WO2012014926A1 - 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法 - Google Patents

熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法 Download PDF

Info

Publication number
WO2012014926A1
WO2012014926A1 PCT/JP2011/067070 JP2011067070W WO2012014926A1 WO 2012014926 A1 WO2012014926 A1 WO 2012014926A1 JP 2011067070 W JP2011067070 W JP 2011067070W WO 2012014926 A1 WO2012014926 A1 WO 2012014926A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
steel sheet
hot
rolled steel
Prior art date
Application number
PCT/JP2011/067070
Other languages
English (en)
French (fr)
Inventor
藤田 展弘
邦夫 林
力 岡本
高橋 学
岸本 哲生
吉田 博司
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN201180036951.9A priority Critical patent/CN103038383B/zh
Priority to MX2013000984A priority patent/MX342629B/es
Priority to BR112013001864-0A priority patent/BR112013001864B1/pt
Priority to JP2012526530A priority patent/JP5163835B2/ja
Priority to KR1020137001998A priority patent/KR101514157B1/ko
Priority to CA2806626A priority patent/CA2806626C/en
Priority to EP11812515.2A priority patent/EP2599887B1/en
Priority to US13/811,902 priority patent/US9273370B2/en
Publication of WO2012014926A1 publication Critical patent/WO2012014926A1/ja
Priority to US15/000,722 priority patent/US9587319B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention is excellent in local deformability such as bending, stretch flange, burring, etc., and has a low orientation dependency of formability, and is mainly used for hot-rolled steel sheets, cold-rolled steel sheets, galvanized steel sheets, and the like. It relates to the manufacturing method.
  • the hot-rolled steel sheet includes a hot-rolled steel strip that serves as an original sheet such as a cold-rolled steel sheet and a galvanized steel sheet.
  • This application includes Japanese Patent Application No. 2010-169670 filed in Japan on July 28, 2010, Japanese Patent Application No. 2010-169627 filed in Japan on July 28, 2010, and March 4, 2011. Japanese Patent Application No. 2011-048236 filed in Japan, Japanese Patent Application No. 2010-169230 filed in Japan on July 28, 2010, and Japanese Patent Application No.
  • Non-Patent Document 1 discloses that uniform elongation, which is important for drawing or stretch forming, is reduced by increasing the strength. Therefore, in order to use high-strength steel sheets for undercarriage parts of automobile bodies, parts that contribute to collision energy absorption, etc., local deformability such as burring workability and local ductility that contributes to formability such as bending workability. It is important to improve.
  • Non-Patent Document 2 discloses a method for improving uniform elongation even with the same strength by compounding the metal structure of a steel plate.
  • Non-Patent Document 3 local deformability represented by bendability, hole expansion workability and burring workability is improved by inclusion control, single structure formation, and reduction in hardness difference between structures.
  • a metallographic control method is disclosed. This is to improve the hole expansibility by making a single structure by controlling the structure, but in order to make a single structure, as described in Non-Patent Document 4, heat treatment from an austenite single phase. Is the basis of the manufacturing method.
  • Non-Patent Document 4 the microstructure is controlled by cooling control after hot rolling, and appropriate fractions of ferrite and bainite are obtained by controlling the precipitates and the transformation structure to increase the strength. And a technique for ensuring ductility.
  • any of the above techniques is a method for improving local deformability that relies on tissue control, and is greatly influenced by the formation of the base tissue.
  • Non-Patent Document 5 the main phase of a product is obtained by performing large pressure reduction in a low temperature region as much as possible in an austenite region and transforming ferrite from unrecrystallized austenite.
  • a technique for increasing the strength and toughness by reducing the crystal grain size of a ferrite and making it finer is disclosed.
  • no consideration is given to the improvement of the local deformability that the present invention intends to solve.
  • the main means is to perform structure control including inclusion control.
  • structure control since it depends on the structure control, it is necessary to control the fraction and form of precipitates, structures such as ferrite and bainite, and the base metal structure is limited.
  • the local deformation capability of a high-strength steel sheet is controlled by controlling the size and form of crystal grains and controlling the texture without being limited to the type of phase by controlling the texture, not the control of the base structure.
  • the present invention provides a hot-rolled steel sheet, a cold-rolled steel sheet, a galvanized steel sheet, and a method for producing them.
  • the present inventors newly focused on the influence of the texture of the steel sheet, and investigated and studied its effects in detail.
  • the X-ray random intensity ratio of each orientation of the specific crystal orientation group is controlled from the hot rolling process, and the r value in the rolling direction, the r value in the direction perpendicular to the rolling direction, and 30 ° with respect to the rolling direction. It was also clarified that the local deformability is dramatically improved by controlling the r value in the direction of 60 °.
  • the hot-rolled steel sheet according to one embodiment of the present invention is in mass%, C: 0.0001% to 0.40%, Si: 0.001% to 2.5%, Mn : 0.001% or more, 4.0% or less, P: 0.001% or more, 0.15% or less, S: 0.0005% or more, 0.03% or less, Al: 0.001% or more, 2 0.0% or less, N: 0.0005% or more, 0.01% or less, O: 0.0005% or more, 0.01% or less, and Ti: 0.001% or more, 0.20 % Or less, Nb: 0.001% or more, 0.20% or less, V: 0.001% or more, 1.0% or less, W: 0.001% or more, 1.0% or less, B: 0.0001 %: 0.0050% or less, Mo: 0.001% or more, 1.0% or less, Cr: 0.001%
  • X-ray random intensity ratio of 0 or less and ⁇ 332 ⁇ ⁇ 113> crystal orientation is 1 It is 0 or more and 5.0 or less, and rC which is an r value in a direction perpendicular to the rolling direction is 0.70 or more and 1.10 or less, and is an r value in a direction forming 30 ° with respect to the rolling direction. r30 is 0.70 or more and 1.10 or less.
  • rL which is r value of the said rolling direction is 0.70 or more and 1.10 or less, and the direction which makes 60 degrees with respect to the said rolling direction.
  • the r value r60 may be 0.70 or more and 1.10 or less.
  • the ratio of grains having a ratio dL / dt which is a ratio of the length dL in the rolling direction to the length dt in the plate thickness direction is 3.0 or less may be 50% or more and 100% or less.
  • the area ratio of crystal grains having a grain size exceeding 20 ⁇ m is 0% or more and 10% or less in the total area of the metal structure of the hot-rolled steel sheet. May be.
  • a cold-rolled steel sheet according to an aspect of the present invention is a cold-rolled steel sheet obtained by cold rolling the hot-rolled steel sheet described in (1) above, and at least ⁇ 100 ⁇ ⁇ 011> in the central portion of the plate thickness.
  • the average value of the X-ray random intensity ratio of the ⁇ 223 ⁇ ⁇ 110> orientation group is 1.0 or more and less than 4.0, and the X-ray random intensity ratio of the crystal orientation of ⁇ 332 ⁇ ⁇ 113> is 1.0 or more R30 which is r or less in a direction perpendicular to the rolling direction and rC which is 0.70 or more and 1.10 or less and which forms 30 ° with respect to the rolling direction. Is 0.70 or more and 1.10 or less.
  • rL which is an r value in the rolling direction is 0.70 or more and 1.10 or less, and is an r value in a direction forming 60 ° with respect to the rolling direction.
  • r60 may be 0.70 or more and 1.10 or less.
  • one or more of bainite, martensite, pearlite, and austenite are present in the cold-rolled steel sheet, and among the crystal grains of these structures,
  • the ratio of grains in which dL / dt, which is the ratio of the length dL in the rolling direction and the length dt in the thickness direction, is 3.0 or less may be 50% or more and 100% or less.
  • the area ratio of crystal grains having a grain size exceeding 20 ⁇ m is 0% or more and 10% or less. May be.
  • a galvanized steel sheet according to one aspect of the present invention is a galvanized steel sheet further provided with a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the cold-rolled steel sheet according to (5).
  • the average value of the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation group at least in the central portion of the plate thickness is 1.0 or more and less than 4.0, and ⁇ 332 ⁇ ⁇ 113>
  • the X-ray random intensity ratio of the crystal orientation is 1.0 or more and 5.0 or less
  • rC which is an r value in a direction perpendicular to the rolling direction is 0.7 or more and 1.10 or less
  • R30 which is an r value in a direction forming 30 ° with respect to the rolling direction is 0.70 or more and 1.10 or less.
  • rL that is an r value in the rolling direction is 0.70 or more and 1.10 or less, and is an r value in a direction that forms 60 ° with respect to the rolling direction.
  • r60 may be 0.70 or more and 1.10 or less.
  • the method for producing a hot-rolled steel sheet according to one embodiment of the present invention is, in mass%, C: 0.0001% to 0.40%, Si: 0.001% to 2.5%, Mn: 0.001% or more, 4.0% or less, P: 0.001% or more, 0.15% or less, S: 0.0005% or more, 0.03% or less, Al: 0.001% or more, 2.0% or less, N: 0.0005% or more, 0.01% or less, O: 0.0005% or more, 0.01% or less, and Ti: 0.001% or more; 20% or less, Nb: 0.001% or more, 0.20% or less, V: 0.001% or more, 1.0% or less, W: 0.001% or more, 1.0% or less, B: 0.00.
  • T1 is a temperature determined by a steel plate component, and is expressed by the following formula 1.
  • T1 (° C.) 850 + 10 ⁇ (C + N) ⁇ Mn + 350 ⁇ Nb + 250 ⁇ Ti + 40 ⁇ B + 10 ⁇ Cr + 100 ⁇ Mo + 100 ⁇ V (Formula 1)
  • the rolling is performed at least once at a rolling rate of 30% or more in one pass. May be.
  • the reduction at a reduction rate of 20% or more is at least twice or more.
  • the austenite grain size may be 100 ⁇ m or less.
  • Tf the temperature after the final pass
  • P1 the rolling reduction in the final pass
  • the temperature increase of the steel plate between each pass of the second hot rolling in the temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less may be 18 ° C. or less.
  • the method for producing a cold-rolled steel sheet according to one aspect of the present invention is hot at an Ar3 transformation temperature or higher with respect to the hot-rolled steel sheet obtained by the method for producing a hot-rolled steel sheet according to (11) above.
  • pickling is performed, rolling is performed at a temperature of 20% to 90% in the cold, and annealing is performed at a temperature range of 720 ° C to 900 ° C with a holding time of 1 second to 300 seconds, 650 ° C.
  • the cooling rate is 10 ° C./s to 200 ° C./s, and the temperature is maintained at 200 ° C. to 500 ° C.
  • the rolling is performed at least once or more at a rolling reduction of 30% or more in one pass. May be.
  • the first hot rolling in the temperature range of 1000 ° C. or more and 1200 ° C. or less is performed at least twice or more at a reduction rate of 20% or more.
  • the austenite particle size may be 100 ⁇ m or less.
  • Tf the temperature after the final pass
  • P1 the rolling reduction in the final pass
  • the temperature increase of the steel plate between each pass of the second hot rolling in the temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less may be 18 ° C. or less.
  • the method for producing a galvanized steel sheet according to one aspect of the present invention is hot at an Ar3 transformation temperature or higher with respect to the hot-rolled steel sheet obtained by the method for producing a hot-rolled steel sheet described in (11) above.
  • the sheet is wound up in a temperature range of 680 ° C. or lower and room temperature or higher, pickled, rolled 20% to 90% in the cold, and heated to a temperature range of 650 ° C. or higher and 900 ° C. or lower.
  • Annealing is performed at a holding time of 1 second to 300 seconds
  • cooling is performed to a temperature range of 720 ° C. to 580 ° C. at a cooling rate of 0.1 ° C./s to 100 ° C./s, and galvanization is performed.
  • the reduction at a reduction rate of 20% or more is at least twice or more.
  • the austenite grain size may be 100 ⁇ m or less.
  • Tf the temperature after the final pass
  • P1 the rolling reduction in the final pass
  • the temperature increase of the steel sheet between each pass of the second hot rolling in the temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less may be 18 ° C. or less.
  • the main structure is not limited, and even when elements such as Nb and Ti are added, the influence on anisotropy is small, the local deformability is excellent, and the orientation dependency of the formability is small. Hot rolled steel sheets, cold rolled steel sheets, and galvanized steel sheets can be obtained.
  • FIG. 6 is a diagram showing a relationship between an average value of X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups and a sheet thickness / minimum bending radius in a hot-rolled steel sheet. It is a figure which shows the relationship between the X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> orientation group in a hot-rolled steel plate, and board thickness / minimum bending radius. The relationship between rC which is r value of the orthogonal
  • FIG. 1 It is a figure which shows the relationship between r30 which is r value of the direction which makes 30 degrees with respect to the rolling direction in a hot-rolled steel plate, and plate
  • FIG. 6 is a diagram showing a relationship between an average value of X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups and a sheet thickness / minimum bending radius in a cold rolled steel sheet. It is a figure which shows the relationship between the X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> orientation group, and sheet thickness / minimum bending radius in a cold-rolled steel sheet. It is a figure which shows the relationship between rC which is r value of the orthogonal
  • FIG. 6 is a diagram showing a relationship between an average value of X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups and a plate thickness / minimum bending radius in a galvanized steel sheet. It is a figure which shows the relationship between the X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> azimuth
  • FIG. 3 is a graph showing a relationship between a total rolling reduction in a temperature range of T1 ° C. or more and less than T1 + 30 ° C. and an average value of X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in a hot-rolled steel sheet. is there.
  • the pass having a reduction rate of 30% or more in the temperature range of T1 + 30 ° C. to T1 + 200 ° C. is defined as the large reduction pass. It is a figure which shows the relationship between the waiting time after starting the last path
  • the maximum temperature increase amount of the steel plate between each pass during the reduction in the temperature range of T1 + 30 ° C. to T1 + 200 ° C., and the pass having a reduction rate of 30% or more in the temperature range of T1 + 30 ° C. to T1 + 200 ° C. is defined as the large reduction pass.
  • FIG. It is a figure which shows the relationship between the austenite grain size after rough rolling, and rC which is r value of a perpendicular direction with the rolling direction in a cold-rolled steel plate. It is a figure which shows the relationship between the austenite grain size after rough rolling, and r30 which is r value of the direction which makes 30 degrees with respect to the rolling direction in a cold-rolled steel plate.
  • Hot-rolled steel sheet (1) X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation group in the central part of the thickness, which is a thickness range of 5/8 to 3/8 from the surface of the steel sheet X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> crystal orientation: The average value of the X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central part of the thickness that is 5/8 to 3/8 from the surface of the steel sheet This is a particularly important characteristic value in the form.
  • the thickness / minimum bending radius required for processing the undercarriage part and the skeleton part is d / Rm satisfies 1.5 or more.
  • a hole expansibility and a small limit bending characteristic it is preferably 4.0 or less, and more preferably less than 3.0.
  • the anisotropy of the mechanical properties of the steel sheet becomes extremely strong. As a result, even if the local deformability in one direction is improved, the material in a direction different from that direction is significantly deteriorated.
  • the aforementioned plate thickness / minimum bending radius ⁇ 1.5 cannot be satisfied.
  • the X-ray random strength ratio is preferably less than 4.0.
  • the X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> crystal orientation in the central portion of the plate thickness which is a plate thickness range of 5/8 to 3/8 from the surface of the steel plate, is as shown in FIG. If it is 5.0 or less, the thickness / minimum bending radius ⁇ 1.5 required for processing the undercarriage parts is satisfied. More desirably, it is 3.0 or less. If it exceeds 5.0, the anisotropy of the mechanical properties of the steel sheet becomes extremely strong. As a result, even if the local deformability in only one direction is improved, the material in a direction different from that direction is significantly deteriorated. Therefore, the thickness / minimum bending radius ⁇ 1.5 cannot be satisfied with certainty. On the other hand, the current general continuous hot rolling process is difficult to realize, but when the X-ray random intensity ratio is less than 1.0, there is a concern about deterioration of local deformability.
  • r30 which is an r value in a direction forming 30 ° with respect to the rolling direction: This r30 is important in this embodiment. That is, as a result of intensive studies by the present inventors, it has been found that good local deformability cannot always be obtained even when the X-ray intensities of the various crystal orientations described above are appropriate. As shown in FIG. 4, it is essential that r30 is 1.10 or less simultaneously with the X-ray intensity.
  • dL / dt ratio of bainite, martensite, pearlite and austenite grains As a result of further pursuing local deformability, the present inventors have almost no dependency on the direction of bending when the texture and r value are satisfied and the crystal grains are equiaxed. I found. As an index representing this equiaxed property, dL / dt which is a ratio of dL which is the length in the hot rolling direction of the crystal grains in these structures to dt which is the length in the plate thickness direction is 3.0 or less. The proportion of grains having excellent equiaxedness is 50% or more and 100% or less of these crystal grains.
  • each tissue can be determined as follows. Perlite is identified by observation of the structure with an optical microscope. Next, the crystal structure is determined using EBSD (Electron Back Scattering Diffraction), and the crystal having the fcc structure is defined as austenite. Bcc-structured ferrite, bainite and martensite can be identified by the Kernel Average Misorientation, that is, the KAM method, provided in the EBSP-OIM TM .
  • the KAM method is a first approximation that is six adjacent hexagonal pixels of measurement data, or a second approximation that is 12 outside the pixel, or a third approximation that is 18 outside the pixel. It is a value calculated by averaging each azimuth difference and calculating each pixel for the value of the center pixel. By performing this calculation so as not to cross the grain boundary, a map expressing the orientation change in the grain can be created. This map represents the strain distribution based on local orientation changes in the grains.
  • the condition for calculating the azimuth difference between adjacent pixels in the EBSP-OIM TM is set as a third approximation, and this azimuth difference is set to 5 ° or less.
  • Bainite or martensite which is a low-temperature transformation product, is defined as ferrite at 1 ° or less. This is because the polygonal pro-eutectoid ferrite transformed at high temperature is formed by diffusion transformation, so the dislocation density is small and the intra-granular distortion is small, so the intra-granular difference in crystal orientation is small. This is because, based on various investigation results, the ferrite volume fraction obtained by optical microscope observation and the area fraction of the area obtained by the third approximation of the orientation difference measured by the KAM method are almost in good agreement.
  • the smaller area ratio of crystal grains with a grain size of more than 20 ⁇ m out of the total area It is necessary to be 0% or more and 10% or less. If it exceeds 10%, the bendability deteriorates.
  • the crystal grains mentioned here refer to ferrite, pearlite, bainite, martensite, and austenite crystal grains.
  • the present invention can be applied to all types of hot-rolled steel sheets, and if the above limitations are satisfied, the formability of the hot-rolled steel sheets, such as bending workability and hole-expandability, will not be limited to a combination of structures. Improve.
  • the X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> crystal orientation in the central portion of the plate thickness which is the thickness range of 5/8 to 3/8 from the surface of the steel plate, is as shown in FIG. If it is 5.0 or less, the thickness / minimum bending radius ⁇ 1.5 required for processing of the skeleton component is satisfied. More desirably, it is 3.0 or less. If this exceeds 5.0, the anisotropy of the mechanical properties of the steel sheet becomes extremely strong. As a result, the local deformability only in a certain direction is improved, but the material in a direction different from that direction is significantly deteriorated. Therefore, the thickness / minimum bending radius ⁇ 1.5 cannot be satisfied with certainty. On the other hand, the current general continuous hot rolling process is difficult to realize, but when the X-ray random intensity ratio is less than 1.0, there is a concern about deterioration of local deformability.
  • r30 which is an r value in a direction forming 30 ° with respect to the rolling direction: This r30 is important in this embodiment. That is, as a result of intensive studies by the present inventors, it has been found that good local deformability cannot always be obtained even if the X-ray random intensity ratios of various crystal orientations described above are appropriate. As shown in FIG. 10, it is essential that r30 is 1.10 or less simultaneously with the above X-ray random intensity ratio.
  • Exceptional local deformability can be obtained by setting the lower limit of r30 to 0.70.
  • rL and r60 can obtain better local deformability when rL is 1.10 or less and r60 is 0.70 or more.
  • dL / dt ratio of bainite, martensite, pearlite and austenite grains As a result of further pursuing local deformability, the present inventors have almost no dependency on the direction of bending when the texture and r value are satisfied and the crystal grains are equiaxed. I found. As an index representing this equiaxed property, dL / dt which is a ratio of dL which is the length in the cold rolling direction of the crystal grains in these structures to dt which is the length in the plate thickness direction is 3.0 or less. The proportion of grains having excellent equiaxedness is 50% or more and 100% or less of these crystal grains.
  • each tissue can be determined as follows. Perlite is identified by observation of the structure with an optical microscope. Next, the crystal structure is determined using EBSD, and the crystal having the fcc structure is set to austenite. Bcc-structured ferrite, bainite and martensite can be identified by the Kernel Average Misorientation, that is, the KAM method, provided in the EBSP-OIM TM .
  • the KAM method is a first approximation that is six adjacent hexagonal pixels of measurement data, or a second approximation that is 12 outside the pixel, or a third approximation that is 18 outside the pixel. It is a value calculated by averaging each azimuth difference and calculating each pixel for the value of the center pixel. By performing this calculation so as not to cross the grain boundary, a map expressing the orientation change in the grain can be created. This map represents the strain distribution based on local orientation changes in the grains.
  • the condition for calculating the azimuth difference between adjacent pixels in the EBSP-OIM TM is set as a third approximation, and this azimuth difference is set to 5 ° or less.
  • Bainite or martensite which is a low-temperature transformation product, is defined as ferrite at 1 ° or less. This is because the polygonal pro-eutectoid ferrite transformed at high temperature is formed by diffusion transformation, so the dislocation density is small and the intra-granular distortion is small, so the intra-granular difference in crystal orientation is small. This is because, based on various investigation results, the ferrite volume fraction obtained by optical microscope observation and the area fraction of the area obtained by the third approximation of the orientation difference measured by the KAM method are almost in good agreement.
  • the smaller area ratio of crystal grains with a grain size of more than 20 ⁇ m out of the total area It is necessary to be 0% or more and 10% or less. If it exceeds 10%, the bendability deteriorates.
  • the crystal grains mentioned here refer to ferrite, pearlite, bainite, martensite, and austenite crystal grains.
  • the present invention can be applied to all types of cold-rolled steel sheets, and if the above limitation is satisfied, the present invention is not limited to a combination of structures, and local deformability such as bending workability and hole-expandability of cold-rolled steel sheets is achieved. Improve dramatically.
  • X-ray random strength of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation group in the central portion of the thickness that is 5/8 to 3/8 from the surface of the steel plate Average value of ratio, X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> crystal orientation: The average value of the X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central portion of the plate thickness that is 5/8 to 3/8 from the surface of the steel plate is the present embodiment. Are particularly important characteristic values. As shown in FIG.
  • the X-ray random intensity ratio of the ⁇ 332 ⁇ ⁇ 113> crystal orientation in the central portion of the plate thickness that is 5/8 to 3/8 from the surface of the steel plate is as shown in FIG.
  • the thickness / bending radius ⁇ 1.5 required for the processing of the undercarriage part that is required most recently is satisfied. Desirably, it is 3.0 or less. If this exceeds 5.0, the anisotropy of the mechanical properties of the steel sheet becomes extremely strong. As a result, the local deformability only in a certain direction is improved, but the material in a direction different from that direction is significantly deteriorated. Therefore, the thickness / bending radius ⁇ 1.5 cannot be satisfied with certainty.
  • the current general continuous hot rolling process is difficult to realize, but when the X-ray random intensity ratio is less than 1.0, there is a concern about deterioration of local deformability.
  • RC which is the r value in the direction perpendicular to the rolling direction:
  • This rC is important in this embodiment. That is, as a result of intensive studies by the present inventors, it has been found that even if only the above-mentioned X-ray random intensity ratios of various crystal orientations are appropriate, good hole expandability and bendability cannot always be obtained. As shown in FIG. 15, it is essential that rC is 0.70 or more simultaneously with the above X-ray random intensity ratio. By setting the upper limit of rC described above to 1.10, more excellent local deformability can be obtained.
  • R30 which is an r value in a direction forming 30 ° with respect to the rolling direction:
  • This r30 is important in this embodiment. That is, as a result of intensive studies by the present inventors, it has been found that good local deformability cannot always be obtained even if the X-ray random intensity ratios of various crystal orientations described above are appropriate. As shown in FIG. 16, it is essential that r30 is 1.10 or less simultaneously with the X-ray random intensity ratio. By setting the lower limit of r30 described above to 0.70, better local deformability can be obtained.
  • RL which is the r value in the rolling direction
  • r60 which is the r value in the direction forming 60 ° with respect to the rolling direction
  • the above-described limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r value are as follows. It is not synonymous with each other, and good local deformability cannot be obtained unless both limitations are satisfied at the same time.
  • the present invention can be applied to galvanized steel sheets in general, and if the above-mentioned limitations are satisfied, the present invention is not limited to the combination of structures, and local deformability such as bending workability and hole expansibility of galvanized steel sheets is achieved. Improve dramatically.
  • the main orientations included in the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups described above are ⁇ 100 ⁇ ⁇ 011>, ⁇ 116 ⁇ ⁇ 110>, ⁇ 114 ⁇ ⁇ 110>, ⁇ 113 ⁇ ⁇ 110>, ⁇ 112 ⁇ ⁇ 110>, ⁇ 335 ⁇ ⁇ 110> and ⁇ 223 ⁇ ⁇ 110>.
  • the X-ray random intensity ratio in each direction can be measured by using a method such as X-ray diffraction or EBSD (Electron Back Scattering Diffraction).
  • a method such as X-ray diffraction or EBSD (Electron Back Scattering Diffraction).
  • EBSD Electro Back Scattering Diffraction
  • a plurality of pole figures preferably among the three-dimensional texture calculated by the vector method and ⁇ 110 ⁇ , ⁇ 100 ⁇ , ⁇ 211 ⁇ , ⁇ 310 ⁇ pole figures May be obtained from a three-dimensional texture calculated by the series expansion method using three or more).
  • the intensities of [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) [1-10] may be used as they are. 1 with an upper line representing minus 1 is represented by -1.
  • the average value of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups is an arithmetic average of the above-mentioned orientations.
  • the thickness of the steel sheet is reduced from the surface to a predetermined thickness by mechanical polishing or the like, and then the strain is removed by chemical polishing or electrolytic polishing. What is necessary is just to adjust and measure a sample according to the above-mentioned method so that a suitable surface may become a measurement surface in the range of 3/8. In the plate width direction, it is desirable to collect at a position of 1/4 or 3/4 from the end.
  • the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness 1 ⁇ 2 but also as much as possible, so that the local deformability is further improved.
  • the material characteristics of the entire steel plate can be representatively represented.
  • the X-ray random intensity ratio of the azimuth is defined.
  • the crystal orientation represented by ⁇ hkl ⁇ ⁇ uvw> indicates that the normal direction of the plate surface is parallel to ⁇ hkl ⁇ and the rolling direction is parallel to ⁇ uvw>.
  • each r value described above is evaluated by a tensile test using a JIS No. 5 tensile test piece.
  • Tensile strain is usually in the range of 5 to 15% in the case of a high-strength steel sheet, and may be evaluated in the range of uniform elongation.
  • the direction in which the bending process is performed differs depending on the processed part, and is not particularly limited. According to the present invention, similar characteristics can be obtained in any bending direction.
  • the dL / dt and particle size of pearlite can be determined by binarization processing and the point count method in the structure observation with an optical microscope.
  • the grain sizes of ferrite, bainite, martensite, and austenite are measured by measuring the orientation in a measurement step of 0.5 ⁇ m or less at a magnification of 1500 times in the analysis of the orientation of the steel sheet by the EBSD method described above. It is obtained by determining a position where the orientation difference of the matching measurement points exceeds 15 ° as a grain boundary and obtaining the equivalent circle diameter.
  • dL / dt can be obtained by simultaneously obtaining the lengths of the grains in the rolling direction and the plate thickness direction.
  • % Of content is mass%. Since the cold-rolled steel sheet and the galvanized steel sheet of the present invention use the hot-rolled steel sheet in the present invention as the original sheet, the components of the steel sheet are as follows for any of the hot-rolled steel sheet, the cold-rolled steel sheet, and the galvanized steel sheet. .
  • C is an element that is basically contained, and the lower limit is set to 0.0001% because the lower limit value obtained from practical steel is used. If the upper limit exceeds 0.40%, workability and weldability deteriorate, so the upper limit is set to 0.40%. In addition, since excessive C addition deteriorates spot weldability remarkably, 0.30% or less is more desirable.
  • Si is an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 2.5%, workability deteriorates or surface flaws occur, so 2.5% is the upper limit. On the other hand, since it is difficult to make Si less than 0.001% in practical steel, 0.001% is made the lower limit.
