WO2013065298A1 - 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法 - Google Patents

曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013065298A1
WO2013065298A1 PCT/JP2012/006975 JP2012006975W WO2013065298A1 WO 2013065298 A1 WO2013065298 A1 WO 2013065298A1 JP 2012006975 W JP2012006975 W JP 2012006975W WO 2013065298 A1 WO2013065298 A1 WO 2013065298A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
steel sheet
rolled steel
temperature
hot
Prior art date
Application number
PCT/JP2012/006975
Other languages
English (en)
French (fr)
Inventor
力 上
山崎 和彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP12846134.0A priority Critical patent/EP2759615B1/en
Priority to KR1020147011951A priority patent/KR20140072180A/ko
Priority to US14/352,880 priority patent/US9752216B2/en
Priority to CA2851325A priority patent/CA2851325C/en
Priority to CN201280054316.8A priority patent/CN103917682B/zh
Publication of WO2013065298A1 publication Critical patent/WO2013065298A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet suitable for a structural member of a construction machine or industrial machine (hereinafter also referred to as a structural member of a construction machine), and more particularly to improvement of bending properties and low-temperature toughness.
  • the “steel plate” includes a steel plate and a steel strip.
  • the “high-strength hot-rolled steel sheet” here refers to a hot-rolled steel sheet having a high strength of yield strength YS: 960 to 1200 MPa.
  • % Is a method of producing a high strength hot rolled steel sheet with good workability and weldability that is hot rolled at a rate of 800% to 500 ° C, cooled at a cooling rate of 800 to 500 ° C at 30 to 80 ° C / s, and wound at 500 ° C or less. Proposed. According to the technique described in Patent Document 1, a high-strength hot-rolled steel sheet having a yield point of 890 MPa or more and a tensile strength of 950 MPa or more and excellent in bending workability and weldability can be accurately manufactured.
  • Patent Document 2 by mass, C: 0.05 to 0.20%, Si: 0.60% or less, Mn: 0.10 to 2.50%, solAl: 0.004 to 0.10%, Ti: 0.04 to 0.30%, B: 0.0005 to A steel slab containing 0.0015% is heated at a temperature increase rate of 150 ° C / h or more from at least 1100 ° C to a heating temperature of TiC solution temperature to 1400 ° C, and the holding time at the heating temperature is increased.
  • a method for producing a high-strength hot-rolled steel sheet that is 5 to 30 min and then hot-rolled.
  • Patent Document 3 by mass, C: 0.05 to 0.15%, Si: 1.50% or less, Mn: 0.70 to 2.50%, Ni: 0.25 to 1.5%, Ti: 0.12 to 0.30%, B: 0.0005 to A steel slab containing 0.0015% and containing P, S, Al, and N adjusted to the proper amount is heated to 1250 ° C or higher, and hot rolled at a final finish reduction of 80% or higher from the Ar3 transformation point to 950 ° C. Then, it is cooled in the range of 800 to 200 ° C at a cooling rate of 20 ° C / s or more and less than 30 ° C / s.
  • Patent Document 4 C: 0.05 to 0.20%, Si: 0.05 to 0.50%, Mn: 1.0 to 3.5%, P: 0.05% or less, S: 0.01% or less, Nb: 0.005 to 0.30%, Ti: A steel slab having a composition containing 0.001 to 0.100%, Cr: 0.01 to 1.0%, Al: 0.1% or less, and containing Si, P, Cr, Ti, Nb, Mn so as to satisfy a specific relationship.
  • the main structure is bainite having a volume fraction of 60 to less than 90%
  • the second phase is at least one of pearlite, ferrite, retained austenite, and martensite, and bainite.
  • Patent Document 5 C: 0.10 to 0.25%, Si: 1.5% or less, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0.005% or less, Al: 0.01 to 0.5%, N: 0.010 %, V: 0.10 to 1.0%, and a steel slab with a composition containing (10Mn + V) / C satisfying 50 or more is ripened to 1000 ° C or more, and then converted into a sheet bar by rough rolling, and then finished.
  • the average cooling rate at a cooling rate of 20 ° C / s or more, in the temperature range of 400-600 ° C
  • a method for producing a high-strength hot-rolled steel sheet is described that is cooled to Ta ° C. satisfying 11000 ⁇ 3000 [% V] ⁇ 24 ⁇ Ta ⁇ 15000 ⁇ 1000 [% V].
  • the present invention provides a high-strength hot-rolled steel sheet that solves the above-described problems of the prior art and is suitable for a structural member of a large-scale construction machine, and has high toughness and excellent bending characteristics, and a method for producing the same.
  • the term “high strength” as used herein refers to the case where the yield strength is YS: 960 MPa or more.
  • the term “high toughness” refers to the case where the vE ⁇ 40 has a toughness of 30 J or more, preferably 40 J or more.
  • “Excellent bending properties” means that the bending radius is (3.0 ⁇ plate thickness) or less and bending at 180 degrees is possible.
  • the hot-rolled steel sheet targeted by the present invention is a hot-rolled steel sheet having a thickness of 3 mm or more and 12 mm or less.
  • the present inventors diligently studied various factors affecting the toughness and ductility of a hot-rolled steel sheet having a high strength of yield strength YS: 960 MPa or more.
  • the average grain size of old austenite ( ⁇ ) grains in the section parallel to the rolling direction is 20 ⁇ m or less, and the average grain size of old ⁇ grains in the section perpendicular to the rolling direction, with paynite or tempered martensite as the main phase. It has been found that by using a structure having a diameter of 15 ⁇ m or less, excellent toughness and excellent bending characteristics can be ensured despite having high yield strength YS: 960 MPa or more.
  • the ratio of the average length of the old ⁇ grains in the direction perpendicular to the rolling direction to the average length in the rolling direction (the average length of the old ⁇ grains in the rolling direction). ) / (Average length in the direction perpendicular to the rolling direction of the old ⁇ grains) is preferably 10 or less, and the X-ray surface strength ⁇ 223 ⁇ ⁇ 252> ( ⁇ 223 ⁇ ⁇ 252> It has also been found that it is preferable to have a structure in which the ratio of the X-ray diffraction intensity to the random sample of the orientation is 5.0 or less.
  • a steel material having a predetermined composition is subjected to a heating step of heating the steel material, and the heated steel material is subjected to hot rolling including rough rolling and finish rolling.
  • a sheet obtained by rough rolling as the finish rolling, with the heating step being a step of heating to a temperature of 1100 to 1250 ° C when the hot rolling step, the cooling step, and the winding step are sequentially performed to form a hot rolled steel sheet.
  • This is a hot rolling process in which the bar is rolled so that the value obtained by dividing the cumulative reduction ratio in the partially recrystallized austenite area and the non-recrystallized austenite area by the cumulative reduction ratio in the recrystallized austenite area is 0 to 0.2.
  • cooling starts immediately, with an average cooling rate in the temperature range of 750 ° C to 500 ° C, at a cooling rate that is higher than the martensite critical cooling rate, within 30s from the start of cooling, Ms point + 150 ° C or less
  • To the cooling stop temperature of The process is held for 5 to 60 s in the cooling stop temperature ⁇ 100 ° C temperature range, and the winding process is combined with the coiling process in which the winding temperature is in the range of the cooling stop temperature ⁇ 100 ° C. And found that it is important to apply.
  • the present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
  • Nb 0.001 to 0.05%
  • Ti 0.001 to 0.05%
  • Mo 0.001 to 1.0%
  • Cr 0.01 to 1.0%
  • V 0.001 to 0.10%
  • Cu The high strength hot-rolled steel sheet according to any one of (1) to (4), comprising at least one selected from the group consisting of: 0.01 to 0.50%, Ni: 0.01 to 0.50%.
  • a heating process for heating the steel material a hot rolling process for subjecting the heated steel material to hot rolling comprising rough rolling and finish rolling, a cooling process, and a winding process.
  • the steel material is in mass%, C: 0.08 to 0.25%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.1%, P: 0.025% or less, S: 0.005%
  • the following is a steel material containing Al: 0.005 to 0.10%, the balance being Fe and inevitable impurities
  • the heating step is a step of heating to a temperature of 1100 to 1250 ° C., in the hot rolling step
  • the rough rolling is rolling using the steel material heated in the heating step as a sheet bar, and the finish rolling in the hot rolling step is performed on the sheet bar in a partially recrystallized austenite region and an unrecrystallized austenite region.
  • the cooling value is 0 to 0.2, and the cooling process starts cooling immediately after the finish rolling, and the average cooling rate equal to or higher than the martensite formation critical cooling rate in the temperature range of 750 ° C to 500 ° C.
  • the cooling process is performed by cooling to a cooling stop temperature of (Ms transformation point + 150 ° C.) or less within 30 s from the start of the cooling, and after the cooling process is stopped, the cooling stop temperature ⁇ 100 ° C.
  • a holding process for holding for 5 to 60 seconds in a temperature range, and the winding process is a coiling process at a winding temperature in the range of (cooling stop temperature ⁇ 100 ° C.).
  • the yield strength YS high strength of 960 MPa or more and the high toughness of Charpy impact test absorbed energy at -40 ° C is 30 J or more, and the hot-rolled steel plate with excellent bending properties is stabilized.
  • the hot-rolled steel sheet according to the present invention is a hot-rolled steel sheet having a thickness of 3 mm or more and 12 mm or less, and is suitable for a structural member of a large construction machine or industrial machine. There is also an effect that can greatly contribute to the reduction of the weight of the car body.
  • C 0.08-0.25%
  • C is an element having an action of increasing the strength of steel, and in the present invention, it is necessary to contain 0.08% or more in order to ensure a desired high strength.
  • an excessive content exceeding 0.25% reduces the weldability and the base metal toughness. For this reason, C is limited to the range of 0.08 to 0.25%. Note that the content is preferably 0.10 to 0.20%.
  • Si 0.01-1.0%
  • Si has an action of increasing the strength of steel through solid solution strengthening and improvement of hardenability. Such an effect is recognized when the content is 0.01% or more.
  • a large amount of Si exceeding 1.0% concentrates C in the ⁇ phase, promotes the stabilization of the ⁇ phase and lowers the strength, forms an oxide containing Si in the weld, and improves the quality of the weld. Reduce. Therefore, in the present invention, Si is limited to the range of 0.01 to 1.0%. From the viewpoint of suppressing the formation of the ⁇ phase, Si is preferably 0.8% or less.
  • Mn 0.8-2.1%
  • Mn has the effect of increasing the strength of the steel sheet through improving hardenability. Further, Mn forms MnS and fixes S, thereby preventing segregation of S grain boundaries and suppressing slab (steel material) cracking. In order to acquire such an effect, 0.8% or more needs to be contained.
  • the content exceeds 2.1%, solidification segregation during slab casting is promoted, the Mn-concentrated portion remains in the steel sheet, and the occurrence of separation increases.
