、カルボキシル基、酸クロライド基、イソシアネート基など)をもつ化合物を付加させることで作製できる。このような反応性天然ゴムには、これらの反応性官能基の他、セルロース系樹脂に対して相溶性を高める官能基を一部に含んでいてもよい。このような官能基としては、例えば、フェニル基、ポリエーテル基、ヒドロキシ基などが挙げられる。
 本実施形態における反応性合成ゴムとは、合成ゴムに、セルロース(又はその誘導体)のヒドロキシ基と反応し得る反応性官能基を付加させたものである。この合成ゴムとしては、アクリルゴム(ACM)、ニトリルゴム(NBR)、イソプレンゴム(IR)、エチレンプロピレンゴム(EPM,EPDM)、エピクロルヒドリンゴム(CO、ECO)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、ポリイソブチレン(ブチルゴム IIR)などが挙げられる。この反応性天然ゴムは、合成ゴム中の不飽和結合や他の官能基に対して、セルロース(又はその誘導体)のヒドロキシ基と反応して結合できる官能基(エポキシ基、カルボキシル基、酸クロライド基、イソシアネート基など)をもつ化合物を付加させることで作製できる。このような反応性合成ゴムには、これらの反応性官能基の他、セルロース系樹脂に対して相溶性を高める官能基を一部に含んでいてもよい。このような官能基としては、例えば、フェニル基、ポリエーテル基、ヒドロキシ基などが挙げられる。
 [グラフト化処理]
 グラフト化処理は、セルロース(又はその誘導体)、カルダノール成分、柔軟成分、必要に応じて反応性炭化水素化合物を、これらを溶解できる溶媒中で、適切な温度で加熱することによって実施できる。セルロースは通常の溶媒には溶解しにくいが、ジメチルスルホキシド-アミン系溶媒、ジメチルホルムアミド-クロラール-ピリジン系溶媒、ジメチルアセトアミド-リチウムクロライド系溶媒、イミダゾリウム系イオン液体などに溶解できる。通常の溶媒中でグラフト化反応を行う場合、あらかじめセルロースのヒドロキシ基の一部にカルボン酸やアルコールを結合させ、分子間力を低下させることによって溶解性を変化させたセルロース誘導体を用いることができる。ヒドロキシ基の水素原子がアセチル基、プロピオニル基、ブチリル基等のアシル基で置換されたアシル化セルロースが好ましく、特に酢酸や酢酸クロライドを用いて酢酸化(アセチル化)された酢酸セルロースが好ましい。これらのアシル化に用いられる、酢酸、プロピオン酸、酪酸、及びこれらの酸のハロゲン化物や無水物は、前述の反応性炭化水素化合物に含まれるが、この例のように、所定の反応性炭化水素化合物の一部もしくは全部を、カルダノール成分のグラフト化前にセルロースのヒドロキシ基に付加(グラフト)させることができる。
 柔軟成分のグラフト化処理は、カルダノール成分(必要に応じて反応性炭化水素)をグラフトしたカルダノール付加セルロース系樹脂に対して実施することもできる。
 柔軟成分が反応性TPUである場合は、例えば、加熱したカルダノール付加セルロース系樹脂に、反応性TPUを添加し、混合することによりグラフト化を行うことができる。その反応温度は、例えば150~200℃に設定でき、その反応時間は、例えば10分~4時間に設定できる。反応温度を十分に高くすることで、カルダノール付加セルロース系樹脂が十分に溶融して反応系を均一にすることが容易になる。反応温度を適度な温度範囲内に設定することで、カルダノール付加セルロース系樹脂や反応性TPUの熱分解を防止することができる。反応性TPUの添加量は、十分な耐衝撃性改善効果を得る点から、反応性TPUとカルダノール付加セルロース系樹脂の仕込み合計量に対して、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。樹脂の強度等の他の特性を確保する点から、反応性TPUの添加量は50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 柔軟成分が反応性シリコーンである場合は、例えば、脱水ジオキサンなどの溶媒に溶解させたカルダノール付加セルロース系樹脂に、反応性シリコーンを添加し、混合することによりグラフト化を行うことができる。その反応温度は、例えば80~150℃に設定でき、その反応時間は、例えば1~5時間に設定できる。反応温度を十分に高くすることで、反応系を均一にすることが容易になる。反応温度を適度な温度範囲内に設定することで、カルダノール付加セルロース系樹脂や反応性シリコーンの熱分解を防止することができる。反応性シリコーンの添加量は、十分な耐衝撃性改善効果を得る点から、反応性シリコーンとカルダノール付加セルロース系樹脂の仕込み合計量に対して、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましい。樹脂の強度等の他の特性を確保する点から、反応性シリコーンの添加量は50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 柔軟成分が反応性ゴムである場合は、反応性ゴムの添加量は、十分な耐衝撃性改善効果を得る点から、反応性ゴムとカルダノール付加セルロース系樹脂の仕込み合計量に対して、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。樹脂の強度等の他の特性を確保する点から、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 セルロース系樹脂全体の量(カルダノール成分を含む)における結合した柔軟成分の量(結合量)は、十分な耐衝撃性改善効果を得る点から、0.5質量%以上が好ましく、1質量%以上がより好ましい。樹脂の強度等の他の特性を確保する点から、この結合量は、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。特に、柔軟成分が反応性TPUである場合は、その結合量は1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。柔軟成分が反応性シリコーンである場合は、その結合量は0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましい。柔軟成分が反応性ゴムである場合は、その結合量は1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。
 [ヒドロキシ基の残存量]
 カルダノール成分および柔軟成分のグラフト化に利用されない残りのヒドロキシ基は、ヒドロキシ基のままであるものと、上記のようにアセチル化等により変性されたもの或いは反応性炭化水素化合物が付加(グラフト)したものがある。ヒドロキシ基の量が多いほど、最大強度や耐熱性が大きくなる傾向がある一方で、吸水性が高くなる傾向がある。ヒドロキシ基の変換率(置換度)が高いほど、吸水性が低下し、可塑性や破断歪みが増加する傾向がある一方で、最大強度や耐熱性が低下する傾向がある。これらの傾向とグラフト化条件を考慮して、ヒドロキシ基の変換率を適宜設定することができる。
 耐水性を十分に確保する観点からは、グラフト化後のセルロース系樹脂のグルコース単位あたりの残存するヒドロキシ基の個数(水酸基残存度、DSOH)(平均値)は、0.9以下が好ましく、0.7以下がより好ましい。
 [アシル化によるヒドロキシ基の置換度]
 吸水性や機械的強度、耐熱性の観点から、セルロースのヒドロキシ基は、その一部が前記の反応性炭化水素によりアシル化されていることが好ましく、さらにカルダノール成分や柔軟成分の前述のグラフト化処理上の観点から、セルロースのヒドロキシ基は、カルダノール成分および柔軟成分のグラフト化前に、適度にアシル化(特にアセチル化)されていることが好ましい。セルロース(又はその誘導体)のグルコース単位あたりのアシル基の付加数(平均値)、すなわちアシル化されたヒドロキシ基の個数(水酸基置換度、DSAC)(平均値)は、十分なアシル化効果を得る点から、0.5以上が好ましく、1.0以上がより好ましく、1.5以上がさらにより好ましい。また、カルダノール成分のグラフト化率(DSCD)及び柔軟成分のグラフト化率を十分に確保する点から、このアシル化による水酸基置換度DSACは2.7以下が好ましく、2.5以下がより好ましく、2.2以下がさらに好ましい。このアシル化による付加するアシル基は、アセチル基、プロピオニル基およびブチリル基から選ばれる少なくとも一種であることが好ましい。なお、アセチル化の場合の置換度をDSAce、プロピオニル化の場合の置換度をDSPr、ブチリル化の場合の置換度をDSBuと示す。
 [植物成分率]
 本実施形態のセルロース系樹脂は、十分な植物利用率を確保する観点から、グラフト化後のセルロース系樹脂の全体に対するセルロース成分とカルダノール成分との合計の質量比率(植物成分率)が、50%以上が好ましく、60%以上がより好ましい。ここでセルロース成分は、ヒドロキシ基がアシル化やグラフト化されていない前記の式(1)で示される構造に対応し、カルダノール成分は前記の式(2)で示される構造に対応するものとして算出する。
 [添加剤]
 以上に説明した実施形態のセルロース系樹脂には、通常の熱可塑性樹脂に使用する各種の添加剤を適用できる。例えば、可塑剤を添加することで、熱可塑性や破断時の伸びを一層向上できる。このような可塑剤としては、フタル酸ジブチル、フタル酸ジアリール、フタル酸ジエチル、フタル酸ジメチル、フタル酸ジ-2-メトキシエチル、エチルフタリル・エチルグリコレート、メチルフタリル・エチルグリコレート等のフタル酸エステル;酒石酸ジブチル等の酒石酸エステル;アジピン酸ジオクチル、アジピン酸ジイソノニル等のアジピン酸エステル;トリアセチン、ジアセチルグリセリン、トリプロピオニトリルグリセリン、グリセリンモノステアレートなどの多価アルコールエステル;リン酸トリエチル、リン酸トリフェニル、リン酸トリクレシルなどのリン酸エステル;ジブチルアジペート、ジオクチルアジペート、ジブチルアゼレート、ジオクチルアゼレート、ジオクチルセバケート等の二塩基性脂肪酸エステル;クエン酸トリエチル、クエン酸アセチル・トリエチル、アセチルクエン酸トリブチル等のクエン酸エステル;エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油;ヒマシ油およびその誘導体;O-ペンゾイル安息香酸エチル等の安息香酸エステル;セバシン酸エステル、アゼライン酸エステル等の脂肪族ジカルボン酸エステル;マレイン酸エステル等の不飽和ジカルボン酸エステル;その他、N-エチルトルエンスルホンアミド、トリアセチン、p-トルエンスルホン酸O-クレジル、トリプロピオニンなどが挙げられる。
 その他の可塑剤として、シクロヘキサンジカルボン酸ジヘキシル、シクロヘキサンジカルボン酸ジオクチル、シクロヘキサンジカルボン酸ジ-2-メチルオクチル等のシクロヘキサンジカルボン酸エステル;トリメリット酸ジヘキシル、トリメリット酸ジエチルヘキシル、トリメリット酸ジオクチル等のトリメリット酸エステル;ピロメリット酸ジヘキシル、ピロメリット酸ジエチルヘキシル、ピロメリット酸ジオクチル等のピロメリット酸エステルが挙げられる。
 このような可塑剤中の反応性官能基(カルボン酸基、カルボン酸基から誘導された基、その他の官能基)とカルダノールのフェノール性水酸基や不飽和結合とを反応させて、カルダノールを付加させた可塑剤を用いることもできる。このような可塑剤を用いると、本実施形態のセルロース系樹脂と可塑剤の相溶性を向上できるため、可塑剤の添加効果を一層向上できる。