  • Mn is an element effective for increasing the mechanical strength of the steel sheet, but if it exceeds 4.0%, the workability deteriorates, so 4.0% is the upper limit. On the other hand, since it is difficult to make Mn less than 0.001% in practical steel, 0.001% is made the lower limit. However, in order to avoid an extreme increase in steelmaking cost, it is desirable to set it to 0.01% or more. Since Mn suppresses the formation of ferrite, if it is desired to ensure elongation by including a ferrite phase in the structure, it is desirable to make it 3.0% or less. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S ⁇ 20 by weight%.
  • the upper limits of P and S are 0.15% or less for P and 0.03% or less for S in order to prevent deterioration of workability and cracking during hot rolling or cold rolling.
  • Each lower limit is set to 0.001% for P and 0.0005% for S as possible values in the current general refining (including secondary refining).
  • S since extreme desulfurization becomes cost too high, 0.001% or more is more desirable.
  • Al is added 0.001% or more for deoxidation. However, when deoxidation is sufficiently necessary, addition of 0.01% or more is more desirable. Moreover, since Al significantly raises the ⁇ ⁇ ⁇ transformation point, it is an effective element particularly when directing hot rolling below the Ar3 point. However, if the amount is too large, the weldability becomes poor, so the upper limit is made 2.0%.
  • N and O are impurities, and both are set to 0.01% or less so as not to deteriorate the workability.
  • the lower limit is set to 0.0005%, which is possible for both elements by current general refining (including secondary refining). However, 0.001% or more is desirable in order to suppress an extreme increase in steelmaking costs.
  • Ti, Nb, B, Mg, REM are conventionally used as elements used to increase mechanical strength by precipitation strengthening, or to control inclusions and refine precipitates in order to improve local deformability.
  • Ca, Mo, Cr, V, W, Cu, Ni, Co, Sn, Zr, As may be included.
  • Ti, Nb, V, and W are solid solution elements and have an effect of contributing to refinement of crystal grains.
  • Ti is 0.001% or more
  • Nb is 0.001% or more
  • V is 0.001% or more
  • W is 0.001.
  • % Or more must be added.
  • Ti and Nb have the effect of improving the material through mechanisms such as carbon and nitrogen fixation, structure control, and fine grain strengthening in addition to precipitation strengthening.
  • V is effective for precipitation strengthening, and is less effective than Mo or Cr when the deterioration of local deformability due to strengthening by addition is small, and high strength and better hole expansibility and bendability are required.
  • B has the effect of improving the material through mechanisms such as carbon and nitrogen fixation, precipitation strengthening, and fine grain strengthening.
  • Mo and Cr have the effect of improving the material in addition to the effect of increasing the mechanical strength. In order to obtain these effects, it is necessary to add 0.0001% or more of B, 0.001% or more of Mo, Cr, Ni, and Cu, and 0.0001% or more of Co, Sn, Zr, and As.
  • the upper limit of B is 0.0050%
  • the upper limit of Mo is 1.0%
  • the upper limit of Cr, Ni, Cu is 2.0%
  • the upper limit of Co is 1.0%
  • the upper limit of Sn and Zr is 0.2%
  • the upper limit of As is 0.50%.
  • the upper limit of B is 0.005% and the upper limit of Mo is 0.50%. From the viewpoint of cost, it is more desirable to select B, Mo, Cr, As among the above-described additive elements.
  • Mg, REM, and Ca are important additive elements for detoxifying inclusions and further improving local deformability.
  • the lower limit of the addition amount for obtaining this effect is 0.0001%, respectively.
  • the upper limit was made 0.010% for Mg, 0.1% for REM, and 0.010% for Ca.
  • the galvanized steel sheet of the present invention has a galvanized layer formed by galvanization on the surface of the cold-rolled steel sheet of the present invention, but galvanization is effective in both hot dip galvanizing and electrogalvanizing. It is done. Moreover, it is good also as an alloying galvanized steel plate represented by the automotive use by performing an alloying process after galvanization.
  • the effect of the present invention is not lost, and any of organic film formation, film lamination, organic salt / inorganic salt treatment, non-chromic treatment, etc. The effect is obtained.
  • the production method prior to hot rolling is not particularly limited. That is, various secondary smelting may be performed following melting by a blast furnace, an electric furnace, etc., and then casting may be performed by a method such as normal continuous casting, casting by an ingot method, or thin slab casting. In the case of continuous casting, it may be cooled to a low temperature and then heated again and then hot rolled, or the cast slab may be hot rolled after casting without being cooled to a low temperature. Scrap may be used as a raw material.
  • the hot-rolled steel sheet according to this embodiment is obtained when the following requirements are satisfied.
  • the austenite grain size after rough rolling that is, before finish rolling is important. As shown in FIGS. 19 and 20, the austenite grain size before finish rolling may be 200 ⁇ m or less.
  • rough rolling is performed by rolling in a temperature range of 1000 ° C. or more and 1200 ° C. or less, and at least 20% in this temperature range. What is necessary is just to reduce once or more by the above reduction ratio. However, in order to further improve the homogeneity, increase the elongation, and improve the local deformability, it is desirable to perform rolling at least once at a rolling reduction of at least 40% in a temperature range of 1000 ° C. or more and 1200 ° C. or less.
  • the austenite particle size is more desirably 100 ⁇ m or less, and for that purpose, it is desirable to perform the reduction two or more times at a reduction rate of 20% or more. Desirably, it is twice or more at a rolling reduction of 40% or more. Finer grains can be obtained as the rolling reduction ratio and the number of times of rolling are reduced. However, rolling exceeding 70% or rough rolling exceeding 10 times may cause a decrease in temperature or excessive production of scale. Thus, reducing the austenite grain size before finish rolling is effective for improving local deformability through control of rL and r30 through promoting recrystallization of austenite in subsequent finish rolling.
  • the austenite grain boundary after rough rolling that is, before finish rolling, functions as one of the recrystallization nuclei during finish rolling.
  • the in order to confirm the austenite grain size after rough rolling it is desirable to cool the plate piece before finishing rolling as much as possible, and the plate piece is cooled at a cooling rate of 10 ° C./s or more.
  • the structure of the cross section is etched to raise the austenite grain boundary and measured with an optical microscope. At this time, 20 fields of view or more are measured by image analysis or a point count method at a magnification of 50 times or more.
  • the X-ray random intensity ratio of the crystal orientation is in the range of the above-mentioned value, based on the T1 temperature described in Formula 1 determined by the steel plate component in the finish rolling after the rough rolling, as T1 + 30 Processing is performed with a large rolling reduction in a temperature range of not less than T.degree. C. and not more than T1 + 200.degree. C., preferably in a temperature range of not less than T.sub.1 + 50.degree. C.
  • the T1 temperature itself is obtained empirically, and the inventors have found through experiments that recrystallization in the austenite region of each steel is promoted based on the T1 temperature.
  • the total rolling reduction is 50% or more, preferably 70% or more, and the temperature rise of the steel sheet between passes is preferably 18 ° C. or less. On the other hand, it is not desirable that the total rolling reduction exceeds 90% from the viewpoints of securing temperature and excessive rolling load.
  • at least one pass in the rolling in the temperature range of T1 + 30 ° C. to T1 + 200 ° C. is preferably 30% or more, preferably 40%. Reduction is performed at the above reduction ratio. On the other hand, if it exceeds 70% in one pass, there is a concern that the shape may be hindered. When higher workability is required, it is more desirable to make the final two passes 30% or more.
  • the total rolling reduction at T1 ° C. or more and less than T1 + 30 ° C. is less than 30%.
  • a rolling reduction of 10% or more is desirable, but when the local deformability is more important, the rolling reduction is preferably 0%.
  • the austenite texture develops, and in the finally obtained hot-rolled steel sheet, at least
  • the average value of the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central portion of the thickness that is 5/8 to 3/8 from the surface of the steel plate is 6.0.
  • the X-ray random intensity ratio in each crystal orientation in which the X-ray random intensity ratio of the ⁇ 332 ⁇ ⁇ 113> crystal orientation is 5.0 or less cannot be obtained.
  • rolling is performed at a temperature higher than the specified temperature range, or if a reduction ratio smaller than the specified reduction ratio is adopted, it may cause coarsening or mixed grains, and the grain size exceeding 20 ⁇ m.
  • the area ratio increases. Whether or not the above-described rolling is performed can be determined by actual results or calculation based on the rolling load, sheet thickness measurement, and the like. Also, the temperature can be measured with an inter-stand thermometer, or can be obtained by either or both of them because calculation simulation considering processing heat generation or the like can be performed from line speed, rolling reduction, etc. .
  • the hot rolling performed as described above ends at a temperature of Ar3 or higher.
  • the end temperature of hot rolling is less than Ar3, since it includes two-phase rolling of an austenite region and a ferrite region, accumulation in ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups becomes strong, and the result As a result, local deformability is significantly deteriorated.
  • rL and r60 are rL of 0.70 or more and r60 of 1.10 or less, respectively, further satisfactory plate thickness / minimum bending radius ⁇ 2.0 is satisfied.
  • a pass having a reduction rate of 30% or more in a temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less is set as a large reduction pass, cooling is started after the final pass of the large reduction passes is completed. It is desirable that the waiting time t (second) satisfies the above-mentioned formula 2 and the temperature rise of the steel plate between the passes is 18 ° C. or less.
  • FIG. 26 and FIG. 27 show the relationship between the temperature rise amount of the steel sheet between passes during the rolling at T1 + 30 ° C.
  • a sheet bar may be joined after rough rolling, and finish rolling may be performed continuously.
  • the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining. Moreover, you may wind up after hot rolling.
  • the hot-rolled steel sheet may be subjected to skin pass rolling as necessary.
  • Skin pass rolling has the effect of preventing stretcher strain generated during processing and shape correction.
  • the structure of the hot-rolled steel sheet obtained in this embodiment is mainly composed of ferrite, but it may contain compounds such as pearlite, bainite, martensite, austenite, and carbonitride as metal structures other than ferrite. Since the crystal structure of martensite and bainite is the same as or similar to that of ferrite, these structures may be mainly used instead of ferrite.
  • the steel sheet according to the present invention can be applied not only to bending, but also to composite forming mainly composed of bending, overhanging, drawing, and bending.
  • the production method prior to hot rolling is not particularly limited. That is, various secondary smelting may be performed following melting by a blast furnace, an electric furnace, etc., and then casting may be performed by a method such as normal continuous casting, casting by an ingot method, or thin slab casting. In the case of continuous casting, it may be cooled to a low temperature and then heated again and then hot rolled, or the cast slab may be hot rolled after casting without being cooled to a low temperature. Scrap may be used as a raw material.
  • the cold-rolled steel sheet having excellent local deformability according to this embodiment is obtained when the following requirements are satisfied.
  • the austenite grain size after rough rolling that is, before finish rolling is important. As shown in FIGS. 28 and 29, it is desirable that the austenite grain size before the finish rolling is small, and if it is 200 ⁇ m or less, the above value is satisfied.
  • rough rolling is performed in a temperature range of 1000 ° C. or more and 1200 ° C. or less, and once at a rolling reduction of at least 20% or more. What is necessary is just to reduce above. Finer grains can be obtained as the reduction ratio and the number of reductions are larger.
  • the austenite particle size is more desirably 100 ⁇ m or less, and for that purpose, it is desirable to perform the reduction two or more times at a reduction rate of 20% or more. Desirably, it is twice or more at a rolling reduction of 40% or more. Finer grains can be obtained as the rolling reduction ratio and the number of times of rolling are reduced. However, rolling exceeding 70% or rough rolling exceeding 10 times may cause a decrease in temperature or excessive production of scale. Thus, reducing the austenite grain size before finish rolling is effective for improving local deformability through control of rL and r30 through promoting recrystallization of austenite in subsequent finish rolling.
  • the influence of the refinement of the austenite grain size on the local deformability is presumed to be because the austenite grain boundary after rough rolling, that is, before finish rolling, functions as one of the recrystallization nuclei during finish rolling.
  • the in order to confirm the austenite grain size after rough rolling it is desirable to cool the plate piece before finishing rolling as much as possible, and the plate piece is cooled at a cooling rate of 10 ° C./s or more.
  • the cross-sectional structure is etched, and the austenite grain boundary is lifted up and measured with an optical microscope. At this time, 20 fields of view or more are measured by image analysis or a point count method at a magnification of 50 times or more.
  • the average value of the X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central portion of the plate thickness which is the thickness range of 5/8 to 3/8 from the surface of the steel plate, and ⁇ 332 ⁇
  • processing is performed with a large rolling reduction in a temperature range of T1 + 50 ° C. or more and T1 + 100 ° C.
  • T1 + 30 ° C. or more and T1 + 200 ° C. or less large pressure reduction is performed in a temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less, and then light pressure reduction is performed at T1 ° C. or more and less than T1 + 30 ° C. 8
  • the X-ray random intensity ratio of the ⁇ 332 ⁇ ⁇ 113> crystal orientation are controlled to drastically improve the local deformability of the final hot rolled product.
  • the T1 temperature itself is determined empirically, and the inventors have found through experiments that recrystallization in the austenite region of each steel is promoted based on the T1 temperature.
  • the total rolling reduction is 50% or more, more desirably 60% or more, and further desirably 70% or more.
  • the total rolling reduction exceeds 90% from the viewpoint of securing temperature and excessive rolling load.
  • at least one pass in the rolling in the temperature range of T1 + 30 ° C. to T1 + 200 ° C. is preferably 30% or more, preferably 40%. Rolling is performed at the above rolling reduction.
  • it exceeds 70% in one pass there is a concern that the shape may be hindered.
  • the rolling reduction at T1 ° C. or more and less than T1 + 30 ° C. is less than 30%. From the viewpoint of plate shape, a rolling reduction of 10% or more is desirable, but when the local deformability is more important, the rolling reduction is preferably 0%. If the rolling reduction at T1 ° C. or more and less than T1 + 30 ° C.
  • the recrystallized austenite grains expand, and if the retention time is short, recrystallization does not proceed sufficiently and local deformability deteriorates. That is, in the manufacturing conditions according to the present embodiment, the austenite is uniformly and finely recrystallized in finish rolling to control the texture of the hot rolled product and improve local deformability such as hole expandability and bendability. be able to.
  • the austenite texture develops, and in the cold-rolled steel sheet finally obtained, at least
  • the average value of the X-ray random intensity ratio of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central portion of the thickness that is 5/8 to 3/8 thickness from the surface of the steel plate is 4.0.
  • the X-ray random intensity ratio in each crystal orientation is less than 5.0 and the X-ray random intensity ratio of the crystal orientation of ⁇ 332 ⁇ ⁇ 113> is 5.0 or less.
  • rolling is performed at a temperature higher than the specified temperature range, or if a reduction ratio smaller than the specified reduction ratio is adopted, it may cause coarsening or mixed grains, resulting in a crystal having a grain size exceeding 20 ⁇ m.
  • the area ratio of grains increases.
  • the temperature can be measured with an inter-stand thermometer, or can be obtained by either or both of them because calculation simulation considering processing heat generation or the like can be performed from line speed, rolling reduction, etc. .
  • the hot rolling performed as described above ends at a temperature of Ar3 or higher.
  • hot rolling is completed at less than Ar3, since it includes two-phase rolling of an austenite region and a ferrite region, accumulation in ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups becomes stronger, resulting in local Deformability is significantly deteriorated.
  • rL and r60 are rL of 0.70 or more and r60 is 1.10 or less, further satisfactory plate thickness / minimum bending radius ⁇ 2.0 is satisfied.
  • the cooling after rolling at the final rolling stand of the rolling in the temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less greatly affects the austenite grain size, which is the equiaxed grain fraction of the structure after cold rolling annealing, It strongly affects the coarse grain fraction. Therefore, when a pass having a reduction rate of 30% or more in a temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less is set as a large reduction pass, the process waits until cooling is started after the final pass of the large reduction passes is completed.
  • the time t needs to satisfy Equation 4 above. On the longer side than this, coarsening progresses and the elongation decreases significantly. On the short time side, sufficient recrystallization cannot be obtained and the anisotropy increases. For this reason, the thickness / minimum bending radius ⁇ 2.0 cannot be satisfied.
  • the cooling pattern after hot rolling is not particularly defined, and the effect of the present invention can be obtained even if a cooling pattern for controlling the structure suitable for each purpose is adopted.
  • a sheet bar may be joined after rough rolling, and finish rolling may be performed continuously.
  • the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.
  • the steel sheet that has been subjected to the above hot rolling is cold-rolled at a reduction rate of 20% to 90%. If it is less than 20%, it is difficult to cause recrystallization in the subsequent annealing step, the equiaxed grain fraction is lowered, and crystal grains after annealing are coarsened. When the rolling reduction exceeds 90%, the texture develops during annealing, and the anisotropy becomes strong. For this reason, the cold reduction ratio is set to 20% or more and 90% or less.
  • the cold-rolled steel sheet is then held in a temperature range of 720 ° C. or higher and 900 ° C. or lower for 1 to 300 seconds. Accordingly, the reverse transformation from the ferrite does not proceed sufficiently at a low temperature or for a short time, and the second phase cannot be obtained in the subsequent cooling step, so that sufficient strength cannot be obtained. On the other hand, if the temperature exceeds 900 ° C. or the holding is continued for 300 seconds or more, the crystal grains are coarsened, so that the area ratio of crystal grains having a grain size of 20 ⁇ m or less increases.
  • the cooling rate between 650 degreeC and 500 degrees C at the cooling rate of 10 degrees C / s or more and 200 degrees C / s or less. If the cooling rate is less than 10 ° C./s, or if the end point temperature is more than 500 ° C., pearlite is generated, so that the local deformability is lowered. On the other hand, even if the cooling rate exceeds 200 ° C./s, the pearlite suppression effect is saturated, and conversely, the controllability of the cooling end point temperature is significantly deteriorated.
  • the structure of the cold-rolled steel sheet obtained in the present embodiment contains ferrite, but it may contain compounds such as pearlite, bainite, martensite, austenite, and carbonitride as metal structures other than ferrite.
  • pearlite is desirably 5% or less in order to deteriorate local ductility. Since the crystal structure of martensite or bainite is the same as or similar to that of ferrite, it may be a structure mainly composed of ferrite, bainite, or martensite.
  • cold-rolled steel sheet according to the present invention can be applied not only to bending, but also to composite forming mainly composed of bending, overhanging, drawing, and bending.
  • the production method preceding hot rolling is not particularly limited. That is, various secondary smelting may be performed following melting by a blast furnace, an electric furnace, etc., and then casting may be performed by a method such as normal continuous casting, casting by an ingot method, or thin slab casting. In the case of continuous casting, it may be cooled once to a low temperature and then heated again and then hot rolled, or the cast slab may be hot-rolled after casting without being cooled to a low temperature. Scrap may be used as a raw material.
  • the galvanized steel sheet having excellent local deformability according to the present embodiment can be obtained when the following requirements are satisfied.
  • the austenite grain size after rough rolling that is, before finish rolling is important. As shown in FIGS. 32 and 33, it is desirable that the austenite grain size before finish rolling is small, and the above-described value is satisfied if it is 200 ⁇ m or less.
  • rough rolling is performed in a temperature range of 1000 ° C. or more and 1200 ° C. or less as shown in FIG. 21, and the rolling is performed once or more at a rolling reduction of at least 20% or more. do it.
  • austenite grain size before finish rolling is effective in improving local deformability through control of rL and r30 through promoting recrystallization of austenite in subsequent finish rolling.
  • the reason why the refinement of the austenite grain size affects the local deformability is presumed to be because the austenite grain boundary after rough rolling, that is, before finish rolling, functions as one of the recrystallization nuclei during finish rolling. .
  • the structure of the cross section is etched to raise the austenite grain boundary and measured with an optical microscope. At this time, 20 fields of view or more are measured by image analysis or a point count method at a magnification of 50 times or more. Further, in order to enhance the local deformability, 100 ⁇ m or less is desirable.
  • the T1 temperature determined by the steel plate component defined by the formula 1 is set in the finish rolling after the rough rolling.
  • the rolling is performed with a large rolling reduction in the temperature range of T1 + 30 ° C. or more and T1 + 200 ° C., preferably in the temperature range of T1 + 50 ° C.
  • the local deformability of the final hot rolled product is dramatically improved.
  • the T1 temperature itself is determined empirically, and the inventors have found through experiments that recrystallization in the austenite region of each steel is promoted based on the T1 temperature.
  • At least one pass in the rolling in the temperature range of T1 + 30 ° C. to T1 + 200 ° C. is preferably 30% or more, preferably 40%. It is desirable to perform rolling at the above rolling reduction. On the other hand, if it exceeds 70% in one pass, there is a concern that the shape may be hindered. When higher workability is required, it is more desirable to make the final two passes 30% or more.
  • the total rolling reduction between T1 ° C. and T1 + 30 ° C. is less than 30%.
  • a rolling reduction of 10% or more is desirable from the plate shape, when the local deformability is more important, the rolling reduction is preferably 0%.
  • the austenite is uniformly and finely recrystallized in finish rolling to control the texture of hot rolled products and improve local deformability such as hole expandability and bendability. it can.
  • the average value of the X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central portion of the plate thickness that is at least 5/8 to 3/8 from the surface of the steel plate is 4.
  • An X-ray random intensity ratio of each crystal orientation of less than 0 and an X-ray random intensity ratio of ⁇ 332 ⁇ ⁇ 113> crystal orientation of 5.0 or less cannot be obtained.
  • the hot rolling performed as described above ends at a temperature of Ar3 or higher.
  • the hot rolling is finished at less than Ar3, it includes a two-phase rolling of an austenite region and a ferrite region, so that the accumulation in ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups becomes strong, resulting in local deformation. The performance is significantly degraded.
  • rL and r60 are respectively set to rL of 0.70 or more and r60 of 1.10 or less, further satisfactory plate thickness / minimum bending radius ⁇ 2.0 is satisfied.
  • a pass having a reduction rate of 30% or more in a temperature range of T1 + 30 ° C. or more and T1 + 200 ° C. or less is set as a large reduction pass, cooling is started after the final pass of the large reduction passes is completed. It is important that the waiting time t (seconds) satisfies the condition defined in Equation 6 above.
  • FIGS. 38 and 39 show the temperature rise of the steel sheet during the rolling at T1 + 30 ° C. or higher and T1 + 200 ° C. or lower, and the relationship between the waiting time t and rL and r60. It is effective for obtaining uniform recrystallized austenite that the waiting time t satisfies Equation 6 and further suppresses the temperature rise of the steel sheet between T1 + 30 ° C. and T1 + 200 ° C. to 18 ° C. or less between passes.
  • the cooling pattern after hot rolling is not particularly defined, and the effect of the present invention can be obtained by taking a cooling pattern for controlling the structure suitable for each purpose.
  • the coiling temperature exceeds 680 ° C., there is a concern that surface oxidation may progress or the bendability after cold rolling or annealing may be adversely affected. Therefore, the coiling temperature is set to 680 ° C. or lower and room temperature or higher.
  • sheet bars may be joined after rough rolling, and finish rolling may be performed continuously.
  • the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again to perform bonding.
  • the hot-rolled steel sheet may be subjected to skin pass rolling as necessary. Skin pass rolling has the effect of preventing stretcher strain generated during processing and shape correction.
  • the hot-rolled steel sheet After the hot-rolled steel sheet has been pickled, it is cold-rolled so that the cold reduction ratio is 20% or more and 90% or less. If the rolling reduction is less than 20%, there is a concern that a sufficient cold-rolled recrystallized structure is not formed and mixed grains are formed. Moreover, when it exceeds 90%, there exists a concern of the fracture
  • the effect of the present invention can be obtained even if the annealing heat treatment pattern is a heat treatment pattern for controlling the structure for each purpose.
  • the temperature is raised to a temperature range of at least 650 ° C. to 900 ° C., and a holding time of 1 second to 300 seconds is obtained.
  • a holding time 1 second to 300 seconds.
  • the holding temperature range is less than 650 ° C. or the holding time is less than 1 second, a sufficient recovery recrystallization structure cannot be obtained. Further, if the holding temperature range exceeds 900 ° C.
  • the structure of the galvanized steel sheet obtained in the present embodiment is mainly composed of ferrite, but it may contain compounds such as pearlite, bainite, martensite, austenite, and carbonitride as a metal structure other than ferrite. Since the crystal structure of martensite and bainite is the same as or similar to that of ferrite, these structures may be mainly used instead of ferrite.
  • the galvanized steel sheet according to the present invention can be applied not only to bending, but also to composite molding mainly composed of bending such as bending, overhanging and drawing.
  • these steels are reheated as they are or once cooled to room temperature, heated to a temperature range of 900 ° C. to 1300 ° C., and then hot rolled under the conditions of Table 2 or Table 3, Finally, a hot-rolled steel sheet having a thickness of 2.3 mm or 3.2 mm was obtained.
  • Table 1 shows the chemical composition of each steel
  • Tables 2 and 3 show the production conditions
  • Tables 4 and 5 show the structure and mechanical properties.
  • As an index of local deformability the hole expansion rate and the critical bending radius by 90 ° V-bending were used.
  • C direction bending and 45 ° direction bending were performed, and the ratio was used as an index of orientation dependency of formability.
  • the tensile test and the bending test were compliant with JIS Z2241 and Z2248 V-block 90 ° bending tests, and the hole expansion test was compliant with the Iron Federation standard JFS T1001.
  • the X-ray random intensity ratio is determined by using the above-mentioned EBSD at the central part of the plate thickness in the region of 5/8 to 3/8 of the cross section parallel to the rolling direction, with the width direction being 1/4 of the position from the end. And measured at a pitch of 0.5 ⁇ m. The r value in each direction was measured by the method described above.
  • These steels are cast, or after being cooled to room temperature after being cast, are reheated and heated to a temperature range of 900 ° C. to 1300 ° C., and then hot-rolled under the conditions shown in Table 7 to 2 to 5 mm. After forming a thick hot-rolled steel sheet, it was pickled, cold-rolled to a thickness of 1.2 to 2.3 mm, and annealed under the annealing conditions shown in Table 7. Then, 0.5% skin pass rolling was performed and used for material evaluation.
  • Table 6 shows the chemical composition of each steel, and Table 7 shows the production conditions.
  • Table 8 shows the structure and mechanical characteristics of each.
  • indices of local deformability the hole expansion rate and the critical bending radius by 90 ° V-bending were used.
  • C direction bending and 45 ° direction bending were performed, and the ratio was used as an index of orientation dependency of formability.
  • the tensile test and the bending test were compliant with JIS Z2241 and Z2248 V-block 90 ° bending test, and the hole expansion test was compliant with the iron standard JFS T1001.
  • the X-ray random intensity ratio is the center of the plate thickness in the region of 3/8 to 5/8 of the cross section parallel to the rolling direction using the above-mentioned EBSD, and the width direction is 1/4 of the position from the end. , Measured at a pitch of 0.5 ⁇ m. The r value in each direction was measured by the method described above.
  • these steels are reheated as they are or once cooled to room temperature, heated to a temperature range of 900 ° C. to 1300 ° C., and then hot-rolled under the conditions shown in Table 10 to a thickness of 2 to 5 mm.
  • hot-rolling the steel sheet pickling and cold-rolling, cold-rolling to a thickness of 1.2 to 2.3 mm, annealing under the annealing conditions shown in Table 10, and hot-dip galvanizing bath It was used for continuous annealing and hot dip galvanizing or hot galvannealing. Then, 0.5% skin pass rolling was performed and used for material evaluation.
  • Table 9 shows the chemical composition of each steel
  • Table 10 shows the production conditions
  • Table 11 shows the structure and mechanical properties under each production condition.
  • the tensile test and the bending test were compliant with JIS Z 2241 and Z 2248 V-block 90 ° bending tests, and the hole expansion test was compliant with the ironwork standard JFS T1001.
  • the X-ray random intensity ratio is 0 with respect to the position where the width direction is 1/4 from the end portion at the central portion of the region of 3/8 to 5/8 of the cross section parallel to the rolling direction using the above-mentioned EBSD. Measured at a pitch of 5 ⁇ m. The r value in each direction was measured by the method described above.
  • the main structure is not limited, and in addition to the control of the crystal grain size and form, the texture is controlled so that local deformation can be achieved even if Nb, Ti, or the like is added.
  • a hot-rolled steel sheet, a cold-rolled steel sheet, and a galvanized steel sheet with excellent performance and less orientation dependency of formability can be obtained.
  • the present invention has high applicability in the steel industry. Further, in the present invention, the strength of the steel sheet is not specified, but as described above, the formability decreases as the strength is increased. Therefore, the strength is particularly effective when the tensile strength is 440 MPa or more. large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 この熱延鋼板は、少なくとも鋼板表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上6.0以下でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり、圧延方向に対して直角方向のr値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である。