  • Mn is limited to the range of 0.8 to 2.1%.
  • the content is preferably 0.9 to 2.0%. Further, from the viewpoint of preventing delayed fracture, Mn is more preferably 1.3% or less.
  • P 0.025% or less
  • P is inevitably contained as an impurity in steel, but has an effect of increasing the strength of steel.
  • the content exceeds 0.025%, weldability deteriorates.
  • P was limited to 0.025% or less.
  • Preferably it is 0.015% or less.
  • S 0.005% or less S is inevitably contained as an impurity in steel, as in P, but if it exceeds 0.005% and excessively contained, it causes slab cracking and coarse MnS in hot-rolled steel sheets. To cause a decrease in ductility. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.004% or less.
  • Al 0.005-0.10%
  • Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.005% or more.
  • the content exceeding 0.10% significantly impairs the cleanliness of the weld.
  • Al was limited to 0.005 to 0.10%.
  • the above-mentioned components are basic components.
  • B 0.0001 to 0.0050% and / or Nb: 0.001 to 0.05%
  • Ti 0.001 to One or more of 0.05%
  • Mo 0.001 to 1.0%
  • Cr 0.01 to 1.0%
  • V 0.001 to 0.10%
  • Cu 0.01 to 0.50%
  • Ni 0.01 to 0.50%
  • Ca 0.0005 to 0.005%
  • B 0.0001-0.0050%
  • B is an element that segregates at the ⁇ grain boundary and has the effect of remarkably improving the hardenability when contained in a small amount, and can be contained as necessary to ensure a desired high strength. In order to acquire such an effect, it is desirable to contain 0.0001% or more. On the other hand, even if the content exceeds 0.0050%, the effect is saturated, and therefore an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when contained, B is preferably limited to a range of 0.0001 to 0.0050%. More preferably, it is 0.0005 to 0.0030%.
  • Nb 0.001 to 0.05%
  • Ti 0.001 to 0.05%
  • Mo 0.001 to 1.0%
  • Cr 0.01 to 1.0%
  • V 0.001 to 0.10%
  • Cu 0.01 to 0.50%
  • Ni 0.01 to 0.50%
  • Nb, Ti, Mo, Cr, V, Cu, and Ni are all elements that have an action of increasing the strength, and can be selected as necessary to contain one or more.
  • Nb 0.001 to 0.05%
  • Nb has the effect of increasing the strength of a hot-rolled steel sheet with a small content and suppressing the coarsening of austenite grains and recrystallization without degrading weldability by fine precipitation as carbonitride. It is an element having an austenite non-recrystallization temperature range in hot finish rolling. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, an excessive content exceeding 0.05% results in an increase in rolling load during hot finish rolling, which may make hot rolling difficult. Therefore, when contained, Nb is preferably limited to a range of 0.001 to 0.05%. More preferably, it is 0.005 to 0.04%.
  • Ti 0.001 to 0.05% Ti finely precipitates as carbide to increase the strength of the steel sheet, and also has the action of forming nitrides and fixing N to prevent slab (steel material) cracking. Such an effect becomes remarkable when the content is 0.001% or more. However, when the content exceeds 0.05%, the yield point is remarkably increased due to precipitation strengthening, and the toughness is decreased. Moreover, high temperature heating exceeding 1250 ° C. is required for solutionizing Ti carbonitride, leading to coarsening of old ⁇ grains, making it difficult to adjust the desired aspect ratio of old ⁇ grains. For this reason, when Ti is contained, Ti is preferably limited to a range of 0.001 to 0.05%. More preferably, it is 0.005 to 0.035%.
  • Mo 0.001 to 1.0%
  • Mo is an element that has the effect of improving hardenability and forming carbonitride to increase the strength of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, a large content exceeding 1.0% reduces weldability. Therefore, when contained, Mo is preferably limited to 0.001 to 1.0%. More preferably, it is 0.05 to 0.8%.
  • Cr 0.01-1.0% Cr is an element that has the effect of improving hardenability and increasing the strength of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, excessive content exceeding 1.0% reduces weldability. Therefore, when it is contained, Cr is preferably limited to 0.01 to 1.0%. More preferably, the content is 0.1 to 0.8%.
  • V 0.001 to 0.10%
  • V is a primary rope that contributes to the increase in strength of the steel sheet by solid solution and solid solution strengthening in steel, and precipitates as carbide, nitride, or carbonitride, and contributes to increase in strength by precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, the content exceeding 0.05% lowers toughness. Therefore, when contained, V is preferably limited to a range of 0.001 to 0.05%.
  • Cu 0.01-0.50%
  • Cu is an element that dissolves in steel and contributes to an increase in strength and improves corrosion resistance. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, the content exceeding 0.50% deteriorates the surface properties of the steel sheet. Therefore, when contained, Cu is preferably limited to a range of 0.01 to 0.50%.
  • Ni 0.01-0.50%
  • Ni is an element that dissolves in steel and contributes to an increase in strength and improves toughness. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, a large amount of Ni exceeding 0.50% causes a rise in material costs. Therefore, when Ni is contained, Ni is preferably limited to a range of 0.01 to 0.50%.
  • Ca 0.0005 to 0.005%
  • Ca has the action of fixing S as CaS, spheroidizing sulfide inclusions and controlling the morphology of the inclusions, further reducing the lattice strain of the matrix surrounding the inclusions, and the ability to trap hydrogen It is an element which has the effect
  • the balance other than the above components is Fe and inevitable impurities.
  • Inevitable impurities include N: 0.005% or less, O: 0.005% or less, Mg: 0.003% or less, and Sn: 0.005% or less.
  • N is inevitably contained in steel, but excessive inclusion frequently causes cracking during casting of steel material (slab). For this reason, it is desirable to limit N to 0.005% or less. More preferably, it is 0.004% or less.
  • O exists as various oxides in steel, and causes hot workability, corrosion resistance, toughness and the like to decrease. For this reason, it is desirable to reduce as much as possible in the present invention, but it is acceptable up to 0.005%. In addition, since extreme reduction leads to an increase in refining costs, it is desirable to reduce O to 0.005% or less.
  • Mg like Ca, forms oxides and sulfides and has the effect of suppressing the formation of coarse MnS, but if it exceeds 0.003%, Mg oxide and Mg sulfide clusters occur frequently, and toughness Cause a decline. For this reason, it is desirable to reduce Mg to 0.003% or less.
  • Sn is mixed from scraps used as steelmaking raw materials.
  • Sn is an element that easily segregates at grain boundaries and the like, and if it is contained in a large amount exceeding 0.005%, the grain boundary strength is lowered and the toughness is lowered. For this reason, it is desirable to reduce Sn to 0.005% or less.
  • the hot-rolled steel sheet of the present invention has the above-described composition, and further has a bainite phase or a tempered martensite phase, or a mixed phase of a bainite phase and a tempered martensite phase as a main phase.
  • “bainite” here refers to low-temperature transformation bainite.
  • the “main phase” as used herein refers to a case where the volume is 90% or more, preferably 95% or more by volume. By using these as the main phase, desired high strength can be ensured.
  • the second phase other than the main phase is a ferrite phase or a pearlite phase. When the structure fraction of the second phase is increased, the strength is lowered and a desired high strength cannot be ensured. For this reason, the second phase is preferably 10% or less by volume. Needless to say, there may be a mixed structure of a bainite phase that is not the main phase and a tempered martensite phase other than the second phase.
  • the hot-rolled steel sheet of the present invention has a bainite phase or a tempered martensite phase as a main phase, or a structure in which they are mixed, and the average grain size of old ⁇ grains in a cross section parallel to the rolling direction is 20 ⁇ m or less, and It has a structure in which the average grain size of old ⁇ grains in a cross section perpendicular to the rolling direction is 15 ⁇ m or less.
  • the absorbed energy vE- 40 at a Charpy impact test temperature: -40 ° C can be secured at 30 J or more, and a hot rolled steel sheet having high toughness and excellent bending properties can be obtained.
  • the average particle size of the prior ⁇ grains is preferably 18 ⁇ m or less in the L direction cross section and 13 ⁇ m or less in the C direction cross section.
  • the ratio of the average length in the direction perpendicular to the rolling direction of the old ⁇ grain to the average length in the rolling direction of the old ⁇ grain (average length of the old ⁇ grain in the rolling direction) / (Average length in the direction orthogonal to the rolling direction of the old ⁇ grains) is preferably a structure having 10 or less.
  • a bending characteristic further improves. If (average length in the rolling direction of the old ⁇ grains) / (average length in the direction perpendicular to the rolling direction of the old ⁇ grains) exceeds 10, and the anisotropy becomes strong, the bending characteristics deteriorate.
  • it is 7 or less.
  • the average length of the old ⁇ grains is the length of the old ⁇ grains in the rolling direction and the length in the direction perpendicular to the rolling direction by image processing using the photographed microstructure photograph. Are respectively measured and arithmetically averaged to obtain each average length.
  • the hot-rolled steel sheet of the present invention has an X-ray surface intensity ⁇ 223 ⁇ ⁇ 252> (ratio of X-ray diffraction intensity with respect to a random sample with ⁇ 223 ⁇ ⁇ 252> orientation) of 5.0 or less.
  • X-ray surface intensity ⁇ 223 ⁇ ⁇ 252> ratio of X-ray diffraction intensity with respect to a random sample with ⁇ 223 ⁇ ⁇ 252> orientation
  • the surface strength of ⁇ 223 ⁇ ⁇ 252> of the steel sheet is 5.0 or less.
  • the X-ray surface strength of ⁇ 223 ⁇ ⁇ 252> of the steel sheet is determined by conducting a texture analysis (ODF) with X-rays at a position of a quarter layer from the thickness surface.
  • ODF texture analysis
  • a steel material having the above-described composition a heating process for heating the steel material, a hot rolling process for subjecting the heated steel material to hot rolling comprising rough rolling and finish rolling, a cooling process, and a winding process.
  • the process is sequentially performed to obtain a hot rolled sheet (steel sheet).
  • the manufacturing method of the steel material is not particularly limited, but the molten steel having the above composition is melted by a conventional melting method such as a converter, and a slab or the like is used by a conventional casting method such as a continuous casting method. It is preferable to use a steel material.
  • the heating process is performed on the obtained steel material.
  • the steel material is heated to a temperature of 1100 to 1250 ° C.
  • the heating temperature is less than 1100 ° C.
  • the deformation resistance is high
  • the rolling load increases