 本実施形態のセルロース系樹脂には、必要に応じて、無機系もしくは有機系の粒状または繊維状の充填剤を添加できる。充填剤を添加することによって、強度や剛性を一層向上できる。充填剤としては、例えば、鉱物質粒子(タルク、マイカ、焼成珪成土、カオリン、セリサイト、ベントナイト、スメクタイト、クレイ、シリカ、石英粉末、ガラスビーズ、ガラス粉、ガラスフレーク、ミルドファイバー、ワラストナイト(またはウォラストナイト)など)、ホウ素含有化合物(窒化ホウ素、炭化ホウ素、ホウ化チタンなど)、金属炭酸塩(炭酸マグネシウム、重質炭酸カルシウム、軽質炭酸カルシウムなど)、金属珪酸塩(珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、アルミノ珪酸マグネシウムなど)、金属酸化物(酸化マグネシウムなど)、金属水酸化物(水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなど)、金属硫酸塩(硫酸カルシウム、硫酸バリウムなど)、金属炭化物(炭化ケイ素、炭化アルミニウム、炭化チタンなど)、金属窒化物(窒化アルミニウム、窒化ケイ素、窒化チタンなど)、ホワイトカーボン、各種金属箔が挙げられる。繊維状の充填剤としては、有機繊維(天然繊維、紙類など)、無機繊維(ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ウォラストナイト、ジルコニア繊維、チタン酸カリウム繊維など)、金属繊維などが挙げられる。これらの充填剤は、単独で又は二種以上組み合わせて使用できる。
 本実施形態のセルロース系樹脂には、必要に応じて、難燃剤を添加できる。難燃剤を添加することによって、難燃性を付与できる。難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイトのような金属水和物、塩基性炭酸マグネシウム、炭酸カルシウム、シリカ、アルミナ、タルク、クレイ、ゼオライト、臭素系難燃剤、三酸化アンチモン、リン酸系難燃剤(芳香族リン酸エステル類、芳香族縮合リン酸エステル類など)、リンと窒素を含む化合物(フォスファゼン化合物)などが挙げられる。これらの難燃剤は、単独で又は二種以上組み合わせて使用できる。
 また、難燃剤として、酸化リン、リン酸またはこれらの誘導体とカルダノールとの反応物や、これらの反応物の重合体を用いることができる。このような難燃剤を用いると、本実施形態のセルロース系樹脂と難燃剤との相互作用が強化され、優れた難燃効果が得られる。このような難燃剤としては、例えば、酸化リン(P)やリン酸(HPO)とカルダノールのフェノール性水酸基とを反応させた反応物や、この反応物にヘキサメチレンテトラミンを加えて重合させた重合体が挙げられる。
 本実施形態のセルロース系樹脂には、必要に応じて、耐衝撃性改良剤を添加できる。耐衝撃性改良剤を添加することによって、耐衝撃性を向上できる。耐衝撃性改良剤としては、ゴム成分やシリコーン化合物を挙げられる。ゴム成分としては、天然ゴム、エポキシ化天然ゴム、合成ゴムなどが挙げられる。また、シリコーン化合物としては、アルキルシロキサン、アルキルフェニルシロキサンなどの重合によって形成された有機ポリシロキサン、もしくは、前記有機ポリシロキサンの側鎖または末端をポリエーテル、メチルスチリル、アルキル、高級脂肪酸エステル、アルコキシ、フッ素、アミノ基、エポキシ基、カルボキシル基、カルビノール基、メタクリル基、メルカプト基、フェノール基などで変性した変性シリコーン化合物などが挙げられる。これらの耐衝撃性改良剤は、単独で又は二種以上組み合わせて使用できる。
 耐衝撃性改良剤として、カルダノールを主成分とするカルダノール重合体を用いてもよい。このような耐衝撃性改良剤は、本実施形態におけるセルロース系樹脂との相溶性に優れるため、より高度な耐衝撃性改良効果が得られる。具体的には、カルダノールにホルムアルデヒドを加え、これとカルダノールの直鎖状炭化水素中の不飽和結合との反応により得られるカルダノール重合体や、カルダノールに硫酸、リン酸、ジエトキシトリフルオロボロン等の触媒を加え、カルダノールの直鎖状炭化水素中の不飽和結合同士の反応により得られるカルダノール重合体が挙げられる。
 本実施形態のセルロース系樹脂には、必要に応じて、着色剤、酸化防止剤、熱安定剤など、通常の樹脂組成物に適用される添加剤を添加してもよい。
 本実施形態のセルロース系樹脂には、必要に応じて、一般的な熱可塑性樹脂を添加してもよい。
 本実施形態のセルロース系樹脂に各種添加剤や熱可塑性樹脂を添加した樹脂組成物の製造方法については、特に限定はなく、例えば各種添加剤とセルロース系樹脂をハンドミキシングや、公知の混合機、例えばタンブラーミキサー、リボンブレンダー、単軸や多軸混合押出機、混練ニーダー、混練ロール等のコンパウンディング装置で溶融混合し、必要に応じ適当な形状に造粒等を行うことにより製造できる。また別の好適な製造方法として、有機溶媒等の溶剤に分散させた、各種添加剤と樹脂を混合し、さらに必要に応じて、凝固用溶剤を添加して各種添加剤と樹脂の混合組成物を得て、その後、溶剤を蒸発させる製造方法がある。
 以上に説明した実施形態によるセルロース系樹脂は、成形用材料のベース樹脂として用いることができる。当該セルロース系樹脂をベース樹脂として含む樹脂組成物よりなる成形用材料は、電子機器用外装などの筺体などの成形体に好適である。
 ここでベース樹脂とは、組成物中の主成分を意味し、この主成分の機能を妨げない範囲で他の成分を含有することを許容することを意味し、特にこの主成分の含有割合を限定するものではないが、この主成分が組成物中の好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上を占めることを包含するものである。
 以下、具体例を挙げて本発明を更に詳しく説明する。
 下記の合成例1~3に従ってカルダノール成分の作製およびそのグラフト化を行い、カルダノール付加セルロース系樹脂を得た。合成例4~6に従って反応性TPU(柔軟成分)を作製し、実施例1に従ってカルダノール付加セルロース系樹脂へ反応性TPUのグラフト化を行った。また、合成例7に従って反応性シリコーン(柔軟成分)を作製し、実施例2に従ってカルダノール付加セルロース系樹脂へ反応性シリコーンのグラフト化を行った。
 [合成例1]カルダノール誘導体(モノクロロ酢酸変性カルダノールのクロライド化物)の作製
 カルダノールの直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノール(ACROS Organics製、m-n-ペンタデシルフェノール)を原料とし、そのフェノール性水酸基をモノクロロ酢酸と反応させることでカルボキシル基を付与し、カルボキシル化水添カルダノールを得た。次に、このカルボキシル基をオキサリルクロライドでクロライド化して酸クロライド基へ変換し、クロライド化水添カルダノールを得た。具体的には、下記に従って、クロライド化水添カルダノールを作製した。
 まず、水添カルダノール80g(0.26mol)をメタノール120mLに溶解させ、これに、水酸化ナトリウム64g(1.6mol)を蒸留水40mLに溶解させた水溶液を加えた。その後、室温で、関東化学(株)製モノクロロ酢酸66g(0.70mol)をメタノール50mLに溶解させた溶液を滴下した。滴下完了後、73℃で4時間還流させつつ攪拌を継続した。反応溶液を室温まで冷却後、この反応混合物を、希塩酸でpH=1となるまで酸性化し、メタノール250mLとジエチルエーテル500mL、さらに、蒸留水200mLを加えた。分液漏斗で水層を分離、廃棄し、エーテル層を蒸留水400mLで2回洗浄した。エーテル層に無水マグネシウムを加え乾燥させた後、これを濾別した。濾液(エーテル層)をエバポレーター(90℃/3mmHg)で減圧濃縮し、残渣として黄茶色粉末状の粗生成物を得た。この粗生成物をn-ヘキサンから再結晶し、真空乾燥させることにより、カルボキシル化水添カルダノールの白色粉末46g(0.12mol)を得た。
 得られたカルボキシル化水添カルダノール46g(0.12mol)を脱水クロロホルム250mLに溶解させ、オキサリルクロライド24g(0.19mol)とN,N-ジメチルホルムアミド0.25mL(3.2mmol)を加え、室温で72時間撹拌した。クロロホルム、過剰のオキサリルクロライド及びN,N-ジメチルホルムアミドを減圧留去し、クロライド化水添カルダノール48g(0.13mol)を得た。
 [合成例2]カルダノール付加セルロース系樹脂(A-1:カルダノールグラフト化セルロースアセテート)の作製(後述の参考例5に相当)
 合成例1のクロライド化水添カルダノール(カルダノール誘導体)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、カルダノールグラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、合成例2のクロライド化水添カルダノール12g(0.031mol)を溶解したジオキサン溶液100mLを加え、100℃で3時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでカルダノールグラフト化セルロースアセテート14gを得た。
 得られた試料(カルダノールグラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.44であった。
 [合成例3]カルダノール付加セルロース系樹脂(A-2:カルダノールグラフト化セルロースアセテート)の作製(後述の参考例7に該当)
 合成例1のクロライド化水添カルダノール(カルダノール誘導体)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、カルダノールグラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、合成例1のクロライド化水添カルダノール4.1g(0.011mol)と東京化成工業(株)製のベンゾイルクロライド(BC)2.8g(0.020mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでカルダノールグラフト化セルロースアセテート13gを得た。
 得られた試料(カルダノールグラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.30、DSBCは0.14であった。
 [合成例4]ポリエステルポリオールの作製
 セバシン酸(MW202.25)9.4g(0.046mol)、3-メチルペンタンジオール(MW118.17)7.6g(0.064mol)、トリブチルチタネート0.005gを反応容器へ投入し、窒素気流下常圧で加熱し、反応容器内の温度を150℃から220℃へ16時間かけて徐々に昇温し、水を反応容器系外へ留出させた。更に220℃で4時間、反応を継続して、ポリエステルポリオールを得た。
 得られたポリエステルポリオールは、水酸基価54であり、GPC(ゲルパーミエーションクロマトグラフィ、標準試料:ポリスチレン)による測定の結果、数平均分子量は2000であった。
 [合成例5]両末端イソシアネートプレポリマーの作製
 窒素置換した反応容器中にジフェニルメタンジイソシアネート(MDI、MW250.25)3.7g(0.015mol)を60℃に加熱して溶融させた。次いで70~80℃に加熱した合成例4のポリエステルポリオール16g(ヒドロキシ基量0.015mol)を加えて、80~90℃の範囲で反応させた。
 30分毎にイソシアネート基含量を測定し、計算値と同じイソシアネート含量に到達したら、加熱を停止し、放冷して両末端イソシアネートプレポリマーを得た。
 得られた両末端イソシアネートプレポリマーのイソシアネート含量は3.5質量%であった。
 [合成例6]反応性TPU(C-1)の作製
 合成例4のポリエステルポリオール10g(ヒドロキシ基量0.010mol)と、合成例5の両末端イソシアネートプレポリマー13.2g(イソシアネート基量0.011mol)を混合した溶液を、80℃の温風乾燥機で12時間硬化処理し、反応性TPUを得た。
 得られた反応性TPUの分子量をGPC(標準試料:ポリスチレン)で測定したところ、数平均分子量は22万であった。
 [実施例1]
 合成例6の反応性TPU(C-1)を、合成例3のカルダノール付加セルロース系樹脂(A-2)に結合させ、反応性TPUグラフト化セルロース系樹脂を得た。具体的には、下記に従って、反応性TPUグラフト化セルロース系樹脂を作製した。