Description

熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
 本発明は、曲げ、伸びフランジ、バーリング加工などの局部変形能に優れ、成形性の方位依存性の少ない、主に自動車部品等に使用される熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法に関する。上記熱延鋼板には、冷延鋼板、亜鉛めっき鋼板等の原板となる熱延鋼帯を含んでいる。
 本願は、2010年7月28日に日本に出願された特願2010-169670号と、2010年7月28日に日本に出願された特願2010-169627号と、2011年3月4日に日本に出願された特願2011-048236号と、2010年7月28日に日本に出願された特願2010-169230号と、2011年3月4日に日本に出願された特願2011-048272号と、2010年9月13日に日本に出願された特願2010-204671号と、2011年3月4日に日本に出願された特願2011-048246号と、2011年3月4日に日本に出願された特願2011-048253号とに基づき優先権を主張し、これらの内容をここに援用する。
 自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用による自動車車体の軽量化が進められている。また、搭乗者の安全性確保の観点からも、自動車車体には、軟鋼板の他に、高強度鋼板が多く使用されるようになってきている。しかし、自動車車体の軽量化を今後さらに進めていくためには、従来以上に高強度鋼板の使用強度レベルを高めなければならない。
 しかしながら、一般的に、鋼板を高強度化すれば成形性が低下する。例えば、非特許文献1には、高強度化によって絞り成形や張り出し成形に重要な均一伸びが低下することが開示されている。
 従って、自動車車体の足回り部品や、衝突エネルギー吸収に寄与する部品等に高強度鋼板を用いるには、バーリング加工性や、曲げ加工性等の成形性に寄与する局部延性などの局部変形能を改善することが重要となる。
 これに対して非特許文献2には、鋼板の金属組織を複合化することで、同一強度でも均一伸びを向上させる方法が開示されている。
 また、非特許文献3には、介在物制御や単一組織化、さらには組織間の硬度差の低減によって、曲げ性や穴広げ加工性やバーリング加工性に代表される局部変形能が改善する金属組織制御法が開示されている。これは、組織制御によって単一組織とすることにより、穴広げ性を改善するものであるが、単一組織とするためには、非特許文献4に記載されるようにオーステナイト単相からの熱処理が製法の基本となる。
 また、非特許文献4には、熱間圧延後の冷却制御により金属組織制御を行い、析出物の制御および変態組織を制御することでフェライトとベイナイトの適切な分率を得て、高強度化と延性確保を両立する技術が開示されている。
 しかし、上記のいずれの技術も組織制御に頼った局部変形能の改善方法であり、ベースの組織形成に大きく影響されてしまう。
 一方、連続熱間圧延工程に於ける圧下量増加による材質改善についても、先行開示技術が存在する。いわゆる、結晶粒微細化の技術であり、例えば、非特許文献5に記載には、オーステナイト域内の極力低温領域で大圧下を行い、未再結晶オーステナイトからフェライト変態させることで、製品の主相であるフェライトの結晶粒微細化を図り、細粒化により、高強度化や強靭化する技術が開示されている。しかし、本発明が解決しようとする局部変形能の改善については、一切配慮されていない。
岸田「新日鉄技報」(1999)No.371,p.13 O. Matsumura et al「Trans. ISIJ」(1987)vol.27,p.570 加藤ら「製鉄研究」(1984)vol.312,p.41 K.Sugimoto et al 「ISIJ International」(2000)Vol.40,p.920 中山製鋼所 NFG製品紹介
 上述のように、高強度鋼板の局部変形能改善のためには、介在物制御を含む組織制御を行うことが主たる手段であった。しかし、組織制御によっていることから、析出物や、フェライトやベイナイト等の組織の分率や形態を制御する必要があり、ベースの金属組織が限定されていた。
 そこで本発明では、ベース組織の制御ではなく、集合組織の制御によって、相の種類に限定されずに結晶粒のサイズや形態の制御および集合組織を制御することで、高強度鋼板の局部変形能が優れ、成形性方位依存性の少ない熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法を提供する。
 従来の知見によれば、前述のように穴拡げ性や曲げ性などの改善は、介在物制御、析出物微細化、組織均質化、単一組織化および組織間の硬度差の低減などによって行われていた。しかし、これらの技術だけでは、主な組織構成を限定せざるを得ない。さらに、高強度化のために、強度上昇に大きく寄与する代表的な元素であるNbやTiなどを添加した場合には、異方性が極めて大きくなることが懸念されるため、他の成形性因子を犠牲にしたり、成形前のブランク取りの方向を限定したりせざるを得ず、用途が限定される。
 そこで、本発明者らは、穴拡げ性や曲げ加工性を向上させるために、新たに鋼板の集合組織の影響に着目して、その作用効果を詳細に調査、研究した。その結果、熱延工程から特定の結晶方位群の各方位のX線ランダム強度比を制御し、さらに圧延方向のr値、圧延方向に対して直角方向のr値、圧延方向に対して30°または60°をなす方向のr値を制御することで、局部変形能が飛躍的に向上することを明らかにした。
 本発明は前述の知見に基づいて構成されており、上記の課題を解決して係る目的を達成するために、本発明は以下の手段を採用した。
(1)すなわち、本発明の一態様にかかる熱延鋼板は、質量%で、C:0.0001%以上、0.40%以下、Si:0.001%以上、2.5%以下、Mn:0.001%以上、4.0%以下、P:0.001%以上、0.15%以下、S:0.0005%以上、0.03%以下、Al:0.001%以上、2.0%以下、N:0.0005%以上、0.01%以下、O:0.0005%以上、0.01%以下、を含有し、さらに、Ti:0.001%以上、0.20%以下、Nb:0.001%以上、0.20%以下、V:0.001%以上、1.0%以下、W:0.001%以上、1.0%以下、B:0.0001%以上、0.0050%以下、Mo:0.001%以上、1.0%以下、Cr:0.001%以上、2.0%以下、Cu:0.001%以上、2.0%以下、Ni:0.001%以上、2.0%以下、Co:0.0001%以上、1.0%以下、Sn:0.0001%以上、0.2%以下、Zr:0.0001%以上、0.2%以下、As:0.0001%以上、0.50%以下、Mg:0.0001%以上、0.010%以下、Ca:0.0001%以上、0.010%以下、REM:0.0001%以上、0.1%以下、のうちの1種又は2種以上を含有し、残部が鉄および不可避的不純物からなり、少なくとも鋼板表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上6.0以下でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり、圧延方向に対して直角方向のr値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である。
(2)また、上記(1)に記載の態様では、さらに、前記圧延方向のr値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であってもよい。
 (3)また、上記(1)または(2)に記載の態様では、さらに、前記熱延鋼板中にベイナイト、マルテンサイト、パーライトおよびオーステナイトの1種または2種以上が存在し、これら組織の結晶粒のうち、前記圧延方向の長さdLと板厚方向の長さdtの比であるdL/dtが3.0以下である粒の割合が50%以上100%以下であってもよい。
 (4)上記(1)または(2)に記載の態様では、前記熱延鋼板の金属組織の全面積のうち、粒径が20μmを超える結晶粒の面積割合が0%以上10%以下であってもよい。
 (5)本発明の一態様にかかる冷延鋼板は、上記(1)に記載の熱延鋼板を冷間圧延した冷延鋼板であって、少なくとも前記板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上4.0未満でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり、前記圧延方向に対して直角方向のr値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である。
 (6)上記(5)に記載の態様では、前記圧延方向のr値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であってもよい。
 (7)上記(5)または(6)に記載の態様では、前記冷延鋼板中にベイナイト、マルテンサイト、パーライトおよびオーステナイトの1種または2種以上が存在し、これら組織の結晶粒のうち、前記圧延方向の長さdLと板厚方向の長さdtの比であるdL/dtが3.0以下である粒の割合が50%以上100%以下であってもよい。
 (8)上記(5)または(6)に記載の態様では、前記冷延鋼板の金属組織の全面積のうち、粒径が20μmを超える結晶粒の面積割合が0%以上10%以下であってもよい。
 (9)本発明の一態様にかかる亜鉛めっき鋼板は、上記(5)に記載の冷延鋼板の表面に、さらに、溶融亜鉛めっき層または、合金化溶融亜鉛めっき層を備えた亜鉛めっき鋼板であって、少なくとも前記板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上4.0未満でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり、前記圧延方向に対して直角方向のr値であるrCが0.7以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である。
 (10)上記(9)に記載の態様では、前記圧延方向のr値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であってもよい。
(11)本発明の一態様にかかる熱延鋼板の製造方法は、質量%で、C:0.0001%以上、0.40%以下、Si:0.001%以上、2.5%以下、Mn:0.001%以上、4.0%以下、P:0.001%以上、0.15%以下、S:0.0005%以上、0.03%以下、Al:0.001%以上、2.0%以下、N:0.0005%以上、0.01%以下、O:0.0005%以上、0.01%以下、を含有し、さらに、Ti:0.001%以上、0.20%以下、Nb:0.001%以上、0.20%以下、V:0.001%以上、1.0%以下、W:0.001%以上、1.0%以下、B:0.0001%以上、0.0050%以下、Mo:0.001%以上、1.0%以下、Cr:0.001%以上、2.0%以下、Cu:0.001%以上、2.0%以下、Ni:0.001%以上、2.0%以下、Co:0.0001%以上、1.0%以下、Sn:0.0001%以上、0.2%以下、Zr:0.0001%以上、0.2%以下、As:0.0001%以上、0.50%以下、Mg:0.0001%以上、0.010%以下、Ca:0.0001%以上、0.010%以下、REM:0.0001%以上、0.1%以下、のうちの1種又は2種以上を含有し、残部が鉄および不可避的不純物からなる鋼塊またはスラブを、1000℃以上1200℃以下の温度域で、20%以上の圧下を少なくとも1回以上行う第1の熱間圧延を行い、オーステナイト粒径を200μm以下とし、T1+30℃以上T1+200℃以下の温度範囲で、圧下率の合計が50%以上である第2の熱間圧延を行い、T1℃以上T1+30℃未満の温度範囲で、圧下率の合計が30%未満である第3の熱間圧延を行い、Ar3変態温度以上で熱間圧延を終了する。
 ここで、前記T1は鋼板成分により決定される温度であり、下式1で表される。
 T1(℃)=850+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V・・・(式1)
 (12)上記(11)に記載の態様では、T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行ってもよい。
 (13)上記(11)または(12)に記載の態様では、1000℃以上1200℃以下の温度域での前記第1の熱間圧延において、20%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下としてもよい。
 (14)上記(11)または(12)に記載の態様では、T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、下式2を満たす構成を採用してもよい。
 t1≦t≦t1×2.5・・・(式2)
 ここで、t1は下式3で表される。
 t1=0.001×((Tf-T1)×P1)-0.109×((Tf-T1)×P1)+3.1・・・(式3)
 ここで、Tfは前記最終パス後の温度であり、P1は前記最終パスにおける圧下率である。
 (15)上記(14)に記載の態様では、T1+30℃以上T1+200℃以下の温度域における前記第2の熱間圧延の各パス間の鋼板の温度上昇を18℃以下としてもよい。
 (16)本発明の一態様にかかる冷延鋼板の製造方法は、上記(11)に記載の熱延鋼板の製造方法で得られた前記熱延鋼板に対して、Ar3変態温度以上で熱間圧延を終了した後、酸洗し、冷間にて20%以上90%以下の圧延を行い、720℃以上900℃以下の温度域で1秒以上300秒以下の保持時間で焼鈍し、650℃から500℃の間の冷却速度が10℃/s以上200℃/s以下である加速冷却を行い、200℃以上500℃以下の温度にて保持する。
 (17)上記(16)に記載の態様では、T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行ってもよい。
 (18)上記(16)または(17)に記載の態様では、1000℃以上1200℃以下の温度域での前記第1の熱間圧延において20%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下としてもよい。
 (19)上記(16)または(17)に記載の態様では、T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、下式4を満たす構成を採用してもよい。
 t1≦t≦t1×2.5・・・(式4)
 ここで、t1は下式5で表される。
 t1=0.001×((Tf-T1)×P1)-0.109×((Tf-T1)×P1)+3.1・・・(式5)
 ここで、Tfは前記最終パス後の温度であり、P1は前記最終パスにおける圧下率である。
 (20)上記(16)または(17)に記載の態様では、T1+30℃以上T1+200℃以下の温度域における前記第2の熱間圧延の各パス間の鋼板の温度上昇を18℃以下としてもよい。
 (21)本発明の一態様にかかる亜鉛めっき鋼板の製造方法は、上記(11)に記載の熱延鋼板の製造方法で得られた前記熱延鋼板に対して、Ar3変態温度以上で熱間圧延を終了した後、680℃以下室温以上の温度域で巻き取り、酸洗し、冷間にて20%以上90%以下の圧延を行い、650℃以上900℃以下の温度域まで昇温し、1秒以上300秒以下の保持時間で焼鈍し、0.1℃/s以上100℃/s以下の冷却速度で720℃以下580℃以上の温度域まで冷却をし、亜鉛めっき処理を行う。
 (22)上記(21)に記載の態様では、T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行ってもよい。
 (23)上記(21)または(22)に記載の態様では、1000℃以上1200℃以下の温度域での前記第1の熱間圧延において、20%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下としてもよい。
 (24)上記(21)または(22)に記載の態様では、T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、下式6を満たす構成を採用してもよい。
 t1≦t≦t1×2.5・・・(式6)
 ここで、t1は下式7で表される。
 t1=0.001×((Tf-T1)×P1)-0.109×((Tf-T1)×P1)+3.1・・・(式7)
 ここで、Tfは前記最終パス後の温度、P1は前記最終パスにおける圧下率である。
 (25)上記(24)に記載の態様では、T1+30℃以上T1+200℃以下の温度域における前記第2の熱間圧延の各パス間の鋼板の温度上昇を18℃以下としてもよい。
 本発明によれば、主な組織構成を限定せず、NbやTiなどの元素が添加されていても異方性への影響が小さく、局部変形能に優れ、成形性の方位依存性の少ない熱延鋼板、冷延鋼板および亜鉛めっき鋼板を得ることができる。
熱延鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値と、板厚/最小曲げ半径との関係を示す図である。 熱延鋼板における{332}<113>方位群のX線ランダム強度比と、板厚/最小曲げ半径との関係を示す図である。 熱延鋼板における圧延方向に対して直角方向のr値であるrCと、板厚/最小曲げ半径との関係を示す。 熱延鋼板における圧延方向に対しての30°をなす方向のr値であるr30と、板厚/最小曲げ半径との関係を示す図である。 熱延鋼板における圧延方向のr値であるrLと、板厚/最小曲げ半径との関係を示す図である。 熱延鋼板における圧延方向に対して60°をなす方向のr値であるr60と、板厚/最小曲げ半径との関係を示す図である。 冷延鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値と板厚/最小曲げ半径との関係を示す図である。 冷延鋼板における{332}<113>方位群のX線ランダム強度比と板厚/最小曲げ半径との関係を示す図である。 冷延鋼板における圧延方向に対して直角方向のr値であるrCと板厚/最小曲げ半径との関係を示す図である。 冷延鋼板における圧延方向に対して30°をなす方向のr値であるr30と板厚/最小曲げ半径との関係を示す図である。 冷延鋼板における圧延方向のr値であるrLと板厚/最小曲げ半径との関係を示す図である。 冷延鋼板における圧延方向に対して60°をなす方向のr値であるr60と板厚/最小曲げ半径との関係を示す図である。 亜鉛めっき鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値と板厚/最小曲げ半径との関係を示す図である。 亜鉛めっき鋼板における{332}<113>方位群のX線ランダム強度比と板厚/最小曲げ半径との関係を示す図である。 亜鉛めっき鋼板における圧延方向に対して直角方向のr値であるrCと板厚/最小曲げ半径との関係を示す図である。 亜鉛めっき鋼板における圧延方向に対して30°をなす方向のr値であるr30と板厚/最小曲げ半径との関係を示す図である。 亜鉛めっき鋼板における圧延方向のr値であるrLと板厚/最小曲げ半径との関係を示す図である。 亜鉛めっき鋼板における圧延方向に対して60°をなす方向のr値であるr60と板厚/最小曲げ半径の関係を示す図である。 粗圧延後のオーステナイト粒径と、熱延鋼板における圧延方向に対して直角方向のr値であるrCとの関係を示す図である。 粗圧延後のオーステナイト粒径と熱延鋼板における圧延方向に対して30°をなす方向のr値であるr30との関係を示す図である。 粗圧延における20%以上の圧下率での圧下回数と粗圧延後のオーステナイト粒径との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における合計圧下率と、熱延鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値との関係を示す図である。 T1℃以上T1+30℃未満の温度域における合計圧下率と、熱延鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における合計圧下率と、熱延鋼板における{332}<113>の結晶方位のX線ランダム強度比との関係を示す図である。 T1℃以上T1+30℃未満の温度域における合計圧下率と、熱延鋼板における{332}<113>の結晶方位のX線ランダム強度比との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における圧下時の各パス間の鋼板の最大温度上昇量、およびT1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合における前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間と、熱延鋼板における圧延方向のr値であるrLとの関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における圧下時の各パス間の鋼板の最大温度上昇量、およびT1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合における前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間と熱延鋼板における圧延方向に対して60°をなす方向のr値であるr60との関係を示す図である。 粗圧延後のオーステナイト粒径と冷延鋼板における圧延方向と直角方向のr値であるrCとの関係を示す図である。 粗圧延後のオーステナイト粒径と冷延鋼板における圧延方向に対して30°をなす方向のr値であるr30との関係を示す図である。 T1+30℃以上T1+200℃以下の圧下率と冷延鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における合計圧下率と冷延鋼板における{332}<113>の結晶方位のX線ランダム強度比との関係を示す図である。 粗圧延後のオーステナイト粒径と亜鉛めっき鋼板における圧延方向と直角方向のr値であるrCとの関係を示す図である。 粗圧延後のオーステナイト粒径と亜鉛めっき鋼板における圧延方向に対して30°をなす方向のr値であるr30との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における合計圧下率と亜鉛めっき鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値との関係を示す図である。 T1℃以上T1+30℃未満の温度域における合計圧下率と亜鉛めっき鋼板における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における合計圧下率と亜鉛めっき鋼板における{332}<113>の結晶方位のX線ランダム強度比との関係を示す図である。 T1℃以上T1+30℃未満の温度域における合計圧下率と亜鉛めっき鋼板における{332}<113>の結晶方位のX線ランダム強度比との関係を示す図である。 T1+30℃以上T1+200℃以下の温度域における圧下時の各パス間の鋼板の最大温度上昇量、およびT1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合における前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間と亜鉛めっき鋼板における圧延方向のr値であるrLとの関係を示す図である。 T1+30℃以上T1+200℃以下温度域における圧下時の各パス間の鋼板の最大温度上昇量、およびT1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合における前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間と亜鉛めっき鋼板における圧延方向に対して60°をなす方向のr値であるr60との関係を示す図である。 本実施形態の熱延鋼板と比較鋼の強度と穴拡げ性との関係を示す図である。 本実施形態の熱延鋼板と比較鋼の強度と曲げ性との関係を示す図である。 本実施形態の熱延鋼板と比較鋼の強度と成形性の異方性との関係を示す図である。 本実施形態の冷延鋼板と比較鋼の強度と穴拡げ性との関係を示す図である。 本実施形態の冷延鋼板と比較鋼の強度と曲げ性との関係を示す図である。 本実施形態の冷延鋼板と比較鋼の強度と成形性の異方性との関係を示す図である。