  • the load on the rolling mill becomes excessive.
  • the heating temperature is higher than 1250 ° C.
  • the crystal grains are coarsened and the low temperature toughness is lowered, the amount of scale generation is increased, and the yield is lowered.
  • the heating temperature of the steel material is preferably 1100 to 1250 ° C.
  • the temperature is more preferably 1240 ° C or lower.
  • a hot rolling process is performed by roughly rolling the heated steel material to form a sheet bar, and further subjecting the sheet bar to finish rolling to form a hot rolled sheet.
  • the rough rolling is not particularly limited as long as the steel material can be a sheet bar having a desired dimension and shape. Since the sheet bar thickness affects the temperature drop amount in the finish rolling mill, the sheet bar thickness is considered in consideration of the temperature drop amount in the finish rolling mill and the difference between the finish rolling start temperature and the finish rolling end temperature. Is preferably selected. In a hot-rolled steel sheet having a thickness of about 3 mm to 12 mm, which is the subject of the present invention, the sheet bar thickness is preferably 30 to 45 mm.
  • the sheet bar is obtained by dividing the cumulative reduction rate in the partially recrystallized austenite region and the non-recrystallized austenite region by the cumulative reduction rate in the recrystallized austenite region (hereinafter referred to as the cumulative reduction rate ratio). Rolling) to be 0.2 or less (including 0).
  • the cumulative rolling reduction ratio exceeds 0.2
  • the old ⁇ grains are elongated in the rolling direction
  • the average grain size of the old ⁇ grains in the cross section parallel to the rolling direction is 20 ⁇ m or less
  • the old ⁇ in the cross section perpendicular to the rolling direction It becomes impossible to secure a structure having an average grain size of 15 ⁇ m or less.
  • (average length in the rolling direction of the prior ⁇ grains) / (average length in the direction perpendicular to the rolling direction of the prior austenite grains) exceeds 10, and further, the X-ray plane of the portion in the 1/4 layer from the plate thickness surface
  • the strength ⁇ 223 ⁇ ⁇ 252> exceeds 5, and the bending properties and toughness deteriorate. For this reason, it is preferable to limit the partial recrystallization / non-recrystallization region cumulative reduction ratio in the finish rolling to 0.2 or less. In addition, More preferably, it is 0.15 or less.
  • the finish rolling entry (starting) temperature is in the range of 900 to 1050 ° C.
  • the side (end) temperature is preferably in the range of 800 to 950 ° C.
  • the difference ⁇ T between the entrance side (start) temperature and the exit side (end) temperature of finish rolling is preferably 200 ° C. or less.
  • ⁇ T is greater than 200 ° C., the finish rolling finish temperature is lowered, making it impossible to ensure the desired prior ⁇ grain size.
  • the surface temperature is used as the temperature in finish rolling.
  • Finish rolling in the hot rolling process is usually tandem rolling, the time between passes is short, the non-recrystallized ⁇ region including the partially recrystallized ⁇ region is shifted to the high temperature side, and when the product plate thickness is thin, The amount of temperature drop in the finishing mill tends to increase. For this reason, in order to satisfy the above-mentioned finish rolling conditions in a well-balanced manner, an appropriate sheet bar thickness is selected, and a plate thickness schedule management (rolling schedule) for finish rolling is optimized, and a scale breaker, strip coolant, etc. It is preferable to use and adjust the temperature drop amount in the finishing mill.
  • a cooling process is performed with a cooling device installed on the hot run table.
  • cooling is preferably started within 5 s. If the residence time until the start of cooling becomes long, the martensite formation critical time may be exceeded, and the growth of ⁇ grains proceeds, and the block sizes of the tempered martensite phase and bainite phase become nonuniform.
  • a cooling process is performed in the center of the plate thickness at a cooling rate equal to or higher than the martensite generation critical cooling rate to a cooling stop temperature of (Ms point + 150 ° C.) or less within 30 s from the start of cooling.
  • the cooling rate is an average cooling rate in the temperature range of 750 to 500 ° C.
  • Ms point a value calculated using the following equation is used. Of the elements shown in the formula, those not contained are calculated as zero.
  • the cooling process is preferably started while the temperature at the center of the plate thickness is 750 ° C. or higher.
  • ferrite polygonal ferrite
  • pearlite that transforms at a high temperature
  • the cooling rate is less than the martensite formation critical cooling rate, it becomes impossible to secure a desired structure in which the tempered martensite phase or bainite phase (low temperature transformation bainite phase) is the main phase or a mixture thereof.
  • the upper limit of a cooling rate is determined depending on the capability of the cooling device to be used, it is preferable to set it as the cooling rate without the deterioration of steel plate shapes, such as curvature.
  • a more preferable cooling rate is 25 ° C./s or more.
  • the martensite formation critical cooling rate is approximately 22 ° C./s.
  • the cooling stop temperature exceeds (Ms point + 150 ° C.)
  • a preferable cooling stop temperature is (Ms point ⁇ 200 ° C.) to (Ms point + 100 ° C.).
  • the structural fraction of the second phase (ferrite, pearlite) other than the martensite phase and the bainite phase increases. In some cases, the martensitic transformation and the bainite transformation, which are transformations at a low temperature, cannot sufficiently proceed, and a desired structure cannot be secured.
  • a holding process is performed for 5 to 60 seconds in the temperature range of (cooling stop temperature ⁇ 100 ° C.).
  • the generated martensite phase and bainite phase (low temperature transformation bainite phase) are tempered, and fine cementite is precipitated in the lath.
  • strength yield strength
  • toughness improves.
  • the holding temperature is lower than (cooling stop temperature ⁇ 100 ° C.), the desired tempering effect may not be expected.
  • the holding temperature exceeds (cooling stop temperature + 100 ° C.) the tempering effect becomes excessive, and cementite may become coarse, and desired toughness and delayed fracture resistance may not be ensured.
  • the holding time of the holding treatment is less than 5 s, a sufficient holding treatment effect, that is, a desired tempering effect cannot be expected. On the other hand, if it exceeds 60 s, the tempering effect in the winding process is reduced and the productivity is lowered.
  • holding in the temperature range of (cooling stop temperature ⁇ 100 ° C) uses martensite transformation heat generation on the hot run table and refers to the surface thermometer installed at multiple locations on the hot run table, and the water cooling bank It can also be carried out by adjusting the amount of water or the water pressure.
  • a winding process is performed in which the coil is wound in a coil shape at a winding temperature in the range of (cooling stop temperature ⁇ 100 ° C.).
  • the coil is wound into a coil shape, and the hot-rolled steel sheet is subjected to predetermined tempering. If the winding temperature is out of the range of (cooling stop temperature ⁇ 100 ° C.), the desired tempering effect in the winding process cannot be secured.
  • the heating process and the hot rolling process shown in Table 2 were performed, and after the hot rolling, Then, a cooling process for performing the holding treatment shown in Table 2 and a winding process for winding at a winding temperature shown in Table 2 were sequentially applied to obtain a hot-rolled steel sheet (steel strip) having a thickness shown in Table 2. .
  • Specimens were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and impact test.
  • the test method was as follows.
  • Microstructure observation A specimen for microstructural observation was collected from the obtained hot-rolled steel sheet, and a cross section parallel to the rolling direction (L direction cross section) and a cross section perpendicular to the rolling direction (C direction cross section) were polished. Corrosion occurred so that grain boundaries appeared, and the structure was observed with an optical microscope (magnification: 500 times).
  • the observation position was a position in the thickness direction 1 / 4t. Further, at least two fields of view are observed at each observation position, imaged, and an image analyzer is used to measure the grain size of each prior austenite grain in a cross section parallel to the rolling direction and a cross section orthogonal to the rolling direction. On average, the average grain diameter DL of the prior austenite grains in the cross section parallel to the rolling direction and the average grain diameter DC of the prior austenite grains in the cross section orthogonal to the rolling direction were calculated.
  • the cross section in the C direction of the test specimen for structure observation was polished, subjected to nital corrosion, and in a thickness direction, the scanning electron microscope (magnification: 2000) was used at three or more locations in the region of 1/4 of the thickness from the surface.
  • the tissue was observed and imaged, and the type of tissue and the tissue fraction (volume ratio) of each phase were measured using an image analyzer.
  • test piece for X-ray measurement was collected by grinding the obtained hot-rolled steel sheet in the ND direction, from the thickness surface to a 1/4 layer position.
  • the obtained X-ray measurement specimen was subjected to chemical polishing to remove the processing strain, and then subjected to texture analysis (ODF) by X-ray.
  • ODF texture analysis
  • the direction (C direction) perpendicular to the rolling direction is the longitudinal direction from the center of the plate thickness at a predetermined position (coil longitudinal direction end, position in the width direction 1/4) of the hot rolled steel sheet obtained by the impact test.
  • a V-notch test piece was collected so that a Charpy impact test was conducted in accordance with the provisions of JIS Z 2242, and an absorbed energy vE ⁇ 40 (J) at a test temperature of ⁇ 40 ° C. was obtained.
  • the number of specimens was three, and the arithmetic average of the obtained absorbed energy values was obtained to obtain the absorbed energy value vE ⁇ 40 (J) of the steel sheet.
  • the measured values at the subsize are shown.
  • the yield strength YS high strength of 960 MPa or more, high toughness of vE- 40 of 30 J or more, and the minimum bending radius at which cracks do not occur is (3.0 ⁇ plate thickness) or less. It is a high-strength hot-rolled steel sheet with excellent bending properties.
  • the yield strength YS is less than 960 MPa, vE- 40 is less than 30 J, or the minimum bending radius at which cracking does not occur exceeds (3.0 ⁇ plate thickness).
  • it is a hot-rolled steel sheet that cannot satisfy desired high strength and toughness, and further desired excellent bending characteristics.