 合成例3のカルダノール付加セルロース系樹脂(A-2)90質量部に、合成例6の反応性TPU(C-1)10質量部を添加し、混合押出機(HAAKE MiniLab Rheomex extruder, Model CTW5, Thermo Electron Corp., Waltham, Mass.)で10分間混合し(温度200℃、スクリュー回転速度50rpm)、反応性TPUグラフト化セルロース系樹脂を得た。
 得られたセルロース系樹脂を下記条件でプレス成形して、成形体を得た。
 (成形条件)
 温度:200℃、時間:2分、圧力:100kgf(9.8×10N)、
 成形体サイズ(成形体1):厚み:2mm、幅:13mm、長さ:80mm、
 成形体サイズ(成形体2):厚み:4mm、幅:10mm、長さ:80mm。
 得られた成形体について、下記に従って評価を行った。結果を表1に示す。
 [アイゾット衝撃強度の評価]
 上記の成形により得られた成形体2について、JIS K7110に準拠してノッチ付アイゾット衝撃強度を測定した。
 [曲げ試験]
 上記の成形により得られた成形体1について、JIS K7171に準拠して曲げ試験を行った。
 [ガラス転移温度の測定(耐熱性評価)]
 DSC(セイコーインスツルメンツ社製、製品名:DSC6200)によりガラス転移温度を測定した。
 [吸水率の測定]
 JIS K7209に準拠して吸水率を測定した。具体的には、成形体1を24時間、常温の純水に浸漬した際の重量増加率を測定した。
 [成形性]
 得られたセルロース系樹脂を上記の成形条件で成形した際、成形体の表面状態を目視で観察し、下記の基準に従って評価した。
 ○:成形体の表面に染み出し無し、剥がれ無し
 △:成形体の表面の一部に染み出しや剥がれ有り(成形体表面の20%未満)
 ×:成形体の表面に染み出しや剥がれ有り(成形体表面の20%以上)。
 [比較例1]
 合成例3のカルダノール付加セルロース系樹脂(A-2)について、実施例1と同様の条件で成形体を作製し、評価を行った。結果を表1に示す。
 [比較例2]
 合成例3のカルダノール付加セルロース系樹脂(A-2)90質量部に、反応性を持たないTPU(アジペートエステル系TPU、大日精化(株)製、商品名:レザミンP6165)10質量部を添加し、実施例1と同じ条件で加熱混合し、セルロース系樹脂組成物を作製した。
 得られたセルロース系樹脂組成物について、実施例1と同様にして成形体を作製し、評価を行った。結果を表1に示す。
 [比較例3]
 合成例4のポリエステルポリオールと、合成例5の両末端イソシアネートプレポリマーを重量比で1.00:1.32(合成例6の反応性TPUを作製した際と同じ比率)となるように混合した溶液を作製した。次に、合成例3のカルダノール付加セルロース系樹脂(A-2)90質量部に、上記混合溶液10質量部を添加し、比較例2と同様にしてセルロース系樹脂組成物を作成した。
 得られたセルロース系樹脂組成物について、実施例1と同様にして成形体を作製し、評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
  実施例1(反応性TPUをグラフト化したカルダノール付加セルロース系樹脂)と、比較例1(反応性TPUをグラフト化していないカルダノール付加セルロース系樹脂)、比較例2(カルダノール付加セルロース系樹脂と非反応性TPUを含む組成物)及び比較例3(反応性TPUの原料であるポリオールとジイソシアネートとカルダノール付加セルロース系樹脂を含む組成物)とを対比すると明らかなように、反応性TPUをグラフト化したカルダノール付加セルロース系樹脂は、強度、耐熱性(Tg)、耐水性を良好に保ちながら、耐衝撃性が改善されていることがわかる。
 また、反応性TPUをグラフト化した実施例1のセルロース系樹脂は、反応性TPUをグラフト化していない比較例1のカルダノール付加セルロース系樹脂と比べ、同じ成形条件で同等以上の溶融性を示し、良好な熱可塑性を示した。
 [合成例7]反応性シリコーン(C-2:イソシアネート変性シリコーン)の作製
 カルビノール変性シリコーン(信越化学工業(株)製、商品名:X-22-170DX、官能基当量4667g/mol、数平均分子量4667g/mol)と関東化学(株)製のトルエンジイソシアネートを結合させ、イソシアネート変性シリコーン(C-2)を得た。具体的には、下記に従って、イソシアネート変性シリコーンを作製した。
 窒素置換した反応容器中にカルビノール変性シリコーン20g(ヒドロキシ基量:0.0043mol)を投入し、トルエンジイソシアネートを0.75g(0.0043mol)を加え、80℃で1時間攪拌した。これを室温に冷却することで反応生成物20.7gを得た。
 得られたイソシアネート変性シリコーンをH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、カルビノール変性シリコーン成分とトルエンジイソシアネート成分の1対1反応物の含有量は、90質量%以上であった。
 [実施例2]
 合成例7のイソシアネート変性シリコーンを、合成例2のカルダノール付加セルロース系樹脂に結合させ、シリコーングラフト化セルロース系樹脂を得た。具体的には、下記に従って、シリコーングラフト化セルロース系樹脂を作製した。
 合成例2のカルダノール付加セルロース系樹脂20g(ヒドロキシ基量0.047mol)を脱水ジオキサン400mLに溶解させ、反応触媒としてオクチル酸スズ0.02g(0.00005mol)を加えた。この溶液に、合成例7のイソシアネート変性シリコーン8.5g(0.0017mol)を溶解したジオキサン溶液20mLを加え、90℃で5時間加熱還流した。反応溶液をメタノール4Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。その後、ヘキサン2Lでもう一回洗浄を行い、濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでシリコーングラフト化セルロース系樹脂18gを得た。
 得られた試料(シリコーングラフト化セルロース系樹脂)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、カルダノール変性セルロース系樹脂に結合された変性シリコーン成分の質量比が3.2質量%であった。
 得られたシリコーングラフト化セルロース系樹脂について、実施例1と同様にして成形体を作製し、評価を行った。結果を表2に示す。
 [比較例4]
 合成例2のカルダノール付加セルロース系樹脂(A-1)を用いて実施例1と同様にして成形体を作製し、評価を行った。結果を表2に示す。
 [比較例5]
 合成例2のカルダノール付加セルロース系樹脂(A-1)97質量部に、反応性を持たないカルビノール変性シリコーン(信越化学工業(株)製、商品名:X-22-170DX、官能基当量4667g/mol、数平均分子量4667g/mol)3質量部を添加し、実施例2と同じ条件で加熱混合し、セルロース系樹脂組成物を作製した。
 得られたセルロース系樹脂組成物について、実施例1と同様にして成形体を作製し、評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
  実施例2(シリコーン成分をグラフト化したカルダノール付加セルロース系樹脂)と、比較例4(シリコーン成分をグラフト化していないカルダノール付加セルロース系樹脂)及び比較例5(カルダノール付加セルロース系樹脂と非反応性のシリコーン成分を含む組成物)とを対比すると明らかなように、シリコーン成分をグラフト化したカルダノール付加セルロース系樹脂は、強度、耐熱性(Tg)、耐水性を良好に保ちながら、耐衝撃性が改善されていることがわかる。
 また、シリコーン成分をグラフト化した実施例2のセルロース系樹脂は、シリコーン成分をグラフト化していない比較例4のカルダノール付加セルロース系樹脂と比べ、同じ成形条件で同等以上の溶融性を示し、良好な熱可塑性を示した。
 以下に、柔軟成分をグラフト化していないカルダノール付加セルロース系樹脂について、具体例を挙げてさらに説明する。
 [参考合成例1]カルダノール誘導体1(コハク酸変性カルダノールのクロライド化物)の作製
 カルダノールの直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノール(ACROS Organics製、m-n-ペンタデシルフェノール)を原料とした。この水添カルダノールを、H-NMR(Bruker社製、製品名:AV-400、400MHz)で測定したところ不飽和結合が検出されなかったので、水添率は少なくとも90モル%以上であることが確認できた。そのフェノール性水酸基を無水コハク酸と反応させることでカルボキシル基を付与し、カルボキシル化水添カルダノールを得た。次に、このカルボキシル基をオキサリルクロライドでクロライド化して酸クロライド基へ変換し、クロライド化水添カルダノールを得た。具体的には、下記に従って、クロライド化水添カルダノールを作製した。
 まず、無水コハク酸33g(0.33mol)を脱水クロロホルム250mLに溶解させ、脱水ピリジン5.0mL(0.062mol)と原料の水添カルダノール50g(0.16mol)を加え、窒素雰囲気下、70℃で24時間加熱還流した。反応溶液を室温まで冷却後、析出した無水コハク酸の結晶を濾別した。濾過したクロロホルム溶液を0.1mol/L塩酸250mLで2回洗浄し、さらに水250mLで2回洗浄した。洗浄後のクロロホルム溶液を硫酸マグネシウムで脱水した後、硫酸マグネシウムを濾別し、クロロホルムを減圧留去することでカルボキシル化水添カルダノールの褐色固体60g(0.15mol)を得た。
 得られたカルボキシル化水添カルダノール50g(0.12mol)を脱水クロロホルム250mLに溶解させ、オキサリルクロライド24g(0.19mol)とN,N-ジメチルホルムアミド0.25mL(3.2mmol)を加え、室温で72時間撹拌した。クロロホルム、過剰のオキサリルクロライド及びN,N-ジメチルホルムアミドを減圧留去し、クロライド化水添カルダノール52g(0.12mol)を得た。
 [参考合成例2]カルダノール誘導体2(モノクロロ酢酸変性カルダノールのクロライド化物)の作製
 カルダノールの直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノール(ACROS Organics製、m-n-ペンタデシルフェノール)を原料とし、そのフェノール性水酸基をモノクロロ酢酸と反応させることでカルボキシル基を付与し、カルボキシル化水添カルダノールを得た。次に、このカルボキシル基をオキサリルクロライドでクロライド化して酸クロライド基へ変換し、クロライド化水添カルダノールを得た。具体的には、下記に従って、クロライド化水添カルダノールを作製した。
 まず、水添カルダノール80g(0.26mol)をメタノール120mLに溶解させ、これに、水酸化ナトリウム64g(1.6mol)を蒸留水40mLに溶解させた水溶液を加えた。その後、室温で、関東化学(株)製モノクロロ酢酸66g(0.70mol)をメタノール50mLに溶解させた溶液を滴下した。滴下完了後、73℃で4時間還流させつつ攪拌を継続した。反応溶液を室温まで冷却後、この反応混合物を、希塩酸でpH=1となるまで酸性化し、メタノール250mLとジエチルエーテル500mL、さらに、蒸留水200mLを加えた。分液漏斗で水層を分離、廃棄し、エーテル層を蒸留水400mLで2回洗浄した。エーテル層に無水マグネシウムを加え乾燥させた後、これを濾別した。濾液(エーテル層)をエバポレーター(90℃/3mmHg)で減圧濃縮し、残渣として黄茶色粉末状の粗生成物を得た。この粗生成物をn-ヘキサンから再結晶し、真空乾燥させることにより、カルボキシル化水添カルダノールの白色粉末46g(0.12mol)を得た。
 得られたカルボキシル化水添カルダノール46g(0.12mol)を脱水クロロホルム250mLに溶解させ、オキサリルクロライド24g(0.19mol)とN,N-ジメチルホルムアミド0.25mL(3.2mmol)を加え、室温で72時間撹拌した。クロロホルム、過剰のオキサリルクロライド及びN,N-ジメチルホルムアミドを減圧留去し、クロライド化水添カルダノール48g(0.13mol)を得た。
 [参考合成例3]ビフェニル酢酸クロライドの作製
 シグマアルドリッチジャパン(株)製ビフェニル酢酸6.0g(0.028mol)を脱水クロロホルム60mlに溶解させ、オキサリルクロライド3.7g(0.029mol)とN,N-ジメチルホルムアミド0.04mL(0.51mmol)を加え、室温で72時間攪拌した。クロロホルム、過剰のオキサリルクロライド及びN,N-ジメチルホルムアミドを減圧留去し、ビフェニル酢酸クロライド6.5g(0.028mol)を得た。
 [参考例1]
 参考合成例1で作製したクロライド化水添カルダノール(カルダノール誘導体1)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例1で作製したクロライド化水添カルダノール46g(0.11mol)を溶解したジオキサン溶液100mLを加え、100℃で6時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート20gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.90であった。
 また、この試料について、下記に従って評価を行った。結果を表101Aに示す。
 [熱可塑性(プレス成形性)の評価]
 プレス成形を下記条件で行って成形体を得、その際の成形性を下記基準にしたがって評価した。
(成形条件)
 温度:170℃、時間:2分、圧力:100kgf(9.8×10N)、
 成形体サイズ:厚み:2mm、幅:13mm、長さ:80mm。
(評価基準)
 ○:良好、△:不良(ボイド、ヒケ、一部未充填が発生)、×:成形不可。
 [ガラス転移温度の測定(耐熱性評価)]
 DSC(セイコーインスツルメンツ社製、製品名:DSC6200)によりガラス転移温度を測定した。
 [曲げ試験]
 上記の成形により得られた成形体について、JIS K7171に準拠して曲げ試験を行った。
 [引張試験]
 試料2gをクロロホルム20mLに溶解した溶液を調製し、この溶液を用いてキャスティングを行い、カッターナイフで切り出して幅10mm、長さ60mm、厚さ0.2mmのフィルムを作製した。このフィルムについて、JIS K7127に準拠して引張試験を行った。
 [吸水率の測定]
 JIS K7209に準拠して吸水率を測定した。
 [植物成分率の決定]
 セルロース成分、カルダノール成分を植物成分として、試料全体に対する植物成分の合計含有率(質量%)を求めた。ここでセルロース成分は、ヒドロキシ基がアシル化やグラフト化されていない前記の式(1)で示される構造に対応し、カルダノール成分は前記の式(2)で示される構造に対応するものとして算出した。
 [参考例2]
 参考合成例1で作製したクロライド化水添カルダノール(カルダノール誘導体1)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸補足剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例1で作製したクロライド化水添カルダノール23g(0.054mol)を溶解したジオキサン溶液100mLを加え、100℃で6時間加熱還流した。反応溶液をメタノール3Lに攪拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート16gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.55であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Aに示す。
 [参考例3]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール14g(0.037mol)を溶解したジオキサン溶液100mLを加え、100℃で3時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート15gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.55であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Aに示す。
 [参考例4]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を21g(0.054mol)に変更する以外は参考例3と同様の分量と方法に従って作製し、グラフト化セルロースアセテート19gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.80であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Aに示す。
 [参考例5]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を12g(0.031mol)に変更する以外は参考例3と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.44であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Aに示す。
 [参考例6]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を6.9g(0.018mol)に変更する以外は参考例3と同様の分量と方法に従って作製し、グラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.30であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Aに示す。
 [参考例7]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール4.1g(0.011mol)と東京化成工業(株)製のベンゾイルクロライド(BC)2.8g(0.020mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.30、DSBCは0.14であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例8]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を3.1g(0.008mol)に変更し、ベンゾイルクロライドの仕込み量を8.4g(0.060mol)に変更する以外は参考例7と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.22、DSBCは0.27であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例9]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を7.6g(0.020mol)に変更し、ベンゾイルクロライドの仕込み量を8.4g(0.060mol)に変更する以外は参考例7と同様の分量と方法に従って作製し、グラフト化セルロースアセテート16gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.44、DSBCは0.22であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例10]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を4.1g(0.011mol)に変更し、ベンゾイルクロライドの仕込み量を28.1g(0.20mol)に変更する以外は参考例7と同様の分量と方法に従って作製し、グラフト化セルロースアセテート15gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.24、DSBCは0.42であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例11]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を4.6g(0.012mol)に変更し、ベンゾイルクロライドの仕込み量を1.1g(0.008mol)に変更する以外は参考例7と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.30、DSBCは0.07であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例12]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を1.5g(0.004mol)に変更し、ベンゾイルクロライドの仕込み量を2.2g(0.016mol)に変更する以外は参考例7と同様の分量と方法に従って作製し、グラフト化セルロースアセテート12gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.08、DSBCは0.16であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例13]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素として参考合成例3で作製したビフェニル酢酸クロライド(BAA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール7.0g(0.018mol)と参考合成例3で作製したビフェニル酢酸クロライド(BAA)1.5g(0.0065mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.27、DSBAAは0.15であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例14]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素として参考合成例3で作製したビフェニル酢酸クロライド(BAA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を12.2g(0.032mol)に変更し、ビフェニル酢酸クロライドの仕込み量を4.6g(0.020mol)に変更する以外は参考例13と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.40、DSBAAは0.40であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例15]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素として参考合成例3で作製したビフェニル酢酸クロライド(BAA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を15.2g(0.040mol)に変更し、ビフェニル酢酸クロライドの仕込み量を3.2g(0.014mol)に変更する以外は参考例13と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.55、DSBAAは0.28であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例16]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素として参考合成例3で作製したビフェニル酢酸クロライド(BAA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を7.6g(0.020mol)に変更し、ビフェニル酢酸クロライドの仕込み量を7.4g(0.032mol)に変更する以外は参考例13と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.30、DSBAAは0.52であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Bに示す。
 [参考例17]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてフェニルプロピオニルクロライド(PPA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール4.0g(0.011mol)と東京化成工業(株)製フェニルプロピオニルクロライド(PPA)2.0g(0.012mol)を溶解したジオキサン溶液100mLを加え、100℃5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.17、DSPPAは0.25であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Cに示す。
 [参考例18]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてフェニルプロピオニルクロライド(PPA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を3.8g(0.010mol)に変更し、フェニルプロピオニルクロライドの仕込み量を2.7g(0.016mol)に変更する以外は参考例17と同様の分量と方法に従って作製し、グラフト化セルロースアセテート14gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.13、DSPPAは0.35であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Cに示す。
 [参考例19]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてシクロヘキサンカルボン酸クロライド(CHC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール3.7g(0.0096mol)とシグマアルドリッチジャパン(株)製のシクロヘキサンカルボン酸クロライド(CHC)2.5g(0.017mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.20、DSCHCは0.22であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Cに示す。
 [参考例20]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてビフェニルカルボニルクロライド(BCC)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール4.6g(0.012mol)とシグマアルドリッチジャパン(株)製のビフェニルカルボニルクロライド(BCC)13.0g(0.060mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート16gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.30、DSBCCは0.30であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Cに示す。
 [参考例21]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-40、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.4)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート15.8g(ヒドロキシ基量0.036mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール6.8g(0.018mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート19gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.19であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表102に示す。
 [参考例22]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-40、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.4)に結合させ、グラフト化セルロースアセテートを得た。具体的には、クロライド化水添カルダノールの仕込み量を41.2g(0.108mol)に変更する以外は、参考例22と同様の分量と方法に従ってグラフト化セルロースアセテート25gを作製した。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.50であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表102に示す。
 [参考例23]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテートブチレート(イーストマンケミカル製、商品名:CAB-381-20、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=1.0、セルロースのグルコース単位当たりの酪酸の付加数(ブチリル化の置換度DSBu)=1.66)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートブチレートを作製した。
 セルロースアセテートブチレート10g(ヒドロキシ基量0.011mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン2.5mL(0.018mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール13g(0.035mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテートブチレート13gを得た。
 得られた試料(グラフト化セルロースアセテートブチレート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.34であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表103に示す。
 [参考例24]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)を、セルロースアセテートプロピオネート(イーストマンケミカル製、商品名:CAP-482-20、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=0.18、セルロースのグルコース単位当たりのプロピオン酸の付加数(プロピオニル化の置換度DSPr)=2.49)に結合させ、グラフト化セルロースアセテートプロピオネートを得た。具体的には、下記に従って、グラフト化セルロースアセテートプロピオネートを作製した。
 セルロースアセテートプロピオネート10g(ヒドロキシ基量0.010mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン2.5mL(0.018mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール13g(0.035mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.34であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表103に示す。
 [参考例25]
 参考合成例2で作製したクロライド化水添カルダノール(カルダノール誘導体2)と、反応性炭化水素としてベンゾイルクロライド(BC)を、セルロースアセテートプロピオネート(イーストマンケミカル製、商品名:CAP-482-20、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=0.18、セルロースのグルコース単位当たりのプロピオン酸の付加数(プロピオニル化の置換度DSPr)=2.49)に結合させ、グラフト化セルロースアセテートプロピオネートを得た。具体的には、下記に従って、グラフト化セルロースアセテートプロピオネートを作製した。
 セルロースアセテートプロピオネート10g(ヒドロキシ基量0.010mol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン2.5mL(0.018mol)を加えた。この溶液に、参考合成例2で作製したクロライド化水添カルダノール4.5g(0.012mol)と東京化成工業(株)製のベンゾイルクロライド(BC)2.8g(0.020mol)を溶解したジオキサン溶液100mLを加え、100℃で5時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート13gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSCDは0.21、DSBCは0.10であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表103に示す。
 [参考例26]
 カルダノールの直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノール(ACROS Organics製、m-n-ペンタデシルフェノール)を原料とし、そのフェノール性水酸基をモノクロロ酢酸と反応させることでカルボキシル基を付与し、カルボキシル化水添カルダノールを得た。具体的には、下記に従って、カルボキシル化水添カルダノールを作製した。
 まず、水添カルダノール80g(0.26mol)をメタノール120mLに溶解させ、これに、水酸化ナトリウム64g(1.6mol)を蒸留水40mLに溶解させた水溶液を加えた。その後、室温で、関東化学(株)製モノクロロ酢酸66g(0.70mol)をメタノール50mLに溶解させた溶液を滴下した。滴下完了後、73℃で4時間還流させつつ攪拌を継続した。反応溶液を室温まで冷却後、この反応混合物を、希塩酸でpH=1となるまで酸性化し、メタノール250mLとジエチルエーテル500mL、さらに、蒸留水200mLを加えた。分液漏斗で水層を分離、廃棄し、エーテル層を蒸留水400mLで2回洗浄した。エーテル層に無水マグネシウムを加え乾燥させた後、これを濾別した。濾液(エーテル層)をエバポレーター(90℃/3mmHg)で減圧濃縮し、残渣として黄茶色粉末状の粗生成物を得た。この粗生成物をn-ヘキサンから再結晶し、真空乾燥させることにより、カルボキシル化水添カルダノールの白色粉末46g(0.12mol)を得た。
 こうして作製したカルボキシル化水添カルダノールを、セルロース(日本製紙ケミカル(株)製、商品名:KCフロックW-50G)に結合させ、グラフト化セルロースを得た。具体的には、下記に従って、グラフト化セルロースを作製した。
 セルロース2.5g(ヒドロキシ基量47mmol)をメタノール100mLに懸濁させ1時間室温で撹拌し、吸引濾過した。濾別した固体をジメチルアセトアミド(DMAc)100mLに膨潤させ1時間室温で撹拌した後、吸引濾過して溶媒を除去した。その後、DMAcでの膨潤と吸引濾過による溶媒の除去を同様に3回繰り返した。DMAc250mLにLiCl21gを溶解し、先のDMAc膨潤セルロースを混合して室温で一晩撹拌し、セルロース溶液を得た。こうして得られたセルロース溶液に、カルボキシル化水添カルダノールを17.3g(46.5mmol)、ピリジン11.0g(140mmol)、トシルクロライド8.8g(46mmol)を溶解したDMAc溶液20mLを加え、50℃で1時間加熱反応させた。反応溶液をメタノール2Lに滴下して再沈殿し、固体を濾別した。濾別した固体をメタノール500mLで3回洗浄した後、105℃で5時間真空乾燥することで、グラフト化セルロース10.4gを得た。回収量から求められたDSCDは1.49であった。また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表104に示す。
 [参考比較例1]
 参考例1で使用したグラフト化前のセルロースアセテートを比較試料とした。
 このセルロースアセテートについて、参考例1と同様に評価を行った。結果を表101Cに示す。
 なお、このセルロースアセテートは、加熱しても溶融せず、熱可塑性を示さなかった。また、成形もできなかったため曲げ試験を行えなかった。
 [参考比較例2]
 参考例1で使用したグラフト化前のセルロースアセテートに、可塑剤としてクエン酸トリエチル(ファイザー社製、商品名:Citroflex-2)を、樹脂組成物全体に対する含有量が45質量%となるように添加し、押し出し混合機(HAAKE MiniLab Rheomex extruder (Model CTW5, Thermo Electron Corp., Waltham, Mass.))で混合(温度200℃、スクリュー回転速度60rpm)し、セルロースアセテート樹脂組成物を作製した。
 この樹脂組成物について、参考例1と同様にして評価を行った。結果を表101Cに示す。
 なお、この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例3]
 クエン酸トリエチルの添加量を、樹脂組成物全体に対して56質量%となるように変更する以外は参考比較例2と同様の分量と方法に従って、セルロースアセテート樹脂組成物を作製した。
 この樹脂組成物について、参考例1と同様にして評価を行った。結果を表101Cに示す。
 なお、この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例4]
 クエン酸トリエチルの添加量を、樹脂組成物全体に対して34質量%となるように変更する以外は参考比較例2と同様の分量と方法に従って、セルロースアセテート樹脂組成物を作製した。
 この樹脂組成物について、参考例1と同様にして評価を行った。結果を表101Cに示す。
 なお、この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例5]
 反応性炭化水素としてフェニルプロピオニルクロライド(PPA)を、セルロースアセテート(ダイセル化学工業(株)製、商品名:LM-80、セルロースのグルコース単位当たりの酢酸の付加数(アセチル化の置換度:DSAce)=2.1)に結合させ、グラフト化セルロースアセテートを得た。具体的には、下記に従って、グラフト化セルロースアセテートを作製した。
 セルロースアセテート10g(ヒドロキシ基量0.036mmol)を脱水ジオキサン200mLに溶解させ、反応触媒および酸捕捉剤としてトリエチルアミン5.0mL(0.036mmol)を加えた。この溶液に、東京化成工業(株)製のフェニルプロピオニルクロライド(PPA)10g(0.060mol)を溶解したジオキサン溶液100mLを加え、100℃で1時間加熱還流した。反応溶液をメタノール3Lに撹拌しながらゆっくりと滴下して再沈殿し、固体を濾別した。濾別した固体を一晩空気乾燥し、さらに105℃で5時間真空乾燥することでグラフト化セルロースアセテート12gを得た。
 得られた試料(グラフト化セルロースアセテート)をH-NMR(Bruker社製、製品名:AV-400、400MHz)によって測定したところ、DSPPAは0.47であった。
 また、この試料について、参考例1と同様の方法に従って評価を行った。結果を表101Cに示す。
 なお、このセルロースアセテートは、加熱しても溶融せず、熱可塑性を示さなかった。また、成形もできなかったため曲げ試験を行えなかった。
 [参考比較例6]
 参考例21で使用したグラフト化前のセルロースアセテート(DSAce=2.4)を比較試料とした。
 このセルロースアセテートについて、参考例1と同様に評価を行った。結果を表102に示す。
 なお、このセルロースアセテートは、加熱しても溶融せず、熱可塑性を示さなかった。また、成形もできなかったため曲げ試験を行えなかった。
 [参考比較例7]
 参考例21で使用したグラフト化前のセルロースアセテート(DSAce=2.4)に、可塑剤としてクエン酸トリエチル(ファイザー社製、商品名:Citroflex-2)を、樹脂組成物全体に対する含有量が20質量%となるように添加し、押し出し混合機(HAAKE MiniLab Rheomex extruder (Model CTW5, Thermo Electron Corp., Waltham, Mass.))で混合(温度190℃、スクリュー回転速度60rpm)し、セルロースアセテート樹脂組成物を作製した。
 この樹脂組成物について、参考例1と同様にして評価を行った。結果を表102に示す。
 なお、この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例8]
 クエン酸トリエチルの添加量を、樹脂組成物全体に対して40質量%となるように変更する以外は参考比較例7と同様の分量、方法に従って、セルロースアセテート樹脂組成物を作製した。
 この樹脂組成物について、参考例1と同様にして評価を行った。結果を表102に示す。
 なお、この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例9、10]
 参考例23、24で使用したグラフト化前のセルロースアセテートブチレート、およびセルロースアセテートプロピオネートを比較試料とした。
 このセルロースアセテートブチレート、およびセルロースアセテートプロピオネートについて、参考例1と同様に評価を行った。結果を表103に示す。
 なお、このセルロースアセテートブチレート、およびセルロースアセテートプロピオネートは、加熱した際に溶融し熱可塑性はあるものの溶融粘度が非常に大きく、成形が困難であったため曲げ試験を行えなかった。
 [参考比較例11、12]
 参考例23、24で使用したグラフト化前のセルロースアセテートブチレート、およびセルロースアセテートプロピオネートに、可塑剤としてクエン酸トリエチル(ファイザー社製、商品名:Citroflex-2)を、それぞれ樹脂組成物全体に対する含有量が27質量%となるように添加し、押し出し混合機(HAAKE MiniLab Rheomex extruder (Model CTW5, Thermo Electron Corp., Waltham, Mass.))で混合(温度180℃、スクリュー回転速度60rpm)し、セルロースアセテートブチレート樹脂組成物、およびセルロースアセテートプロピオネート樹脂組成物を作製した。
 この樹脂組成物について、参考例1と同様にして評価を行った。結果を表103に示す。
 なお、この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例13]
 参考例26と比較するため、可塑剤のクエン酸トリエチルの添加量を、樹脂組成物全体に対して63質量%となるように変更する以外は参考比較例2と同様の方法に従って、セルロースアセテートと本可塑剤からなる樹脂組成物を作製した。本可塑剤とアセチル基の総量は、参考例26のカルダノール量と同量にした。この樹脂組成物について、参考例1と同様にして評価を行った。結果を表104に示す。
 この樹脂組成物を用いてキャスティングすると相分離が起こり、均一なフィルムを作製できなかったため、引張試験は行わなかった。
 [参考比較例14]
 不飽和結合を持つ上記式(2)で示される、カルダノール(東北化工(株)製、LB-7000:3-ペンタデシルフェノール約5%、3-ペンタデシルフェノールモノエン約35%、3-ペンタデシルフェノールジエン約20%、3-ペンタデシルフェノールトリエン約40%の混合物)の不飽和結合とセルロース(日本製紙ケミカル(株)製、商品名:KCフロックW-50G)のヒドロキシ基を化学結合させ、カルダノールグラフト化セルロースを得た。具体的には、下記に従って、カルダノールグラフト化セルロースを作製した。
 ドライボックス中、窒素ガス雰囲気下でボロントリフルオリドジエチルエーテル(BF-OEt)(関東化学(株)製)80mLと塩化メチレン(関東化学(株)製)100mLの反応溶媒を作製した後、これに、セルロース2gを加え、室温下で2時間攪拌した。その後、上記反応溶媒からセルロースを濾別し、真空乾燥させた後、これに上記液状のカルダノール(LB-7000)100mLを加え、室温下で3時間攪拌しながらグラフト化反応を行った。反応終了後、生成物を濾別し、アセトン洗浄、ソックスレ抽出を行い、105℃で5時間真空乾燥することで、目的物のカルダノールグラフト化セルロースの組成物2.5gを得た。回収量から求められたDSCDは0.16であった。
 この組成物は、加熱しても溶融せず、熱可塑性を示さなかった。また、成形もキャスティングもできなかったため、曲げ試験や引張試験などの評価を行えなかった。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
  参考例1~6と参考比較例1を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂(セルロースのヒドロキシ基にアセチル基も付加)は、熱可塑性を示さないグラフト化前のセルロース誘導体(セルロースアセテート)に対して、植物成分率を下げることなく、熱可塑性(プレス成形性)を示し優れた曲げ特性が得られ、さらに引っ張り特性(特に破断ひずみ)及び耐水性(吸水率)が改善されている。また、参考例1~6と参考比較例2~4を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂(セルロースのヒドロキシ基にアセチル基も付加)は、グラフト化前のセルロース誘導体(セルロースアセテート)に可塑剤を添加したものよりも、曲げ特性、引っ張り特性および耐水性が改善されているとともに、植物成分率を下げることなく高い耐熱性(ガラス転移温度)が得られている。
 参考例7~20に示されているように、カルダノールとともに反応性炭化水素をグラフト化させることにより、高い耐水性を得ながら、曲げ特性(特に曲げ強度)及び引張特性(特に引っ張り強度)をより一層改善することができる。
 参考例21~22及び参考比較例6~8は、参考例1~20及び参考比較例1~5に対して、セルロースのヒドロキシ基に付加したアセチル基を増加させた例である。このような場合であっても、参考例21~22と参考比較例6を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂は、熱可塑性を示さないグラフト化前のセルロース誘導体に対して、植物成分率を下げることなく、熱可塑性を示し優れた曲げ特性が得られ、さらに引っ張り特性(特に破断ひずみ)及び耐水性が改善されている。また、参考例21及び22と参考比較例7及び8を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂は、グラフト化前のセルロース誘導体に可塑剤を添加したものよりも、曲げ特性(特に曲げ強度)、引っ張り特性および耐水性が改善されているとともに、植物成分率を下げることなく高い耐熱性が得られている。
 可塑剤を添加した参考比較例2~4、7及び8が示すように、可塑剤を添加するだけでは、優れた耐熱性は得られていない。本参考例によれば、セルロース系樹脂に熱可塑性を付与することができるとともに、優れた耐熱性を得ることができる。
 また、反応性炭化水素のみをグラフトさせた参考比較例5が示すように、反応性炭化水素のみをグラフトさせるだけでは、熱可塑性は示さず、曲げ特性、引っ張り特性(特に破断ひずみ)及び耐水性は改善されていない。本参考例によれば、セルロース系樹脂に熱可塑性を付与することができるとともに、優れた曲げ特性、引っ張り特性(特に破断ひずみ)及び耐水性を得ることができる。
 参考例23~25及び参考比較例9~12は、アセチル基に加えてブチリル基あるいはプロピオニル基がヒドロキシ基に付加したセルロース誘導体を用いて作製したセルロース系樹脂の例である。このような場合であっても、参考例23~25と参考比較例9及び10を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂は、グラフト化前のセルロース誘導体に対して、植物成分率を下げることなく、優れた熱可塑性及び曲げ特性が得られ、さらに引っ張り特性(特に破断ひずみ)及び耐水性が改善されている。また、参考例23~25と参考比較例11及び12を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂は、グラフト化前のセルロース誘導体に可塑剤を添加したものよりも、曲げ特性(特に曲げ強度)、引っ張り特性および耐水性が改善されているとともに、植物成分率を下げることなく高い耐熱性が得られている。
 参考例26は、セルロースのヒドロキシ基にアセチル基等のアシル基が付加していないセルロースを用いて作製したセルロース系樹脂の例である。このような場合であっても、参考例26と参考比較例13を対比すると、本参考例のカルダノールグラフト化セルロース系樹脂は、参考比較例13のセルロース誘導体(セルロースアセテート)に可塑剤を添加したもの(セルロース成分の重量分率は同じ)よりも、曲げ特性(特に曲げ強度)、引っ張り特性および耐水性が改善されているとともに、植物成分率を下げることなく高い耐熱性が得られている。
 このように、本参考例によれば、高い植物成分率(高植物性)を有しながら、耐水性が改善され、良好な熱可塑性(プレス成形性)と十分な耐熱性をもつセルロース系樹脂を提供できる。また、プレス成形体については高い曲げ特性が得られ、フィルム成形体ついては引張特性(特に靱性)を改善することができる。また、本参考例のグラフト化セルロース系樹脂は、植物成分率が高いとともに、非可食部の利用率が高い。
 以上、実施例を参照して本発明を説明したが、本発明は上記実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年8月6日に出願された日本出願特願2010-177953を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 

Claims (19)

  1.  セルロース又はその誘導体にカルダノール又はその誘導体と柔軟成分が結合されてなるセルロース系樹脂。
  2.  前記柔軟成分は、反応性熱可塑性ポリウレタンエラストマー、反応性シリコーン、反応性ゴムから選ばれる少なくとも一種である、請求項1に記載のセルロース系樹脂。
  3.  前記柔軟成分は、イソシアネート基を有し、
     前記柔軟成分と前記セルロース又はその誘導体とは、該柔軟成分のイソシアネート基と該セルロース又はその誘導体のヒドロキシ基との反応により形成されるウレタン結合を介して結合されている、請求項1又は2に記載のセルロース系樹脂。
  4.  前記カルダノール又はその誘導体は、該カルダノール又はその誘導体のフェノール性水酸基と前記セルロース又はその誘導体のヒドロキシ基を利用して結合されている、請求項1から3のいずれか一項に記載のセルロース系樹脂。
  5.  前記ヒドロキシ基が結合しているセルロース炭素原子と、前記フェノール性水酸基が結合しているカルダノール炭素原子が有機連結基を介して連結され、
     前記有機連結基は、前記セルロース炭素原子に結合する、エステル結合、エーテル結合およびウレタン結合から選ばれる第1の結合と、前記カルダノール炭素原子に結合する、エステル結合、エーテル結合およびウレタン結合から選ばれる第2の結合を含む、請求項4に記載のセルロース系樹脂。
  6.  前記有機連結基は、炭素数1~20の2価の炭化水素基を含む、請求項5に記載のセルロース系樹脂。
  7.  前記セルロース又はその誘導体のグルコース単位あたりの、前記カルダノール又はその誘導体の付加数DSCDが0.1以上である、請求項1から6のいずれか一項に記載のセルロース系樹脂。
  8.  前記セルロース又はその誘導体のヒドロキシ基に、該ヒドロキシ基と反応できる官能基を持つ反応性炭化水素化合物が付加されている、請求項1から7のいずれか一項に記載のセルロース系樹脂。
  9.  前記反応性炭化水素化合物は、カルボキシル基、カルボン酸ハライド基又はカルボン酸無水物基を持つ炭化水素化合物である、請求項8に記載のセルロース系樹脂。
  10.  前記反応性炭化水素化合物は、脂肪族カルボン酸、芳香族カルボン酸および脂環族カルボン酸から選ばれる少なくとも一種のモノカルボン酸、その酸ハロゲン化物又はその酸無水物である、請求項8に記載のセルロース系樹脂。
  11.  前記セルロース又はその誘導体のグルコース単位あたりの、前記反応性炭化水素化合物の付加数DSXXが0.1以上である、請求項4から10のいずれか一項に記載のセルロース系樹脂。
  12.  前記セルロース又はその誘導体のヒドロキシ基に、アセチル基、プロピオニル基及びブチリル基から選ばれる少なくとも一種のアシル基が付加されている、請求項1から11のいずれか一項に記載のセルロース系樹脂。
  13.  前記セルロース又はその誘導体のヒドロキシ基に、アセチル基、プロピオニル基及びブチリル基から選ばれる少なくとも一種の第1のアシル基、及び芳香族カルボン酸および脂環族カルボン酸から選ばれる少なくとも一種のモノカルボン酸由来の第2のアシル基が付加され、
     該セルロース又はその誘導体のグルコース単位あたりの、前記第2のアシル基の付加数DSXXが0.1以上である、請求項1から7のいずれか一項に記載のセルロース系樹脂。
  14.  グルコース単位あたりの残存するヒドロキシ基の個数DSOHが0.9以下である、請求項1から13のいずれか一項に記載のセルロース系樹脂。
  15.  前記セルロース成分および前記カルダノール成分の合計量が当該セルロース系樹脂全体に対して50質量%以上である、請求項1から14のいずれか一項に記載のセルロース系樹脂。
  16.  前記柔軟成分の量が当該セルロース系樹脂全体に対して0.5質量%以上30質量%以下である、請求項1から15のいずれか一項に記載のセルロース系樹脂。
  17.  前記カルダノール又はその誘導体中の不飽和結合が水素添加されている、請求項1から16のいずれか一項に記載のセルロース系樹脂。
  18.  請求項1から17のいずれか一項に記載のセルロース系樹脂をベース樹脂として含む樹脂組成物。
  19.  請求項18に記載の樹脂組成物よりなる成形用材料。
PCT/JP2011/065450 2010-08-06 2011-07-06 セルロース系樹脂 WO2012017772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180036655.9A CN103025764B (zh) 2010-08-06 2011-07-06 纤维素树脂
US13/813,610 US9340625B2 (en) 2010-08-06 2011-07-06 Cellulose resin
JP2012527644A JP5846120B2 (ja) 2010-08-06 2011-07-06 セルロース系樹脂
EP11814402.1A EP2602267B1 (en) 2010-08-06 2011-07-06 Cellulose-based resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177953 2010-08-06
JP2010-177953 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012017772A1 true WO2012017772A1 (ja) 2012-02-09

Family

ID=45559282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065450 WO2012017772A1 (ja) 2010-08-06 2011-07-06 セルロース系樹脂

Country Status (5)

Country Link
US (1) US9340625B2 (ja)
EP (1) EP2602267B1 (ja)
JP (1) JP5846120B2 (ja)
CN (1) CN103025764B (ja)
WO (1) WO2012017772A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137623A1 (ja) * 2011-04-04 2012-10-11 日本電気株式会社 セルロース系樹脂およびその製造方法
WO2012137622A1 (ja) * 2011-04-04 2012-10-11 日本電気株式会社 セルロース系樹脂およびその製造方法
WO2013180278A1 (ja) * 2012-05-31 2013-12-05 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2013186957A1 (ja) * 2012-06-15 2013-12-19 日本電気株式会社 セルロース系樹脂組成物およびその用途
WO2014038520A1 (ja) * 2012-09-07 2014-03-13 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2014119657A1 (ja) * 2013-01-30 2014-08-07 日本電気株式会社 セルロース系樹脂組成物、成形用材料および成形体
WO2017217502A1 (ja) * 2016-06-17 2017-12-21 日本電気株式会社 セルロース誘導体、セルロース系樹脂組成物、成形体及びこれを用いた製品
WO2023074691A1 (ja) * 2021-10-25 2023-05-04 国立大学法人京都大学 樹脂組成物、それを用いた成形体、及び樹脂組成物の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421202B (zh) * 2012-05-22 2016-09-21 中国科学院化学研究所 一种高强度再生纤维素材料的制备方法
JP6646323B2 (ja) * 2015-12-24 2020-02-14 日立造船株式会社 ポリ乳酸樹脂組成物およびその製造方法
WO2018163734A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 ラテックス組成物
JP2019151796A (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物及びその樹脂成形体
JP7311251B2 (ja) * 2018-08-31 2023-07-19 イーストマン ケミカル カンパニー 樹脂組成物及び樹脂成形体
JP7463688B2 (ja) 2019-10-31 2024-04-09 富士フイルムビジネスイノベーション株式会社 樹脂組成物及び樹脂成形体

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248002A (ja) * 1993-02-22 1994-09-06 Natoko Paint Kk セルロース変性重合体
JPH08231918A (ja) * 1994-12-20 1996-09-10 Union Carbide Chem & Plast Technol Corp ラテックス組成物用の二元機能セルロース添加剤
JPH108035A (ja) 1996-06-25 1998-01-13 Akebono Brake Ind Co Ltd 非石綿系摩擦材
JPH1171402A (ja) * 1997-08-28 1999-03-16 Oji Paper Co Ltd ポリエステルグラフト化セルロースアセテート誘導体及びその製造方法
JPH11255801A (ja) 1998-03-12 1999-09-21 Daicel Chem Ind Ltd 生分解性グラフト重合体およびその製造方法
JPH11269797A (ja) * 1998-03-20 1999-10-05 Toppan Printing Co Ltd 耐水性及び剛性に優れた含浸紙
JP2001032869A (ja) 1999-07-21 2001-02-06 Toyota Motor Corp 摩擦材
WO2007086318A1 (ja) * 2006-01-27 2007-08-02 Daicel Chemical Industries, Ltd. 環状エステル変性グルカン誘導体の製造方法
WO2007099769A1 (ja) * 2006-02-24 2007-09-07 Daicel Chemical Industries, Ltd. 変性グルカン誘導体およびその成形体
WO2007129722A1 (ja) * 2006-05-09 2007-11-15 Daicel Chemical Industries, Ltd. ヒドロキシ酸変性グルカン誘導体およびその成形体
JP2010177953A (ja) 2009-01-28 2010-08-12 Kyocera Corp 基地局装置および基地局装置の制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2290861A (en) 1938-02-11 1942-07-28 Harvel Corp Cellulose ethers plasticized with ethers of cashew nut shell liquid
US2551282A (en) 1947-12-24 1951-05-01 Congoleum Nairn Inc Flexible, smooth surface coverings
US4663159A (en) * 1985-02-01 1987-05-05 Union Carbide Corporation Hydrophobe substituted, water-soluble cationic polysaccharides
US5124445A (en) * 1989-10-30 1992-06-23 Aqualon Company Alkylaryl hydrophobically modified cellulose ethers
CA2685718A1 (en) 2007-05-03 2008-11-13 Cardolite Corporation Cardanol based dimers and uses therefor
US8916699B2 (en) * 2009-10-05 2014-12-23 Nec Corporation Cellulose resin and method for producing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248002A (ja) * 1993-02-22 1994-09-06 Natoko Paint Kk セルロース変性重合体
JPH08231918A (ja) * 1994-12-20 1996-09-10 Union Carbide Chem & Plast Technol Corp ラテックス組成物用の二元機能セルロース添加剤
JPH108035A (ja) 1996-06-25 1998-01-13 Akebono Brake Ind Co Ltd 非石綿系摩擦材
JPH1171402A (ja) * 1997-08-28 1999-03-16 Oji Paper Co Ltd ポリエステルグラフト化セルロースアセテート誘導体及びその製造方法
JPH11255801A (ja) 1998-03-12 1999-09-21 Daicel Chem Ind Ltd 生分解性グラフト重合体およびその製造方法
JPH11269797A (ja) * 1998-03-20 1999-10-05 Toppan Printing Co Ltd 耐水性及び剛性に優れた含浸紙
JP2001032869A (ja) 1999-07-21 2001-02-06 Toyota Motor Corp 摩擦材
WO2007086318A1 (ja) * 2006-01-27 2007-08-02 Daicel Chemical Industries, Ltd. 環状エステル変性グルカン誘導体の製造方法
WO2007099769A1 (ja) * 2006-02-24 2007-09-07 Daicel Chemical Industries, Ltd. 変性グルカン誘導体およびその成形体
WO2007129722A1 (ja) * 2006-05-09 2007-11-15 Daicel Chemical Industries, Ltd. ヒドロキシ酸変性グルカン誘導体およびその成形体
JP2010177953A (ja) 2009-01-28 2010-08-12 Kyocera Corp 基地局装置および基地局装置の制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEORGE JOHN ET AL., POLYMER BULLETIN, vol. 22, 1989, pages 89 - 94
See also references of EP2602267A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181351B2 (en) 2011-04-04 2015-11-10 Nec Corporation Cellulose resin and process for producing the same
WO2012137622A1 (ja) * 2011-04-04 2012-10-11 日本電気株式会社 セルロース系樹脂およびその製造方法
US9458251B2 (en) 2011-04-04 2016-10-04 Nec Corporation Cellulose resin and process for producing the same
WO2012137623A1 (ja) * 2011-04-04 2012-10-11 日本電気株式会社 セルロース系樹脂およびその製造方法
CN104364267B (zh) * 2012-05-31 2016-09-14 日本电气株式会社 制造纤维素衍生物的方法和纤维素衍生物
CN104364267A (zh) * 2012-05-31 2015-02-18 日本电气株式会社 制造纤维素衍生物的方法和纤维素衍生物
JP2018059125A (ja) * 2012-05-31 2018-04-12 日本電気株式会社 セルロース誘導体、樹脂組成物および成形体
JPWO2013180278A1 (ja) * 2012-05-31 2016-01-21 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
US9382335B2 (en) 2012-05-31 2016-07-05 Nec Corporation Process for producing cellulose derivative and cellulose derivative
WO2013180278A1 (ja) * 2012-05-31 2013-12-05 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2013186957A1 (ja) * 2012-06-15 2013-12-19 日本電気株式会社 セルロース系樹脂組成物およびその用途
JPWO2013186957A1 (ja) * 2012-06-15 2016-02-01 日本電気株式会社 セルロース系樹脂組成物およびその用途
JPWO2014038520A1 (ja) * 2012-09-07 2016-08-08 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2014038520A1 (ja) * 2012-09-07 2014-03-13 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体
WO2014119657A1 (ja) * 2013-01-30 2014-08-07 日本電気株式会社 セルロース系樹脂組成物、成形用材料および成形体
JPWO2014119657A1 (ja) * 2013-01-30 2017-01-26 日本電気株式会社 セルロース系樹脂組成物、成形用材料および成形体
WO2017217502A1 (ja) * 2016-06-17 2017-12-21 日本電気株式会社 セルロース誘導体、セルロース系樹脂組成物、成形体及びこれを用いた製品
US11028186B2 (en) 2016-06-17 2021-06-08 Nec Corporation Cellulose derivative, cellulose resin composition, molded body and product using same
WO2023074691A1 (ja) * 2021-10-25 2023-05-04 国立大学法人京都大学 樹脂組成物、それを用いた成形体、及び樹脂組成物の製造方法

Also Published As

Publication number Publication date
CN103025764B (zh) 2016-08-03
JP5846120B2 (ja) 2016-01-20
US9340625B2 (en) 2016-05-17
EP2602267A1 (en) 2013-06-12
EP2602267A4 (en) 2013-12-25
JPWO2012017772A1 (ja) 2013-10-03
CN103025764A (zh) 2013-04-03
US20130310519A1 (en) 2013-11-21
EP2602267B1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5846120B2 (ja) セルロース系樹脂
JP5786861B2 (ja) セルロース系樹脂組成物
JP5853697B2 (ja) セルロース系樹脂およびその製造方法
JP5853698B2 (ja) セルロース系樹脂およびその製造方法
JP2012219112A (ja) セルロース系樹脂およびその製造方法
JP5928448B2 (ja) セルロース系樹脂およびその製造方法
JP5935796B2 (ja) セルロース系樹脂およびその製造方法
WO2014119657A1 (ja) セルロース系樹脂組成物、成形用材料および成形体
JPWO2017061190A1 (ja) セルロース誘導体およびその用途
JP2015081326A (ja) カルダノール類縁体を用いたセルロース系樹脂およびその製造方法
JP6274107B2 (ja) セルロース誘導体の製造方法およびセルロース系樹脂組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036655.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527644

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011814402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011814402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13813610

Country of ref document: US