 以下に本発明の一実施形態を詳細に説明する。
1.熱延鋼板について
(1)鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値、{332}<113>の結晶方位のX線ランダム強度比:
 鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値は、本実施形態において特に重要な特性値である。
 図1に示すように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>~{223}<110>方位群の平均値が6.0以下であれば、足回り部品や骨格部品の加工に必要な板厚/最小曲げ半径であるd/Rmが1.5以上を満たす。さらに穴拡げ性や、小さな限界曲げ特性を必要とする場合には、望ましくは4.0以下で、より望ましくは、3.0未満である。6.0超では、鋼板の機械的特性の異方性が極めて強くなり、その結果、ある方向の局部変形能が改善しても、その方向とは異なる方向での材質が著しく劣化するため、前述の板厚/最小曲げ半径≧1.5を満足できなくなる。冷延鋼板または、亜鉛めっき鋼板の原板である熱延鋼帯とする場合には、上記のX線ランダム強度比は、4.0未満であることが望ましい。
 一方、現行の一般的な連続熱延工程では実現が難しいが、X線ランダム強度比が1.0未満になると局部変形能の劣化が懸念される。
 さらに同様な理由から、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{332}<113>の結晶方位のX線ランダム強度比が、図2に示すように5.0以下であれば、足回り部品の加工に必要な板厚/最小曲げ半径≧1.5を満たす。より望ましくは、3.0以下である。5.0超であると、鋼板の機械的特性の異方性が極めて強くなり、その結果、ある方向のみの局部変形能が改善しても、その方向とは異なる方向での材質が著しく劣化するため、板厚/最小曲げ半径≧1.5を確実に満足できなくなる。一方、現行の一般的な連続熱延工程では実現が難しいが、X線ランダム強度比が1.0未満になると局部変形能の劣化が懸念される。
 以上述べた結晶方位のX線ランダム強度比が、曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
(2)圧延方向と直角方向のr値であるrC:
 このrCは、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比だけが適正であっても、必ずしも良好な穴拡げ性や曲げ性が得られないことが判明した。図3に示すように、上記のX線ランダム強度比と同時に、rCが0.70以上であることが必須である。
 上述のrCの上限を1.10とすることで、よりすぐれた局部変形能を得ることができる。
(3)圧延方向に対して30°をなす方向のr値であるr30:
 このr30は、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線強度が適正であっても、必ずしも良好な局部変形能が得られないことが判明した。図4に示すように、上記のX線強度と同時に、r30が1.10以下であることが必須である。
 上述のr30の下限を0.70とすることで、よりすぐれた局部変形能を得ることができる。
(4)圧延方向のr値であるrLおよび圧延方向に対して60°をなす方向のr値であるr60:
 さらに、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比とrCおよびr30だけでなく、図5、図6に示すように、さらに圧延方向のrLが0.70以上でかつ、圧延方向に対して60°をなす方向のr値であるr60が1.10以下であれば、板厚/最小曲げ半径≧2.0を満たすことが判明した。
 上述のrL値およびr60値が、rLが1.10以下、r60が0.70以上であることで、よりすぐれた局部変形能を得ることができる。
 ところで、一般に集合組織とr値とは相関があることが知られているが、本実施形態に係る熱延鋼板においては、既述の結晶方位のX線強度比に関する限定と、r値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては良好な局部変形能を得ることはできない。
(5)ベイナイト、マルテンサイト、パーライトおよびオーステナイト粒のdL/dt比:
 本発明者らは、さらに局部変形能を追求した結果、上記の集合組織およびr値を満たした上で、結晶粒の等軸性に優れたときに、曲げ加工の方向依存性がほぼなくなることを見出した。この等軸性を表す指標としては、これら組織中の結晶粒の熱間圧延方向の長さであるdLと板厚方向の長さであるdtの比であるdL/dtが、3.0以下の等軸性に優れた粒の割合が、これら結晶粒のうち、50%以上100%以下である。50%未満では、圧延方向であるL方向または圧延方向に対して直角方向であるC方向の曲げ性Rが劣化する。
 各組織の判定は、以下のように行うことができる。
 光学顕微鏡による組織観察にて、パーライトを特定する。次にEBSD(Electron Back Scattering Diffraction;電子線後方散乱回折法)を用いて、結晶構造を判定し、fcc構造の結晶をオーステナイトとする。bcc構造のフェライト、ベイナイトおよびマルテンサイトは、EBSP-OIMTMに装備されているKernel Average Misorientation、すなわちKAM法にて識別することができる。KAM法は測定データのうちのある正六角形のピクセルの隣り合う6個である第一近似、もしくはさらにその外側12個である第二近似、もしくはさらにその外側の18個である第三近似のピクセル間の方位差を平均し、その値をその中心のピクセルの値とする計算を各ピクセルに行うことにより算出される値である。粒界を越えないようにこの計算を実施することで粒内の方位変化を表現するマップを作成できる。このマップは粒内の局所的な方位変化に基づくひずみの分布を表している。
 本発明の実施例においては、EBSP-OIMTMにおいて隣接するピクセル間の方位差を計算する条件を第三近似として、この方位差が5°以下とし、上記の方位差第三近似において、1°超が低温変態生成物であるベイナイトもしくはマルテンサイト、1°以下がフェライトと定義した。これは、高温で変態したポリゴナルな初析フェライトは拡散変態で生成するので、転位密度が小さく、粒内の歪みが少ないため、結晶方位の粒内差が小さく、これまで発明者らが実施してきた様々な調査結果より、光学顕微鏡観察で得られるフェライト体積分率とKAM法にて測定した方位差第三近似1°で得られるエリアの面積分率がほぼよい一致をするためである。
(6)粒径20μmを超える結晶粒の割合:
 さらに、曲げ性は、結晶粒の等軸性の影響を強く受け、その効果が大きいことを見出した。その理由は明らかではないが、曲げ変形は、局部的にひずみが集中するモードであり、全ての結晶粒が均一に、等価にひずみを受ける状態が曲げ性には有利と考えられる。粒径の大きな結晶粒が多い場合には、等方性化と等軸粒化が十分であっても、局部的な結晶粒が歪むことにより、その局部的に歪む結晶粒の方位により、曲げ性に大きなばらつきが出て、曲げ性の低下を引き起こすと考えている。そのため、等方性化と等軸粒化の効果により、ひずみの局部化を抑え、曲げ性を向上させるためには、全面積のうち、粒径20μmを超える結晶粒の占める面積割合が少ない方がよく、0%以上10%以下である必要がある。10%より多いと曲げ性が劣化する。ここで言う結晶粒とは、フェライト、パーライト、ベイナイト、マルテンサイト、およびオーステナイトの結晶粒を言う。
 本発明は熱延鋼板の全般に適用できるものであり、上記の限定が満たされれば組織の組み合わせに制限されることなく、熱延鋼板の曲げ加工性や穴広げ性などの局部成形能が飛躍的に向上する。
2.冷延鋼板について
(1)鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値、{332}<113>の結晶方位のX線ランダム強度比:
 鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値は本実施形態において、特に重要な特性値である。
 図7に示すように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>~{223}<110>方位群の平均値が4.0未満であれば、骨格部品の加工に必要な板厚/最小曲げ半径≧1.5を満たす。さらに穴拡げ性や、小さな限界曲げ特性を必要とする場合には、3.0未満が望ましい。4.0以上では鋼板の機械的特性の異方性が極めて強くなり、その結果、ある方向のみの局部変形能は改善するものの、その方向とは異なる方向での材質が著しく劣化するため、前述の板厚/最小曲げ半径≧1.5を満足できなくなる。
 一方、現行の一般的な連続熱延工程では実現が難しいが、X線ランダム強度比が1.0未満になると局部変形能の劣化が懸念される。
 さらに同様な理由から、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{332}<113>の結晶方位のX線ランダム強度比は図8に示すように5.0以下であれば、骨格部品の加工に必要な板厚/最小曲げ半径≧1.5を満たす。より望ましくは3.0以下である。これが5.0超であると、鋼板の機械的特性の異方性が極めて強くなり、その結果、ある方向のみの局部変形能は改善するものの、その方向とは異なる方向での材質が著しく劣化するため、板厚/最小曲げ半径≧1.5を確実に満足できなくなる。一方、現行の一般的な連続熱延工程では実現が難しいが、X線ランダム強度比が1.0未満になると局部変形能の劣化が懸念される。
 以上述べた結晶方位のX線ランダム強度比が曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
(2)圧延方向と直角方向のr値であるrC:
 このrC値は、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比だけが適正であっても、必ずしも良好な穴拡げ性や曲げ性が得られないことが判明した。図9に示すように、上記のX線ランダム強度比と同時に、rCが0.70以上であることが必須である。
 上述のrCの上限を、1.10とすることで、より優れた局部変形能を得ることができる。
(3)圧延方向に対して30°をなす方向のr値であるr30:
 このr30は、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比が適正であっても、必ずしも良好な局部変形能が得られないことが判明した。図10に示すように、上記のX線ランダム強度比と同時に、r30が1.10以下であることが必須である。
 上述のr30の下限を0.70とすることで、よりすぐれた局部変形能を得ることができる。
(4)圧延方向のr値であるrL、圧延方向に対して60°をなす方向のr値であるr60:
 さらに本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比とrCおよびr30だけでなく、図11、図12に示すように圧延方向のrLおよび圧延方向に対して60°をなす方向のr値であるr60が、それぞれrLが0.70以上でかつ、r60が1.10以下であれば、さらに良好な板厚/最小曲げ半径≧2.0を満たすことが判明した。
 上述のrLおよびr60は、rLが1.10以下、r60が0.70以上とすることで、よりすぐれた局部変形能を得ることができる。
 ところで、一般に集合組織とr値とは相関があることが知られているが、本発明の冷延鋼板においては、既述の結晶方位のX線強度比に関する限定と、r値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては良好な局部変形能を得ることはできない。
(5)ベイナイト、マルテンサイト、パーライトおよびオーステナイト粒のdL/dt比:
 本発明者らは、さらに局部変形能を追求した結果、上記の集合組織およびr値を満たした上で、結晶粒の等軸性に優れたときに、曲げ加工の方向依存性がほぼなくなることを見出した。この等軸性を表す指標としては、これら組織中の結晶粒の冷間圧延方向の長さであるdLと板厚方向の長さであるdtの比であるdL/dtが、3.0以下の等軸性に優れた粒の割合が、これら結晶粒のうち、50%以上100%以下である。50%未満では、圧延方向であるL方向または圧延方向に対して直角方向であるC方向の曲げ性Rが劣化する。
 各組織の判定は、以下のように行うことができる。
 光学顕微鏡による組織観察にて、パーライトを特定する。次にEBSDを用いて、結晶構造を判定し、fcc構造の結晶をオーステナイトとする。bcc構造のフェライト、ベイナイトおよびマルテンサイトは、EBSP-OIMTMに装備されているKernel Average Misorientation、すなわちKAM法にて識別することができる。KAM法は測定データのうちのある正六角形のピクセルの隣り合う6個である第一近似、もしくはさらにその外側12個である第二近似、もしくはさらにその外側の18個である第三近似のピクセル間の方位差を平均し、その値をその中心のピクセルの値とする計算を各ピクセルに行うことにより算出される値である。粒界を越えないようにこの計算を実施することで粒内の方位変化を表現するマップを作成できる。このマップは粒内の局所的な方位変化に基づくひずみの分布を表している。
 本発明の実施例においては、EBSP-OIMTMにおいて隣接するピクセル間の方位差を計算する条件を第三近似として、この方位差が5°以下とし、上記の方位差第三近似において、1°超が低温変態生成物であるベイナイトもしくはマルテンサイト、1°以下がフェライトと定義した。これは、高温で変態したポリゴナルな初析フェライトは拡散変態で生成するので、転位密度が小さく、粒内の歪みが少ないため、結晶方位の粒内差が小さく、これまで発明者らが実施してきた様々な調査結果より、光学顕微鏡観察で得られるフェライト体積分率とKAM法にて測定した方位差第三近似1°で得られるエリアの面積分率がほぼよい一致をするためである。
(6)粒径20μmを超える結晶粒の割合:
 さらに、曲げ性は、結晶粒の等軸性の影響を強く受け、その効果が大きくなることを見出した。その理由は明らかではないが、曲げ変形は、局部的にひずみが集中するモードであり、全ての結晶粒が均一に、等価にひずみを受ける状態が曲げ性には有利と考えている。粒径の大きな結晶粒が多い場合、等方性化と等軸粒化が十分であっても、局部的な結晶粒が歪むことにより、その局部的に歪む結晶粒の方位により、曲げ性に大きなばらつきが出て、曲げ性の低下を引き起こすと考えている。そのため、等方性化と等軸粒化の効果により、ひずみの局部化を抑え、曲げ性を向上させるためには、全面積のうち、粒径20μmを超える結晶粒の占める面積割合が少ない方がよく、0%以上10%以下である必要がある。10%より多いと曲げ性が劣化する。ここで言う結晶粒とは、フェライト、パーライト、ベイナイト、マルテンサイト、およびオーステナイトの結晶粒を言う。
 本発明は冷延鋼板の全般に適用できるものであり、上記の限定が満たされれば、組織の組み合わせに制限されることなく、冷延鋼板の曲げ加工性や穴広げ性などの局部変形能が飛躍的に向上する。
3.亜鉛めっき鋼板について
(1))鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値、{332}<113>の結晶方位のX線ランダム強度比:
 鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値は本実施形態において、特に重要な特性値である。図13に示すように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>~{223}<110>方位群の平均値が4.0未満であれば、直近要求される足回り部品の加工に必要な板厚/最小曲げ半径≧1.5を満たす。さらに穴拡げ性や小さな限界曲げ特性を必要とする場合には、3.0未満が望ましい。4.0以上では鋼板の機械的特性の異方性が極めて強くなり、その結果、ある方向のみの局部変形能は改善するものの、その方向とは異なる方向での材質が著しく劣化するため、板厚/最小曲げ半径≧1.5を満足できなくなる。
 一方、現行の一般的な連続熱延工程では実現が難しいが、X線ランダム強度比が1.0未満になると局部変形能の劣化が懸念される。
 さらに同様な理由から、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{332}<113>の結晶方位のX線ランダム強度比は、図14に示すように、5.0以下であれば、直近要求される足回り部品の加工に必要な板厚/曲げ半径≧1.5を満たす。望ましくは3.0以下である。これが5.0超であると、鋼板の機械的特性の異方性が極めて強くなり、その結果、ある方向のみの局部変形能は改善するものの、その方向とは異なる方向での材質が著しく劣化するため、板厚/曲げ半径≧1.5を確実に満足できなくなる。一方、現行の一般的な連続熱延工程では実現が難しいが、X線ランダム強度比が1.0未満になると局部変形能の劣化が懸念される。
 以上述べた結晶方位のX線ランダム強度比が曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
 圧延方向と直角方向のr値であるrC:
 このrCは、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比だけが適正であっても、必ずしも良好な穴拡げ性や曲げ性が得られないことが判明した。図15に示すように、上記のX線ランダム強度比と同時に、rCが0.70以上であることが必須である。
 上述のrCの上限を、1.10とすることで、より優れた局部変形能を得ることができる。
 圧延方向に対して30°をなす方向のr値であるr30:
 このr30は、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比が適正であっても、必ずしも良好な局部変形能が得られないことが判明した。図16に示すように、上記のX線ランダム強度比と同時に、r30が1.10以下であることが必須である。
 上述のr30の下限を、0.70とすることで、よりすぐれた局部変形能を得ることができる。
 圧延方向のr値であるrL、圧延方向に対して60°をなす方向のr値であるr60:
 更に本発明者等が鋭意検討した結果、上述した種々の結晶方位のX線ランダム強度比とrCおよびr30だけでなく、図17、図18のように圧延方向のrLおよび圧延方向に対して60°をなす方向のr60が、それぞれrLが0.70以上でかつ、r60が1.10以下であれば、更に良好な板厚/最小曲げ半径≧2.0を満たすことが判明した。
 上述のrL値およびr60値は、rLが1.10以下、r60が0.70以上であることで、よりすぐれた局部変形能を得ることができる。
 ところで、一般に集合組織とr値とは相関があることが知られているが、本発明の亜鉛めっき鋼板においては、既述の結晶方位のX線強度比に関する限定と、r値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては良好な局部変形能を得ることはできない。
 本発明は亜鉛めっき鋼板の全般に適用できるものであり、上記の限定が満たされれば、組織の組み合わせに制限されることなく、亜鉛めっき鋼板の曲げ加工性や穴広げ性などの局部変形能が飛躍的に向上する。
 上述の{100}<011>~{223}<110>方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>および{223}<110>である。
 これら各方位のX線ランダム強度比は、X線回折やEBSD(Electron Back Scattering Diffraction;電子線後方散乱回折法)などの方法を用いて測定することができる。具体的には、{110}極点図に基づいて、ベクトル法により計算した3次元集合組織や{110}、{100}、{211}、{310}極点図のうち、複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。