Abstract

大型建産機の構造部材用として好適な、高強度熱延鋼板を提供する。C:0.08~0.25%、Si:0.01~1.0%、Mn:0.8~2.1%、P、S、Alを適正範囲に調整した組成の鋼素材を、1100~1250℃の温度に加熱し、粗圧延を行い、部分再結晶γ域および未再結晶γ域での累積圧下率を再結晶γ域での累積圧下率で除した値が0~0.2とする仕上圧延を施し、仕上圧延終了後、直ちに冷却を開始し、750℃~500℃の温度範囲の平均冷却速度でマルテンサイト生成臨界冷却速度以上の冷却速度で、冷却開始から30s以内に、Ms点+150℃以下の冷却停止温度まで冷却し、該冷却停止温度±100℃の温度範囲で5~60s保持し、前記冷却停止温度±100℃の範囲の巻取温度で、コイル状に巻き取る。これにより、焼戻マルテンサイト相または低温変態ベイナイト相を主相とし、圧延方向に平行な断面における旧γ粒の平均粒径が20μm以下で、圧延方向に直交する断面における旧γ粒の平均粒径が15μm以下である組織を有し、降伏強さYS:960MPa以上の高強度と高靭性、さらに優れた曲げ特性を兼備する熱延鋼板となる。

Description

曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
 本発明は、建設用機械や産業用機械の構造部材(以下、建産機の構造部材ともいう)用として好適な、高強度熱延鋼板に係り、とくに、曲げ特性および低温靭性の向上に関する。なお、ここでいう「鋼板」とは、鋼板、鋼帯を含むものとする。また、ここでいう「高強度熱延鋼板」とは、降伏強さYS:960~1200MPa級の高強度を有する熱延鋼板をいうものとする。
 近年、建築物の高層化に伴って、建築物の建設に使用するクレーンやトラック等の建設用機械も大型化されている。また、産業用機械も大型化する傾向にある。このため、これら機械の自重を軽くすることが必要とされ、これらの大型建産機の構造部材用として、降伏強さYS:960MPa以上の高強度を有する薄鋼板が要望されている。
 このような要望に対し、例えば、特許文献1には、質量%でC:0.05~0.15%、Si:1.50%以下、Mn:0.70~2.50%、Ni:0.25~1.5%、Ti:0.12~0.30%、B:0.0005~0.0015%を含み、さらにP、S、Al、Nを適正量に調整して含む鋼スラブを、1250℃以上に加熱し、Ar3変態点~950℃で全仕上圧下率80%以上で熱間圧延し、800~500℃の範囲の冷却速度を30~80℃/sで冷却し500℃以下で巻取る、加工性および溶接性のよい高強度熱延鋼板の製造方法が提案されている。特許文献1に記載された技術によれば、降伏点890MPa以上、引張強さ950MPa以上を有し、曲げ加工性、溶接性に優れた高強度熱延鋼板を的確に製造できるとしている。
 また、特許文献2には、質量%で、C:0.05~0.20%、Si:0.60%以下、Mn:0.10~2.50%、solAl:0.004~0.10%、Ti:0.04~0.30%、B:0.0005~0.0015%を含む鋼スラブを、少なくとも1100℃から、TiCの溶体化温度以上1400℃以下の加熱温度までの温度領域を150℃/h以上の昇温速度で加熱し、加熱温度での保定時間を5~30minとし、その後熱間圧延する、高強度熱延鋼板の製造方法が提案されている。特許文献2に記載された技術では、微量のTiを析出硬化元素とし、微量の固溶Bをオーステナイト(γ)安定化元素として利用し、冷却時の変態温度を低下させ、変態後のフェライト組織を微細化することにより、引張強さ1020MPa程度の高強度と破面選移温度vTrs:-70℃程度の高靭性とを有する熱延鋼板が得られるとしている。
 また、特許文献3には、質量%で、C:0.05~0.15%、Si:1.50%以下、Mn:0.70~2.50%、Ni:0.25~1.5%、Ti:0.12~0.30%、B:0.0005~0.0015%を含み、さらにP、S、Al、Nを適正量に調整して含む鋼スラブを、1250℃以上に加熱し、Ar3変態点~950℃で全仕上圧下率80%以上で熱間圧延し、800~200℃の範囲を冷却速度を20℃/s以上30℃/s未満で冷却し、200℃以下で巻取り、0.2~5.0%の加工歪を付与し、100~400℃の範囲の温度で適正時間保持する加工熱処理を施し、曲げ加工性、溶接性に優れた高強度熟延鋼板の製造方法が提案されている。特許文献3に記載された技術によれば、降伏点890MPa以上、引張強さ950MPa以上の高強度熱延鋼板を容易に製造できるとしている。
 また、特許文献4には、C:0.05~0.20%、Si:0.05~0.50%、Mn:1.0~3.5%、P:0.05%以下、S:0.01%以下、Nb:0.005~0.30%、Ti:0.001~0.100%、Cr:0.01~1.0%、Al:0.1%以下を含有する組成からなり、かつSi、P、Cr、Ti、Nb、Mnが特定の関係を満足するように含有する鋼スラブを鋳造後、直ちに又は一旦冷却し、1100~1300℃に加熱したのち、仕上げ圧延終了温度950~800℃にて熱問圧延し、圧延終了後0.5秒以内に冷却を開始して、30℃/s以上の冷却速度で冷却を行い、500~300℃で巻取る、加工性に優れた超高強度熱延鋼板の製造方法が記載されている。これにより、金属組織が体積分率で60~90%未満のベイナイトを主相とし、パーライト、フェライト、残留オーステナイト、マルテンサイトのうちの少なくとも1種を第2相とする組織を有し、しかもベイナイト相の平均粒径が4μm未満である、引張強さが980MPa以上でありながら、伸びフランジ成形性と強度延性バランスがともに優れ、かつ低降伏比をも具えた、加工性に優れた超高強度熱延鋼板が得られるとしている。
 また、特許文献5には、C:0.10~0.25%、Si:1.5%以下、Mn:1.0~3.0%、P:0.10%以下、S:0.005%以下、Al:0.01~0.5%、N:0.010%以下、V:0.10~1.0%を含み、(10Mn+V)/Cが50以上を満足するように含有する組成の鋼スラブを、1000℃以上に加熟後、粗圧延によリシートバーとし、ついで仕上げ圧延出側温度:800℃以上の条件で仕上げ圧延を施したのち、仕上げ圧延完了後3秒以内に、平均冷却速度:20℃/s以上の冷却速度で、400~600℃の温度範囲で、かつ11000-3000[%V]≦24×Ta≦15000-1000[%V] を満足するTa℃まで冷却して巻取る、高強度熱延綱板の製造方法が記載されている。これにより、焼戻しマルテンサイト相の体積率が80%以上で、粒径:20nm以下のVを含む炭化物が1000個/μm以上析出し、かつ該粒径:20nm以下のVを含む炭化物の平均粒径が10nm以下である組織を有し、引張強さが980MPa以上で、強度一延性バランスに優れた高強度熱延鋼板が得られるとしている。
特開平05-230529号公報 特開平05-345917号公報 特開平07-138638号公報 特開2000-282175号公報 特開2006-183141号公報
しかしながら、特許文献1~5に記載された技術では、所望の形状を安定して確保できにくいうえ、降伏強さYS:960MPa以上の、960MPa級~1100MPa級の高強度と、かつシャルピー衝撃試験の試験温度:-40℃における吸収エネルギーvE-40:40J以上の高靭性とを兼備した熱延鋼板を安定して容易に製造することが難しいという問題があった。
 本発明は、上記した従来技術の問題を解決し、大型建産機の構造部材用として好適な、高靭性で、かつ曲げ特性に優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。ここで言う「高強度」とは、降伏強さYS:960MPa以上である場合をいい、「高靭性」とは、vE-40が30J以上、好ましくは40J以上の靭性を有する場合をいい、「曲げ特性に優れた」とは、曲げ半径が(3.0×板厚)以下で、かつ180度曲げが可能な場合をいうものとする。また、本発明が目的とする熱延鋼板は、板厚が3mm以上12mm以下である熱延鋼板とする。
本発明者らは、上記した目的を達成するために、降伏強さYS:960MPa以上の高強度を有する熱延鋼板の靭性、延性に及ぼす各種要因について、鋭意研究した。その結果、ペイナイトまたは焼戻マルテンサイトを主相とし、圧延方向に平行な断面における旧オーステナイト(γ)粒の平均粒径が20μm以下で、かつ圧延方向に直交する断面における旧γ粒の平均粒径が15μm以下である組織とすることにより、降伏強さYS:960MPa以上の高強度を有しているにもかかわらず、優れた靭性、さらには優れた曲げ特性を確保できることを見出した。
 また、さらに優れた曲げ特性を維持するためには、旧γ粒の、圧延方向の平均長さに対する圧延方向に直交する方向の平均長さの比、(旧γ粒の圧延方向の平均長さ)/(旧γ粒の圧延方向に直交する方向の平均長さ)が10以下となる組織とすることが好ましいこと、また、X線面強度{223}<252>({223}<252>方位のランダム試料に対するX線回折強度の比)が5.0以下となる組織とすることが好ましいことも知見した。
 上記したような組織を得るためには、所定の組成を有する鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、冷却工程と、巻取工程を順次施し、熱延鋼板とするに際し、加熱工程を、1100~1250℃の温度に加熱する工程とし、仕上圧延として、粗圧延により得られたシートバーに、部分再結晶オーステナイト域および未再結晶オーステナイト域での累積圧下率を再結晶オーステナイト域での累積圧下率で除した値が0~0.2とする圧延を施す熱延工程とし、冷却工程を、仕上圧廷終了後、直ちに冷却を開始し、750℃~500℃の温度範囲の平均冷却速度でマルテンサイト生成臨界冷却速度以上の冷却速度で、冷却開始から30s以内に、Ms点+150℃以下の冷却停止温度まで冷却し、該冷却停止温度±100℃の温度範囲で5~60s保持する工程とし、巻取工程を、巻取温度を冷却停止温度±100℃の範囲の巻取温度で、コイル状に巻き取る工程とを組み合せて施すことが肝要であることを見出した。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
 (1)質量%で、C:0.08~0.25%、Si:0.01~1.0%、Mn:0.8~2.1%、           P:0.025%以下、S:0.005%以下、Al:0.005~0.10%を含有し、残部Feおよび不可避的不純物からなる組成と、ベイナイト相または焼戻マルテンサイト相を主相とし、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下で、かつ圧延方向に直交する断面で15μm以下である組織を有することを特徴とする曲げ特性と低温靭性に優れた高強度熱延鋼板。
 (2)前記旧オーステナイト粒が、圧延方向の平均長さに対する圧延方向に直交する方向の平均長さの比、(圧延方向の平均長さ)/(圧延方向に直交する方向の平均長さ)、が10以下であることを特徴とする(1)に記載の高強度熱延鋼板。
 (3)前記組織が、X線面強度{223}<252>が5.0以下である組織であることを特徴とする(1)または(2)に記載の高強度熱延鋼板。
 (4)前記組成に加えてさらに、質量%で、B:0.0001~0.0050%を含有することを特徴とする(1)ないし(3)のいずれかに記載の高強度熱延鋼板。
 (5)前記組成に加えてさらに、質量%で、Nb:0.001~0.05%、Ti:0.001~0.05%、Mo:0.001~1.0%、Cr:0.01~1.0%、V:0.001~0.10%、Cu:0.01~0.50%、Ni:0.01~0.50%からなる群から選ばれる少なくとも1種を含有することを特徴とする(1)ないし(4)のいずれかに記載の高強度熱延綱板。
 (6)前記組成に加えてさらに、質量%で、Ca:0.0005~0.005%を含有することを特徴とする(1)ないし(5)のいずれかに記載の高強度熱延鋼板。
 (7)鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、冷却工程と、巻取工程を順次施し、熱延鋼板とするにあたり、前記鋼素材が、質量%で、C:0.08~0.25%、Si:0.01~1.0%、Mn:0.8~2.1%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材であり、前記加熱工程が、1100~1250℃の温度に加熱する工程であり、前記熱延工程における前記粗圧延が、前記加熱工程で加熱された前記鋼素材をシートバーとする圧延であり、前記熱延工程における前記仕上圧延が、前記シートバーに、部分再結晶オーステナイト域および未再結晶オーステナイト域での累積圧下率を再結晶オーステナイト域での累積圧下率で除した値が0~0.2とする圧延であり、前記冷却工程が、前記仕上圧延終了後、直ちに冷却を開始し、750℃~500℃の温度域を、マルテンサイト生成臨界冷却速度以上の平均冷却速度で冷却し、該冷却を開始してから30s以内に、(Ms変態点+150℃)以下の冷却停止温度まで冷却する冷却処理と、該冷却処理を停止した後、前記冷却停止温度±100℃の温度域で5~60s保持する保持処理とを施す工程であり、前記巻取工程が、前記(冷却停止温度±100℃)の範囲の巻取温度で、コイル状に巻き取る工程であることを特徴とする曲げ特性と低温靭性に優れた高強度熱延鋼板の製造方法。
 (8)前記組成に加えてさらに、質量%で、B:0.0001~0.0050%を含有することを特徴とする(7)に記載の高強度熱延鋼板の製造方法。
 (9)前記組成に加えてさらに、質量%で、Nb:0.001~0.05%、Ti:0.001~0.05%、Mo:0.001~1.0%、Cr:0.01~1.0%、V:0.001~0.10%、Cu:0.01~0.50%、Ni:0.01~0.50%からなる群から選ばれる少なくとも1種を含有することを特徴とする(7)または(8)に記載の高強度熱延鋼板の製造方法。
 (10)前記組成に加えてさらに、質量%で、Ca:0.0005~0.005%を含有することを特徴とする(7)ないし(9)のいずれかに記載の高強度熱延鋼板の製造方法。
本発明によれば、降伏強さYS:960MPa以上の高強度と、-40℃でのシャルピー衝撃試験吸収エネルギーが30J以上である高靭性を兼備し、さらに曲げ特性の優れた熱延鋼板を安定して製造でき、産業上格段の効果を奏する。また、本発明になる熱延鋼板は、板厚3mm以上12mm以下程度の熱延鋼板であり、大型の建設用機械や産業用機械の構造部材用として好適であり、建設用機械や産業用機械の車体重量の軽減に大きく寄与できるという効果もある。
まず、本発明熱延鋼板の組成限定理由について説明する。なお、とくに断らないかぎり、質量%は単に%と記す。
 C:0.08~0.25%
Cは、鋼の強度を増加させる作用を有する元素であり、本発明では所望の高強度を確保するために、0.08%以上の含有を必要とする。一方、0.25%を超える過剰な含有は、溶接性を低下させるとともに、母材靭性を低下させる。このため、Cは0.08~0.25%の範囲に限定した。なお、好ましくは0.10~0.20%である。
 Si:0.01~1.0%
Siは、固溶強化、焼入れ性の向上を介して、鋼の強度を増加させる作用を有する。このような効果は0.01%以上の含有で認められる。一方、1.0%を超えるSiの多量含有は、Cをγ相に濃化させ、γ相の安定化を促進し強度を低下させるうえ、溶接部にSiを含む酸化物を形成し、溶接部品質を低下させる。このため、本発明では、Siは0.01~1.0%の範囲に限定した。なお、γ相の形成を抑制する観点から、Siは0.8%以下とすることが好ましい。
 Mn:0.8~2.1%
Mnは、焼入性の向上を介し、鋼板の強度を増加させる作用を有する。また、Mnは、MnSを形成しSを固定することにより、Sの粒界偏析を防止してスラブ(鋼素材)割れを抑制する。このような効果を得るためには、0.8%以上の含有を必要とする。一方、2.1%を超える含有は、スラブ鋳造時の凝固偏析を助長し、鋼板にMn濃化部を残存させ、セパレーションの発生を増加させる。このようなMn濃化部を消失させるには、1300℃を超える温度に加熱する必要があり、このような熱処理を工業的規模で実施することは現実的でない。このため、Mnは0.8~2.1%の範囲に限定した。なお、好ましくは0.9~2.0%である。また、遅れ破壊防止という観点からは、Mnは1.3%以下とすることがより好ましい。
 P:0.025%以下
Pは、鋼中に不純物として不可避的に含まれるが、鋼の強度を上昇させる作用を有する。しかし,0.025%を超えて過剰に含有すると溶接性が低下する。このため、Pは0.025%以下に限定した。なお、好ましくは0.015%以下である。
 S:0.005%以下
Sは、Pと同様に、鋼中に不純物として不可避的に含まれるが、0.005%を超えて過剰に含有すると、スラブ割れを生起させるとともに、熱延鋼板においては粗大なMnSを形成し、延性の低下を生じさせる。このため、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。
 Al:0.005~0.10%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上含有することが望ましい。一方、0.10%を超える含有は、溶接部の清浄性を著しく損なう。このため、Alは0.005~0.10%に限定した。なお、好ましくは0.05%以下である。
 上記した成分が基本の成分であるが、基本の組成に加えて、さらに必要に応じて、選択元素として、B:0.0001~0.0050%、および/または、Nb:0.001~0.05%、Ti:0.001~0.05%、Mo:0.001~1.0%、Cr:0.01~1.0%、V:0.001~0.10%、Cu:0.01~0.50%、Ni:0.01~0.50%のうちの1種または2種以上、および/または、Ca:0.0005~0.005%を含有することができる。
 B:0.0001~0.0050%
Bは、γ粒界に偏析し、少量の含有で焼入れ性を顕著に向上させる作用を有する元素であり、所望の高強度を確保するために必要に応じて含有できる。このような効果を得るためには、0.0001%以上含有することが望ましい。一方、0.0050%を超えて含有しても、効果が飽和するため、含有量に見合う効果が期待できず経済的に不利となる。このため、含有する場合には、Bは0.0001~0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.0005~0.0030%である。
 Nb:0.001~0.05%、Ti:0.001~0.05%、Mo:0.001~1.0%、Cr:0.01~1.0%、V:0.001~0.10%、Cu:0.01~0.50%、Ni:0.01~0.50%のうちの1種または2種以上
Nb、Ti、Mo、Cr、V、Cu、Niは、いずれも、強度を増加させる作用を有する元素であり、必要に応じて選択して1種または2種以上を含有できる。
 Nb:0.001~0.05%
Nbは、炭窒化物として微細析出することにより、溶接性を損なうことなく、少ない含有量で熱延鋼板を高強度化する作用を有するとともに、オーステナイト粒の粗大化、再結晶を抑制する作用を有する元素であり、熱間仕上圧延におけるオーステナイト未再結晶温度域圧延を可能にする。このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.05%を超える過剰な含有は、熱間仕上圧延中の圧延荷重の増大をもたらし、熱間圧延が困難となる場合がある。このため、含有する場合には、Nbは0.001~0.05%の範囲に限定することが好ましい。なお、より好ましくは0.005~0.04%である。
 Ti:0.001~0.05%
Tiは、炭化物として微細析出することにより、鋼板を高強度化するとともに、窒化物を形成してNを固定しスラブ(鋼素材)割れを防止する作用を有する。このような効果は、0.001%以上の含有で顕著となるが、0.05%を超える含有は析出強化により降伏点が著しく上昇し、靭性が低下する。また、Ti炭窒化物の溶体化に1250℃超という高温加熱を必要とし、旧γ粒の粗大化を招き、所望の旧γ粒のアスペクト比の調整が困難となる。このため、含有する場合には、Tiは0.001~0.05%の範囲に限定することが好ましい。なお、より好ましくは0.005~0.035%である。
 Mo:0.001~1.0%
Moは、焼入性を向上させるとともに、炭窒化物を形成して、鋼板を高強度化する作用を有する元素である。このような効果を得るためには、0.001%以上含有することが望ましい。一方、1.0%を超える多量の含有は、溶接性を低下させる。このため、含有する場合には、Moは0.001~1.0%に限定することが好ましい。なお、より好ましくは0.05~0.8%である。
 Cr:0.01~1.0%
Crは、焼入性を向上させ、鋼板強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、1.0%を超える過剰の含有は、溶接性を低下させる。このため、含有する場合には、Crは0.01~1.0%に限定することが好ましい。なお、より好ましくは0.1~0.8%である。
 V:0.001~0.10%
Vは、鋼中に固溶して固溶強化により,鋼板の強度増加に寄与するとともに、炭化物、窒化物あるいは炭窒化物として析出し、析出強化により強度増加に寄与する元索である。このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.05%を超える含有は、靭性を低下させる。このため、含有する場合には、Vは0.001~0.05%の範囲に限定することが好ましい。
 Cu:0.01~0.50%
Cuは、鋼中に固溶して強度増加に寄与するとともに、耐食性を向上させる元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.50%を超える含有は、鋼板の表面性状を劣化させる。このため、含有する場合には、Cuは0.01~0.50%の範囲に限定することが好ましい。
 Ni:0.01~0.50%
Niは、鋼中に固溶して強度増加に寄与するとともに、靭性を向上させる元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.50%を超える多量のNi含有は、材料コストの高騰を招く。このため、含有する場合には、Niは0.01~0.50%の範囲に限定することが好ましい。
 Ca:0.0005~0.005%
Caは、SをCaSとして固定し、硫化物系介在物を球状化し、介在物の形態を制御する作用を有し、さらに、介在物の周囲のマトリックスの格子歪を小さくし、水素のトラップ能を低下させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.0005%以上含有させることが望ましいが、0.005%を超えて含有すると、CaOの増加を招き、耐食性、靭性を低下させる。このため、含有する場合には、Caは0.0005~0.005%の範囲に限定することが好ましい。なお、より好ましくは0.0005~0.0030%である。
 上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.005%以下、O:0.005%以下、Mg:0.003%以下、Sn:0.005%以下が許容できる。
 Nは、鋼中に不可避的に含有されるが、過剰の含有は、鋼素材(スラブ)鋳造時の割れを多発させる。このため、Nは0.005%以下に限定することが望ましい。なお、より好ましくは0.004%以下である。
 また、Oは、鋼中では各種の酸化物として存在し、熱間加工性、耐食性、靭性等を低下させる原因となる。このため、本発明ではできるだけ低減することが望ましいが、0.005%までは許容できる。なお、極端な低減は精錬コストの高騰を招くため、Oは0.005%以下に低減することが望ましい。
 Mgは、Caと同様に酸化物、硫化物を形成し、粗大なMnSの形成を抑制する作用を有するが、0.003%を超える含有は、Mg酸化物、Mg硫化物のクラスターを多発させ、靭性の低下を招く。このため、Mgは0.003%以下に低減することが望ましい。
 Snは、製鋼原料として使用されるスクラップ等から混入する。Snは、粒界等に偏析しやすい元素であり、0.005%を超えて多量に含有すると、粒界強度が低下し、靭性の低下を招く。このため、Snは0.005%以下に低減することが望ましい。
 つぎに、本発明熱延鋼板の組織限定理由について説明する。
 本発明熱延鋼板は、上記した組成を有し、さらにベイナイト相または焼戻マルテンサイト相、あるいはベイナイト相と焼戻マルテンサイト相との混合相を主相とする。なお、ここでいう「ベイナイト」は低温変態ベイナイトを指す。また、ここでいう、「主相」とは、当該相が体積率で90%以上好ましくは95%以上である場合をいうものとする。これらを主相とすることにより、所望の高強度を確保することができる。なお、主相以外の第二相は、フェライト相またはパーライト相である。第二相の組織分率が高くなると、強度が低下し、所望の高強度を確保することができなくなる。このため、第二相は体積率で10%以下とすることが好ましい。なお、上記した第二相以外に主相ではないベイナイト相、焼戻マルテンサイト相が混合した組織となる場合もあることはいうまでもない。
 また、本発明熱延鋼板は、ベイナイト相または焼戻マルテンサイト相を主相とし、あるいはそれらが混合した組織で、圧延方向に平行な断面における旧γ粒の平均粒径が20μm以下で、かつ圧延方向に直交する断面における旧γ粒の平均粒径が15μm以下である組織を有する。このような組織とすることにより、シャルピー衝撃試験の試験温度:-40℃における吸収エネルギーvE-40が30J以上を確保することができ、高靭性でかつ曲げ特性に優れた熱延鋼板となる。旧γ粒が、平均粒径でL方向断面で20μmを、C方向断面で15μmを、超えて粗大化すると、上記した靭性を確保できなくなる。なお、旧γ粒の平均粒径は、好ましくはL方向断面で18μm以下、C方向断面で13μm以下である。
 さらに、本発明熱延鋼板は、旧γ粒の圧延方向の平均長さに対する、旧γ粒の圧延方向に直交する方向の平均長さの比、(旧γ粒の圧延方向の平均長さ)/(旧γ粒の圧延方向に直交する方向の平均長さ)を10以下とする組織とすることが好ましい。これにより、曲げ特性がさらに向上する。(旧γ粒の圧延方向の平均長さ)/(旧γ粒の圧延方向に直交する方向の平均長さ)が10を超えて、異方性が強くなると、曲げ特性が低下する。なお、好ましくは7以下である。