 たとえば、EBSD法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1-10]、(116)[1-10]、(114)[1-10]、(113)[1-10]、(112)[1-10]、(335)[1-10]、(223)[1-10]の強度をそのまま用いればよい。マイナス1を表すアッパーライン付きの1は、-1で表記した。
 また、{100}<011>~{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で代替しても良い。
 X線回折または、EBSDに供する試料は、機械研磨などによって鋼板を所定の板厚まで表面より減厚し、次いで、化学研磨や電解研磨などによって歪みを除去すると同時に、板厚の5/8~3/8の範囲で適当な面が測定面となるように、上述の方法に従って試料を調整して測定すればよい。板幅方向については、端部から1/4もしくは、3/4の位置で採取することが望ましい。
 当然のことであるが、上述のX線強度の限定が板厚1/2近傍だけでなく、なるべく多くの厚みについて満たされることで、より一層局部変形能が良好になる。しかしながら、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部の測定を行うことで、概ね鋼板全体の材質特性を代表することができるため、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値と、{332}<113>の結晶方位のX線ランダム強度比とを規定するものとする。{hkl}<uvw>で表される結晶方位とは、板面の法線方向が{hkl}に平行で、圧延方向が<uvw>と平行であることを示している。
 また、上述の各r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは通常、高強度鋼板の場合、5~15%の範囲で、均一伸びの範囲で評価すればよい。
 曲げ加工を施す方向は加工部品によって異なるので、特に限定するものではなく、本発明によれば、いずれの曲げ方向においても同様の特性が得られる。
 パーライトのdL/dtおよび粒径は、光学顕微鏡における組織観察において、二値化処理、ポイントカウント法により求めることができる。
 また、フェライト、ベイナイト、マルテンサイトおよびオーステナイトの粒径は、前述のEBSD法による鋼板の方位の解析において、例えば、1500倍の倍率にて、0.5μm以下の測定ステップで方位測定を行い、隣り合う測定点の方位差が15°を超えた位置を粒境界として定め、その円相当径を求めることで得られる。その際、圧延方向および板厚方向の粒の長さについても、同時に求めることでdL/dtが得られる。
 次に、鋼板成分の限定条件について述べる。含有量の%は質量%である。
 本発明の冷延鋼板および亜鉛めっき鋼板は、本発明における熱延鋼板を原板としているため、鋼板の成分については、熱延鋼板、冷延鋼板、亜鉛めっき鋼板のいずれについても以下の通りである。
 Cは、基本的に含有される元素であり、その下限を0.0001%としたのは、実用鋼で得られる下限値を用いることにしたためである。上限は0.40%超になると、加工性や溶接性が悪くなるので、0.40%に設定する。なお、過度のC添加はスポット溶接性を著しく劣化させるため、0.30%以下がより望ましい。
 Siは鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化したり、表面疵が発生したりするので、2.5%を上限とする。一方、実用鋼でSiを0.001%未満とするのは困難であるので、0.001%を下限とする。
 Mnは鋼板の機械的強度を高めるのに有効な元素であるが、4.0%超となると加工性が劣化するので、4.0%を上限とする。一方、実用鋼でMnを0.001%未満とするのは困難であるので、0.001%を下限とする。但し、極度な製鋼コストの上昇を避けるためには、0.01%以上とすることが望ましい。Mnはフェライト生成を抑制するため、組織にフェライト相を含ませて伸びを確保したい場合には、3.0%以下とすることが望ましい。また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、重量%でMn/S≧20となるMn量を添加することが望ましい。
 PとSの上限は、加工性の劣化や熱間圧延または冷間圧延時の割れを防ぐため、Pが0.15%以下、Sが0.03%以下とする。それぞれの下限は、現行の一般的な精錬(二次精錬を含む)で可能な値として、Pが0.001%、Sが0.0005%とする。なお、Sについては、極端な脱硫はコストが高くなりすぎるため、0.001%以上がより望ましい。
 Alは脱酸のために0.001%以上添加する。但し、脱酸が十分に必要な場合、0.01%以上の添加がより望ましい。また、Alはγ→α変態点を顕著に上昇させるので、特にAr3点以下での熱延を指向する場合には有効な元素である。しかし、多すぎると溶接性が劣悪となるため、上限を2.0%とする。
 NとOは不純物であり、加工性を悪くさせないように、共に0.01%以下とする。下限は、両元素とも現行の一般的な精錬(二次精錬を含む)で可能な0.0005%とする。但し、極端な製鋼コストの上昇を抑えるためには0.001%以上とすることが望ましい。
 更に、析出強化によって機械的強度を高めるため、あるいは、局部変形能を向上させるべく介在物制御や析出物微細化のために、従来から用いている元素として、Ti、Nb、B、Mg、REM、Ca、Mo、Cr、V、W、Cu、Ni、Co、Sn、Zr、Asのいずれか1種または2種以上を含有しても構わない。析出強化を得るためには、微細な炭窒化物を生成させることが有効であり、Ti、Nb、V、Wの添加が有効である。またTi、Nb、V、Wは固溶元素として、結晶粒の微細化に寄与する効果もある。
 Ti、Nb、V、Wの添加によって、析出強化の効果を得るためには、Tiは0.001%以上、Nbは0.001%以上、Vは0.001%以上、Wは0.001%以上の添加が必要である。析出強化が特に必要である場合には、Tiを0.01%以上、Nbを0.005%以上、Vを0.01%以上、Wを0.01%以上添加することがより望ましい。さらに、Ti、Nbは析出強化以外に、炭素、窒素の固定、組織制御、細粒強化などの機構を通じて材質を改善する効果を有する。また、Vは析出強化に有効で、MoやCrよりも添加による強化が起因した局部変形能の劣化代が小さく、高強度でよりよい穴拡げ性や曲げ性が必要な場合には、効果的な添加元素である。但し、過度に添加しても、強度上昇は飽和してしまうこと、加えて、熱延後の再結晶を抑制することで、結晶方位制御を困難にすることから、TiおよびNbで0.20%以下、VおよびWで1.0%以下とする必要がある。但し、特に伸びが必要な場合は、Vを0.50%以下、Wを0.50%以下とすることがより望ましい。
 組織の焼き入れ性を上昇させ、第二相制御を行うことで強度を確保する場合、B、Mo、Cr、Cu、Ni、Co、Sn、Zr、Asの1種または2種以上の添加が有効である。さらに、Bは上記以外に、炭素、窒素の固定、析出強化、細粒強化などの機構を通じて材質を改善する効果を有する。また、Mo、Crは機械的強度を高める効果に加えて、材質を改善する効果がある。
 これら効果を得るためには、Bは0.0001%以上、Mo、Cr、Ni、Cuは0.001%以上、Co、Sn、Zr、Asは0.0001%以上を添加する必要がある。しかし、過度の添加は逆に加工性を劣化させるので、Bの上限を0.0050%、Moの上限を1.0%、Cr、Ni、Cuの上限を2.0%、Coの上限を1.0%、Sn、Zrの上限を0.2%、Asの上限を0.50%とする。特に加工性が強く要求される場合は、Bの上限を0.005%、Moの上限を0.50%とすることが望ましい。また、コストの観点から、上記の添加元素のうち、B、Mo、Cr、Asを選択することがより望ましい。
 Mg、REM、Caは、介在物を無害化し、局部変形能をさらに向上させるために重要な添加元素である。この効果を得るための添加量の下限をそれぞれ0.0001%とするが、介在物の形態制御が必要な場合は、それぞれ0.0005%以上添加することが望ましい。一方、過剰添加は清浄度の悪化につながるため、Mgで0.010%、REMで0.1%、Caで0.010%を上限とした。
 本発明の熱延鋼板および冷延鋼板に表面処理を施しても、局部変形能改善効果を失うものではなく、電気めっき、溶融めっき、蒸着めっき、有機皮膜形成、フィルムラミネート、有機塩類/無機塩類処理及びノンクロ処理等のいずれを施しても、本発明の効果が得られる。
 また、本発明の亜鉛めっき鋼板は、本発明の冷延鋼板の表面に亜鉛めっき処理による亜鉛めっき層を有するものであるが、亜鉛めっきは、溶融亜鉛めっきと電気亜鉛めっきのいずれでも効果が得られる。また、亜鉛めっき後合金化処理をして、自動車用途に代表される合金化亜鉛めっき鋼板としてもよい。
 加えて、本発明の高強度亜鉛めっき鋼板にさらに表面処理しても本発明の効果を失うものでなく、有機皮膜形成、フィルムラミネート、有機塩類/無機塩類処理、ノンクロ処理等の何れでも本発明の効果が得られる。
2.製造方法について
 次に本実施形態に係る熱延鋼板の製造方法について述べる。
 優れた局部変形能を実現するためには、所定のX線ランダム強度比をもつ集合組織を形成させること、各方向のr値の条件を満たすこと、および粒形状を制御することが重要である。これらを満たすための製造条件の詳細を以下に記す。
 熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造、または薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には、一度低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、鋳造スラブを低温まで冷却せずに、鋳造後にそのまま熱延してもよい。原料にはスクラップを使用しても構わない。
 本実施形態に係る熱延鋼板は、以下の要件を満たす場合に得られる。
 rCが0.70以上でかつ、r30が1.10以下という、前述の所定の値を満たすためには、粗圧延後、すなわち仕上げ圧延前のオーステナイト粒径が重要である。図19、図20に示すように、仕上げ圧延前のオーステナイト粒径が200μm以下であればよい。
 200μm以下の仕上げ圧延前のオーステナイト粒径を得るためには、図21に示すように、粗圧延を1000℃以上1200℃以下の温度域での圧延で行ってかつ、この温度域で少なくとも20%以上の圧下率で1回以上圧下すればよい。但し、より均質性を高め、伸び、局部変形能を高めるためには、1000℃以上1200℃以下の温度域で少なくとも40%以上の圧下率で1回以上圧延することが望ましい。
 オーステナイト粒径は、100μm以下にすることがさらに望ましく、そのためには、20%以上の圧下率で2回以上圧下を行うことが望ましい。望ましくは、40%以上の圧下率で2回以上である。圧下率およびその圧下の回数は大きいほど、細粒を得ることができるが、70%を超える圧下や、10回を超える粗圧延は、温度の低下やスケールの過剰生成の懸念がある。このように、仕上げ圧延前のオーステナイト粒径を小さくすることが、後々の仕上げ圧延でのオーステナイトの再結晶促進を通じて、特にrLやr30の制御を介した局部変形能の改善に有効である。
 オーステナイト粒径の微細化が、局部変形能に影響を及ぼす理由としては、仕上げ圧延中の再結晶核の1つとして、粗圧延後、すなわち仕上げ圧延前のオーステナイト粒界が機能するためと推測される。
 粗圧延後のオーステナイト粒径を確認するためには、仕上げ圧延に入る前の板片を可能な限り急冷することが望ましく、10℃/s以上の冷却速度で板片を冷却して、板片断面の組織をエッチングしてオーステナイト粒界を浮き立たせて光学顕微鏡にて測定する。この際、50倍以上の倍率にて20視野以上を、画像解析やポイントカウント法にて測定する。
 また、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値、{332}<113>の結晶方位のX線ランダム強度比を前述の値の範囲とするには、粗圧延後の仕上げ圧延で鋼板成分によって決められる前記式1に記載のT1温度を基準に、T1+30℃以上T1+200℃以下の温度域で、望ましくはT1+50℃以上T1+100℃以下の温度域で、大きな圧下率による加工を行い、T1℃以上T1+30℃未満で小さな圧下率による加工を行う。上記によれば、最終熱延製品の局部変形能と形状を確保できる。図22~図25に各温度域での圧下率と、各方位のX線ランダム強度比の関係を示す。
 すなわち、図22と図24に示すように、T1+30℃以上T1+200℃以下の温度域における大圧下と、図23、図25に示すような、その後のT1℃以上T1+30℃未満での軽圧下が、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値および、{332}<113>の結晶方位のX線ランダム強度比を制御して、最終熱延製品の局部変形能を飛躍的に改善する。
 このT1温度自体は経験的に求めたものであり、T1温度を基準として、各鋼のオーステナイト域での再結晶が促進されることを、発明者等は実験により知見した。
 更に良好な局部変形能を得るためには、大圧下によってひずみを蓄積するか、圧下毎に繰り返し再結晶させることが重要である。ひずみ蓄積のためには圧下率の合計が50%以上、望ましくは70%以上で、さらに、パス間の鋼板の温度上昇を18℃以下にすることが望ましい。一方で、圧下率の合計が90%を超えることは、温度確保や過大な圧延負荷の観点から望ましくない。更に、熱延板の均質性を高め、伸び、局部延性を極限まで高めるためには、T1+30℃以上T1+200℃以下の温度域での圧延のうち、少なくとも1パスは、30%以上望ましくは40%以上の圧下率で圧下を行う。一方で、1パスで70%を超えると形状に支障が出る懸念がある。より高い加工性が要求される場合は、最終の2パスを30%以上とすることがより望ましい。
 更に、蓄積したひずみの開放による均一な再結晶を促すため、T1+30℃以上T1+200℃以下での大圧下の後、T1℃以上T1+30℃未満の温度域での加工量をなるべく少なく抑えることが必要であり、T1℃以上T1+30℃未満での圧下率の合計を30%未満とする。板形状の観点からは、10%以上の圧下率が望ましいが、より局部変形能を重視する場合には、圧下率は0%が望ましい。T1℃以上T1+30℃未満での圧下率が所定の範囲を超えると、再結晶したオーステナイト粒が展伸してしまい、停留時間が短いと再結晶が十分に進まず局部変形能を劣化させる。すなわち、本実施形態に係る製造条件においては、穴拡げ性や、曲げ性といった局部変形能を改善するため、仕上げ圧延においてオーステナイトを均一かつ微細に再結晶させることで、熱延製品の集合組織を制御することが重要である。
 前述の規定した温度域よりも低温で圧延が行われたり、規定した圧下率よりも大きな圧下率を取ってしまうと、オーステナイトの集合組織が発達し、最終的に得られる熱延鋼板において、少なくとも鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が6.0以下で、かつ{332}<113>の結晶方位のX線ランダム強度比が5.0以下という各結晶方位におけるX線ランダム強度比が得られない。
 一方、規定した温度域よりも高温で圧延が行われたり、規定した圧下率よりも小さい圧下率を採ってしまったりすると、粗粒化や混粒の原因となり、粒径20μmを超える結晶粒の面積率が増大する。上述の規定した圧延が行われているか否は、圧下率は圧延荷重や、板厚測定などから、実績または計算により求めることができる。また、温度についても、スタンド間温度計があれば実測可能であり、またはラインスピードや圧下率などから加工発熱等を考慮した計算シミュレーションが可能であるため、いずれか或いはその両方によって得ることができる。
 以上のように行われる熱間圧延はAr3以上の温度で終了する。熱間圧延の終了温度がAr3未満になると、オーステナイト域とフェライト域との2相域圧延を含むため、{100}<011>~{223}<110>方位群への集積が強くなり、結果として局部変形能が著しく劣化する。
 rLおよびr60が、それぞれrLが0.70以上、r60が1.10以下であれば、さらに良好な板厚/最小曲げ半径≧2.0を満たす。そのためには、T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間t(秒)が、前記式2を満たし、各パス間の鋼板の温度上昇が、18℃以下であることが望ましい。
 図26、図27に、T1+30℃以上T1+200℃以下での圧下時のパス間の鋼板の温度上昇量、前記待ち時間tとrLおよび、r60の関係を示す。T1+30℃以上T1+200℃以下での各パス間の鋼板の温度上昇が18℃以下で、tが前記式2を満たす場合に、rLが0.70以上、r60が1.10以下である均一な再結晶オーステナイトを得ることができる。
 前記待ち時間tがt1×2.5を超えると、粗粒化が進み、伸びが著しく低下する。また、t1よりも短いと異方性が高くなり、等軸粒分率が低減する。
 T1+30℃以上T1+200℃以下での鋼板の温度上昇が低過ぎてT1+30℃以上T1+200℃以下の範囲で、所定の圧下率が得られなかった場合には、再結晶が抑制されてしまう。また、前記待ち時間t(秒)が、前記式2を満たさない場合には、長時間側では粗大粒になり、短時間側では再結晶化は進まず、十分な局部変形能を得ることはできない。
 圧延後の冷却パターンについては、特に規定しない。それぞれの目的にあった組織制御を行うための冷却パターンを採っても、本発明の効果は得られる。
 熱間圧延においては、粗圧延後にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に、粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行っても良い。
 また、熱間圧延後には、巻取りを行ってよい。
 熱延鋼板には、必要に応じてスキンパス圧延を施してもよい。スキンパス圧延には、加工成形時に発生するストレッチャーストレインの防止や、形状矯正の効果がある。
 本実施形態において得られる熱延鋼板の組織は、フェライトを主体とするが、フェライト以外の金属組織として、パーライト、ベイナイト、マルテンサイト、オーステナイトおよび炭窒化物等の化合物を含有しても構わない。マルテンサイトやベイナイトの結晶構造は、フェライトのそれと同等もしくは類似しているので、フェライトの代わりにこれらの組織が主体であっても差し支えない。
 尚、本発明に係る鋼板は曲げ加工だけでなく、曲げ、張り出し、絞り等および曲げ加工を主体とする複合成形にも適用できる。
 次に本実施形態に係る冷延鋼板の製造方法について述べる。優れた局部変形能を実現するためには、冷間圧延終了後の鋼板において、所定のX線ランダム強度比をもつ集合組織を形成させること、各方向のr値の条件を満たすこと、および粒形状を制御することが重要である。これらを満たすための製造条件の詳細を以下に記す。
 熱間圧延に先行する製造方法は、特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造、または薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には、一度低温まで冷却したのち、再度加熱してから熱間圧延しても良いし、鋳造スラブを低温まで冷却せずに、鋳造後にそのまま熱延しても良い。原料にはスクラップを使用しても構わない。
 本実施形態に係る局部変形能に優れた冷延鋼板は、以下の要件を満たす場合に得られる。
 rCおよびr30が前述の所定の値を満たすためには、粗圧延後、すなわち仕上げ圧延前のオーステナイト粒径が重要である。図28、図29に示すように、仕上げ圧延前のオーステナイト粒径が小さいことが望ましく、200μm以下であれば、前述の値を満足する。
 200μm以下の仕上げ圧延前のオーステナイト粒径を得るためには、図21に示すように、粗圧延を1000℃以上1200℃以下の温度域で行ってかつ、少なくとも20%以上の圧下率で1回以上圧下すればよい。圧下率およびその圧下の回数は大きいほど、細粒を得ることができる。
 オーステナイト粒径は、100μm以下にすることがさらに望ましく、そのためには、20%以上の圧下率で2回以上圧下を行うことが望ましい。望ましくは、40%以上の圧下率で2回以上である。圧下率およびその圧下の回数は大きいほど、細粒を得ることができるが、70%を超える圧下や、10回を超える粗圧延は、温度の低下やスケールの過剰生成の懸念がある。このように、仕上げ圧延前のオーステナイト粒径を小さくすることが、後々の仕上げ圧延でのオーステナイトの再結晶促進を通じて、特にrLやr30の制御を介した局部変形能の改善に有効である。
 オーステナイト粒径の微細化が、局部変形能に影響を及ぼす影響としては、仕上げ圧延中の再結晶核の1つとして、粗圧延後、すなわち仕上げ圧延前のオーステナイト粒界が機能するためと推測される。粗圧延後のオーステナイト粒径を確認するためには、仕上げ圧延に入る前の板片を可能な限り急冷することが望ましく、10℃/s以上の冷却速度で板片を冷却して、板片断面の組織をエッチングし、オーステナイト粒界を浮き立たせて光学顕微鏡にて測定する。この際、50倍以上の倍率にて20視野以上を、画像解析やポイントカウント法にて測定する。
 また鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値および{332}<113>の結晶方位のX線ランダム強度比を前述の値の範囲とするには、粗圧延後の仕上げ圧延で鋼板成分によって決められる前記T1温度を基準に、T1+30℃以上、T1+200℃以下の温度域で、望ましくは、T1+50℃以上T1+100℃以下の温度域で、大きな圧下率による加工を行い、T1℃以上T1+30℃未満で小さな圧下率による加工を行う。上記によれば、最終冷延製品の局部変形能を確保できる。図30~図31にT1+30℃以上200℃以下の温度域での圧下率と、各方位のX線ランダム強度比との関係を示す。
 すなわち、図30と図31に示すようにT1+30℃以上T1+200℃以下の温度域における大圧下を行い、その後のT1℃以上T1+30℃未満での軽圧下を行うことで、後出の表7及び表8に見られるように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値および{332}<113>の結晶方位のX線ランダム強度比を制御して最終熱延製品の局部変形能を飛躍的に改善する。T1温度自体は経験的に求めたものであり、T1温度を基準として、各鋼のオーステナイト域での再結晶が促進されることを、発明者らは実験により知見した。
 さらに良好な局部変形能を得るためには、大圧下によるひずみを蓄積することが重要で、圧下率の合計が50%以上、より望ましくは60%以上、さらに望ましくは70%以上である。一方で圧下率の合計が90%を超えることは温度確保や過大な圧延負荷の観点から望ましくない。更に、熱延板の均質性を高め、伸び、局部延性を極限まで高めるためには、T1+30℃以上T1+200℃以下の温度域での圧延のうち、少なくとも1パスは、30%以上望ましくは40%以上の圧下率で圧延を行う。一方で、1パスで70%を超えると形状に支障が出る懸念がある。より高い加工性が要求される場合は、最終の2パスを30%以上とすることがより望ましい。
 さらに、蓄積したひずみの開放による均一な再結晶を促すため、T1+30℃以上T1+200℃以下での大圧下の後、T1℃以上T1+30℃未満の温度域での加工量をなるべく少なく抑えることが必要で、T1℃以上T1+30℃未満での圧下率の合計を30%未満とする。板形状の観点からは、10%以上の圧下率が望ましいが、より局部変形能を重視する場合には、圧下率は0%が望ましい。T1℃以上T1+30℃未満での圧下率が所定の範囲を超えると再結晶したオーステナイト粒が展伸してしまい、停留時間が短いと再結晶が十分に進まず局部変形能を劣化させる。すなわち、本実施形態に係る製造条件においては、仕上げ圧延においてオーステナイトを均一かつ微細に再結晶させることで熱延製品の集合組織を制御して穴拡げ性や、曲げ性といった局部変形能を改善することができる。
 前述の規定した温度域よりも低温で圧延が行われたり、規定した圧下率よりも大きな圧下率を取ってしまうと、オーステナイトの集合組織が発達し、最終的に得られる冷延鋼板において、少なくとも鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が4.0未満で、かつ{332}<113>の結晶方位のX線ランダム強度比が5.0以下という各結晶方位におけるX線ランダム強度比が得られない。
 一方、前述の規定した温度域よりも高温で圧延が行われたり、規定した圧下率よりも小さい圧下率を採ってしまったりすると、粗粒化や混粒の原因となり、粒径20μmを超える結晶粒の面積率が増大する。上述の規定した圧延が行われているか否は、圧下率は圧延荷重、板厚測定などから、実績または計算により求めることができる。また、温度についても、スタンド間温度計があれば実測可能であり、またはラインスピードや圧下率などから加工発熱等を考慮した計算シミュレーションが可能であるため、いずれか或いはその両方によって得ることができる。
 以上のように行われる熱間圧延はAr3以上の温度で終了する。熱間圧延をAr3未満で終了すると、オーステナイト域とフェライト域との2相域圧延を含むため、{100}<011>~{223}<110>方位群への集積が強くなり、結果として局部変形能が著しく劣化する。
 rLおよびr60が、それぞれrLが0.70以上かつ、r60が1.10以下であれば、さらに良好な板厚/最小曲げ半径≧2.0を満たす。そのためには、T1+30℃以上T1+200℃以下での圧下時の各パス間の鋼板の温度上昇を18℃以下に抑えることが望ましく、スタンド間冷却などの採用が望ましい。
 さらに、T1+30℃以上T1+200℃以下の温度範囲における圧延の最後の圧延スタンドで圧下した後の冷却は、オーステナイトの粒径に大きな影響を与え、これが冷延焼鈍後の組織の等軸粒分率、粗大粒分率に強く影響を与える。よって、T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、前記式4を満たす必要がある。これより長時間側では、粗粒化が進み、伸びが著しく低下する。これより短時間側では、再結晶が十分に得られず、異方性が高くなる。そのため、板厚/最小曲げ半径≧2.0を満たすことができない。
 また、熱間圧延後の冷却パターンについては、特に規定はせず、それぞれの目的にあった組織制御を行うための冷却パターンを採っても、本発明の効果は得られる。
 熱間圧延においては、粗圧延後にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に、粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。
 上記熱間圧延が終了した鋼板に対して、冷間にて圧下率20%以上90%以下の圧延を行う。20%未満では、その後の焼鈍工程で再結晶を起こすことが困難となり、等軸粒分率が低下する上、焼鈍後の結晶粒が粗大化してしまう。90%超の圧下率では、焼鈍時の集合組織が発達するため、異方性が強くなってしまう。このため、冷間での圧下率を20%以上90%以下とする。
 冷間圧延された鋼板は、その後、720℃以上900℃以下の温度域に1~300秒間保持される。これより、低温もしくは短時間では、フェライトからの逆変態が十分に進まず、その後の冷却工程で第二相を得ることができないため、十分な強度が得られない。一方、900℃を超えたり、300秒以上保持が続くと、結晶粒が粗大化してしまうため、粒径20μm以下の結晶粒の面積率が増大する。その後、650℃から500℃の間の冷却速度が10℃/s以上200℃/s以下の冷却速度で、500℃以下の温度まで冷却する。10℃/s未満の冷却速度、もしくは500℃超の冷却終点温度とするとパーライトが生成してしまうため、局部変形能が低下する。一方、200℃/s超の冷却速度としても、パーライト抑制効果は飽和し、逆に冷却終点温度の制御性が著しく劣化するため、200℃/s以下とする。
 本実施形態において得られる冷延鋼板の組織は、フェライトを含有するが、フェライト以外の金属組織として、パーライト、ベイナイト、マルテンサイト、オーステナイトおよび炭窒化物等の化合物を含有しても構わない。ただし、パーライトは局部延性を劣化させるため5%以下であることが望ましい。マルテンサイトやベイナイトの結晶構造は、フェライトのそれと同等もしくは類似しているので、フェライト、ベイナイトあるいはマルテンサイトのいずれかが主体となる組織であっても差し支えない。
 尚、本発明に係る冷延鋼板は曲げ加工だけでなく、曲げ、張り出し、絞り等および曲げ加工を主体とする複合成形にも適用できる。
 次に本実施形態に係る亜鉛めっき鋼板の製造方法について述べる。
 優れた局部変形能を実現するためには、亜鉛めっき処理を行った後の鋼板において、X線ランダム強度比をもつ集合組織を形成させることおよび各方向のr値の条件を満たすことが重要である。これらを満たすための製造条件の詳細を以下に記す。
 熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造、または薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延しても良いし、鋳造スラブを低温まで冷却せずに鋳造後にそのまま熱延しても良い。原料にはスクラップを使用しても構わない。
 本実施形態に係る局部変形能に優れた亜鉛めっき鋼板は、以下の要件を満たす場合に得られる。
 まずrCおよびr30が前述の所定の値を満たすためには、粗圧延後すなわち仕上げ圧延前のオーステナイト粒径が重要である。図32、図33に示すように仕上げ圧延前のオーステナイト粒径が小さいことが望ましく、200μm以下であれば前述の値を満足する。
 200μm以下の仕上げ圧延前のオーステナイト粒径を得るためには、図21のように粗圧延を1000℃以上1200℃以下の温度域で行って、かつ少なくとも20%以上の圧下率で1回以上圧下すればよい。ただし、より均質性を高め、伸び、局部変形能を高めるためには、1000℃以上1200℃以下の温度域での粗圧延率で少なくとも40%以上の圧下率で1回以上圧下することが望ましい。
 より好ましい100μm以下のオーステナイト粒を得るためには、さらにもう1回以上、合計で2回以上の20%以上の圧下率の圧下を加える。望ましくは、40%以上で2回以上である。圧下率およびその圧下の回数は大きいほど、細粒を得ることができるが、70%を超える圧下や10回を超える粗圧延は温度の低下やスケールの過剰生成の懸念がある。このように、仕上げ圧延前のオーステナイト粒径を小さくすることが、後々の仕上げ圧延でのオーステナイトの再結晶促進を通じて特にrLおよびr30の制御を通した局部変形能の改善に有効である。
 オーステナイト粒径の微細化が、局部変形能に影響を及ぼす理由としては、仕上げ圧延中の再結晶核の1つとして粗圧延後、すなわち仕上げ圧延前のオーステナイト粒界が機能するためと推測される。
 粗圧延後のオーステナイト粒径を確認するためには、仕上げ圧延に入る前の板片を可能な限り急冷することが望ましく、10℃/s以上の冷却速度で板片を冷却して、板片断面の組織をエッチングしてオーステナイト粒界を浮き立たせて光学顕微鏡にて測定する。この際、50倍以上の倍率にて20視野以上を、画像解析やポイントカウント法にて測定する。さらに局部変形能を高めるためには100μm以下が望ましい。
 また、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値および、{332}<113>の結晶方位のX線ランダム強度比を前述の値の範囲とするには、粗圧延後の仕上げ圧延で、前記式1で規定される鋼板成分によって決められる前記T1温度を基準に、T1+30℃以上T1+200℃以下の温度域で、望ましくはT1+50℃以上T1+100℃以下の温度域で、大きな圧下率による圧下を行い、T1以上T1+30℃未満で小さな圧下率による圧下を行う。上記によれば、最終熱延製品の局部変形能と形状を確保できる。
 図34~図37に各温度域での圧下率と各方位のX線ランダム強度比の関係を示す。
 すなわち、図34と図36に示すような、T1+30℃以上T1+200℃以下の温度域における合計圧下率で50%以上の大圧下と、図35と図37に示すような、その後のT1以上T1+30℃未満での合計圧下率で30%未満の軽圧下が、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値および{332}<113>の結晶方位のX線ランダム強度比を制御して最終熱延製品の局部変形能を飛躍的に改善する。T1温度自体は経験的に求めたものであり、T1温度を基準として、各鋼のオーステナイト域での再結晶が促進されることを発明者らは実験により知見した。
 さらに良好な局部変形能を得るためには、大圧下による歪を蓄積するか圧下毎に繰り返し再結晶させることが重要である。歪蓄積のためには合計圧下率で50%以上、望ましくは60%以上、より望ましくは70%以上の圧下率が必要であり、パス間の鋼板の温度上昇が18℃以下であることが望ましい。一方で90%を超える圧下率をとることは温度確保や過大な圧延付加の観点から望ましくない。更に、熱延板の均質性を高め、伸び、局部延性を極限まで高めるためには、T1+30℃以上T1+200℃以下の温度域での圧延のうち、少なくとも1パスは、30%以上望ましくは40%以上の圧下率で圧延を行うことが望ましい。一方で、1パスで70%を超えると形状に支障が出る懸念がある。より高い加工性が要求される場合は、最終の2パスを30%以上とすることがより望ましい。
 さらに、蓄積した歪の開放による均一な再結晶を促すため、T1+30℃以上T1+200℃以下での大圧下の後、T1℃以上T1+30℃未満の温度域での加工量をなるべく少なく抑えることが必要であり、T1℃以上T1+30℃未満での合計圧下率を30%未満とする。板形状からは10%以上の圧下率がのぞましいが、より局部変形能を重視する場合には圧下率は0%が望ましい。また、T1℃以上T1+30℃未満での圧下率が所定の範囲を超えると、再結晶したオーステナイト粒が展伸してしまい、停留時間が短いと再結晶が十分に進まず局部変形能を劣化させる。すなわち、本実施形態に係る製造条件においては、仕上げ圧延においてオーステナイトを均一かつ微細に再結晶させることで熱延製品の集合組織を制御して穴拡げ性や曲げ性と言った局部変形能を改善できる。
 前述の規定した温度域よりも低温で圧延が行われたり、規定の圧下率よりも大きな圧下率を取ってしまったりすると、オーステナイトの集合組織が発達し、最終的に得られる亜鉛めっき鋼板において、少なくとも鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が4.0未満で、かつ{332}<113>の結晶方位のX線ランダム強度比が5.0以下という各結晶方位のX線ランダム強度比が得られない。一方、前述の規定した温度域よりも高温で圧延が行われたり規定の圧下率よりも小さい圧下率を取ってしまったりすると、粗粒化や混粒の原因となり、結果として局部変形能が著しく低下する。上述の規定した圧延が行われているか否は、圧下率は圧延荷重、板厚測定などから実績または計算により求めることができる。また、温度についてもスタンド間温度計があれば実測可能で、またはラインスピードや圧下率などから加工発熱等を考慮した計算シミュレーションが可能であり、いずれか或いはその両方によって得ることができる。
 以上のように行われる熱間圧延はAr3以上の温度で終了する。熱間圧延をAr3未満で終了するとオーステナイト域とフェライト域との2相域圧延を含むため、{100}<011>~{223}<110>方位群への集積が強くなり、結果として局部変形能が著しく劣化する。
 更に、rLおよびr60を、それぞれrLが0.70以上かつr60が1.10以下とすれば、更に良好な板厚/最小曲げ半径≧2.0を満たす。そのためには、T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間t(秒)が、前記式6に規定する条件を満たすことが重要である。
 図38、図39にT1+30℃以上T1+200℃以下での圧下時の鋼板の温度上昇および前記待ち時間tとrLおよびr60の関係を示す。
 前記待ち時間tが前記式6を満たし、さらにT1+30℃以上T1+200℃以下での鋼板の温度上昇を各パス間において18℃以下に抑えることが、均一な再結晶オーステナイトを得るのに有効である。
 尚、T1+30℃以上T1+200℃以下での温度上昇が低過ぎてT1+30℃以上T1+200℃以下の範囲で所定の圧下率が得られなかった場合は再結晶が抑制されてしまう、また、前記待ち時間tが前記式6を満たさない場合には、長時間側では粗大粒になり、短時間側では再結晶は進まず、十分な局部変形能を得られない。
 熱間圧延後の冷却パターンについては特に規定はせず、それぞれの目的にあった組織制御を行うための冷却パターンをとっても本発明の効果は得られる。しかしながら、680℃を超える巻き取り温度になると、表面酸化が進行したり、冷延や焼鈍後の曲げ性に悪影響を及ぼす懸念があるため、巻き取り温度を680℃以下室温以上とした。
 熱間圧延においては粗圧延後にシートバーを接合し、連続的に仕上げ圧延をしても良い。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行っても良い。熱延鋼板には必要に応じてスキンパス圧延を施してもよい。スキンパス圧延には、加工成形時に発生するストレッチャーストレインの防止や形状矯正の効果がある。
 また、上記熱間圧延が終了した鋼板を、酸洗したのち、冷間での圧下率が20%以上90%以下となるように冷間圧延する。圧下率が20%未満であると十分な冷延再結晶組織が形成されず、混粒になる懸念がある。また、90%を超えると割れによる破断の懸念がある。焼鈍の熱処理パターンは、それぞれの目的にあった組織制御を行うための熱処理パターンをとっても本発明の効果は得られる。
 しかしながら、十分な冷延再結晶等軸組織を得て、かつ本願範囲の条件を満たすためには、少なくとも650℃以上900℃以下の温度域まで昇温し、1秒以上300秒以下の保持時間で焼鈍した後、0.1℃/s以上100℃/s以下の冷却速度で720℃以下580℃以上の温度域にまで一次冷却を施すことが必要である。保持温度域が650℃未満であるか保持時間が1秒未満であると十分な回復再結晶組織が得られない。また、保持温度域が900℃超であるか保持時間が300秒を超えると酸化や粒の粗大化の懸念がある。また、一時冷却については、冷却速度が0.1℃/s未満であったり温度域が720℃を超えると十分な量の変態量が得られない懸念がある。また、冷却速度が100℃/s超であったり温度域が580℃未満の場合には粒の粗大化などの懸念がある。
 その後、常法に従い、亜鉛めっき処理を行って亜鉛めっき鋼板を得る。
 本実施形態において得られる亜鉛めっき鋼板の組織は、フェライトを主体とするが、フェライト以外の金属組織として、パーライト、ベイナイト、マルテンサイト、オーステナイトおよび炭窒化物等の化合物を含有しても構わない。マルテンサイトやベイナイトの結晶構造は、フェライトのそれと同等もしくは類似しているので、フェライトの代わりにこれらの組織が主体であっても差し支えない。
 本発明に係る亜鉛めっき鋼板は曲げ加工だけでなく、曲げ、張り出し、絞り等、曲げ加工を主体とする複合成形にも適用できる。
 本発明の実施例を挙げながら、本実施形態に係る熱延鋼板の技術的内容について説明する。
 実施例として、表1に示した成分組成を有するAAからBgまでの鋼を用いて検討した結果について説明する。
Figure JPOXMLDOC01-appb-T000001
 これらの鋼は、鋳造後、そのままもしくは一旦室温まで冷却された後に再加熱し、900℃~1300℃の温度範囲に加熱され、その後、表2または表3の条件で熱間圧延が施され、最終的には2.3mmもしくは3.2mm厚の熱延鋼板とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に各鋼の化学成分を、表2、3に各製造条件を、表4、5に組織と機械的特性を示す。
 局部変形能の指標として、穴拡げ率、および90°V字曲げによる限界曲げ半径を用いた。曲げ試験はC方向曲げと45°方向曲げを行い、その比率を使って成形性の方位依存性の指標とした。引っ張り試験および曲げ試験はJIS Z2241およびZ2248のVブロック90°曲げ試験に、穴拡げ試験は鉄連規格JFS T1001に、それぞれ準拠した。X線ランダム強度比は、前述のEBSDを用いて、圧延方向に平行な断面の5/8~3/8の領域の板厚中央部で、幅方向が端部から1/4の位置に対して0.5μmピッチで測定した。また、各方向のr値については、前述した方法により測定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の実施例を挙げながら、本実施形態に係る冷延鋼板の技術的内容について説明する。
 実施例として、表6に示した成分組成を有するCAからCWまでの本発明の請求項で規定した成分を満たす鋼、およびCaからCgの比較鋼を用いて検討した結果について説明する。
Figure JPOXMLDOC01-appb-T000006
 これらの鋼は、鋳造後、そのままもしくは一旦室温まで冷却された後に再加熱し、900℃~1300℃の温度範囲に加熱され、その後、表7の条件で熱間圧延が施され、2~5mm厚の熱延鋼板とした後、酸洗し、1.2~2.3mm厚に冷間圧延を施し、表7に示す焼鈍条件にて焼鈍を施した。その後、0.5%のスキンパス圧延を行い、材質評価に供した。
Figure JPOXMLDOC01-appb-T000007
 表6に各鋼の化学成分を、表7に各製造条件を示す。また、表8にそれぞれの組織と機械的特性を示す。局部変形能の指標として、穴拡げ率および90°V字曲げによる限界曲げ半径を用いた。曲げ試験はC方向曲げと45°方向曲げを行い、その比率を使って成形性の方位依存性の指標とした。なお、引っ張り試験および曲げ試験はJIS Z2241およびZ2248のVブロック90°曲げ試験に、穴拡げ試験は鉄連規格JFS T1001に、それぞれ準拠した。X線ランダム強度比は前述のEBSDを用いて、圧延方向に平行な断面の3/8~5/8の領域の板厚中央部で、幅方向が端部から1/4の位置に対して、0.5μmピッチで測定した。また、各方向のr値については、前述した方法により測定した。
Figure JPOXMLDOC01-appb-T000008
 本発明の実施例を挙げながら、本実施形態に係る亜鉛めっき鋼板の技術的内容について説明する。
 実施例として、表9に示した成分組成を有するDAからDLまでの鋼を用いて検討した結果について説明する。
Figure JPOXMLDOC01-appb-T000009
 これらの鋼は、鋳造後、そのままもしくは一旦室温まで冷却された後に再加熱し、900℃~1300℃の温度範囲に加熱され、その後表10の条件で熱間圧延が施され、2~5mm厚の熱延鋼板としたのち、酸洗し、冷延した後、1.2~2.3mm厚に冷間圧延を施し、表10に示す焼鈍条件にて焼鈍を施すとともに、溶融亜鉛めっき浴を用いて、連続で焼鈍および溶融亜鉛めっきまたは溶融合金化亜鉛めっき処理を行った。その後、0.5%のスキンパス圧延を行い、材質評価に供した。
Figure JPOXMLDOC01-appb-T000010
 表9に各鋼の化学成分を、表10に製造条件を、表11に各製造条件における組織と機械的特性を示す。
 局部変形能の指標として穴拡げ率および90°V字曲げによる限界曲げ半径を用いた。なお、引っ張り試験および曲げ試験はJIS Z 2241およびZ 2248のVブロック90°曲げ試験に、穴拡げ試験は鉄連規格JFS T1001にそれぞれ準拠した。X線ランダム強度比は前述のEBSDを用いて圧延方向に平行な断面の3/8~5/8の領域の板厚中央部で、幅方向が端部から1/4の位置に対して0.5μmピッチで測定した。また、各方向のr値については、前述した方法により測定した。
Figure JPOXMLDOC01-appb-T000011
 本発明の規定を満たすものは、例えば、図40、図41、図42、図43、図44、図45に示すように、優れた穴拡げ性、曲げ性、および成形異方性の少なさを併せ持つ。さらに、望ましい製造条件範囲にあるものは、より優れた、穴拡げ率および曲げ性を示す。
 前述したように、本発明によれば、主な組織構成を限定せず、結晶粒のサイズ、形態制御に加え、集合組織を制御することで、NbやTiなどが添加されていても局部変形能に優れ、成形性の方位依存性の少ない熱延鋼板、冷延鋼板および亜鉛めっき鋼板を得ることができる。
 よって、本発明は、鉄鋼産業において、利用可能性が高い。
 また、本発明において、鋼板の強度については規定していないが、前述の通り高強度化するほど成形性が低下するため、高強度鋼板、例えば、引張強度で440MPa以上となる場合に特に効果が大きい。

Claims (25)

  1.  質量%で、
     C :0.0001%以上、0.40%以下、
     Si:0.001%以上、2.5%以下、
     Mn:0.001%以上、4.0%以下、
     P :0.001%以上、0.15%以下、
     S :0.0005%以上、0.03%以下、
     Al:0.001%以上、2.0%以下、
     N :0.0005%以上、0.01%以下、
     O :0.0005%以上、0.01%以下、
    を含有し、さらに、
     Ti:0.001%以上、0.20%以下、
     Nb:0.001%以上、0.20%以下、
     V:0.001%以上、1.0%以下、
     W:0.001%以上、1.0%以下、
     B :0.0001%以上、0.0050%以下、
     Mo:0.001%以上、1.0%以下、
     Cr:0.001%以上、2.0%以下、
     Cu:0.001%以上、2.0%以下、
     Ni:0.001%以上、2.0%以下、
     Co:0.0001%以上、1.0%以下、
     Sn:0.0001%以上、0.2%以下、
     Zr:0.0001%以上、0.2%以下、
     As:0.0001%以上、0.50%以下、
     Mg:0.0001%以上、0.010%以下、
     Ca:0.0001%以上、0.010%以下、
     REM:0.0001%以上、0.1%以下、
    のうちの1種又は2種以上を含有し、
     残部が鉄および不可避的不純物からなり;
     少なくとも鋼板表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上6.0以下でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり;
     圧延方向に対して直角方向のr値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である;
    ことを特徴とする熱延鋼板。
  2.  前記圧延方向のr値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記熱延鋼板中にベイナイト、マルテンサイト、パーライトおよびオーステナイトの1種または2種以上が存在し、これら組織の結晶粒のうち、前記圧延方向の長さdLと板厚方向の長さdtの比であるdL/dtが3.0以下である粒の割合が50%以上100%以下であることを特徴とする請求項1または2に記載の熱延鋼板。
  4.  前記熱延鋼板の金属組織の全面積のうち、粒径が20μmを超える結晶粒の面積割合が0%以上10%以下であることを特徴とする請求項1または2に記載の熱延鋼板。
  5.  請求項1に記載の熱延鋼板を冷間圧延した冷延鋼板であって、
     少なくとも前記板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上4.0未満でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり;
     前記圧延方向に対して直角方向のr値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である;
    ことを特徴とする冷延鋼板。
  6.  前記圧延方向のr値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であることを特徴とする請求項5に記載の冷延鋼板。
  7.  前記冷延鋼板中にベイナイト、マルテンサイト、パーライトおよびオーステナイトの1種または2種以上が存在し、これら組織の結晶粒のうち、前記圧延方向の長さdLと板厚方向の長さdtの比であるdL/dtが3.0以下である粒の割合が50%以上100%以下であることを特徴とする請求項5または6に記載の冷延鋼板。
  8.  前記冷延鋼板の金属組織の全面積のうち、粒径が20μmを超える結晶粒の面積割合が0%以上10%以下であることを特徴とする請求項5または6に記載の冷延鋼板。
  9.  請求項5に記載の冷延鋼板の表面に、さらに、溶融亜鉛めっき層または、合金化溶融亜鉛めっき層を備えた亜鉛めっき鋼板であって、
     少なくとも前記板厚中央部における{100}<011>~{223}<110>方位群のX線ランダム強度比の平均値が1.0以上4.0未満でかつ、{332}<113>の結晶方位のX線ランダム強度比が1.0以上5.0以下であり;
     前記圧延方向に対して直角方向のr値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のr値であるr30が0.70以上1.10以下である;
    ことを特徴とする亜鉛めっき鋼板。
  10.  前記圧延方向のr値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であることを特徴とする請求項9に記載の亜鉛めっき鋼板。
  11.  質量%で、
     C :0.0001%以上、0.40%以下、
     Si:0.001%以上、2.5%以下、
     Mn:0.001%以上、4.0%以下、
     P :0.001%以上、0.15%以下、
     S :0.0005%以上、0.03%以下、
     Al:0.001%以上、2.0%以下、
     N :0.0005%以上、0.01%以下、
     O :0.0005%以上、0.01%以下、
    を含有し、さらに、
     Ti:0.001%以上、0.20%以下、
     Nb:0.001%以上、0.20%以下、
     V:0.001%以上、1.0%以下、
     W:0.001%以上、1.0%以下、
     B :0.0001%以上、0.0050%以下、
     Mo:0.001%以上、1.0%以下、
     Cr:0.001%以上、2.0%以下、
     Cu:0.001%以上、2.0%以下、
     Ni:0.001%以上、2.0%以下、
     Co:0.0001%以上、1.0%以下、
     Sn:0.0001%以上、0.2%以下、
     Zr:0.0001%以上、0.2%以下、
     As:0.0001%以上、0.50%以下、
     Mg:0.0001%以上、0.010%以下、
     Ca:0.0001%以上、0.010%以下、
     REM:0.0001%以上、0.1%以下、
    のうちの1種又は2種以上を含有し、
     残部が鉄および不可避的不純物からなる鋼塊またはスラブを、
     1000℃以上1200℃以下の温度域で、20%以上の圧下を少なくとも1回以上行う第1の熱間圧延を行い、オーステナイト粒径を200μm以下とし;
     T1+30℃以上T1+200℃以下の温度範囲で、圧下率の合計が50%以上である第2の熱間圧延を行い;
     T1℃以上T1+30℃未満の温度範囲で、圧下率の合計が30%未満である第3の熱間圧延を行い;
     Ar3変態温度以上で熱間圧延を終了する;
    ことを特徴とする熱延鋼板の製造方法。
     ここで、前記T1は鋼板成分により決定される温度であり、下式1で表される。
     T1(℃)=850+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V・・・(式1)
  12.  T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行うことを特徴とする請求項11に記載の熱延鋼板の製造方法。
  13.  1000℃以上1200℃以下の温度域での前記第1の熱間圧延において、20%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下とすることを特徴とする請求項11または12に記載の熱延鋼板の製造方法。
  14.  T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、下式2を満たすことを特徴とする請求項11または12に記載の熱延鋼板の製造方法。
     t1≦t≦t1×2.5・・・(式2)
     ここで、t1は下式3で表される。
     t1=0.001×((Tf-T1)×P1)-0.109×((Tf-T1)×P1)+3.1・・・(式3)
     ここで、Tfは前記最終パス後の温度であり、P1は前記最終パスにおける圧下率である。
  15.  T1+30℃以上T1+200℃以下の温度域における前記第2の熱間圧延の各パス間の鋼板の温度上昇を18℃以下とすることを特徴とする請求項14に記載の熱延鋼板の製造方法。
  16.  請求項11に記載の熱延鋼板の製造方法で得られた前記熱延鋼板に対して、Ar3変態温度以上で熱間圧延を終了した後、
     酸洗し;
     冷間にて20%以上90%以下の圧延を行い;
     720℃以上900℃以下の温度域で1秒以上300秒以下の保持時間で焼鈍し;
     650℃から500℃の間の冷却速度が10℃/s以上200℃/s以下である加速冷却を行い;
     200℃以上500℃以下の温度にて保持する;
    ことを特徴とする冷延鋼板の製造方法。
  17.  T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行うことを特徴とする請求項16に記載の冷延鋼板の製造方法。
  18.  1000℃以上1200℃以下の温度域での前記第1の熱間圧延において20%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下とすることを特徴とする請求項16または17に記載の冷延鋼板の製造方法。
  19.  T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、下式4を満たすことを特徴とする請求項16または17に記載の冷延鋼板の製造方法。
     t1≦t≦t1×2.5・・・(式4)
     ここで、t1は下式5で表される。
     t1=0.001×((Tf-T1)×P1)-0.109×((Tf-T1)×P1)+3.1・・・(式5)
     ここで、Tfは前記最終パス後の温度であり、P1は前記最終パスにおける圧下率である。
  20.  T1+30℃以上T1+200℃以下の温度域における前記第2の熱間圧延の各パス間の鋼板の温度上昇を18℃以下とすることを特徴とする請求項19に記載の冷延鋼板の製造方法。
  21.  請求項11に記載の熱延鋼板の製造方法で得られた前記熱延鋼板に対して、Ar3変態温度以上で熱間圧延を終了した後、
     680℃以下室温以上の温度域で巻き取り;
     酸洗し;
     冷間にて20%以上90%以下の圧延を行い;
     650℃以上900℃以下の温度域まで昇温し;
     1秒以上300秒以下の保持時間で焼鈍し;
     0.1℃/s以上100℃/s以下の冷却速度で720℃以下580℃以上の温度域まで冷却をし;
     亜鉛めっき処理を行う;
    ことを特徴とする亜鉛めっき鋼板の製造方法。
  22.  T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行うことを特徴とする請求項21に記載の亜鉛めっき鋼板の製造方法。
  23.  1000℃以上1200℃以下の温度域での前記第1の熱間圧延において、20%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下とすることを特徴とする請求項21または22に記載の亜鉛めっき鋼板の製造方法。
  24.  T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスが完了した後から冷却を開始するまでの待ち時間tが、下式6を満たすことを特徴とする請求項21または22に記載の亜鉛めっき鋼板の製造方法。
     t1≦t≦t1×2.5・・・(式6)
     ここで、t1は下式7で表される。
     t1=0.001×((Tf-T1)×P1)-0.109×((Tf-T1)×P1)+3.1・・・(式7)
     ここで、Tfは前記最終パス後の温度、P1は前記最終パスにおける圧下率である。
  25.  T1+30℃以上T1+200℃以下の温度域における前記第2の熱間圧延の各パス間の鋼板の温度上昇を18℃以下とすることを特徴とする請求項24に記載の亜鉛めっき鋼板の製造方法。
PCT/JP2011/067070 2010-07-28 2011-07-27 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法 WO2012014926A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201180036951.9A CN103038383B (zh) 2010-07-28 2011-07-27 热轧钢板、冷轧钢板、镀锌钢板及这些钢板的制造方法
MX2013000984A MX342629B (es) 2010-07-28 2011-07-27 Lamina de acero enrollada en caliente, lamina de acero enrollada en frio, lamina de acero galvanizada y metodos para fabricar los mismos.
BR112013001864-0A BR112013001864B1 (pt) 2010-07-28 2011-07-27 Chapa de aço laminada a quente, chapa de aço laminada a frio, chapa de aço galvanizada e método de produção das mesmas
JP2012526530A JP5163835B2 (ja) 2010-07-28 2011-07-27 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
KR1020137001998A KR101514157B1 (ko) 2010-07-28 2011-07-27 열연 강판, 냉연 강판, 아연 도금 강판 및 이들의 제조 방법
CA2806626A CA2806626C (en) 2010-07-28 2011-07-27 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same
EP11812515.2A EP2599887B1 (en) 2010-07-28 2011-07-27 Hot-rolled steel sheet, cold-rolled steel sheet and galvanized steel sheet
US13/811,902 US9273370B2 (en) 2010-07-28 2011-07-27 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same
US15/000,722 US9587319B2 (en) 2010-07-28 2016-01-19 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2010-169670 2010-07-28
JP2010169230 2010-07-28
JP2010169670 2010-07-28
JP2010-169627 2010-07-28
JP2010-169230 2010-07-28
JP2010169627 2010-07-28
JP2010-204671 2010-09-13
JP2010204671 2010-09-13
JP2011048272 2011-03-04
JP2011-048253 2011-03-04
JP2011048246 2011-03-04
JP2011048253 2011-03-04
JP2011048236 2011-03-04
JP2011-048236 2011-03-04
JP2011-048246 2011-03-04
JP2011-048272 2011-03-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/811,902 A-371-Of-International US9273370B2 (en) 2010-07-28 2011-07-27 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same
US15/000,722 Division US9587319B2 (en) 2010-07-28 2016-01-19 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012014926A1 true WO2012014926A1 (ja) 2012-02-02

Family

ID=45530130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067070 WO2012014926A1 (ja) 2010-07-28 2011-07-27 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法

Country Status (10)

Country Link
US (2) US9273370B2 (ja)
EP (1) EP2599887B1 (ja)
JP (1) JP5163835B2 (ja)
KR (1) KR101514157B1 (ja)
CN (1) CN103038383B (ja)
BR (1) BR112013001864B1 (ja)
CA (1) CA2806626C (ja)
MX (1) MX342629B (ja)
TW (1) TWI439554B (ja)
WO (1) WO2012014926A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121219A1 (ja) * 2011-03-04 2012-09-13 新日本製鐵株式会社 熱延鋼板およびその製造方法
WO2012141290A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2012141297A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 ガス軟窒化用熱延鋼板及びその製造方法
JP2012219284A (ja) * 2011-04-04 2012-11-12 Nippon Steel Corp 局部変形能に優れた高強度冷延鋼板とその製造方法
WO2012161241A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2013065298A1 (ja) * 2011-11-01 2013-05-10 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2013103125A1 (ja) * 2012-01-05 2013-07-11 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2014122379A (ja) * 2012-12-20 2014-07-03 Nippon Steel & Sumitomo Metal 耐酸性に優れた高強度鋼板及びその製造方法
CN104114729A (zh) * 2012-02-13 2014-10-22 新日铁住金株式会社 冷轧钢板、镀敷钢板和它们的制造方法
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
CN106591699A (zh) * 2016-12-04 2017-04-26 丹阳市宸兴环保设备有限公司 一种车体防锈金属材料
TWI679285B (zh) * 2017-07-07 2019-12-11 日商日本製鐵股份有限公司 熱軋鋼板及其製造方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2013011750A (es) 2011-04-13 2013-11-04 Nippon Steel & Sumitomo Metal Corp Laminas de acero laminadas en frio, de alta resistencia, que tienen deformabilidad local excelente y metodo de fabricacion de las mismas.
KR101570593B1 (ko) * 2011-04-21 2015-11-19 신닛테츠스미킨 카부시키카이샤 균일 연신율과 구멍 확장성이 우수한 고강도 냉연 강판 및 그 제조 방법
US9051634B2 (en) * 2011-10-25 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Steel sheet
KR101417260B1 (ko) * 2012-04-10 2014-07-08 주식회사 포스코 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
CN105143485B (zh) 2013-04-15 2017-08-15 杰富意钢铁株式会社 高强度热轧钢板及其制造方法
CN103643117B (zh) * 2013-12-11 2016-05-25 江苏大学 一种超低铝钢及其冶炼方法
CN103774043B (zh) * 2013-12-31 2016-04-27 首钢总公司 汽车侧围外板用热镀锌钢板及其生产方法
KR20160000963A (ko) * 2014-06-25 2016-01-06 주식회사 포스코 저온 충격인성이 우수한 초고강도 가스 메탈 아크 용접금속부
CN104120358B (zh) * 2014-07-03 2016-08-17 西南石油大学 一种含微量锡元素、高强度、耐腐蚀和易成型的超低碳钢及其制备方法
US20170275724A1 (en) * 2014-08-25 2017-09-28 Tata Steel Ijmuiden B.V. Cold rolled high strength low alloy steel
CN104213020A (zh) * 2014-09-04 2014-12-17 河北钢铁股份有限公司邯郸分公司 镀锌烘烤硬化钢及其生产方法
KR101630951B1 (ko) * 2014-10-21 2016-06-16 주식회사 포스코 고상 접합성이 우수한 고탄소 열연강판 및 그 제조방법
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
EP3260565B1 (en) 2015-02-20 2019-07-31 Nippon Steel Corporation Hot-rolled steel sheet
CN107208219A (zh) * 2015-02-25 2017-09-26 日立金属株式会社 热作工具及其制造方法
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
PL3263729T3 (pl) 2015-02-25 2020-05-18 Nippon Steel Corporation Blacha stalowa cienka walcowana na gorąco
EP3318652B1 (en) 2015-06-30 2021-05-26 Nippon Steel Corporation High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength galvannealed steel sheet
BR112018000633A2 (ja) * 2015-07-31 2018-09-18 Nippon Steel & Sumitomo Metal Corporation High intensity hot-rolled steel product
CN106811678B (zh) * 2015-12-02 2018-11-06 鞍钢股份有限公司 一种淬火合金化镀锌钢板及其制造方法
CN105483535B (zh) * 2015-12-08 2018-01-30 武汉钢铁有限公司 一种高强度热镀锌双相钢及其制备方法
WO2017098983A1 (ja) 2015-12-11 2017-06-15 新日鐵住金株式会社 成形品の製造方法、及び成形品
CN108603259B (zh) * 2016-02-19 2020-11-06 日本制铁株式会社 在淬火回火后具有高强度且低温韧性优异的钢
WO2017168962A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
KR101776490B1 (ko) * 2016-04-15 2017-09-08 현대자동차주식회사 내식성이 우수한 고강도 스프링강
CN105821331A (zh) * 2016-05-18 2016-08-03 安徽合矿机械股份有限公司 一种刚强度球磨机用研磨体制备方法
KR102109230B1 (ko) * 2016-06-20 2020-05-12 주식회사 포스코 초고강도 가스 메탈 아크 용접금속부
TWI629368B (zh) 2016-08-05 2018-07-11 日商新日鐵住金股份有限公司 Steel plate and plated steel
BR112019000766B8 (pt) * 2016-08-05 2023-03-14 Nippon Steel & Sumitomo Metal Corp Chapa de aço
KR102227256B1 (ko) * 2016-08-05 2021-03-12 닛폰세이테츠 가부시키가이샤 강판 및 도금 강판
KR102205432B1 (ko) 2016-08-05 2021-01-20 닛폰세이테츠 가부시키가이샤 강판 및 도금 강판
EP3613868B1 (en) * 2017-04-21 2021-11-17 Nippon Steel Corporation High strength hot-dip galvanized steel sheet and production method therefor
US10633726B2 (en) * 2017-08-16 2020-04-28 The United States Of America As Represented By The Secretary Of The Army Methods, compositions and structures for advanced design low alloy nitrogen steels
CN110343950A (zh) * 2019-06-27 2019-10-18 刘利军 一种轧碾大口径钛及锆高颈法兰及其锻碾工艺
CN110592471A (zh) * 2019-08-26 2019-12-20 邯郸钢铁集团有限责任公司 1200MPa级冷轧马氏体钢板及其制备方法
RU2726056C1 (ru) * 2019-10-31 2020-07-08 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Листовой прокат, изготовленный из высокопрочной стали
CN111187987A (zh) * 2020-02-26 2020-05-22 攀钢集团攀枝花钢铁研究院有限公司 高成形性极薄规格热轧酸洗板及其制备方法
US20230151466A1 (en) * 2020-03-13 2023-05-18 Tata Steel Ijmuiden B.V. Hot rolled steel strip having improved properties
WO2021187238A1 (ja) * 2020-03-19 2021-09-23 日本製鉄株式会社 鋼板
CN112662953B (zh) * 2020-11-09 2022-03-04 刘祖瑜 一种耐高温抗氧化腐蚀的内胎及含该内胎的铜模及制备
KR102468043B1 (ko) * 2020-11-17 2022-11-17 주식회사 포스코 표면품질 및 크랙 저항성이 우수한 초고강도 아연도금강판 및 이의 제조방법
CN113061813B (zh) * 2021-03-22 2022-02-22 吉林省大维科技发展有限公司 一种采暖散热器用防腐合金钢及其制备方法
CN113549835B (zh) * 2021-07-22 2022-08-09 王军祥 一种高屈服强度、高韧塑性精轧螺纹钢筋及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119804A (ja) * 1998-10-16 2000-04-25 Nippon Steel Corp 深絞り性に優れる熱延鋼板およびその製造方法
JP2000144314A (ja) * 1998-11-02 2000-05-26 Nippon Steel Corp 角筒絞り性に優れる熱延鋼板およびその製造方法
JP2003160836A (ja) * 2001-11-26 2003-06-06 Nippon Steel Corp 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP2007291514A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP2009263718A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010090476A (ja) * 2008-09-11 2010-04-22 Nippon Steel Corp 穴広げ性に優れた高強度熱延鋼板及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217529A (ja) 1985-03-22 1986-09-27 Nippon Steel Corp 延性のすぐれた高強度鋼板の製造方法
JP2601581B2 (ja) 1991-09-03 1997-04-16 新日本製鐵株式会社 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP3976427B2 (ja) 1998-11-30 2007-09-19 東レ株式会社 コネクター兼用モルタル接着補助具
KR100543956B1 (ko) 2000-09-21 2006-01-23 신닛뽄세이테쯔 카부시키카이샤 형상 동결성이 우수한 강판 및 그 제조방법
JP3927384B2 (ja) * 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
CA2462260C (en) * 2001-10-04 2012-02-07 Nippon Steel Corporation High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
JP2003113440A (ja) 2001-10-04 2003-04-18 Nippon Steel Corp 形状凍結性に優れる絞り可能な高強度薄鋼板およびその製造方法
JP4160840B2 (ja) 2003-02-19 2008-10-08 新日本製鐵株式会社 形状凍結性に優れた高加工性高強度熱延鋼板とその製造方法
US6907508B2 (en) 2003-02-26 2005-06-14 Emulex Design & Manufacturing Corporation Structure and method for managing available memory resources
JP4692015B2 (ja) 2004-03-30 2011-06-01 Jfeスチール株式会社 伸びフランジ性と疲労特性に優れた高延性熱延鋼板およびその製造方法
JP4714574B2 (ja) 2005-12-14 2011-06-29 新日本製鐵株式会社 高強度鋼板及びその製造方法
JP5214905B2 (ja) 2007-04-17 2013-06-19 株式会社中山製鋼所 高強度熱延鋼板およびその製造方法
JP5053157B2 (ja) 2007-07-04 2012-10-17 新日本製鐵株式会社 プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びに、それらの製造方法
JP5157375B2 (ja) 2007-11-08 2013-03-06 新日鐵住金株式会社 剛性、深絞り性及び穴拡げ性に優れた高強度冷延鋼板及びその製造方法
JP5217395B2 (ja) 2007-11-30 2013-06-19 Jfeスチール株式会社 伸びの面内異方性が小さい高強度冷延鋼板およびその製造方法
JP4894863B2 (ja) 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101130837B1 (ko) 2008-04-10 2012-03-28 신닛뽄세이테쯔 카부시키카이샤 구멍 확장성과 연성의 균형이 극히 양호하고, 피로 내구성도 우수한 고강도 강판과 아연 도금 강판 및 이 강판들의 제조 방법
JP5206244B2 (ja) 2008-09-02 2013-06-12 新日鐵住金株式会社 冷延鋼板
PL2682492T3 (pl) * 2011-03-04 2017-10-31 Nippon Steel & Sumitomo Metal Corp Blacha stalowa cienka walcowana na gorąco i sposób jej wytwarzania
KR101570593B1 (ko) * 2011-04-21 2015-11-19 신닛테츠스미킨 카부시키카이샤 균일 연신율과 구멍 확장성이 우수한 고강도 냉연 강판 및 그 제조 방법
CN103562428B (zh) * 2011-05-25 2015-11-25 新日铁住金株式会社 冷轧钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119804A (ja) * 1998-10-16 2000-04-25 Nippon Steel Corp 深絞り性に優れる熱延鋼板およびその製造方法
JP2000144314A (ja) * 1998-11-02 2000-05-26 Nippon Steel Corp 角筒絞り性に優れる熱延鋼板およびその製造方法
JP2003160836A (ja) * 2001-11-26 2003-06-06 Nippon Steel Corp 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP2007291514A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP2009263718A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010090476A (ja) * 2008-09-11 2010-04-22 Nippon Steel Corp 穴広げ性に優れた高強度熱延鋼板及びその製造方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121219A1 (ja) * 2011-03-04 2012-09-13 新日本製鐵株式会社 熱延鋼板およびその製造方法
US9267196B2 (en) 2011-03-04 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Method of producing a hot rolled steel sheet
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
US9670569B2 (en) 2011-03-28 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and production method thereof
JP2012219284A (ja) * 2011-04-04 2012-11-12 Nippon Steel Corp 局部変形能に優れた高強度冷延鋼板とその製造方法
JP5454738B2 (ja) * 2011-04-13 2014-03-26 新日鐵住金株式会社 ガス軟窒化用熱延鋼板及びその製造方法
JP5459441B2 (ja) * 2011-04-13 2014-04-02 新日鐵住金株式会社 熱延鋼板及びその製造方法
WO2012141290A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2012141297A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 ガス軟窒化用熱延鋼板及びその製造方法
US9752217B2 (en) 2011-04-13 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method of producing the same
EP2716783A1 (en) * 2011-05-25 2014-04-09 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and process for producing same
US9567658B2 (en) 2011-05-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
US10266928B2 (en) 2011-05-25 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Method for producing a cold-rolled steel sheet
JP5488764B2 (ja) * 2011-05-25 2014-05-14 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP5488763B2 (ja) * 2011-05-25 2014-05-14 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2012161241A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
EP2716783A4 (en) * 2011-05-25 2014-12-24 Nippon Steel & Sumitomo Metal Corp HOT-ROLLED STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
EP2716782A4 (en) * 2011-05-25 2015-06-24 Nippon Steel & Sumitomo Metal Corp COLD-ROLLED STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF
WO2012161248A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 熱延鋼板及びその製造方法
US10167539B2 (en) 2011-05-25 2019-01-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
JP2013117068A (ja) * 2011-11-01 2013-06-13 Jfe Steel Corp 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
US9752216B2 (en) 2011-11-01 2017-09-05 Jfe Steel Corporation High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
WO2013065346A1 (ja) * 2011-11-01 2013-05-10 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2013065298A1 (ja) * 2011-11-01 2013-05-10 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2013103125A1 (ja) * 2012-01-05 2013-07-11 新日鐵住金株式会社 熱延鋼板およびその製造方法
US10087499B2 (en) 2012-01-05 2018-10-02 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
CN104114729A (zh) * 2012-02-13 2014-10-22 新日铁住金株式会社 冷轧钢板、镀敷钢板和它们的制造方法
US10253384B2 (en) 2012-02-13 2019-04-09 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
JP2014122379A (ja) * 2012-12-20 2014-07-03 Nippon Steel & Sumitomo Metal 耐酸性に優れた高強度鋼板及びその製造方法
CN106591699A (zh) * 2016-12-04 2017-04-26 丹阳市宸兴环保设备有限公司 一种车体防锈金属材料
TWI679285B (zh) * 2017-07-07 2019-12-11 日商日本製鐵股份有限公司 熱軋鋼板及其製造方法
US11313009B2 (en) 2017-07-07 2022-04-26 Nippon Steel Corporation Hot-rolled steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
TWI439554B (zh) 2014-06-01
EP2599887A4 (en) 2017-10-11
US9587319B2 (en) 2017-03-07
CN103038383A (zh) 2013-04-10
BR112013001864A2 (pt) 2016-05-31
US20160130711A1 (en) 2016-05-12
US9273370B2 (en) 2016-03-01
MX342629B (es) 2016-10-07
JP5163835B2 (ja) 2013-03-13
EP2599887B1 (en) 2021-12-01
EP2599887A1 (en) 2013-06-05
KR101514157B1 (ko) 2015-04-21
CN103038383B (zh) 2014-12-24
US20130153091A1 (en) 2013-06-20
KR20130021460A (ko) 2013-03-05
MX2013000984A (es) 2013-03-07
CA2806626C (en) 2016-04-05
TW201213558A (en) 2012-04-01
JPWO2012014926A1 (ja) 2013-09-12
CA2806626A1 (en) 2012-02-02
BR112013001864B1 (pt) 2019-07-02

Similar Documents

Publication Publication Date Title
JP5163835B2 (ja) 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
KR101549317B1 (ko) 냉연 강판 및 그 제조 방법
KR101632778B1 (ko) 냉연 강판 및 그 제조 방법
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
US9267196B2 (en) Method of producing a hot rolled steel sheet
KR101264574B1 (ko) 딥 드로잉성이 우수한 고강도 강판의 제조 방법
WO2012141263A1 (ja) 局部変形能に優れた高強度冷延鋼板とその製造方法
WO2013018740A1 (ja) 耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法
JP5712771B2 (ja) 圧延直角方向のヤング率に優れた鋼板及びその製造方法
KR20120023129A (ko) 고강도 강판 및 그 제조 방법
US20220333221A1 (en) Cold-rolled steel sheet and method for producing same
KR102599376B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
JP2019044269A (ja) 高強度冷延薄鋼板
WO2019097600A1 (ja) 高強度冷延鋼板
KR20210092796A (ko) 용융 아연 도금 강판 및 그 제조 방법
JP2002241897A (ja) 降伏強さと破断伸びの変動が小さく高成形性と低降伏比とを有する鋼板およびその製造方法
KR101747584B1 (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5533765B2 (ja) 局部変形能に優れた高強度冷延鋼板とその製造方法
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
JP5454488B2 (ja) 均一変形能及び局部変形能に優れた高強度冷延鋼板
US20240052449A1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036951.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526530

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011812515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2806626

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137001998

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/000984

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13811902

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013001864

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013001864

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130124