 なお、旧γ粒の平均長さは、旧γ粒を現出し、撮像した組織写真を用いて、画像処理により、旧γ粒の圧延方向の長さ、および圧延方向に直交する方向の長さをそれぞれ測定し、算術平均してそれぞれの平均長さを求めるものとする。
 また、さらに、本発明熱延鋼板は、X線面強度{223}<252>({223}<252>方位のランダム試料に対するX線回折強度の比)が5.0以下とすることが好ましい。{223}<252>の面強度が5.0を超えて、高くなると、強度の異方性が強くなり、曲げ特性が低下する。このため、鋼板の{223}<252>の面強度を5.0以下とすることが好ましい。なお、より好ましくは4.5以下である。鋼板の{223}<252>のX線面強度は、板厚表面から1/4層の位置で、X線による集合組織解析(ODF)を行って求めるものとする。
 なお、ここでいう「{223}<252>」は、X線による集合組織解析をBUNGE表示し、φ2=45度断面表示で、(φ1、Φ、φ2)=(30.5、43.3、45.0)に示される{223}<252>を指す。なお、{223}<252>に等価な方位としては、{322}<225>、{232}<522>があり、等価な方位を考慮して、{223}<252>と記載することも可能である。このようなことから、本発明では{223}<252>には、等価な方位を含むものとする。
 次に、本発明熱延鋼板の好ましい製造方法について説明する。
 上記した組成を有する鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、冷却工程と、巻取工程を順次施し、熱延板(鋼板)とする。
 なお、鋼素材の製造方法は、とくに限定する必要はないが、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。
 まず、得られた鋼素材に、加熱工程を施す。
加熱工程では、鋼素材を1100~1250℃の温度に加熱する。加熱温度が1100℃未満では、変形抵抗が高く圧延負荷が増大し圧延機への負荷が過大となりすぎる。一方、加熱温度が1250℃を超えて高温になると、結晶粒が粗大化して低温靭性が低下するうえ、スケール生成量が増大し、歩留りが低下する。このため、鋼素材の加熱温度は1100~1250℃とすることが好ましい。なお、より好ましくは1240℃以下である。
 ついで、加熱された鋼素材を粗圧延してシートバーとし、さらに該シートバーに仕上圧延を施して熱延板とする熱延工程を施す。
 粗圧延は、鋼素材を所望の寸法形状のシートバーとすることができればよく、その条件はとくに限定しない。なお、シートバー厚さは、仕上圧延機内の温度低下量に影響を及ぼすため、仕上圧延機内の温度低下量や、仕上圧延開始温度と仕上圧延終了温度との差を考慮してシートバー厚さを選択することが好ましい。本発明が対象としている板厚3mm以上12mm以下程度の熱延鋼板では、シートバー厚さは30~45mmとすることが好ましい。
 粗圧延に続く仕上圧延では、シートバーに、部分再結晶オーステナイト域および未再結晶オーステナイト域での累積圧下率を再結晶オーステナイト域での累積圧下率で除した値(以下、累積圧下率比ともいう)が0.2以下(0を含む)となる圧延を施す。
 累積圧下率比が、0.2を超えると、旧γ粒が圧延方向に伸長し、圧延方向に平行な断面における旧γ粒の平均粒径が20μm以下で、かつ圧延方向に直交する断面における旧γ粒の平均粒径が15μm以下となる組織を確保することができなくなる。また(旧γ粒の圧延方向の平均長さ)/(旧オーステナイト粒の圧延方向に直交する方向の平均長さ)が10超え、さらに、板厚表面から1/4層における部位のX線面強度{223}<252>が5超えになり、曲げ特性および靭性が低下する。このため、仕上圧延における部分再結晶・未再結晶域累積圧下率比を0.2以下に限定することが好ましい。なお、より好ましくは0.15以下である。
 なお、上記した仕上圧延の圧下状態を達成するためには、本発明で使用する鋼素材の組成範囲では、仕上圧延入側(開始)温度は900~1050℃の範囲の温度とし、仕上圧延出側(終了)温度は、800~950℃の範囲の温度として、仕上圧延の入側(開始)温度と出側(終了)温度との差△Tを200℃以下とすることが好ましい。△Tが、200℃を超えて大きくなると、仕上圧延終了温度が低下するため、所望の旧γ粒径を確保できなくなる。なお、仕上圧延における温度は、表面温度を用いるものとする。
 熱間圧延工程における仕上圧延は、通常、タンデム圧延でありパス間時間が短く、部分再結晶γ域を含む未再結晶γ域が高温側にシフトし、さらに製品板厚が薄い場合には、仕上圧延機内の温度降下量が大きくなりやすい。このため、上記した仕上圧延条件をバランスよく満足させるためには、適正なシートバー厚を選択し、仕上圧延の板厚スケジュール管理(圧下スケジュール)を適正化するとともに、スケールブレーカ、ストリップクーラント等を利用し、仕上圧延機内の温度降下量を調整することが好ましい。
 仕上圧延終了後、直ちにホットランテーブル上に設置された冷却装置で冷却工程を施す。仕上圧延終了後、仕上圧延スタンドを出てから直ちに、好ましくは5s以内に、冷却を開始する。冷却開始までの滞留時間が長くなると、マルテンサイト生成臨界時間を超過する恐れがあるとともに、γ粒の粒成長が進行し、焼戻マルテンサイト相、ベイナイト相のブロックサイズが不均一となる。
 冷却工程では、板厚中心部で、マルテンサイト生成臨界冷却速度以上の冷却速度で、冷却開始から30s以内に(Ms点+150℃)以下の冷却停止温度まで冷却する冷却処理を施す。なお、冷却速度は750~500℃の温度範囲の平均冷却速度を用いるものとする。Ms点は、次式を用いて算出した値を用いるものとする。式中に示される元素のうち、含有しないものは零として計算するものとする。
Ms(℃)=486-470C-8Si-33Mn-24Cr-17Ni-15Mo
(ここで、C、Si、Mn、Cr、Ni、Mo:各元素の含有量(質量%))
 なお、冷却処理の開始は、板厚中心部の温度が750℃以上であるうちに行うことが望ましい。板厚中心部の温度が750℃未満となると、高温で変態するフェライト(ポリゴナルフェライト)またはパーライトが形成され、所望の組織を形成できなくなる。
 また、冷却速度が、マルテンサイト生成臨界冷却速度未満では、焼戻マルテンサイト相またはベイナイト相(低温変態ベイナイト相)を主相とする、あるいはそれらの混合した所望の組織を確保できなくなる。なお、冷却速度の上限は、使用する冷却装置の能力に依存して決定されるが、反り等の鋼板形状の悪化を伴わない冷却速度とすることが好ましい。より好ましい冷却速度は、25℃/s以上である。なお、本発明で使用する鋼素材の組成範囲では、マルテンサイト生成臨界冷却速度は概ね22℃/s程度である。
 また、冷却停止温度が、(Ms点+150℃)超えの温度では、ベイナイト相(低温変態ベイナイト相)または焼戻マルテンサイト相を主相とする、あるいはそれらの混合した所望の組織を確保できなくなる。なお、好ましい冷却停止温度は、(Ms点-200℃)~(Ms点+100℃)である。また、冷却開始から冷却停止温度までの冷却時間が、30sを超えて長くなると、マルテンサイト相およびベイナイト相(低温変態ベイナイト相)以外の第二相(フェライト、パーライト)の組織分率が高くなり、低温での変態であるマルテンサイト変態、ベイナイト変態を十分に進行させることができず、所望の組織を確保できなくなる場合がある。
 また、冷却工程では、上記した冷却処理を停止した後、(冷却停止温度±100℃)の温度範囲で5~60s間保持する保持処理を行う。このような保持処理を施すことにより、生成したマルテンサイト相、ベイナイト相(低温変態ベイナイト相)が焼戻され、ラス内に微細なセメンタイトが析出する。これにより、強度(降伏強さ)が上昇し、かつ靭性が向上する。またさらに、水素のトラップサイトとなる粗大なセメンタイトの生成を防止し、遅れ破壊を防止することができるようになる。なお、保持温度が(冷却停止温度-100℃)未満では、所望の焼戻効果が期待できない場合がある。一方、保持温度が(冷却停止温度+100℃)を超えると、焼戻効果が過剰となりすぎ、セメンタイトが粗大化して所望の靭性、耐遅れ破壊性を確保できなくなる場合がある。
 また、保持処理の保持時間が5s未満では、十分な保持処理効果、すなわち所望の焼戻効果が期待できない。一方、60sを超えて長くなると、巻取工程における焼戻効果が減少するとともに、生産性が低下する。
 なお、保持処理の具体的な手段としては、誘導加熱等の手段を用いることもできる。また、(冷却停止温度±100℃)の温度範囲での保持は、ホットランテーブル上でのマルテンサイ卜変態発熱を利用し、ホットランテーブル上に複致箇所設置した表面温度計を参照して、水冷バンクの水量ないし水圧を調整することにより行うこともできる。
 冷却工程を終了したのち、ついで(冷却停止温度±100℃)の範囲の巻取温度でコイル状に巻き取る、巻取工程を施す。
巻取工程では、コイル状に巻き取られ、熱延鋼板は所定の焼戻を受ける。巻取温度が、(冷却停止温度±100℃)の範囲を外れると、巻取工程における所望の焼戻効果を確保できなくなる。
 以下、さらに実施例に基づいて本発明を詳細に説明する。
表1に示す組成のスラブ(鋼素材)(肉厚:230mm)を用いて、表2に示す加熱工程、熱延工程、を施し、熱間圧延終了後、表2に示す条件の冷却処理と、表2に示す保持処理とを行う冷却工程と、さらに表2に示す巻取温度で巻き取る巻取工程とを、順次施し、表2に示す板厚の熱延鋼板(鋼帯)とした。
 得られた熱延鋼板から試験片を採取し、組織観察、引張試験、衝撃試験を実施した。試験方法は次の通りとした。
 (1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向に平行な断面(L方向断面)および圧延方向に直交する断面(C方向断面)を研磨し、旧γ粒界が現出するように腐食して、光学顕微鏡(倍率:500倍)で組織を観察した。観察位置は、板厚方向1/4tの位置とした。また、各観察位置で各2視野以上観察し、撮像して、画像解析装置を用いて、圧延方向に平行な断面および圧延方向に直交する断面における各旧オーステナイト粒の粒径を測定し、算術平均して、圧延方向に平行な断面における旧オーステナイト粒の平均粒径DLおよび圧延方向に直交する断面における旧オーステナイト粒の平均粒径DCを算出した。
 また、各旧オーステナイト粒の、圧延方向の長さおよび圧延方向に直交する方向の長さを測定し、それぞれ算術平均したのち、その比R(=(旧オーステナイト粒の圧延方向の平均長さ)/(圧延方向に直交する方向の平均長さ))を算出した。
 さらに、組織観察用試験片のC方向断面を研磨し、ナイタール腐食して、板厚方向に、表面から板厚の1/4位置の領域の3箇所以上で、走査型電子顕微鏡(倍率:2000倍)を用いて組織を観察し、撮像して、画像解析装置を用いて、組織の種類、各相の組織分率(体積率)を測定した。
 また、得られた熱延鋼板のND方向、板厚表面から1/4層の位置までを研削して、X線測定用試験片を採取した。得られたX線測定用試験片に化学研磨を施して加工歪を除去したのち、X線による集合組織解析(ODF)を実施した。得られた集合組織解析結果をBUNGE表示し、φ2=45度断面表示で、(φ1、Φ、φ2)=(30.5、43.3、45.0)に示される方位{223}<252>のX線強度を求めた。
 (2)引張試験
得られた熱延鋼板の所定の位置(コイル長手方向端部、幅方向1/4の位置)から、圧延方向に直交する方向(C方向)が長手方向となるように、板状の試験片(平行部幅:25mm、標点問距離:50mm)を採取し、JIS Z 2241の規定に準拠して、室温で引張試験を実施し、降伏強さYS、引張強さTS、全伸びElを求めた。
 (3)衝撃試験
得られた熱延鋼板の所定の位置(コイル長手方向端部、幅方向1/4の位置)の板厚中心部から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:-40℃での吸収エネルギーvE-40(J)を求めた。なお、試験片は3本とし、得られた吸収エネルギー値の算術平均をもとめ、その鋼板の吸収エネルギー値vE-40(J)とした。なお、板厚が10mm未満の鋼板については、サブサイズでの測定値を記載した。
 (4)曲げ試験
得られた熱延鋼板の所定の位置から曲げ試験片(長辺側が圧延方向と直角方向となるように300mm、短辺側が板厚の5倍以上となるようにした短冊状試験片)を採取し、180度曲げ試験を実施し、割れの発生しない最小の内側曲げ半径(mm)を最小曲げ半径として求め、最小曲げ半径/板厚を算出した。最小曲げ半径/板厚が3.0以下である場合を「曲げ特性に優れた」と評価した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、降伏強さYS:960MPa以上の高強度と、vE-40が30J以上の高靭性を有し、さらに割れが発生しない最小曲げ半径が、(3.0×板厚)以下の優れた曲げ特性を有する高強度熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、降伏強さYSが960MPa未満であるか、vE-40が30J未満であるか、割れが発生しない最小曲げ半径が(3.0×板厚)超えであるか、所望の高強度および高靭性、さらには所望の優れた曲げ特性を満足できない、熱延鋼板となっている。

Claims (10)

  1. 質量%で、
    C:0.08~0.25%、         Si:0.01~1.0%、
    Mn:0.8~2.1%、           P:0.025%以下、
    S:0.005%以下、                   Al:0.005~0.10%
    を含有し、残部Feおよび不可避的不純物からなる組成と、ベイナイト相または焼戻マルテンサイト相を主相とし、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下で、かつ圧延方向に直交する断面で15μm以下である組織を有することを特徴とする曲げ特性と低温靭性に優れた高強度熱延鋼板。
  2. 前記旧オーステナイト粒が、圧延方向の平均長さに対する圧延方向に直交する方向の平均長さの比、(圧延方向の平均長さ)/(圧延方向に直交する方向の平均長さ)、が10以下であることを特徴とする請求項1に記載の高強度熱延鋼板。
  3. 前記組織が、X線面強度{223}<252>が5.0以下である組織であることを特徴とする請求項1または2に記載の高強度熱延鋼板。
  4. 前記組成に加えてさらに、質量%で、B:0.0001~0.0050%を含有することを特徴とする請求頂1ないし3のいずれかに記載の高強度熱延鋼板。
  5. 前記組成に加えてさらに、質量%で、Nb:0.001~0.05%、Ti:0.001~0.05%、Mo:0.001~1.0%、Cr:0.01~1.0%、V:0.001~0.10%、Cu:0.01~0.50%、Ni:0.01~0.50%からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項1ないし4のいずれかに記載の高強度熱延綱板。
  6. 前記組成に加えてさらに、質量%で、Ca:0.0005~0.005%を含有することを特徴とする請求項1ないし5のいずれかに記載の高強度熱延鋼板。
  7. 鋼素材に、該鋼素材を加熱する加熱工程と、該加熱された鋼素材を粗圧延と仕上圧延とからなる熱間圧延を施す熱延工程と、冷却工程と、巻取工程を順次施し、熱延鋼板とするにあたり、
    前記鋼素材が、質量%で、
    C:0.08~0.25%、         Si:0.01~1.0%、
    Mn:0.8~2.1%、           P:0.025%以下、
    S:0.005%以下、                   Al:0.005~0.10%
    を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材であり、
    前記加熱工程が、1100~1250℃の温度に加熱する工程であり、
    前記熱延工程における前記粗圧延が、前記加熱工程で加熱された前記鋼素材をシートバーとする圧延であり、前記熱延工程における前記仕上圧延が、前記シートバーに、部分再結晶オーステナイト域および未再結晶オーステナイト域での累積圧下率を再結晶オーステナイト域での累積圧下率で除した値が0~0.2とする圧延であり、
    前記冷却工程が、前記仕上圧延終了後、直ちに冷却を開始し、750℃~500℃の温度域を、マルテンサイト生成臨界冷却速度以上の平均冷却速度で冷却し、前記冷却を開始してから30s以内に、(Ms変態点+150℃)以下の冷却停止温度まで冷却する冷却処理と、該冷却処理を停止した後、前記冷却停止温度±100℃の温度域で5~60s保持する保持処理とを施す工程であり、
    前記巻取工程が、前記(冷却停止温度±100℃)の範囲の巻取温度で、コイル状に巻き取る工程である
    ことを特徴とする曲げ特性と低温靭性に優れた高強度熱延鋼板の製造方法。
  8. 前記組成に加えてさらに、質量%で、B:0.0001~0.0050%を含有することを特徴とする請求項7に記載の高強度熱延鋼板の製造方法。
  9. 前記組成に加えてさらに、質量%で、Nb:0.001~0.05%、Ti:0.001~0.05%、Mo:0.001~1.0%、Cr:0.01~1.0%、V:0.001~0.10%、Cu:0.01~0.50%、Ni:0.01~0.50%からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項7または8に記載の高強度熱延鋼板の製造方法。
  10. 前記組成に加えてさらに、質量%で、Ca:0.0005~0.005%を含有することを特徴とする請求項7ないし9のいずれかに記載の高強度熱延鋼板の製造方法。
PCT/JP2012/006975 2011-11-01 2012-10-31 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法 WO2013065298A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12846134.0A EP2759615B1 (en) 2011-11-01 2012-10-31 High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
KR1020147011951A KR20140072180A (ko) 2011-11-01 2012-10-31 굽힘 특성과 저온 인성이 우수한 고강도 열연 강판 및 그 제조 방법
US14/352,880 US9752216B2 (en) 2011-11-01 2012-10-31 High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
CA2851325A CA2851325C (en) 2011-11-01 2012-10-31 High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
CN201280054316.8A CN103917682B (zh) 2011-11-01 2012-10-31 弯曲特性和低温韧性优良的高强度热轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011240051 2011-11-01
JP2011-240051 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065298A1 true WO2013065298A1 (ja) 2013-05-10

Family

ID=48191672

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/063823 WO2013065346A1 (ja) 2011-11-01 2012-05-23 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
PCT/JP2012/006975 WO2013065298A1 (ja) 2011-11-01 2012-10-31 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063823 WO2013065346A1 (ja) 2011-11-01 2012-05-23 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US9752216B2 (ja)
EP (1) EP2759615B1 (ja)
JP (1) JP5594344B2 (ja)
KR (1) KR20140072180A (ja)
CN (1) CN103917682B (ja)
CA (1) CA2851325C (ja)
WO (2) WO2013065346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
CN106661685A (zh) * 2014-05-15 2017-05-10 新日铁住金株式会社 热成形钢板构件
CN111527224A (zh) * 2017-12-27 2020-08-11 杰富意钢铁株式会社 高强度钢板及其制造方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2801637T3 (pl) 2012-01-05 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka walcowana na gorąco i sposób jej wytwarzania
SI2789699T1 (sl) * 2013-08-30 2017-06-30 Rautaruukki Oyj Utrjeni vroče valjani jekleni proizvod in metoda za proizvodnjo le-tega
CN103526120B (zh) * 2013-09-25 2016-09-07 安徽宏源线路器材有限公司 输电铁塔用耐低温冲击角钢
CN106460109B (zh) 2014-05-28 2019-01-29 新日铁住金株式会社 热轧钢板及其制造方法
CN104164623A (zh) * 2014-08-12 2014-11-26 史洪松 一种低合金高强钢及其制造方法
CN104451391A (zh) * 2014-12-02 2015-03-25 阜新蒙古族自治县晟宇铸造有限公司 低温钢及其制备方法
CN104404390A (zh) * 2014-12-08 2015-03-11 钢铁研究总院 煤矿支护用高强度、高塑性锚杆用钢及制造方法
CN104492809A (zh) * 2014-12-12 2015-04-08 本钢板材股份有限公司 一种高强钢的轧制方法
JP6327277B2 (ja) * 2015-03-26 2018-05-23 Jfeスチール株式会社 板幅方向の強度均一性に優れた高強度熱延鋼板およびその製造方法
JP6327282B2 (ja) * 2015-05-12 2018-05-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
US20180112286A1 (en) * 2015-05-12 2018-04-26 Posco Ultra-high strength hot-rolled steel sheet having excellent bending workability and method for manufacturing same
KR101725274B1 (ko) * 2015-10-16 2017-04-10 삼화스틸(주) 고강도 강판 및 그 제조방법
RU2605037C1 (ru) * 2015-11-20 2016-12-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства высокопрочной горячекатаной стали
WO2017138504A1 (ja) 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
CN105643050A (zh) * 2016-02-29 2016-06-08 广船国际有限公司 一种低温高韧性钢的单面多丝埋弧焊焊接方法
JP6477570B2 (ja) * 2016-03-31 2019-03-06 Jfeスチール株式会社 熱延鋼板およびその製造方法
KR102109230B1 (ko) * 2016-06-20 2020-05-12 주식회사 포스코 초고강도 가스 메탈 아크 용접금속부
CN106584012B (zh) * 2016-12-30 2019-07-12 常州世竟液态金属有限公司 一种非晶态合金整形方法
JP6760407B2 (ja) * 2017-02-16 2020-09-23 日本製鉄株式会社 熱間圧延鋼板及びその製造方法
EP3584337B1 (en) * 2017-02-17 2020-12-23 JFE Steel Corporation High strength hot-rolled steel sheet and method for producing same
WO2018163189A1 (en) * 2017-03-10 2018-09-13 Tata Steel Limited Hot rolled steel product with ultra-high strength minimum 1100mpa and good elongation 21%
US11408048B2 (en) 2017-05-24 2022-08-09 Tata Steel Uk Limited High-strength, hot rolled abrasive wear resistant steel strip
CN110832095B (zh) * 2017-08-09 2021-09-28 日本制铁株式会社 热轧钢板及其制造方法
CN108130480A (zh) * 2017-12-07 2018-06-08 安徽科汇钢结构工程有限公司 一种韧性高的热轧钢板
KR102031455B1 (ko) 2017-12-26 2019-10-11 주식회사 포스코 저온인성이 우수한 열연강판, 강관 및 그 제조방법
JP6569745B2 (ja) * 2018-01-29 2019-09-04 Jfeスチール株式会社 コイルドチュービング用熱延鋼板およびその製造方法
CN108866448B (zh) * 2018-06-26 2020-02-21 西宁特殊钢股份有限公司 一种棒磨料用贝氏体m45钢及制备方法
KR102075642B1 (ko) * 2018-08-06 2020-02-10 주식회사 포스코 구멍확장성이 우수한 고강도 열연 도금강판 및 그 제조방법
KR102109271B1 (ko) * 2018-10-01 2020-05-11 주식회사 포스코 표면 품질이 우수하고, 재질편차가 적은 초고강도 열연강판 및 그 제조방법
CN109097664B (zh) * 2018-10-10 2020-03-31 东北大学 一种900MPa级厚规格高韧性热轧钢带及其制备方法
KR102173920B1 (ko) * 2018-11-16 2020-11-04 고려대학교 산학협력단 항복비와 균일연신율이 우수한 항복강도 700 MPa급 철근 및 그 제조 방법
KR102209552B1 (ko) * 2018-12-19 2021-01-28 주식회사 포스코 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
CN109536843B (zh) * 2019-01-04 2020-08-25 武汉钢铁有限公司 一种含氮双相耐腐蚀耐磨热轧钢及生产方法
JP6835294B2 (ja) * 2019-03-07 2021-02-24 日本製鉄株式会社 熱延鋼板およびその製造方法
JP7317100B2 (ja) * 2019-03-11 2023-07-28 日本製鉄株式会社 熱延鋼板
WO2020229877A1 (en) * 2019-05-15 2020-11-19 Arcelormittal A cold rolled martensitic steel and a method for it's manufacture
CN110819878B (zh) * 2019-10-23 2021-10-29 舞阳钢铁有限责任公司 一种爆炸复合用具备优良低温韧性钢板及其生产方法
CN111041384A (zh) * 2019-12-14 2020-04-21 舞阳钢铁有限责任公司 一种铸坯成材具备优良心部冲击韧性钢板及其生产方法
KR102348555B1 (ko) * 2019-12-19 2022-01-06 주식회사 포스코 절단 균열 저항성이 우수한 내마모 강재 및 이의 제조방법
KR102404770B1 (ko) * 2019-12-20 2022-06-07 주식회사 포스코 항복비가 우수한 고강도 열연강판 및 그 제조방법
MX2022008976A (es) 2020-01-22 2022-08-11 Nippon Steel Corp Hoja de acero y metodo de produccion de la misma.
WO2021160721A1 (en) * 2020-02-11 2021-08-19 Tata Steel Ijmuiden B.V. High flangeable ultra-high strength ductile hot-rolled steel, method of manufacturing said hot-rolled steel and use thereof
MX2022011510A (es) * 2020-03-25 2022-10-07 Jfe Steel Corp Lamina de acero laminada en caliente de alta resistencia y metodo para fabricar la misma.
CN111676426A (zh) * 2020-06-09 2020-09-18 武汉钢铁有限公司 汽车车架复杂结构件用钢及其制造方法
JP7099654B1 (ja) * 2020-08-31 2022-07-12 日本製鉄株式会社 鋼板およびその製造方法
CN114318129B (zh) * 2020-10-10 2022-12-16 宝山钢铁股份有限公司 一种890MPa级易焊接无缝钢管及其制造方法
CN112725686B (zh) * 2020-11-17 2022-06-14 邯郸钢铁集团有限责任公司 屈服强度为960MPa的起重机吊臂用钢及其生产方法
KR102560057B1 (ko) * 2020-12-21 2023-07-26 주식회사 포스코 굽힘 가공성이 우수한 고항복비 고강도 강판 및 그 제조방법
EP4047105A1 (de) * 2021-02-17 2022-08-24 ThyssenKrupp Steel Europe AG Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
EP4282993A1 (en) 2021-03-31 2023-11-29 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
CN113308648B (zh) * 2021-05-14 2022-11-15 唐山钢铁集团高强汽车板有限公司 一种冷轧马氏体钢基板及其生产方法
KR20230075081A (ko) * 2021-11-22 2023-05-31 주식회사 포스코 형상교정성이 우수한 고강도 열연강판 및 그 제조방법
CN115821156B (zh) * 2022-11-10 2024-04-19 舞阳钢铁有限责任公司 固定海上结构用特厚s355mlo钢板及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230529A (ja) 1992-02-25 1993-09-07 Nippon Steel Corp 加工性および溶接性の良い高強度熱延鋼板の製造方法
JPH05345917A (ja) 1992-06-15 1993-12-27 Nippon Steel Corp 高強度熱延鋼板の製造方法
JPH07138638A (ja) 1993-11-16 1995-05-30 Nippon Steel Corp 加工性および溶接性の良い高強度熱延鋼板の製造方法
JP2000282175A (ja) 1999-04-02 2000-10-10 Kawasaki Steel Corp 加工性に優れた超高強度熱延鋼板およびその製造方法
JP2005314798A (ja) * 2004-03-30 2005-11-10 Jfe Steel Kk 伸びフランジ性と疲労特性に優れた高延性熱延鋼板およびその製造方法
JP2006183141A (ja) 2004-11-30 2006-07-13 Jfe Steel Kk 高強度熱延鋼板およびその製造方法
JP2009263715A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010174280A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
WO2012014926A1 (ja) * 2010-07-28 2012-02-02 新日本製鐵株式会社 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295500B2 (en) * 1987-06-03 2003-09-10 Nippon Steel Corporation Hot rolled steel sheet with a high strength and a distinguished formability
US5634988A (en) 1993-03-25 1997-06-03 Nippon Steel Corporation High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same
DE69608179T2 (de) * 1995-01-26 2001-01-18 Nippon Steel Corp Schweissbarer hochfester stahl mit ausgezeichneter tieftemperaturzähigkeit
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
US6364968B1 (en) 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
KR100851189B1 (ko) * 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
KR101094310B1 (ko) * 2008-09-18 2011-12-19 한국기계연구원 저온인성이 우수한 용접성 초고강도강 및 그 제조방법
KR20160057492A (ko) * 2009-01-30 2016-05-23 제이에프이 스틸 가부시키가이샤 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법
JP5609383B2 (ja) 2009-08-06 2014-10-22 Jfeスチール株式会社 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP4978741B2 (ja) * 2010-05-31 2012-07-18 Jfeスチール株式会社 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法
ES2719930T3 (es) * 2010-06-14 2019-07-16 Nippon Steel Corp Artículo moldeado estampado en caliente, proceso para la producción de chapa de acero para estampación en caliente y proceso para la producción de artículo moldeado estampado en caliente
JP5776398B2 (ja) * 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
KR101699582B1 (ko) * 2011-03-29 2017-01-24 제이에프이 스틸 가부시키가이샤 내응력 부식 균열성이 우수한 내마모 강판 및 그 제조 방법
CN103687975B (zh) * 2011-07-20 2016-01-20 杰富意钢铁株式会社 低温韧性优良的低屈服比高强度热轧钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230529A (ja) 1992-02-25 1993-09-07 Nippon Steel Corp 加工性および溶接性の良い高強度熱延鋼板の製造方法
JPH05345917A (ja) 1992-06-15 1993-12-27 Nippon Steel Corp 高強度熱延鋼板の製造方法
JPH07138638A (ja) 1993-11-16 1995-05-30 Nippon Steel Corp 加工性および溶接性の良い高強度熱延鋼板の製造方法
JP2000282175A (ja) 1999-04-02 2000-10-10 Kawasaki Steel Corp 加工性に優れた超高強度熱延鋼板およびその製造方法
JP2005314798A (ja) * 2004-03-30 2005-11-10 Jfe Steel Kk 伸びフランジ性と疲労特性に優れた高延性熱延鋼板およびその製造方法
JP2006183141A (ja) 2004-11-30 2006-07-13 Jfe Steel Kk 高強度熱延鋼板およびその製造方法
JP2009263715A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010174280A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
WO2012014926A1 (ja) * 2010-07-28 2012-02-02 新日本製鐵株式会社 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759615A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
CN106661685A (zh) * 2014-05-15 2017-05-10 新日铁住金株式会社 热成形钢板构件
CN106661685B (zh) * 2014-05-15 2018-04-20 新日铁住金株式会社 热成形钢板构件
CN111527224A (zh) * 2017-12-27 2020-08-11 杰富意钢铁株式会社 高强度钢板及其制造方法
CN111527224B (zh) * 2017-12-27 2021-11-05 杰富意钢铁株式会社 高强度钢板及其制造方法

Also Published As

Publication number Publication date
JP5594344B2 (ja) 2014-09-24
US20140251513A1 (en) 2014-09-11
CN103917682A (zh) 2014-07-09
WO2013065346A1 (ja) 2013-05-10
KR20140072180A (ko) 2014-06-12
EP2759615A1 (en) 2014-07-30
EP2759615B1 (en) 2020-07-15
CA2851325A1 (en) 2013-05-10
CA2851325C (en) 2017-04-25
US9752216B2 (en) 2017-09-05
EP2759615A4 (en) 2015-09-30
JP2013117068A (ja) 2013-06-13
CN103917682B (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5594344B2 (ja) 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
JP5609383B2 (ja) 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP5598225B2 (ja) 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
JP5630125B2 (ja) 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP6477570B2 (ja) 熱延鋼板およびその製造方法
JP6327282B2 (ja) 高強度熱延鋼板およびその製造方法
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP6327277B2 (ja) 板幅方向の強度均一性に優れた高強度熱延鋼板およびその製造方法
JP2018188675A (ja) 高強度熱延鋼板およびその製造方法
CN110832095B (zh) 热轧钢板及其制造方法
JP5811725B2 (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP5533143B2 (ja) 冷延鋼板およびその製造方法
JP3915460B2 (ja) 高強度熱延鋼板およびその製造方法
WO2014057519A1 (ja) 形状凍結性に優れた冷延鋼板およびその製造方法
WO2016194273A1 (ja) 熱延鋼板、フルハード冷延鋼板及び熱延鋼板の製造方法
JP5481941B2 (ja) 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法
JP2007177293A (ja) 超高強度鋼板およびその製造方法
JP6123734B2 (ja) 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法
CN111971409A (zh) 热轧钢板
JP5776764B2 (ja) 冷延鋼板およびその製造方法
JP2013023694A (ja) 形状凍結性に優れた冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2851325

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14352880

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147011951

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE