WO2012121219A1 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012121219A1
WO2012121219A1 PCT/JP2012/055586 JP2012055586W WO2012121219A1 WO 2012121219 A1 WO2012121219 A1 WO 2012121219A1 JP 2012055586 W JP2012055586 W JP 2012055586W WO 2012121219 A1 WO2012121219 A1 WO 2012121219A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel sheet
hot
rolling
Prior art date
Application number
PCT/JP2012/055586
Other languages
English (en)
French (fr)
Inventor
力 岡本
藤田 展弘
高橋 学
邦夫 林
岸本 哲生
和昭 中野
武史 山本
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR112013022394A priority Critical patent/BR112013022394A2/pt
Priority to IN7179DEN2013 priority patent/IN2013DN07179A/en
Priority to JP2013503540A priority patent/JP5413536B2/ja
Priority to KR1020137022766A priority patent/KR101532156B1/ko
Priority to MX2013010066A priority patent/MX360964B/es
Priority to US14/000,143 priority patent/US9267196B2/en
Priority to CN201280011272.0A priority patent/CN103403208B/zh
Priority to ES12754891.5T priority patent/ES2637662T3/es
Priority to CA2827065A priority patent/CA2827065C/en
Priority to EP12754891.5A priority patent/EP2682492B1/en
Priority to PL12754891T priority patent/PL2682492T3/pl
Publication of WO2012121219A1 publication Critical patent/WO2012121219A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Definitions

  • the present invention relates to a hot-rolled steel sheet that is excellent in local deformability such as bending, stretch flange, burring, etc., such as stretch forming, and less in orientation dependency of formability, and mainly used for automobile parts and the like, and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2011-047720 filed in Japan on March 4, 2011 and Japanese Patent Application No. 2011-048231 filed in Japan on March 4, 2011. These contents are incorporated herein.
  • Non-Patent Document 1 discloses that uniform elongation, which is important for drawing or stretch forming, is reduced by increasing the strength. Therefore, for example, in order to use high-strength steel sheets for undercarriage parts of automobile bodies or parts that contribute to collision energy absorption, local deformability such as burring workability and local ductility that contributes to formability such as bending workability. It is important to improve.
  • Non-Patent Document 2 discloses a method for improving uniform elongation even with the same strength by compounding the metal structure of a steel plate.
  • Non-Patent Document 3 describes a metal structure in which local deformability represented by bendability, hole expansion workability and burring workability is improved by inclusion control, single structure formation, and reduction in hardness difference between structures.
  • a control method is disclosed. This is to improve the hole expansibility by making a single structure by controlling the structure, but in order to make a single structure, as described in Non-Patent Document 4, heat treatment from an austenite single phase. Is the basis of the manufacturing method.
  • Non-Patent Document 4 the microstructure is controlled by cooling control after hot rolling, and appropriate fractions of ferrite and bainite are obtained by controlling the precipitates and the transformation structure to increase the strength. And a technique for ensuring ductility.
  • any of the above techniques is a method for improving local deformability that relies on tissue control, and is greatly influenced by the formation of the base tissue.
  • Non-Patent Document 5 discloses that ferrite, which is the main phase of a product, is subjected to large pressure reduction in a low temperature region within the austenite region and ferrite transformation from unrecrystallized austenite. A technology for increasing the strength and toughness by refining the crystal grains and making them finer is disclosed. However, any means for improving the local deformability that the present invention intends to solve has not been studied.
  • the main means is to perform structure control including inclusion control.
  • structure control since it depends on the structure control, it is necessary to control the fraction and form of precipitates, structures such as ferrite and bainite, and the base metal structure is limited.
  • the control of the texture not the control of the base structure, and further, by controlling the size and form of the grain unit of the crystal grains, it is not limited to the type of phase, and has high strength
  • An object of the present invention is to provide a hot-rolled steel sheet having excellent elongation and local deformability and little formability orientation dependency, and a method for producing the same.
  • the high strength in the present invention refers to a tensile strength of 440 MPa or more.
  • the present inventors In order to improve the elongation and local deformability that contribute to hole expandability and bending workability, the present inventors newly focused on the influence of the texture of the steel sheet, and investigated and studied its effects in detail. did. As a result, the pole density of each orientation of a specific crystal orientation group is controlled in the hot rolling process, and further, the Rankford value (r value) and 30 ° in the direction (C direction) forming 90 ° with respect to the rolling direction. It has been clarified that the local deformability is dramatically improved by controlling the Rankford value (r value) in the direction to be formed.
  • the r value in the rolling direction the r value in the direction forming 60 ° with respect to the rolling direction, the shape, size, and hardness of the crystal grains It was found that the local deformability can be further improved by controlling.
  • the grain unit as used in the present invention is a measurement step of 0.5 ⁇ m or less at a magnification of 1500 times, for example, in the analysis of the orientation of a steel sheet by the EBSP method (Electron Back Scattering Diffraction Pattern). Azimuth measurement is performed, and a position where an azimuth difference between adjacent measurement points exceeds 15 ° is determined as a grain boundary of a grain unit.
  • the hot-rolled steel sheet according to one embodiment of the present invention is C in which the C content [C] is 0.0001% or more and 0.40% or less, and the Si content [Si]. Is 0.001% or more and 2.5% or less of Si, Mn content [Mn] is 0.001% or more and 4.0% or less of Mn, and P content [P] is 0.00.
  • the crystal grains may further have a volume average diameter of 2 ⁇ m or more and 15 ⁇ m or less.
  • the average value of the pole densities of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups is 1.0 or more and 5.0 or less
  • the pole density of the crystal orientation of ⁇ 332 ⁇ ⁇ 113> may be 1.0 or more and 4.0 or less.
  • the area ratio of coarse crystal grains having a grain size exceeding 35 ⁇ m is 0% or more and 10% or less. May be.
  • rL which is a Rankford value in the rolling direction
  • r60 which is the Rankford value in the direction of 60 °
  • r60 may be 0.70 or more and 1.10 or less.
  • the length in the rolling direction is dL among the crystal grains in the metal structure of the steel sheet, and the thickness direction When the length is dt, even if the ratio of the crystal grains whose value obtained by dividing the rolling direction length dL by the plate thickness direction length dt is 3.0 or less is 50% or more and 100% or less Good.
  • a ferrite phase is present in the metal structure of the steel sheet, and the Vickers hardness Hv of the ferrite phase is represented by the following formula 1. May be satisfied. Hv ⁇ 200 + 30 ⁇ [Si] + 21 ⁇ [Mn] + 270 ⁇ [P] + 78 ⁇ [Nb] 1/2 + 108 ⁇ [Ti] 1/2 (Formula 1)
  • a phase having the highest phase fraction in the metal structure of the steel sheet is a main phase
  • a value obtained by dividing the standard deviation of the hardness by the average value of the hardness may be 0.2 or less.
  • the Ti content [Ti] is 0.001% or more and 0.20% or less in mass%.
  • Cr content [Cr] is 0.001% or more and 2.0% or less of Cr
  • Cu content [Cu] is 0.
  • the method for producing a hot-rolled steel sheet according to one embodiment of the present invention is C in which the C content [C] is 0.0001% or more and 0.40% or less, and the Si content [Si]. ] Is 0.001% to 2.5% Si, Mn content [Mn] is 0.001% to 4.0% Mn, and P content [P] is 0.
  • the first hot rolling is performed at least once and the austenite grain size is 200 ⁇ m or less; when the temperature determined by the steel sheet component in the following formula 2 is T1 ° C., T1 + 30 ° C.
  • a second hot rolling is performed in which the total rolling reduction is 50% or more in the temperature range; a third hot rolling in which the total rolling reduction is 30% or less in the temperature range of T1 ° C. or more and less than T1 + 30 ° C.
  • the hot rolling is finished at T1 ° C. or higher; when a pass with a rolling reduction of 30% or more in a temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower is used as a high pressure reduction pass, Primary cooling is performed between the rolling stands so that the waiting time t from the completion to the start of cooling satisfies the following formula 3.
  • T1 850 + 10 ⁇ ([C] + [N]) ⁇ [Mn] + 350 ⁇ [Nb] + 250 ⁇ [Ti] + 40 ⁇ [B] + 10 ⁇ [Cr] + 100 ⁇ [Mo] + 100 ⁇ [V].
  • t1 is represented by the following formula 4.
  • Tf is the temperature (° C.) of the steel sheet at the completion of the final pass
  • P1 is the rolling reduction (%) in the final pass.
  • the waiting time t seconds may further satisfy the following formula 5. t ⁇ t1 (Formula 5)
  • the waiting time t seconds may further satisfy the following formula 6. t1 ⁇ t ⁇ t1 ⁇ 2.5 (Expression 6)
  • a cooling temperature that is a difference between a steel sheet temperature at the start of cooling and a steel sheet temperature at the end of cooling in the primary cooling.
  • the change may be 40 ° C. or more and 140 ° C. or less, and the steel plate temperature at the end of the primary cooling may be T1 + 100 ° C. or less.
  • the first hot rolling is performed at least twice or more at a reduction rate of 40% or more.
  • the austenite particle size may be 100 ⁇ m or less.
  • the temperature rise of the steel sheet between passes may be 18 ° C. or less. Good.
  • the steel ingot or the slab is further in% by mass, and the Ti content [Ti] is 0. 0.001% or more and 0.20% or less of Ti and Nb content [Nb] of 0.001% or more and 0.20% or less of Nb and V content [V] of 0.001% or more 1.0% or less of V and W content [W] of 0.001% or more and 1.0% or less of W and B content [B] of 0.0001% or more, 0.0050 % B or less, Mo content [Mo] is 0.001% or more and 2.0% or less Mo, and Cr content [Cr] is 0.001% or more and 2.0% or less Cr.
  • Cu content [Cu] is 0.001% or more and 2.0% or less
  • Ni content [Ni] is 0.001% or more and 2.0% or less Ni
  • Co with Co content [Co] of 0.0001% or more and 1.0% or less Sn with Sn content [Sn] of 0.0001% or more and 0.2% or less
  • Zr content The amount [Zr] is 0.0001% or more and 0.2% or less of Zr
  • the As content [As] is 0.0001% or more and 0.50% or less of As
  • Mg content [Mg] 0.0001% or more and 0.010% or less of Mg and Ca content [Ca] of 0.0001% or more and 0.010% or less of Ca and REM content [REM] of 0. You may contain 1 or more types chosen from 0001% or more and 0.1% or less of REM.
  • ⁇ 112 ⁇ ⁇ 110>, ⁇ 223 ⁇ ⁇ 110> is the average of the polar densities of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups represented by the arithmetic mean of the respective orientations
  • the value is a particularly important characteristic value.
  • the pole density of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central portion of the plate thickness which is a plate thickness range of 5/8 to 3/8 from the surface of the steel plate, that is, random If the average value of the pole density of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups when the intensity ratio of each orientation to the sample is determined by the EBSP method is 6.5 or less, The thickness / minimum bending radius d / Rm (C-direction bending) necessary for processing the skeletal part satisfies 1.5 or more.
  • the average value of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups is 5.0 or less, the C direction bending, which is an index of orientation dependency (isotropicity) of formability,
  • the 45 ° -direction bending ratio (45 ° -direction bending / C-direction bending) is 1.4 or less, which is more desirable because high local deformability is exhibited regardless of the bending direction.
  • the average value of the pole density is more preferably less than 4.0, and even more preferably less than 3.0. .
  • the pole density is less than 1.0, the local deformability may be deteriorated.
  • the polar density of the crystal orientation of ⁇ 332 ⁇ ⁇ 113> in the central portion of the plate thickness that is 5/8 to 3/8 from the surface of the steel plate is 5. If it is 0 or less, the plate thickness / minimum bending radius required for processing the undercarriage parts satisfies 1.5 or more. Further, if the pole density of the crystal orientation of ⁇ 332 ⁇ ⁇ 113> is 4.0 or less, the ratio of the C direction bending and the 45 ° direction bending satisfies 1.4 or less, which is more desirable. The above pole density is more preferably 3.0 or less. If this exceeds 5.0, the anisotropy of the mechanical properties of the steel sheet becomes extremely strong.
  • r30 which is an r value in a direction forming 30 ° with respect to the rolling direction:
  • This r30 is important in this embodiment. That is, as a result of intensive studies by the present inventors, it has been found that good local deformability cannot always be obtained even if the above-mentioned extreme densities of various crystal orientations are appropriate.
  • r30 is 0.70 or more and 1.10 or less. By setting the above-described r30 to be 0.70 or more and 1.10 or less, excellent local deformability can be obtained.
  • volume average diameter of crystal grains As a result of intensive studies on the texture control and microstructure in the hot-rolled steel sheet, the present inventors have found that, under the conditions where the texture is controlled as described above, the size of crystal grains, particularly the volume average diameter, has an effect on elongation. It was found that it is extremely large and that improvement in elongation can be obtained by refining it. Furthermore, it has been found that by reducing the volume average diameter, the fatigue properties (fatigue limit ratio) required for automobile steel sheets and the like are improved.
  • the size of the grain unit is not a normal size average, but a strong correlation with the volume average diameter calculated by volume weighted average is obtained.
  • the volume average diameter is desirably 2 ⁇ m or more and 15 ⁇ m or less. In the case of a steel sheet having a tensile strength of 540 MPa or more, it is more desirable that the thickness is 9.5 ⁇ m or less.
  • the reason why the elongation is improved by reducing the volume average diameter is not clear, but it is thought that by suppressing the local strain concentration that occurs in the micro order, it is possible to promote the dispersion of strain in the case of local deformation. Yes. In addition, it is considered that microscopic local strain concentration can be suppressed by increasing the homogenization of deformation, the strain can be evenly dispersed even in the micro order, and the uniform elongation is improved.
  • the fatigue characteristics are improved by the refinement of the volume average diameter. The fatigue phenomenon is repeated plastic deformation, and this plastic deformation is dislocation motion, so it is strongly influenced by the grain boundaries that serve as barriers. I believe that.
  • the method for measuring the grain unit is as described above.
  • Ratio of coarse crystal grains having a grain size exceeding 35 ⁇ m It has been found that the bendability is strongly influenced by the equiaxed nature of the crystal grains and the effect is great. In order to suppress strain localization and improve bendability by the effects of isotropicity and equiaxed graining, the proportion of the area occupied by coarse grains exceeding 35 ⁇ m in grain size in the metal structure It is better that the (rough grain area ratio) is small, and it is preferably 0% or more and 10% or less. When it is reduced to 10% or less, the bendability is sufficiently improved.
  • rL which is the r value in the rolling direction and r60 which is the r value in a direction which forms 60 ° with respect to the rolling direction Furthermore, as a result of intensive studies by the present inventors, the above-described pole density of various crystal orientations and rC, r30 are controlled within a predetermined range, and rL in the rolling direction is 0.70 or more and 1.10 or less, and It has been found that if r60, which is an r value in a direction forming 60 ° with respect to the rolling direction, is 0.70 or more and 1.10 or less, better local deformability can be obtained.
  • the average value of the pole density of ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation group is 1.0 or more and 6.5 or less
  • the pole density of the crystal orientation of ⁇ 332 ⁇ ⁇ 113> is 1.0 or more. If the thickness is 5.0 or less, rC and r30 are 0.70 or more and 1.10 or less, and the rL value and the r60 value are 0.70 or more and 1.10 or less, the thickness / minimum bending radius ⁇ 2.0. Meet.
  • the texture and the r value have a correlation.
  • the limitation on the polar density of the crystal orientation described above and the limitation on the r value are synonymous with each other. is not. Therefore, good local deformability can be obtained if both limitations are satisfied simultaneously.
  • Ratio of grains having excellent equiaxivity As a result of further pursuing local deformability, the present inventors have satisfied the above texture and r value, and when the crystal grains are excellent in equiaxedness, the direction dependency of bending is small, and the local It has been found that the deformability is improved.
  • a value obtained by dividing dL, which is the length in the hot rolling direction, by dt, which is the length in the thickness direction, among all crystal grains in the metal structure of the steel plate (dL / dt ) Is a ratio of grains having excellent equiaxed property of 3.0 or less, that is, an equiaxed grain fraction.
  • the equiaxed grain fraction is desirably 50% or more and 100% or less. If it is less than 50%, the bendability R in the L direction that is the rolling direction or the C direction that is perpendicular to the rolling direction is deteriorated.
  • Hardness of ferrite phase In order to further improve the elongation, it is desirable that a ferrite structure is present in the steel sheet, and it is more desirable if the proportion of the entire structure is 10% or more. At this time, the Vickers hardness of the obtained ferrite phase preferably satisfies the following (formula 1). If it is harder than this, the effect of improving the elongation due to the presence of the ferrite phase cannot be obtained.
  • the hardness of a single crystal grain that does not include a grain boundary can be measured by using an indenter smaller than the crystal grain size.
  • the present invention can be applied to all types of hot-rolled steel sheets, and if the above limitations are satisfied, the invention is not limited to the combination of the metal structures of the steel sheets, such as elongation, bending workability, and holeability of the hot-rolled steel sheets.
  • the local moldability of the is greatly improved.
  • the hot-rolled steel sheet includes a hot-rolled steel strip that serves as an original sheet such as a cold-rolled steel sheet or a galvanized steel sheet.
  • the X-ray random intensity ratio is the X-ray intensity of the test material obtained by measuring the X-ray intensity of the standard sample and the test material without accumulation in a specific orientation under the same conditions by the X-ray diffraction method. Is divided by the X-ray intensity of the standard sample.
  • This pole density can be measured by any of X-ray diffraction, EBSP method, and ECP (Electron-Channeling-Pattern) method.
  • the pole density of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups is a plurality of pole figures among ⁇ 110 ⁇ , ⁇ 100 ⁇ , ⁇ 211 ⁇ , ⁇ 310 ⁇ pole figures measured by these methods.
  • ODF three-dimensional texture
  • Samples to be subjected to X-ray diffraction, EBSP method, and ECP method are obtained by reducing the thickness of the steel plate to a predetermined thickness by mechanical polishing, etc., and then removing the strain by chemical polishing, electrolytic polishing, etc.
  • the sample may be adjusted and measured according to the above-described method so that an appropriate surface becomes a measurement surface within a range of / 8.
  • About the plate width direction it is desirable to collect at a position of 1/4 or 3/4 from the end of the steel plate.
  • the above-mentioned limitation of the extreme density is satisfied not only for the central portion of the plate thickness but also for as many thicknesses as possible, so that the local deformability is further improved.
  • the orientation accumulation in the central part of the thickness of 5/8 to 3/8 from the surface of the steel sheet is the strongest and has an effect on the anisotropy of the steel sheet.
  • the overall material properties can be represented.
  • the extreme density of the crystal orientation of ⁇ 113> shall be specified.
  • ⁇ hkl ⁇ ⁇ uvw> means that when the sample is collected by the above method, the normal direction of the plate surface is parallel to ⁇ hkl ⁇ and the rolling direction is parallel to ⁇ uvw>. Yes.
  • the crystal orientation is usually indicated by [hkl] or ⁇ hkl ⁇ as the orientation perpendicular to the plate surface, and (uvw) or ⁇ uvw> as the orientation parallel to the rolling direction.
  • ⁇ Hkl ⁇ and ⁇ uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes.
  • [hkl] and (uvw) indicate individual crystal planes.
  • the present embodiment is directed to the body-centered cubic structure, for example, (111), ( ⁇ 111), (1-11), (11-1), ( ⁇ 1-11), ( ⁇ 11 ⁇ The 1), (1-1-1), and (-1-1-1) planes are equivalent and cannot be distinguished. In such a case, these orientations are collectively referred to as ⁇ 111 ⁇ .
  • the ODF display is also used for displaying the orientation of other crystal structures with low symmetry, it is common to display each orientation in [hkl] (uvw), but in this embodiment, [hkl] ( uvw) and ⁇ hkl ⁇ ⁇ uvw> are synonymous.
  • Determination of the metal structure in each steel plate can be performed as follows. Perlite is identified by observation of the structure with an optical microscope. Next, the crystal structure is determined by using the EBSP method, and the crystal having the fcc structure is austenite. The ferrite, bainite and martensite having the bcc structure can be identified by the KAM (Kernel Average Misoration) method equipped in EBSP-OIM (registered trademark).
  • the KAM method is a first approximation that is six adjacent hexagonal pixels of measurement data, or a second approximation that is 12 outside the pixel, or a third approximation that is 18 outside the pixel.
  • the condition for calculating the azimuth difference between adjacent pixels in EBSP-OIM is set as a third approximation, and this azimuth difference is set to 5 ° or less.
  • Bainite or martensite where 1 ° or more is a low-temperature transformation product and 1 ° or less were defined as ferrite. This is because the polygonal pro-eutectoid ferrite transformed at high temperature is formed by diffusion transformation, so the dislocation density is small and the intra-granular distortion is small, so the intra-granular difference in crystal orientation is small. This is because, based on various investigation results, the ferrite volume fraction obtained by optical microscope observation and the area fraction of the area obtained by the third approximation of the orientation difference measured by the KAM method are almost in good agreement.
  • Each r value described above is evaluated by a tensile test using a JIS No. 5 tensile test piece.
  • the tensile strain is in the range of 5 to 15% and may be evaluated in the range of uniform elongation.
  • the direction in which bending is performed differs depending on the processed part, and is not particularly limited.
  • the hot-rolled steel sheet according to this embodiment has in-plane anisotropy of the steel sheet, and has sufficient bending characteristics in the C direction. Since the C direction is the direction in which the bending characteristics are most deteriorated in the rolled material, the bending characteristics can be satisfied in any direction.
  • the grain size of ferrite, bainite, martensite, and austenite is measured in a measurement step of 0.5 ⁇ m or less at a magnification of 1500 times in the analysis of the orientation of the steel sheet by the EBSP method, It is obtained by determining the position where the azimuth difference between adjacent measurement points exceeds 15 ° as a grain boundary and obtaining the equivalent circle diameter.
  • dL / dt can be obtained by simultaneously obtaining the lengths of the grains in the rolling direction and the plate thickness direction.
  • the equiaxed grain fraction dL / dt and the crystal grain size can be obtained by binarization processing or a point count method in the structure observation with an optical microscope.
  • C is an element basically contained, and the lower limit of the content [C] is 0.0001%. In order to suppress an extreme increase in steelmaking cost, it is more preferably 0.001%, and in order to obtain high-strength steel at low cost, it is more preferably 0.01%. On the other hand, if the C content [C] exceeds 0.40%, workability and weldability deteriorate, so the upper limit is set to 0.40%. In addition, since excessive C addition deteriorates spot weldability remarkably, 0.30% or less is more desirable. More preferably, it is 0.20%.
  • Si is an element effective for increasing the mechanical strength of a steel sheet, but if its content [Si] exceeds 2.5%, workability deteriorates and surface flaws occur. Therefore, the upper limit is 2.5%. On the other hand, since it is difficult to make Si content [Si] less than 0.001% with practical steel, 0.001% is made the lower limit. Note that the content is desirably 0.01%, and more desirably 0.05%.
  • Mn is an element effective for increasing the mechanical strength of the steel sheet, but if its content [Mn] exceeds 4.0%, workability deteriorates. Therefore, the upper limit is 4.0%. Since Mn suppresses the formation of ferrite, if it is desired to ensure elongation by including a ferrite phase in the structure, it is desirable to make it 3.0% or less. On the other hand, the lower limit of the Mn content [Mn] is set to 0.001%. However, in order to avoid an extreme increase in steelmaking cost, it is desirable to set it to 0.01% or more. More preferably, it is 0.2%. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, an amount of Mn that satisfies [Mn] / [S] ⁇ 20 by weight% may be added. desirable.
  • P and S [P] and [S] are such that [P] is 0.15% or less and [S] is 0.00 in order to prevent deterioration of workability and cracking during hot rolling or cold rolling. 10% or less.
  • the lower limit of each is [P] 0.001% and [S] 0.0005%.
  • [S] is more preferably 0.001% or more.
  • Al is added 0.001% or more for deoxidation. However, when deoxidation is sufficiently necessary, addition of 0.01% or more is more desirable. More desirably, it is 0.02%. However, if the amount is too large, the weldability becomes poor, so the upper limit is made 2.0%. That is, the Al content [Al] is 0.01% or more and 2.0% or less.
  • N and O are impurities, and the N content [N] and the O content [O] are both set to 0.01% or less so as not to deteriorate the workability.
  • the lower limit is 0.0005% for both elements.
  • the content is desirably 0.001% or more. More preferably, it is 0.002%.
  • the above chemical elements are the basic components (basic elements) of the steel in the present embodiment, the basic elements are controlled (contained or restricted), and the chemical composition consisting of iron and unavoidable impurities as the balance is Basic composition.
  • the following chemical elements (selective elements) may be further contained in the steel as necessary. In addition, even if these selection elements are inevitably mixed in the steel (for example, an amount less than the lower limit of the amount of each selection element), the effect in the present embodiment is not impaired.
  • Ti, Nb, B, Mg are used as elements conventionally used for increasing mechanical strength by precipitation strengthening, or for inclusion control and refinement of precipitates to improve local deformability.
  • REM, Ca, Mo, Cr, V, W, Cu, Ni, Co, Sn, Zr, As may be included.
  • Ti, Nb, V, and W are solid solution elements and have an effect of contributing to refinement of crystal grains.
  • the Ti content [Ti] is 0.001% or more, the Nb content [Nb] is 0.001% or more, and the V content. [V] is preferably 0.001% or more, and the W content [W] is preferably 0.001% or more.
  • the Ti content [Ti] is 0.01% or more, the Nb content [Nb] is 0.005% or more, the V content [V] is 0.01% or more, It is more desirable to add 0.01% or more of W content [W].
  • Ti and Nb have the effect of improving the material through mechanisms such as carbon and nitrogen fixation, structure control, and fine grain strengthening in addition to precipitation strengthening.
  • V is effective for precipitation strengthening, and is less effective than Mo or Cr when the deterioration allowance of local deformability due to strengthening by addition is small, and when high strength and better hole expandability and bendability are required. Is an additive element. However, even if added excessively, the increase in strength is saturated, and in addition, it is difficult to control the crystal orientation by suppressing recrystallization after hot rolling, so the Ti content [Ti] and It is desirable that the Nb content [Nb] is 0.20% or less, and the V content [V] and W content [W] are 1.0% or less. However, when elongation is particularly necessary, it is more desirable that the V content [V] is 0.50% or less and the W content [W] is 0.50% or less.
  • B has the effect of improving the material through mechanisms such as carbon and nitrogen fixation, precipitation strengthening, and fine grain strengthening.
  • Mo and Cr have the effect of improving the material in addition to the effect of increasing the mechanical strength.
  • the B content [B] is 0.0001% or more, the Mo content [Mo], the Cr content [Cr], the Ni content [Ni], and the Cu content [Cu] are 0.
  • the Co content [Co], the Sn content [Sn], the Zr content [Zr], and the As content [As] be 0.0001% or more.
  • the upper limit of B content [B] is 0.0050%
  • the upper limit of Mo content [Mo] is 2.0%
  • Cr content [Cr]
  • Cu content [Cu] is 2.0%
  • upper limit of Co content [Co] is 1.0%
  • Zr content [Zr] Is 0.2%
  • the upper limit of As content [As] is preferably 0.50%.
  • the upper limit of B content [B] is 0.005% and the upper limit of Mo content [Mo] is 0.50%. From the viewpoint of cost, it is more desirable to select B, Mo, Cr, As among the above-described additive elements.
  • Mg, REM, and Ca are important additive elements for detoxifying inclusions and further improving local deformability.
  • the lower limits of the contents [Mg], [REM], and [Ca] for obtaining this effect are each 0.0001%, but when the inclusion form control is required, 0.0005% or more is added respectively. It is desirable.
  • the upper limit is 0.010% for Mg content [Mg], 0.1% for REM content [REM], and 0.010% for Ca content [Ca]. It was.
  • the hot-rolled steel sheet according to this embodiment is subjected to surface treatment, it does not lose the local deformability improvement effect, but electroplating, hot dipping, vapor deposition plating, organic film formation, film lamination, organic salt / inorganic salt treatment, and
  • the effect of the present invention can be obtained by performing any of non-chromic treatment or the like.
  • the manufacturing method of the hot rolled steel sheet according to the present embodiment will be described.
  • the production method prior to hot rolling is not particularly limited. That is, various secondary smelting may be performed following melting by a blast furnace, an electric furnace, etc., and then casting may be performed by a method such as normal continuous casting, casting by an ingot method, or thin slab casting.
  • the casting slab may be once cooled to a low temperature and then heated again and then hot rolled, or the casting slab may be hot rolled after casting without being cooled to a low temperature. .
  • Scrap may be used as a raw material.
  • the hot-rolled steel sheet according to this embodiment is obtained when the following requirements are satisfied using the steel having the above-described components.
  • the austenite grain size after rough rolling that is, before finish rolling is important. Therefore, the austenite grain size before finish rolling is set to 200 ⁇ m or less. By reducing the austenite grain size before finish rolling, the elongation and local deformability can be improved.
  • rough rolling is performed by rolling in a temperature range of 1000 ° C. or more and 1200 ° C. or less, and In this temperature range, it may be reduced at least once at a reduction rate of 40% or more.
  • the austenite grain size before finish rolling is desirably 100 ⁇ m or less.
  • the finer austenite grain size can be obtained as the reduction ratio and the number of reductions are increased.
  • the reduction exceeding 70% or the rough rolling exceeding 10 times may cause a decrease in temperature or excessive production of scale.
  • the austenite grain boundary after rough rolling that is, before finish rolling, functions as one of the recrystallization nuclei during finish rolling.
  • the steel plate is cooled at a cooling rate of 10 ° C./s or more, and the structure of the cross section of the steel plate is obtained. Is etched to raise the austenite grain boundary and measured with an optical microscope. At this time, 20 fields of view or more are measured by image analysis or a point count method at a magnification of 50 times or more.
  • T1 + 30 ° C. or more and T1 + 200 ° C. based on the T1 temperature described in the following formula 2 determined by the steel plate component in the finish rolling after the rough rolling. Processing with a large reduction rate (second hot rolling) in the following temperature range (preferably a temperature range of T1 + 50 ° C. or more and T1 + 100 ° C.
  • T1 850 + 10 ⁇ ([C] + [N]) ⁇ [Mn] + 350 ⁇ [Nb] + 250 ⁇ [Ti] + 40 ⁇ [B] + 10 ⁇ [Cr] + 100 ⁇ [Mo] + 100 ⁇ [V].
  • Form 2 the amount of chemical elements (chemical components) not included in the above formula 2 is calculated as 0%.
  • the total rolling reduction in this temperature range needs to be 50% or more. Desirably, it is 70% or more. On the other hand, it is not desirable that the total rolling reduction exceeds 90% from the viewpoints of securing temperature and excessive rolling load. Furthermore, in order to increase the homogeneity of the hot-rolled sheet, to elongate and to increase the local deformability to the limit, at least one pass of rolling (second hot rolling) in a temperature range of T1 + 30 ° C.
  • T1 + 200 ° C. or lower is preferably reduced at a reduction rate of 30% or more. More desirably, it is 40% or more. On the other hand, if it exceeds 70% in one pass, there is a concern that the shape may be hindered. When higher workability is required, it is more desirable that the final two passes in the second hot rolling step be 30% or more.
  • the amount of work in rolling (third hot rolling) in a temperature range of T1 + 30 ° C to less than T1 + 30 ° C after large pressure at T1 + 30 ° C or higher and T1 + 200 ° C or lower Must be minimized. Therefore, the sum total of the rolling reduction in T1 degreeC or more and less than T1 + 30 degreeC shall be 30% or less. From the viewpoint of plate shape, a rolling reduction of 10% or more is desirable, but when the local deformability is more important, the rolling reduction is more preferably 0%. When the rolling reduction at T1 ° C. or more and less than T1 + 30 ° C.
  • the recrystallized austenite grains expand and deteriorate the local deformability.
  • the austenite in order to improve the local deformability such as hole expandability and bendability, the austenite is uniformly and finely recrystallized in finish rolling, thereby collecting hot rolled products. It is important to control the organization.
  • the hot rolling performed as described above ends at a temperature of T1 ° C. or higher.
  • T1 ° C. the end temperature of the hot rolling is less than T1 ° C., the rolling becomes a non-recrystallized region and the anisotropy increases, so that the local deformability is significantly deteriorated.
  • the waiting time t By further limiting the waiting time t to less than t1, the growth of crystal grains can be significantly suppressed. If it is a hot-rolled steel sheet having the components of this embodiment, the volume average diameter can be controlled to 15 ⁇ m or less. As a result, even if recrystallization does not proceed sufficiently, the elongation of the steel sheet can be sufficiently improved, and at the same time, fatigue characteristics can be improved.
  • the crystal grains become, for example, more than 15 ⁇ m in volume average diameter, but recrystallization is sufficiently advanced and the crystal orientation is randomized.
  • the elongation of the steel sheet can be sufficiently improved, and at the same time, the isotropy can be greatly improved.
  • the thickness / minimum bending radius ⁇ 2.0 is satisfied if rL and r60 are 0.70 or more and 1.10 or less, respectively, with the pole density, rC, and r30 being in a predetermined range.
  • the waiting time until the start of primary cooling is set to the above-mentioned value, and the temperature rise of the steel plate between each pass during the reduction at T1 + 30 ° C. or higher and T1 + 200 ° C. or lower is suppressed to 18 ° C. or lower.
  • Uniform recrystallization when rL and r60 are 0.70 or more and 1.10 or less when the temperature rise of the steel plate between each pass at T1 + 30 ° C. or more and T1 + 200 ° C. or less is 18 ° C. or less and t satisfies the above formula 3. Austenite can be obtained.
  • the change in the cooling temperature which is the difference between the steel plate temperature at the start of cooling in the primary cooling and the steel plate temperature at the end of cooling, is 40 ° C. or more and 140 ° C. or less, and the steel plate temperature at the end of the primary cooling is T1 + 100 ° C. or less. desirable.
  • the change in the cooling temperature is 40 ° C. or higher, coarsening of austenite grains can be suppressed. If it is less than 40 ° C., the effect cannot be obtained. On the other hand, when it exceeds 140 ° C., recrystallization becomes insufficient, and it becomes difficult to obtain a target random texture.
  • the cooling pattern after passing through the finishing mill is not particularly specified.
  • the effect of the present invention can be obtained even if a cooling pattern for performing tissue control for each purpose is employed.
  • secondary cooling may be performed after passing through the final rolling stand of the finishing mill in order to further suppress coarsening of austenite grains following the primary cooling.
  • the secondary cooling is performed following the primary cooling, it is preferable to perform the cooling within 10 seconds after the completion of the primary cooling. If it exceeds 10 seconds, the effect of suppressing the coarsening of austenite grains cannot be obtained.
  • FIG. 9 shows a flowchart of the manufacturing method according to the present embodiment. As described above, it is important in this embodiment that the first hot rolling, the second hot rolling, the third hot rolling, and the primary cooling are performed under predetermined conditions.
  • a sheet bar may be joined after rough rolling, and finish rolling may be performed continuously.
  • the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining. Moreover, you may wind up after hot rolling.
  • the hot-rolled steel sheet may be subjected to skin pass rolling as necessary after cooling.
  • Skin pass rolling has the effect of preventing stretcher strain generated during processing and shape correction.
  • the structure of the hot-rolled steel sheet obtained in this embodiment may contain compounds such as ferrite, pearlite, bainite, martensite, austenite, and carbonitride.
  • pearlite is desirably 5% or less in order to deteriorate local ductility.
  • the hot-rolled steel sheet according to the present embodiment can be applied not only to bending, but also to composite forming mainly composed of bending, overhanging, drawing, and bending.
  • these steels are reheated as they are or after being cooled to room temperature, heated to a temperature range of 1000 ° C. to 1300 ° C., and then hot-rolled under the conditions shown in Tables 4 to 18, and T1
  • the hot rolling was finished at a temperature not lower than 0 ° C. and cooled under the conditions shown in Tables 4 to 18, and finally a hot rolled steel sheet having a thickness of 2 to 5 mm was obtained.
  • Tables 1 to 3 show the chemical composition of each steel, and Tables 4 to 18 show the production conditions and mechanical properties.
  • indices of local deformability a hole expansion ratio ⁇ and a critical bending radius (plate thickness / minimum bending radius) by 90 ° V-bending were used.
  • C direction bending and 45 ° direction bending were performed, and the ratio was used as an index of orientation dependency (isotropy) of formability.
  • the tensile test and the bending test were in conformity with JIS Z2241 and Z2248 (V block 90 ° bending test), and the hole expansion test was in conformity with the iron standard JFS T1001.
  • the pole density is 0 with respect to a position where the width direction is 1 ⁇ 4 from the end portion in the central portion of the thickness of 5/8 to 3/8 of the cross section parallel to the rolling direction. Measured at a pitch of 5 ⁇ m. Further, the r value and the volume average diameter in each direction were measured by the method described above.
  • a flat bending fatigue test piece having a length of 98 mm, a width of 38 mm, a minimum cross-sectional width of 20 mm, and a notch curvature radius of 30 mm is cut out from the product plate, and the surface of the product is completely swung.
  • a bending fatigue test was performed. The fatigue characteristics of the steel sheet were evaluated by a value (fatigue limit ratio ⁇ W / ⁇ B) obtained by dividing the fatigue strength ⁇ W at 2 ⁇ 10 6 times by the tensile strength ⁇ B of the steel sheet.
  • Those satisfying the provisions of the present invention have both excellent hole expansibility, bendability, and low elongation as shown in FIGS. 6, 7, and 8, for example. Further, those within the desired production condition range exhibit better hole expansion rate and bendability, isotropic properties, fatigue properties, and the like.
  • the main structure configuration is not limited, and in addition to the control of the crystal grain size and morphology, the texture is controlled, so that the local deformability is excellent and the orientation dependency of the formability.
  • a hot-rolled steel sheet with a small amount can be obtained. Therefore, the present invention has high applicability in the steel industry. In general, since the formability decreases as the strength increases, the effect is particularly great in the case of a high strength steel plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 この熱延鋼板は、鋼板表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で表わされる方位群である{100}<011>~{223}<110>方位群の極密度の平均値が1.0以上6.5以下でかつ、{332}<113>の結晶方位の極密度が1.0以上5.0以下であり;圧延方向に対して直角方向のランクフォード値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のランクフォード値であるr30が0.70以上1.10以下である。

Description

熱延鋼板およびその製造方法
 本発明は、張り出し成形等の、曲げ、伸びフランジ、バーリング加工などの局部変形能に優れ、成形性の方位依存性の少ない、主に自動車部品等に使用される熱延鋼板およびその製造方法に関する。
 本願は、2011年3月4日に日本に出願された特願2011-047720号と、2011年3月4日に日本に出願された特願2011-048231号とに基づき優先権を主張し、これらの内容をここに援用する。
 自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板の使用による自動車車体の軽量化が進められている。搭乗者の安全性確保の観点からも、自動車車体には、軟鋼板の他に、高強度鋼板が多く使用されるようになってきている。しかし、自動車車体の軽量化を今後さらに進めていくためには、従来以上に高強度鋼板の使用強度レベルを高めなければならない。
 しかしながら、一般的に、鋼板を高強度化すれば成形性が低下する。例えば、非特許文献1には、高強度化によって絞り成形や張り出し成形に重要な均一伸びが低下することが開示されている。
 従って、例えば自動車車体の足回り部品や、衝突エネルギー吸収に寄与する部品等に高強度鋼板を用いるには、バーリング加工性や、曲げ加工性等の成形性に寄与する局部延性などの局部変形能を改善することが重要となる。
 これに対して非特許文献2には、鋼板の金属組織を複合化することで、同一強度でも均一伸びを向上させる方法が開示されている。
 非特許文献3には、介在物制御や単一組織化、さらには組織間の硬度差の低減によって、曲げ性や穴広げ加工性やバーリング加工性に代表される局部変形能が改善する金属組織制御法が開示されている。これは、組織制御によって単一組織とすることにより、穴広げ性を改善するものであるが、単一組織とするためには、非特許文献4に記載されるようにオーステナイト単相からの熱処理が製法の基本となる。
 また、非特許文献4には、熱間圧延後の冷却制御により金属組織制御を行い、析出物の制御および変態組織を制御することでフェライトとベイナイトの適切な分率を得て、高強度化と延性確保を両立する技術が開示されている。
 しかし、上記のいずれの技術も組織制御に頼った局部変形能の改善方法であり、ベースの組織形成に大きく影響されてしまう。
 一方、連続熱間圧延工程に於ける圧下量増加による材質改善についても、先行技術が存在する。いわゆる、結晶粒微細化の技術であり、例えば、非特許文献5には、オーステナイト域内の極力低温領域で大圧下を行い、未再結晶オーステナイトからフェライト変態させることで、製品の主相であるフェライトの結晶粒微細化を図り、細粒化により、高強度化や強靭化する技術が開示されている。しかし、本発明が解決しようとする局部変形能の改善のための手段については、一切検討されていない。
岸田「新日鉄技報」(1999)No.371,p.13 O. Matsumura et al「Trans. ISIJ」(1987)vol.27,p.570 加藤ら「製鉄研究」(1984)vol.312,p.41 K.Sugimoto et al 「ISIJ International」(2000)Vol.40,p.920 中山製鋼所 NFG製品紹介
 上述のように、高強度鋼板の伸びや局部変形能改善のためには、介在物制御を含む組織制御を行うことが主たる手段であった。しかし、組織制御によっていることから、析出物や、フェライトやベイナイト等の組織の分率や形態を制御する必要があり、ベースの金属組織が限定されていた。
 本発明では、ベース組織の制御ではなく、集合組織の制御を行い、さらには、結晶粒の粒単位のサイズや形態を制御することで、相の種類に限定されずに、高強度でかつ、伸びや局部変形能が優れ、成形性方位依存性の少ない熱延鋼板およびその製造方法を提供することを目的とする。
 本発明における高強度とは、引張強度で440MPa以上を指す。
 従来の知見によれば、前述のように穴広げ性や曲げ性などに寄与する伸びや局部変形能の改善は、介在物制御、析出物微細化、組織均質化、単一組織化および組織間の硬度差の低減などによって行われていた。しかし、これらの技術だけでは、主な組織構成を限定せざるを得ない。さらに、高強度化のために、強度上昇に大きく寄与する代表的な元素であるNbやTiなどを添加した場合には、異方性が極めて大きくなることが懸念される。そのため、他の成形性因子を犠牲にしたり、成形前のブランク取りの方向を限定したりせざるを得ず、用途が限定される。
 本発明者らは、穴広げ性や曲げ加工性などに寄与する伸びや局部変形能を向上させるために、新たに鋼板の集合組織の影響に着目して、その作用効果を詳細に調査、研究した。その結果、熱延工程において特定の結晶方位群の各方位の極密度を制御し、さらに圧延方向に対して、90°をなす方向(C方向)のランクフォード値(r値)及び30°をなす方向のランクフォード値(r値)を制御することで、局部変形能が飛躍的に向上することを明らかにした。
 加えて、特定の結晶方位群の各方位の強度を制御した組織において、圧延方向のr値、及び圧延方向に対して60°をなす方向のr値、結晶粒の形状、サイズ、硬さを制御することで、さらに局部変形能の向上が可能となることを見出した。
 しかしながら、一般に、低温生成相(ベイナイト、マルテンサイト等)が混在した組織において、結晶粒の定量化が困難であった。そのため、従来は、結晶粒の形状やサイズの影響については検討されていなかった。
 これに対し、本発明者らは、次のように測定される粒単位を結晶粒と定義し、その粒単位のサイズを結晶粒径として用いれば、定量化の問題を解決できることを見出した。
 すなわち、本発明でいう粒単位は、EBSP法(Electron Back Scattering Diffraction Pattern: 電子後方散乱回折像法)による鋼板の方位の解析において、例えば、1500倍の倍率にて、0.5μm以下の測定ステップで方位測定を行い、隣りあう測定点の方位差が15°を超えた位置を粒単位の粒境界として定めることで得られる。
 上述のように定義した結晶粒(粒単位)については、上述のように定義された円相当径をd、d=2rとしたとき、個々の体積を4πr/3で求め、体積の重み付け平均により、体積平均径を求めることができる。
 この体積平均径が、粒単位の伸びに及ぼす影響について検討したところ、特定の結晶方位群の各方位の強度を制御したうえで、体積平均径を臨界径以下とすることで、さらに延性と局部延性を向上させることができることを見出した。
 本発明は前述の知見に基づいて構成されており、上記の課題を解決して係る目的を達成するために、本発明は以下の手段を採用した。
(1)すなわち、本発明の一態様にかかる熱延鋼板は、質量%で、C含有量[C]が、0.0001%以上、0.40%以下のCと、Si含有量[Si]が、0.001%以上、2.5%以下のSiと、Mn含有量[Mn]が、0.001%以上、4.0%以下のMnと、P含有量[P]が、0.001%以上、0.15%以下のPと、S含有量[S]が、0.0005%以上、0.10%以下のSと、Al含有量[Al]が、0.001%以上、2.0%以下のAlと、N含有量[N]が、0.0005%以上、0.01%以下のNと、O含有量[O]が、0.0005%以上、0.01%以下のOと、を含有し、残部が鉄および不可避的不純物からなり;鋼板の金属組織中に、複数の結晶粒が存在し;前記鋼板表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で表わされる方位群である{100}<011>~{223}<110>方位群の極密度の平均値が1.0以上6.5以下でかつ、{332}<113>の結晶方位の極密度が1.0以上5.0以下であり;圧延方向に対して直角方向のランクフォード値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のランクフォード値であるr30が0.70以上1.10以下である。
 (2)上記(1)に記載の熱延鋼板では、さらに、前記結晶粒の体積平均径が2μm以上15μm以下であってもよい。
 (3)上記(1)に記載の熱延鋼板では、前記{100}<011>~{223}<110>方位群の極密度の平均値が、1.0以上5.0以下であり、前記{332}<113>の結晶方位の極密度が1.0以上4.0以下であってもよい。
 (4)上記(3)に記載の熱延鋼板では、前記鋼板の前記金属組織中の前記結晶粒のうち、粒径が35μmを超える粗大結晶粒の面積割合が0%以上10%以下であってもよい。
 (5)上記(1)~(4)のいずれか一項に記載の熱延鋼板では、前記圧延方向のランクフォード値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のランクフォード値であるr60が0.70以上1.10以下であってもよい。
 (6)上記(1)~(5)のいずれか一項に記載の熱延鋼板では、前記鋼板の前記金属組織中の前記結晶粒のうち、前記圧延方向長さをdLとし、板厚方向長さをdtとした場合、前記圧延方向長さdLを前記板厚方向長さdtで除した値が3.0以下である前記結晶粒の割合が、50%以上100%以下であってもよい。
 (7)上記(1)~(6)のいずれか一項に記載の熱延鋼板では、前記鋼板の前記金属組織中にフェライト相が存在し、前記フェライト相のビッカース硬さHvが下記式1を満たしてもよい。
 Hv<200+30×[Si]+21×[Mn]+270×[P]+78×[Nb]1/2+108×[Ti]1/2…(式1)
 (8)上記(1)~(7)のいずれか一項に記載の熱延鋼板では、前記鋼板の前記金属組織中で最も相分率の高い相を主相とし、この主相に対して100点以上の点について硬さの測定を行った場合に、前記硬さの標準偏差を前記硬さの平均値で除した値が0.2以下であってもよい。
 (9)上記(1)~(8)のいずれか一項に記載の熱延鋼板では、さらに、質量%で、Ti含有量[Ti]が、0.001%以上、0.20%以下のTiと、Nb含有量[Nb]が、0.001%以上、0.20%以下のNbと、V含有量[V]が、0.001%以上、1.0%以下のVと、W含有量[W]が、0.001%以上、1.0%以下のWと、B含有量[B]が、0.0001%以上、0.0050%以下のBと、Mo含有量[Mo]が、0.001%以上、2.0%以下のMoと、Cr含有量[Cr]が、0.001%以上、2.0%以下のCrと、Cu含有量[Cu]が、0.001%以上、2.0%以下のCuと、Ni含有量[Ni]が、0.001%以上、2.0%以下のNiと、Co含有量[Co]が0.0001%以上、1.0%以下のCoと、Sn含有量[Sn]が、0.0001%以上、0.2%以下のSnと、Zr含有量[Zr]が、0.0001%以上、0.2%以下のZrと、As含有量[As]が、0.0001%以上、0.50%以下のAsと、Mg含有量[Mg]が、0.0001%以上、0.010%以下のMgと、Ca含有量[Ca]が、0.0001%以上、0.010%以下のCaと、REM含有量[REM]が、0.0001%以上、0.1%以下のREMのうちの1種以上を含有してもよい。
 (10)本発明の一態様に係る熱延鋼板の製造方法は、質量%で、C含有量[C]が、0.0001%以上、0.40%以下のCと、Si含有量[Si]が、0.001%以上、2.5%以下のSiと、Mn含有量[Mn]が、0.001%以上、4.0%以下のMnと、P含有量[P]が、0.001%以上、0.15%以下のPと、S含有量[S]が、0.0005%以上、0.10%以下のSと、Al含有量[Al]が、0.001%以上、2.0%以下のAlと、N含有量[N]が、0.0005%以上、0.01%以下のNと、O含有量[O]が、0.0005%以上、0.01%以下のOと、を含有し、残部が鉄および不可避的不純物からなる鋼塊またはスラブを、1000℃以上1200℃以下の温度範囲で、40%以上の圧下を少なくとも1回以上行う第1の熱間圧延を行い、オーステナイト粒径を200μm以下とし;下記式2において鋼板の成分により決定される温度をT1℃とした場合に、T1+30℃以上T1+200℃以下の温度範囲で、圧下率の合計が50%以上である第2の熱間圧延を行い;T1℃以上T1+30℃未満の温度範囲で、圧下率の合計が30%以下である第3の熱間圧延を行い;T1℃以上で熱間圧延を終了し;T1+30℃以上T1+200℃以下の温度範囲における30%以上の圧下率のパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスの完了から冷却開始までの待ち時間t秒が下記式3を満たすように、圧延スタンド間で一次冷却を行う。
 T1=850+10×([C]+[N])×[Mn]+350×[Nb]+250×[Ti]+40×[B]+10×[Cr]+100×[Mo]+100×[V]・・・(式2)
 t≦t1×2.5・・・(式3)
 ここで、t1は下記式4で表される。
 t1=0.001×((Tf-T1)×P1/100)-0.109×((Tf-T1)×P1/100)+3.1・・・(式4)
 ここで、Tfは前記最終パス完了時の前記鋼板の温度(℃)であり、P1は前記最終パスにおける圧下率(%)である。
 (11)上記(10)に記載の熱延鋼板の製造方法では、前記待ち時間t秒が、さらに、下記式5を満たしてもよい。
 t<t1・・・(式5)
 (12)上記(10)に記載の熱延鋼板の製造方法では、前記待ち時間t秒が、さらに、下記式6を満たしてもよい。
 t1≦t≦t1×2.5・・・(式6)
 (13)上記(10)~(12)のいずれか一項に記載の熱延鋼板の製造方法では、前記一次冷却における冷却開始時の鋼板温度と冷却終了時の鋼板温度の差である冷却温度変化が、40℃以上140℃以下で、かつ前記一次冷却の前記冷却終了時の前記鋼板温度がT1+100℃以下であってもよい。
 (14)上記(10)~(13)のいずれか一項に記載の熱延鋼板の製造方法では、T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行ってもよい。
 (15)上記(10)~(14)のいずれか一項に記載の熱延鋼板の製造方法では、前記第1の熱間圧延において、40%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下としてもよい。
 (16)上記(10)~(15)のいずれか一項に記載の熱延鋼板の製造方法では、前記一次冷却の完了後、10秒以内に最終圧延スタンド通過後において二次冷却を開始してもよい。
 (17)上記(10)~(16)のいずれか一項に記載の熱延鋼板の製造方法では、前記第2の熱間圧延において、各パス間の鋼板の温度上昇を18℃以下としてもよい。
 (18)上記(10)~(17)のいずれか一項に記載の熱延鋼板の製造方法では、前記鋼塊または前記スラブが、さらに、質量%で、Ti含有量[Ti]が、0.001%以上、0.20%以下のTiと、Nb含有量[Nb]が、0.001%以上、0.20%以下のNbと、V含有量[V]が、0.001%以上、1.0%以下のVと、W含有量[W]が、0.001%以上、1.0%以下のWと、B含有量[B]が、0.0001%以上、0.0050%以下のBと、Mo含有量[Mo]が、0.001%以上、2.0%以下のMoと、Cr含有量[Cr]が、0.001%以上、2.0%以下のCrと、Cu含有量[Cu]が、0.001%以上、2.0%以下のCuと、Ni含有量[Ni]が、0.001%以上、2.0%以下のNiと、Co含有量[Co]が0.0001%以上、1.0%以下のCoと、Sn含有量[Sn]が、0.0001%以上、0.2%以下のSnと、Zr含有量[Zr]が、0.0001%以上、0.2%以下のZrと、As含有量[As]が、0.0001%以上、0.50%以下のAsと、Mg含有量[Mg]が、0.0001%以上、0.010%以下のMgと、Ca含有量[Ca]が、0.0001%以上、0.010%以下のCaと、REM含有量[REM]が、0.0001%以上、0.1%以下のREMのうちから選ばれる1種以上を含有してもよい。
 本発明によれば、NbやTiなどの元素が添加された場合でも異方性への影響が小さく、伸びと局部変形能に優れた熱延鋼板を得ることができる。
本実施形態に係る熱延鋼板における{100}<011>~{223}<110>方位群の極密度の平均値と板厚/最小曲げ半径との関係を示す図である。 本実施形態に係る熱延鋼板における{332}<113>方位群の極密度と板厚/最小曲げ半径との関係を示す図である。 本実施形態の粗圧延(第1の熱間圧延)における40%以上の圧延回数とオーステナイト粒径との関係を示す図である。 本実施形態に係る熱延鋼板におけるT1+30℃~T1+200℃の合計圧下率と{100}<011>~{223}<110>方位群の極密度の平均値との関係を示す図である。 本実施形態に係る熱延鋼板におけるT1+30℃~T1+200℃の合計圧下率と{332}<113>の結晶方位の極密度との関係を示す図である。 本実施形態に係る熱延鋼板と比較鋼の強度と穴広げ性との関係を示す図である。 本実施形態に係る熱延鋼板と比較鋼の強度と曲げ性との関係を示す図である。 本実施形態に係る熱延鋼板と比較鋼の強度と伸びとの関係を示す図である。 本実施形態に係る熱延鋼板の製造方法を示すフローチャート図である。
 以下に本発明の一実施形態を詳細に説明する。
(1)鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値、{332}<113>の結晶方位の極密度:
 本実施形態に係る熱延鋼板において、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で表わされる方位群である{100}<011>~{223}<110>方位群の極密度の平均値は、特に重要な特性値である。
 図1に示すように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度、すなわちランダム試料に対する各方位の強度比をEBSP法によって求めたときの、{100}<011>~{223}<110>方位群の極密度の平均値が6.5以下であれば、足回り部品や骨格部品の加工に必要な板厚/最小曲げ半径であるd/Rm(C方向曲げ)が1.5以上を満たす。さらに、また、{100}<011>~{223}<110>方位群の平均値が5.0以下であれば、成形性の方位依存性(等方性)の指標であるC方向曲げと45°方向曲げの比率(45°方向曲げ/C方向曲げ)が1.4以下となり、曲げ方向に関わらず高い局部変形能を示すためより望ましい。より優れた穴広げ性や、小さな限界曲げ特性を必要とする場合には、上記の極密度の平均値は、より望ましくは4.0未満であり、さらに一層望ましくは、3.0未満である。
 {100}<011>~{223}<110>方位群の極密度の平均値が6.5超では、鋼板の機械的特性の異方性が極めて強くなる。その結果、ある方向の局部変形能が改善しても、その方向とは異なる方向での材質が著しく劣化し、前述の板厚/最小曲げ半径≧1.5を満足できなくなる。
 一方、極密度が1.0未満になると局部変形能の劣化が懸念される。
 同様な理由から、図2に示すように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{332}<113>の結晶方位の極密度が、5.0以下であれば、足回り部品の加工に必要な板厚/最小曲げ半径が1.5以上を満足する。
 さらに、{332}<113>の結晶方位の極密度が、4.0以下であれば、C方向曲げと45°方向曲げの比率が、1.4以下を満たすためより望ましい。上記の極密度は、より望ましくは、3.0以下である。これが5.0超であると、鋼板の機械的特性の異方性が極めて強くなる。その結果、ある方向のみの局部変形能が改善しても、その方向とは異なる方向での材質が著しく劣化する。そのため、板厚/最小曲げ半径≧1.5、またはC方向曲げと45°方向曲げの比率≦1.4を確実に満足できなくなる。一方、極密度が1.0未満になると局部変形能の劣化が懸念される。
 以上述べた結晶方位の極密度が、曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
(2)圧延方向と直角方向のr値であるrC:
 このrCは、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位の極密度だけが適正であっても、必ずしも良好な穴広げ性や曲げ性が得られないことが判明した。上記の極密度と同時に、rCが0.70以上1.10以下であることが必須である。
 上述のrCを0.70以上1.10以下とすることで、すぐれた局部変形能を得ることができる。
(3)圧延方向に対して30°をなす方向のr値であるr30:
 このr30は、本実施形態において重要である。すなわち、本発明者等が鋭意検討した結果、上述した種々の結晶方位の極密度が適正であっても、必ずしも良好な局部変形能が得られないことが判明した。上記の極密度と同時に、r30が0.70以上1.10以下であることが必須である。
 上述のr30を0.70以上1.10以下とすることで、すぐれた局部変形能を得ることができる。
 (4)結晶粒の体積平均径:
 本発明者らは、熱延鋼板における集合組織制御及びミクロ組織を鋭意検討した結果、集合組織が上記のように制御された条件において、結晶粒のサイズ、特に体積平均径が伸びに及ぼす影響が極めて大きく、これを微細化することで伸びの向上が得られることを見出した。さらに、体積平均径を微細化することで、自動車用鋼板などで求められる疲労特性(疲労限度比)が向上することを見出した。
 粒単位の寄与については個数が少量であっても粒単位の大きなものが多い程、伸びの劣化は大きくなる。そのため、粒単位のサイズは通常のサイズ平均ではなく、体積の重み付け平均で算出される体積平均径と強い相関が得られる。上記の効果を得るためには、体積平均径は2μm以上15μm以下であることが、望ましい。引張強度540MPa以上の鋼板の場合では、9.5μm以下であることがより望ましい。
 体積平均径の微細化によって伸びが向上する理由は明らかではないが、ミクロオーダーで生じる局部的な歪集中を抑制することで、局部変形の折には、歪の分散を促進できるためと考えている。加えて、変形の均質化が高まることでミクロ的な局部歪集中を抑えることができ、歪をミクロオーダーにおいても均一に分散でき、均一伸びが向上すると考えている。一方で、体積平均径の微細化により疲労特性が向上するのは、疲労現象は繰り返し塑性変形であり、この塑性変形は転位運動であるため、その障壁となる結晶粒界に強く影響を受けることによると考えている。
 粒単位の測定方法については、前述のとおりである。
(5)粒径35μmを超える粗大結晶粒の割合:
 曲げ性は、結晶粒の等軸性の影響を強く受け、その効果が大きいことを見出した。等方性化と等軸粒化の効果により、ひずみの局部化を抑え、曲げ性を向上させるためには、金属組織中の結晶粒のうち、粒径35μmを超える粗大結晶粒の占める面積割合(粗粒面積率)が少ない方がよく、0%以上10%以下であることが望ましい。10%以下に低減すると十分に曲げ性が向上する。
 上記の理由は明らかではないが、曲げ変形は、局部的にひずみが集中するモードであり、全ての結晶粒が均一に、等価にひずみを受ける状態が曲げ性には有利と考えられる。粒径の大きな結晶粒が多い場合には、等方性化と等軸粒化が十分であっても、局部的な結晶粒が歪むことにより、その局部的に歪む結晶粒の方位により、曲げ性に大きなばらつきが出て、曲げ性の低下を引き起こすと考えている。
(6)圧延方向のr値であるrLおよび圧延方向に対して60°をなす方向のr値であるr60:
 さらに、本発明者等が鋭意検討した結果、上述した種々の結晶方位の極密度やrC、r30を所定の範囲に制御した上で、圧延方向のrLが0.70以上1.10以下でかつ、圧延方向に対して60°をなす方向のr値であるr60が0.70以上1.10以下であれば、よりすぐれた局部変形能を得ることができることが判明した。
 例えば、{100}<011>~{223}<110>方位群の極密度の平均値が1.0以上6.5以下、{332}<113>の結晶方位の極密度が1.0以上5.0以下、rC及びr30が0.70以上1.10以下で、さらに、rL値およびr60値が、0.70以上1.10以下であれば、板厚/最小曲げ半径≧2.0を満たす。
 一般に集合組織とr値とは相関があることが知られているが、本実施形態に係る熱延鋼板においては、既述の結晶方位の極密度に関する限定と、r値に関する限定とは互いに同義ではない。従って、両方の限定が同時に満たされれば良好な局部変形能を得ることができる。
(7)等軸性に優れた粒の割合:
 本発明者らは、さらに局部変形能を追求した結果、上記の集合組織およびr値を満たした上で、結晶粒の等軸性に優れたときに、曲げ加工の方向依存性が小さく、局部変形能が向上することを見出した。この等軸性を表す指標としては、鋼板の金属組織中の全結晶粒のうち、熱間圧延方向の長さであるdLを板厚方向の長さであるdtで除した値(dL/dt)が、3.0以下である等軸性に優れた粒の割合、すなわち等軸粒分率である。この等軸粒分率が、50%以上100%以下であることが望ましい。50%未満では、圧延方向であるL方向または圧延方向に対して直角方向であるC方向の曲げ性Rが劣化する。
 (8)フェライト相の硬さ:
 さらに伸びを向上させるためには、鋼板中にフェライト組織が存在することが望ましく、その全組織に占める割合が10%以上であればより望ましい。このとき、得られるフェライト相のビッカース硬さは、下記(式1)を満たすことが望ましい。これ以上に硬いとフェライト相が存在することによる伸びの改善効果は得られない。
 Hv<200+30×[Si]+21×[Mn]+270×[P]+78×[Nb]1/2+108×[Ti]1/2…(式1)
 [Si]、[Mn]、[P]、[Nb]、[Ti]はそれぞれ、鋼板中の重量元素濃度(質量%)である。
 (9)主相の硬さの標準偏差/硬さの平均値:
 集合組織、結晶粒径および等軸性に加え、個々の結晶粒の均質性も圧延時のミクロオーダーの歪の均一分散に大きく寄与する。本発明者らは、この均質性に着目した検討を行った結果、主相の均質性が高い組織において、最終製品の延性と局部変形のバランスが改善できることを見出した。この均質性は、最も相分率の高い主相について、ナノインデンターにて1mNの荷重にて硬さを100点以上測定し、その標準偏差を用いることで定義できる。すなわち、硬さの標準偏差/硬さの平均値が低いほど均質性は高く、0.2以下の時にその効果が得られる。ナノインデンター(例えばCSIRO社製 UMIS-2000)では、結晶粒径よりも小さな圧子を使用することで、結晶粒界を含まない単一の結晶粒の硬さを測定することができる。
 本発明は熱延鋼板の全般に適用できるものであり、上記の限定が満たされれば、鋼板の金属組織の組み合わせに制限されることなく、熱延鋼板の伸びや曲げ加工性や穴げ性などの局部成形能が飛躍的に向上する。上記熱延鋼板には、冷延鋼板や亜鉛めっき鋼板等の原板となる熱延鋼帯を含んでいる。
 極密度とは、X線ランダム強度比と同義である。X線ランダム強度比とは、特定の方位への集積を持たない標準試料と供試材のX線強度を同条件でX線回折法等により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。この極密度は、X線回折、EBSP法、またはECP(Electron Channeling Pattern)法のいずれでも測定が可能である。例えば、{100}<011>~{223}<110>方位群の極密度は、これらの方法によって測定された{110}、{100}、{211}、{310}極点図のうち、複数の極点図を用いて級数展開法で計算した3次元集合組織(ODF)から{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の極密度を求め、これら極密度を相加平均することが求められる。X線回折、EBSP法、ECP法に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで化学研磨や電解研磨などによって歪みを除去すると同時に板厚の3/8~5/8の範囲で適当な面が測定面となるように上述の方法に従って試料を調整して測定すればよい。板幅方向については、鋼板の端部から1/4もしくは、3/4の位置で採取することが望ましい。
 当然のことであるが、上述の極密度の限定が板厚中央部だけでなく、なるべく多くの厚みについて満たされることで、より一層局延変形能が良好になる。しかしながら、鋼板の材質に与える集合組織の影響を調査した結果、鋼板の表面から5/8~3/8の板厚中央部における方位集積が最も強く鋼板の異方性に影響を与え、概ね鋼板全体の材質特性を代表することができる。そのため、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値と、{332}<113>の結晶方位の極密度とを規定するものとする。
 ここで、{hkl}<uvw>とは、上述の方法で試料を採取した時、板面の法線方向が{hkl}に平行で、圧延方向が<uvw>と平行であることを示している。なお結晶の方位は通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)または<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。すなわち、本実施形態においては体心立方構造を対象としているため、例えば(111)、(-111)、(1-11)、(11-1)、(-1-11)、(-11-1)、(1-1-1)、(-1-1-1)面は等価であり区別がつかない。このような場合、これらの方位を総称して{111}と称する。ODF表示では他の対称性の低い結晶構造の方位表示にも用いられるため、個々の方位を[hkl](uvw)で表示するのが一般的であるが、本実施形態においては[hkl](uvw)と{hkl}<uvw>は同義である。
 各鋼板中の金属組織の判定は、以下のように行うことができる。
 光学顕微鏡による組織観察にて、パーライトを特定する。次にEBSP法を用いて、結晶構造を判定し、fcc構造の結晶をオーステナイトとする。bcc構造のフェライト、ベイナイトおよびマルテンサイトは、EBSP-OIM(登録商標)に装備されているKAM(Kernel Average Misorientation)法にて識別することができる。KAM法は測定データのうちのある正六角形のピクセルの隣り合う6個である第一近似、もしくはさらにその外側12個である第二近似、もしくはさらにその外側の18個である第三近似のピクセル間の方位差を平均し、その値をその中心のピクセルの値とする計算を各ピクセルに行うことにより算出される値である。粒界を越えないようにこの計算を実施することで粒内の方位変化を表現するマップを作成できる。このマップは粒内の局所的な方位変化に基づくひずみの分布を表している。
 本発明の実施例においては、EBSP-OIM(登録商標)において隣接するピクセル間の方位差を計算する条件を第三近似として、この方位差が5°以下とし、上記の方位差第三近似において、1°超が低温変態生成物であるベイナイトもしくはマルテンサイト、1°以下がフェライトと定義した。これは、高温で変態したポリゴナルな初析フェライトは拡散変態で生成するので、転位密度が小さく、粒内の歪みが少ないため、結晶方位の粒内差が小さく、これまで発明者らが実施してきた様々な調査結果より、光学顕微鏡観察で得られるフェライト体積分率とKAM法にて測定した方位差第三近似1°で得られるエリアの面積分率がほぼよい一致をするためである。
 上述の各r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは5~15%の範囲で、均一伸びの範囲で評価すればよい。
 曲げ加工を施す方向は加工部品によって異なるので、特に限定するものではない。本実施形態に係る熱延鋼板は鋼板の面内異方性が抑制され、C方向で十分な曲げ特性を有している。C方向は、圧延材において、最も曲げ特性が低下する方向であるため、何れの方向でも曲げ特性を満足できる。
 フェライト、ベイナイト、マルテンサイトおよびオーステナイトの粒径は、前述の通り、のEBSP法による鋼板の方位の解析において、例えば、1500倍の倍率にて、0.5μm以下の測定ステップで方位測定を行い、隣り合う測定点の方位差が15°を超えた位置を粒境界として定め、その円相当径を求めることで得られる。その際、圧延方向および板厚方向の粒の長さについても、同時に求めることでdL/dtが得られる。
 金属組織中にパーライト組織が存在する場合、その等軸粒分率dL/dtおよび結晶粒径は、光学顕微鏡における組織観察において、二値化処理、ポイントカウント法により求めることができる。
 次に、鋼板成分の限定条件について述べる。各成分の含有量の%は質量%である。
 Cは、基本的に含有される元素であり、その含有量[C]の下限を0.0001%とする。なお、極度の製鋼コストの上昇を抑えるため、より望ましくは、0.001%であり、安価に高強度鋼を得るためには、さらに望ましくは、0.01%である。一方、C含有量[C]は、0.40%超になると、加工性や溶接性が悪くなるので、上限を0.40%に設定する。なお、過度のC添加はスポット溶接性を著しく劣化させるため、0.30%以下がより望ましい。なお、さらに望ましくは、0.20%である。
 Siは鋼板の機械的強度を高めるのに有効な元素であるが、その含有量[Si]が2.5%超となると加工性が劣化したり、表面疵が発生したりする。そのため、2.5%を上限とする。一方、実用鋼でSi含有量[Si]を0.001%未満とするのは困難であるので、0.001%を下限とする。なお、望ましくは、0.01%、より望ましくは、0.05%である。
 Mnは鋼板の機械的強度を高めるのに有効な元素であるが、その含有量[Mn]が4.0%超となると加工性が劣化する。そのため、4.0%を上限とする。Mnはフェライト生成を抑制するため、組織にフェライト相を含ませて伸びを確保したい場合には、3.0%以下とすることが望ましい。一方、Mn含有量[Mn]の下限は0.001%とする。但し、極度な製鋼コストの上昇を避けるためには、0.01%以上とすることが望ましい。なお、さらに望ましくは、0.2%である。また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、重量%で[Mn]/[S]≧20となるMn量を添加することが望ましい。
 PとSの含有量[P]及び[S]は、加工性の劣化や熱間圧延または冷間圧延時の割れを防ぐため、[P]が0.15%以下、[S]が0.10%以下とする。それぞれの下限は、[P]が0.001%、[S]が0.0005%とする。なお、極端な脱硫はコストが高くなりすぎるため、[S]については、0.001%以上がより望ましい。
 Alは脱酸のために0.001%以上添加する。但し、脱酸が十分に必要な場合、0.01%以上の添加がより望ましい。さらに望ましくは、0.02%である。しかし、多すぎると溶接性が劣悪となるため、上限を2.0%とする。すなわち、Al含有量[Al]は、0.01%以上2.0%以下とする。
 NとOは不純物であり、加工性を悪くさせないように、N含有量[N]及びO含有量[O]は、共に0.01%以下とする。下限は、両元素とも0.0005%とする。但し、極端な製鋼コストの上昇を抑えるためには、その含有量は、0.001%以上とすることが望ましい。なお、より望ましくは、0.002%である。
 以上の化学元素は、本実施形態における鋼の基本成分(基本元素)であり、この基本元素が制御(含有または制限)され、残部が鉄及び不可避的不純物よりなる化学組成が、本実施形態の基本組成である。しかしながら、この基本成分に加え(残部のFeの一部の代わりに)、本実施形態では、さらに必要に応じて以下の化学元素(選択元素)を鋼中に含有させてもよい。なお、これらの選択元素が鋼中に不可避的に(例えば、各選択元素の量の下限未満の量)混入しても、本実施形態における効果を損なわない。
 すなわち、更に、析出強化によって機械的強度を高めるため、あるいは、局部変形能を向上させるべく介在物制御や析出物微細化のために、従来から用いている元素として、Ti、Nb、B、Mg、REM、Ca、Mo、Cr、V、W、Cu、Ni、Co、Sn、Zr、Asのいずれか1種以上を含有しても構わない。析出強化を得るためには、微細な炭窒化物を生成させることが有効であり、Ti、Nb、V、Wの添加が有効である。またTi、Nb、V、Wは固溶元素として、結晶粒の微細化に寄与する効果もある。
 Ti、Nb、V、Wの添加によって、析出強化の効果を得るためには、Ti含有量[Ti]は0.001%以上、Nb含有量[Nb]は0.001%以上、V含有量[V]は0.001%以上、W含有量[W]は0.001%以上が望ましい。析出強化が特に必要である場合には、Ti含有量[Ti]を0.01%以上、Nb含有量[Nb]を0.005%以上、V含有量[V]を0.01%以上、W含有量[W]を0.01%以上添加することがより望ましい。さらに、Ti、Nbは析出強化以外に、炭素、窒素の固定、組織制御、細粒強化などの機構を通じて材質を改善する効果を有する。また、Vは析出強化に有効で、MoやCrよりも添加による強化が起因した局部変形能の劣化代が小さく、高強度でよりよい穴広げ性や曲げ性が必要な場合には、効果的な添加元素である。但し、過度に添加しても、強度上昇は飽和してしまうこと、加えて、熱延後の再結晶を抑制することで、結晶方位制御を困難にすることから、Ti含有量[Ti]およびNb含有量[Nb]で0.20%以下、V含有量[V]およびW含有量[W]で1.0%以下とすることが望ましい。但し、特に伸びが必要な場合は、V含有量[V]を0.50%以下、W含有量[W]を0.50%以下とすることがより望ましい。
 組織の焼き入れ性を上昇させ、第二相制御を行うことで強度を確保する場合、さらに、B、Mo、Cr、Cu、Ni、Co、Sn、Zr、Asの1種または2種以上の添加が有効である。さらに、Bは上記以外に、炭素や窒素の固定、析出強化、細粒強化などの機構を通じて材質を改善する効果を有する。また、Mo、Crは機械的強度を高める効果に加えて、材質を改善する効果がある。
 これら効果を得るためには、B含有量[B]は0.0001%以上、Mo含有量[Mo]、Cr含有量[Cr]、Ni含有量[Ni]、Cu含有量[Cu]は0.001%以上、Co含有量[Co]、Sn含有量[Sn]、Zr含有量[Zr]、As含有量[As]は0.0001%以上であることが望ましい。しかし、過度の添加は逆に加工性を劣化させるので、B含有量[B]の上限を0.0050%、Mo含有量[Mo]の上限を2.0%、Cr含有量[Cr]、Ni含有量[Ni]、Cu含有量[Cu]の上限を2.0%、Co含有量[Co]の上限を1.0%、Sn含有量[Sn]、Zr含有量[Zr]の上限を0.2%、As含有量[As]の上限を0.50%とすることが望ましい。特に加工性が強く要求される場合は、B含有量[B]の上限を0.005%、Mo含有量[Mo]の上限を0.50%とすることが望ましい。また、コストの観点から、上記の添加元素のうち、B、Mo、Cr、Asを選択することがより望ましい。
 Mg、REM、Caは、介在物を無害化し、局部変形能をさらに向上させるために重要な添加元素である。この効果を得るための含有量[Mg]、[REM]、[Ca]の下限をそれぞれ0.0001%とするが、介在物の形態制御が必要な場合は、それぞれ0.0005%以上添加することが望ましい。一方、過剰添加は清浄度の悪化につながるため、Mg含有量[Mg]で0.010%、REM含有量[REM]で0.1%、Ca含有量[Ca]で0.010%を上限とした。
 本実施形態にかかる熱延鋼板に表面処理を施しても、局部変形能改善効果を失うものではなく、電気めっき、溶融めっき、蒸着めっき、有機皮膜形成、フィルムラミネート、有機塩類/無機塩類処理及びノンクロ処理等のいずれを施しても、本発明の効果が得られる。
 次に本実施形態に係る熱延鋼板の製造方法について述べる。
 優れた伸び、局部変形能を実現するためには、所定の極密度をもつ集合組織を形成させること、rC、r30の条件を満たすことが重要である。さらに、粒単位(体積平均径)、粗粒面積率、等軸性、均質化、フェライトの過度な硬化の抑制の条件を満たすことがより望ましい。これらを満たすための製造条件の詳細を以下に記す。
 熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造、または薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には、鋳造スラブを一度低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、鋳造スラブを低温まで冷却せずに、鋳造後にそのまま熱延してもよい。原料にはスクラップを使用しても構わない。
 本実施形態に係る熱延鋼板は、上述の成分の鋼を用いて、以下の要件を満たす場合に得られる。
 rCが0.70以上でかつ、r30が1.10以下という、前述の所定の値を満たすためには、粗圧延後、すなわち仕上げ圧延前のオーステナイト粒径が重要である。そのために、仕上げ圧延前のオーステナイト粒径を200μm以下とする。仕上げ圧延前のオーステナイト粒径を小さくすることで、伸びと局部変形能の改善が可能となる。
 200μm以下の仕上げ圧延前のオーステナイト粒径を得るためには、図3に示すように、粗圧延(第1の熱間圧延)を1000℃以上1200℃以下の温度域での圧延で行ってかつ、この温度域において40%以上の圧下率で少なくとも1回以上圧下すればよい。
 さらに、rLやr60の制御を介して、後々の仕上げ圧延でのオーステナイトの再結晶促進を通じて、局部変形能を改善するためには、仕上げ圧延前のオーステナイト粒径は、100μm以下にすることが望ましい。そのためには、上記第1の熱間圧延において40%以上の圧下率で2回以上圧下を行うことが望ましい。圧下率およびその圧下の回数は大きいほど、微細なオーステナイト粒径を得ることができる。しかしながら、70%を超える圧下や、10回を超える粗圧延は、温度の低下やスケールの過剰生成の懸念がある。
 オーステナイト粒径の微細化が、局部変形能に影響を及ぼす理由としては、仕上げ圧延中の再結晶核の1つとして、粗圧延後、すなわち仕上げ圧延前のオーステナイト粒界が機能するためと推測される。
 粗圧延後のオーステナイト粒径を確認するためには、仕上げ圧延に入る前の鋼板を可能な限り急冷することが望ましく、10℃/s以上の冷却速度で鋼板を冷却して、鋼板断面の組織をエッチングしてオーステナイト粒界を浮き立たせて光学顕微鏡にて測定する。この際、50倍以上の倍率にて20視野以上を、画像解析やポイントカウント法にて測定する。
 鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値、及び{332}<113>の結晶方位の極密度を前述の所定の値の範囲とするには、粗圧延後の仕上げ圧延で、鋼板成分によって決められる下記式2に記載のT1温度を基準に、T1+30℃以上T1+200℃以下の温度域(望ましくはT1+50℃以上T1+100℃以下の温度域)で、大きな圧下率による加工(第2の熱間圧延)を行い、T1℃以上T1+30℃未満の温度域で小さな圧下率による加工(第3の熱間圧延)を行う。上記によれば、最終熱延製品の局部変形能と形状を確保できる。
 T1=850+10×([C]+[N])×[Mn]+350×[Nb]+250×[Ti]+40×[B]+10×[Cr]+100×[Mo]+100×[V]・・・(式2)
 ただし、上記式2において含まれない化学元素(化学成分)の量は、0%として計算する。
 すなわち、図4と図5とに示すように、T1+30℃以上T1+200℃以下の温度域における大圧下と、その後のT1℃以上T1+30℃未満での軽圧下が、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値および{332}<113>の結晶方位の極密度を制御して、熱延鋼板の局部変形能を飛躍的に改善する。
 このT1温度自体は経験的に求めたものである。T1温度を基準として、各鋼のオーステナイト域での再結晶が促進されることを、発明者等は実験により知見した。
 良好な局部変形能を得るためには、T1+30℃以上T1+200℃以下の温度域における大圧下(第2の熱間圧延)によってひずみを蓄積するか、圧下毎に繰り返し再結晶させることが重要である。ひずみ蓄積のためにはこの温度域での圧下率の合計が50%以上であることが必要である。望ましくは70%以上である。一方で、圧下率の合計が90%を超えることは、温度確保や過大な圧延負荷の観点から望ましくない。更に、熱延板の均質性を高め、伸び、局部変形能を極限まで高めるためには、T1+30℃以上T1+200℃以下の温度域での圧延(第2の熱間圧延)のうち、少なくとも1パスは、30%以上の圧下率で圧下を行うことが望ましい。より望ましくは、40%以上である。一方で、1パスで70%を超えると形状に支障が出る懸念がある。より高い加工性が要求される場合は、第2の熱間圧延工程における最終の2パスを30%以上とすることがより望ましい。
 蓄積したひずみの開放による均一な再結晶を促すため、T1+30℃以上T1+200℃以下での大圧下の後、T1℃以上T1+30℃未満の温度域における圧延(第3の熱間圧延)での加工量をなるべく少なく抑えることが必要である。そのため、T1℃以上T1+30℃未満での圧下率の合計を30%以下とする。板形状の観点からは、10%以上の圧下率が望ましいが、より局部変形能を重視する場合には、圧下率は0%がより望ましい。T1℃以上T1+30℃未満での圧下率が所定の範囲を超えると、再結晶したオーステナイト粒が展伸してしまい、局部変形能を劣化させる。
 上述の通り、本実施形態に係る製造条件においては、穴広げ性や、曲げ性といった局部変形能を改善するため、仕上げ圧延においてオーステナイトを均一かつ微細に再結晶させることで、熱延製品の集合組織を制御することが重要である。
 前述の規定した温度域よりも低温で圧延が行われたり、規定した圧下率よりも大きな圧下率が採られたりすると、オーステナイトの集合組織が発達する。その結果、最終的に得られる熱延鋼板において、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値が5.0以下で、かつ{332}<113>の結晶方位の極密度が4.0以下という各結晶方位における極密度が得られない。
 一方、規定した温度域よりも高温で圧延が行われたり、規定した圧下率よりも小さい圧下率が採られたりすると、粗粒化や混粒の原因となり、粒径35μmを超える粗大結晶粒の面積率や、体積平均径が増大する。上述の規定した圧延が行われているか否は、圧下率は圧延荷重や、板厚測定などから、実績または計算により求めることができる。また、温度についても、スタンド間温度計があれば実測可能であり、またはラインスピードや圧下率などから加工発熱等を考慮した計算シミュレーションが可能であるため、いずれか或いはその両方によって得ることができる。
 以上のように行われる熱間圧延はT1℃以上の温度で終了する。熱間圧延の終了温度がT1℃未満になると、未再結晶域での圧延となり異方性が強まるため、局部変形能が著しく劣化する。
 T1+30℃以上T1+200℃以下の温度域における30%以上の圧下率であるパスを大圧下パスとした場合、この大圧下パスのうちの最終パスの完了から圧延スタンド間で一次冷却を開始するまでの待ち時間t秒が、下記式3を満たすことが必要である。前記最終パス後の冷却は、オーステナイト粒径に大きな影響を与える。すなわち、鋼板の等軸粒分率、粗粒面積率に大きな影響を与える。
 t≦2.5×t1・・・(式3)
 ここで、t1とは下記の(式4)で求められる。
 t1=0.001×((Tf-T1)×P1/100)-0.109×((Tf-T1)×P1/100)+3.1・・・(式4)
 待ち時間tが、t1×2.5を超えると、再結晶は既にほとんど完了している一方で結晶粒が著しく成長して粗粒化が進むことで、r値及び伸びが低下する。
 待ち時間tをt1未満にさらに限定することで、結晶粒の成長を大幅に抑制することができる。本実施形態の成分を有する熱延鋼板であれば、体積平均径を15μm以下に制御することができる。その結果、再結晶が十分に進行していなくても鋼板の伸びを十分に向上させることができ、同時に、疲労特性を向上させることができる。
 一方、待ち時間tをt1以上2.5×t1以下にさらに限定することで、結晶粒は体積平均径で例えば15μm超となるものの、再結晶化が十分に進み結晶方位がランダム化するため、鋼板の伸びを十分に向上させることができ、同時に、等方性を大きく向上させることができる。
 T1+30℃以上T1+200℃以下での鋼板の温度上昇が低過ぎてT1+30℃以上T1+200℃以下の範囲で、所定の圧下率が得られなかった場合には、再結晶が抑制されてしまう。
 極密度、rC、r30を所定の範囲とした上で、rLおよびr60が、それぞれ0.70以上1.10以下であれば、板厚/最小曲げ半径≧2.0を満たす。そのためには、一次冷却開始までの待ち時間を上述の値とした上で、T1+30℃以上T1+200℃以下での圧下時の各パス間の鋼板の温度上昇を18℃以下に抑えることが望ましい。
 T1+30℃以上T1+200℃以下での各パス間の鋼板の温度上昇が18℃以下で、tが前記式3を満たす場合に、rL、r60が0.70以上1.10以下である均一な再結晶オーステナイトを得ることができる。
 一次冷却における冷却開始時の鋼板温度と冷却終了時の鋼板温度の差である冷却温度変化は、40℃以上140℃以下、かつ一次冷却の冷却終了時の鋼板温度がT1+100℃以下であることが望ましい。40℃以上とすることで、オーステナイト粒の粗大化を抑制することができる。40℃未満では、その効果は得られない。一方、140℃を超えると、再結晶が不十分となり、狙いのランダム集合組織が得られにくくなる。また、伸びに有効なフェライト相も得られにくく、またフェライト相の硬さが高くなることで、伸び、局部変形能も劣化する。また、冷却終了時の鋼板温度が、T1+100℃超では、冷却の効果が十分得られない。これは、例え最終パス後に適正な条件で一次冷却を実施したとしても一次冷却終了後の鋼板温度がT1+100℃超では、結晶粒成長が起こる恐れがあり著しくオーステナイト粒径が粗大化する懸念があるためである。
 仕上圧延機を通過した後の冷却パターンについては、特に規定しない。それぞれの目的にあった組織制御を行うための冷却パターンを採用しても、本発明の効果は得られる。例えば、一次冷却に続いて、オーステナイト粒の粗大化のさらなる抑制のために、仕上圧延機の最終圧延スタンド通過後に二次冷却を行ってもよい。一次冷却に続いて二次冷却を行う場合は、一次冷却完了後10秒以内に実施することが望ましい。10秒を超えると、オーステナイト粒の粗大化を抑制する効果は得られない。
 上記の本実施形態に係る製造方法につき、図9にフローチャート図を示す。
 既述の通り、第1の熱間圧延、第2の熱間圧延、第3の熱間圧延、及び一次冷却を所定の条件で行うことが、本実施形態において重要である。
 熱間圧延においては、粗圧延後にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に、粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行っても良い。また、熱間圧延後には、巻き取りを行ってよい。
 熱延鋼板には、冷却後に必要に応じてスキンパス圧延を施してもよい。スキンパス圧延には、加工成形時に発生するストレッチャーストレインの防止や、形状矯正の効果がある。
 本実施形態において得られる熱延鋼板の組織は、フェライト、パーライト、ベイナイト、マルテンサイト、オーステナイトおよび炭窒化物等の化合物を含有しても構わない。ただし、パーライトは局部延性を劣化させるため5%以下であることが望ましい。
 尚、本実施形態に係る熱延鋼板は曲げ加工だけでなく、曲げ、張り出し、絞り等および曲げ加工を主体とする複合成形にも適用できる。
 本発明の実施例を挙げながら、本実施形態に係る熱延鋼板の技術的内容について説明する。図1~図8は、下記の実施例をグラフ化したものである。
 実施例として、表1~3に示した成分組成を有するAからAN、及びa~kまでの鋼を用いて検討した結果について説明する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 これらの鋼は、鋳造後、そのままもしくは一旦室温まで冷却された後に再加熱し、1000℃~1300℃の温度範囲に加熱され、その後、表4~18の条件で熱間圧延が施され、T1℃以上で熱間圧延を終了し、表4~18の条件で冷却して最終的には2~5mm厚の熱延鋼板とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表1~3に各鋼の化学成分を、表4~18に各製造条件と機械的特性を示す。
 局部変形能の指標として、穴広げ率λ、および90°V字曲げによる限界曲げ半径(板厚/最小曲げ半径)を用いた。曲げ試験はC方向曲げと45°方向曲げを行い、その比率を使って成形性の方位依存性(等方性)の指標とした。引っ張り試験および曲げ試験はJIS Z2241およびZ2248(Vブロック90°曲げ試験)に、穴広げ試験は鉄連規格JFS T1001に、それぞれ準拠した。極密度は、前述のEBSP法を用いて、圧延方向に平行な断面の5/8~3/8の領域の板厚中央部で、幅方向が端部から1/4の位置に対して0.5μmピッチで測定した。また、各方向のr値、体積平均径については、前述した方法により測定した。
 疲労試験は製品板から長さ98mm、幅38mm、最小断面部の幅が20mm、切り欠きの曲率半径が30mmである平面曲げ疲労試験片を切出し、製品表面のままにて、完全両振りの平面曲げ疲労試験を行った。鋼板の疲労特性は、2×10回での疲労強度σWを鋼板の引張り強さσBで除した値(疲労限度比σW/σB)で評価した。
 本発明の規定を満たすものは、例えば、図6、図7、図8に示すように、優れた穴広げ性、曲げ性、伸びの少なさを併せ持つ。さらに、望ましい製造条件範囲にあるものは、より優れた、穴広げ率および曲げ性、等方性、疲労特性などを示す。
 前述したように、本発明によれば、主な組織構成を限定せず、結晶粒のサイズ、形態制御に加え、集合組織を制御することで、局部変形能に優れ、成形性の方位依存性の少ない熱延鋼板を得ることができる。よって、本発明は、鉄鋼産業において、利用可能性が高い。
 また、一般に、高強度化するほど成形性が低下するため、高強度鋼板の場合に特に効果が大きい。

Claims (18)

  1.  質量%で、
     C含有量[C]が、0.0001%以上、0.40%以下のCと、
     Si含有量[Si]が、0.001%以上、2.5%以下のSiと、
     Mn含有量[Mn]が、0.001%以上、4.0%以下のMnと、
     P含有量[P]が、0.001%以上、0.15%以下のPと、
     S含有量[S]が、0.0005%以上、0.10%以下のSと、
     Al含有量[Al]が、0.001%以上、2.0%以下のAlと、
     N含有量[N]が、0.0005%以上、0.01%以下のNと、
     O含有量[O]が、0.0005%以上、0.01%以下のOと、
    を含有し、残部が鉄および不可避的不純物からなり;
     鋼板の金属組織中に、複数の結晶粒が存在し;
     前記鋼板表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で表わされる方位群である{100}<011>~{223}<110>方位群の極密度の平均値が1.0以上6.5以下でかつ、{332}<113>の結晶方位の極密度が1.0以上5.0以下であり;
     圧延方向に対して直角方向のランクフォード値であるrCが0.70以上1.10以下でかつ、前記圧延方向に対して30°をなす方向のランクフォード値であるr30が0.70以上1.10以下である;
    ことを特徴とする熱延鋼板。
  2.  さらに、前記結晶粒の体積平均径が2μm以上15μm以下であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記{100}<011>~{223}<110>方位群の極密度の平均値が、1.0以上5.0以下であり、前記{332}<113>の結晶方位の極密度が1.0以上4.0以下であることを特徴とする請求項1に記載の熱延鋼板。
  4.  前記鋼板の前記金属組織中の前記結晶粒のうち、粒径が35μmを超える粗大結晶粒の面積割合が0%以上10%以下であることを特徴とする請求項3に記載の熱延鋼板。
  5.  前記圧延方向のランクフォード値であるrLが0.70以上1.10以下でかつ、前記圧延方向に対して60°をなす方向のランクフォード値であるr60が0.70以上1.10以下であることを特徴とする請求項1~4のいずれか一項に記載の熱延鋼板。
  6.  前記鋼板の前記金属組織中の前記結晶粒のうち、前記圧延方向長さをdLとし、板厚方向長さをdtとした場合、前記圧延方向長さdLを前記板厚方向長さdtで除した値が3.0以下である前記結晶粒の割合が、50%以上100%以下であることを特徴とする請求項1~4のいずれか一項に記載の熱延鋼板。
  7.  前記鋼板の前記金属組織中にフェライト相が存在し、前記フェライト相のビッカース硬さHvが下記式1を満たすことを特徴とする請求項1~4のいずれか一項に記載の熱延鋼板。
     Hv<200+30×[Si]+21×[Mn]+270×[P]+78×[Nb]1/2+108×[Ti]1/2…(式1)
  8.  前記鋼板の前記金属組織中で最も相分率の高い相を主相とし、この主相に対して100点以上の点について硬さの測定を行った場合に、前記硬さの標準偏差を前記硬さの平均値で除した値が0.2以下であることを特徴とする請求項1~4のいずれか一項に記載の熱延鋼板。
  9.  さらに、質量%で、
     Ti含有量[Ti]が、0.001%以上、0.20%以下のTiと、
     Nb含有量[Nb]が、0.001%以上、0.20%以下のNbと、
     V含有量[V]が、0.001%以上、1.0%以下のVと、
     W含有量[W]が、0.001%以上、1.0%以下のWと、
     B含有量[B]が、0.0001%以上、0.0050%以下のBと、
     Mo含有量[Mo]が、0.001%以上、2.0%以下のMoと、
     Cr含有量[Cr]が、0.001%以上、2.0%以下のCrと、
     Cu含有量[Cu]が、0.001%以上、2.0%以下のCuと、
     Ni含有量[Ni]が、0.001%以上、2.0%以下のNiと、
     Co含有量[Co]が0.0001%以上、1.0%以下のCoと、
     Sn含有量[Sn]が、0.0001%以上、0.2%以下のSnと、
     Zr含有量[Zr]が、0.0001%以上、0.2%以下のZrと、
     As含有量[As]が、0.0001%以上、0.50%以下のAsと、
     Mg含有量[Mg]が、0.0001%以上、0.010%以下のMgと、
     Ca含有量[Ca]が、0.0001%以上、0.010%以下のCaと、
     REM含有量[REM]が、0.0001%以上、0.1%以下のREM
    のうちの1種以上を含有する
    ことを特徴とする請求項1~4のいずれか一項に記載の熱延鋼板。
  10.  質量%で、
     C含有量[C]が、0.0001%以上、0.40%以下のCと、
     Si含有量[Si]が、0.001%以上、2.5%以下のSiと、
     Mn含有量[Mn]が、0.001%以上、4.0%以下のMnと、
     P含有量[P]が、0.001%以上、0.15%以下のPと、
     S含有量[S]が、0.0005%以上、0.10%以下のSと、
     Al含有量[Al]が、0.001%以上、2.0%以下のAlと、
     N含有量[N]が、0.0005%以上、0.01%以下のNと、
     O含有量[O]が、0.0005%以上、0.01%以下のOと、
    を含有し、残部が鉄および不可避的不純物からなる鋼塊またはスラブを、
     1000℃以上1200℃以下の温度範囲で、40%以上の圧下を少なくとも1回以上行う第1の熱間圧延を行い、オーステナイト粒径を200μm以下とし;
     下記式2において鋼板の成分により決定される温度をT1℃とした場合に、T1+30℃以上T1+200℃以下の温度範囲で、圧下率の合計が50%以上である第2の熱間圧延を行い;
     T1℃以上T1+30℃未満の温度範囲で、圧下率の合計が30%以下である第3の熱間圧延を行い;
     T1℃以上で熱間圧延を終了し;
     T1+30℃以上T1+200℃以下の温度範囲における30%以上の圧下率のパスを大圧下パスとした場合、前記大圧下パスのうちの最終パスの完了から冷却開始までの待ち時間t秒が下記式3を満たすように、圧延スタンド間で一次冷却を行う;
    ことを特徴とする熱延鋼板の製造方法。
     T1=850+10×([C]+[N])×[Mn]+350×[Nb]+250×[Ti]+40×[B]+10×[Cr]+100×[Mo]+100×[V]・・・(式2)
     t≦t1×2.5・・・(式3)
     ここで、t1は下記式4で表される。
     t1=0.001×((Tf-T1)×P1/100)-0.109×((Tf-T1)×P1/100)+3.1・・・(式4)
     ここで、Tfは前記最終パス完了時の前記鋼板の温度(℃)であり、P1は前記最終パスにおける圧下率(%)である。
  11.  前記待ち時間t秒が、さらに、下記式5を満たすことを特徴とする請求項10に記載の熱延鋼板の製造方法。
     t<t1・・・(式5)
  12.  前記待ち時間t秒が、さらに、下記式6を満たすことを特徴とする請求項11に記載の熱延鋼板の製造方法。
     t1≦t≦t1×2.5・・・(式6)
  13.  前記一次冷却における冷却開始時の鋼板温度と冷却終了時の鋼板温度の差である冷却温度変化が、40℃以上140℃以下で、かつ前記一次冷却の前記冷却終了時の前記鋼板温度がT1+100℃以下であることを特徴とする請求項10~12のいずれか一項に記載の熱延鋼板の製造方法。
  14.  T1+30℃以上T1+200℃以下の温度範囲での前記第2の熱間圧延において、1パスで30%以上の圧下率の圧下を少なくとも1回以上行うことを特徴とする請求項10~12のいずれか一項に記載の熱延鋼板の製造方法。
  15.  前記第1の熱間圧延において、40%以上の圧下率の圧下を少なくとも2回以上行い、オーステナイト粒径を100μm以下とすることを特徴とする請求項10~12のいずれか一項に記載の熱延鋼板の製造方法。
  16.  前記一次冷却の完了後、10秒以内に最終圧延スタンド通過後において二次冷却を開始することを特徴とする請求項10~12のいずれか一項に記載の熱延鋼板の製造方法。
  17.  前記第2の熱間圧延において、各パス間の鋼板の温度上昇を18℃以下とすることを特徴とする請求項10~12のいずれか一項に記載の熱延鋼板の製造方法。
  18.  前記鋼塊または前記スラブが、さらに、質量%で、
     Ti含有量[Ti]が、0.001%以上、0.20%以下のTiと、
     Nb含有量[Nb]が、0.001%以上、0.20%以下のNbと、
     V含有量[V]が、0.001%以上、1.0%以下のVと、
     W含有量[W]が、0.001%以上、1.0%以下のWと、
     B含有量[B]が、0.0001%以上、0.0050%以下のBと、
     Mo含有量[Mo]が、0.001%以上、2.0%以下のMoと、
     Cr含有量[Cr]が、0.001%以上、2.0%以下のCrと、
     Cu含有量[Cu]が、0.001%以上、2.0%以下のCuと、
     Ni含有量[Ni]が、0.001%以上、2.0%以下のNiと、
     Co含有量[Co]が0.0001%以上、1.0%以下のCoと、
     Sn含有量[Sn]が、0.0001%以上、0.2%以下のSnと、
     Zr含有量[Zr]が、0.0001%以上、0.2%以下のZrと、
     As含有量[As]が、0.0001%以上、0.50%以下のAsと、
     Mg含有量[Mg]が、0.0001%以上、0.010%以下のMgと、
     Ca含有量[Ca]が、0.0001%以上、0.010%以下のCaと、
     REM含有量[REM]が、0.0001%以上、0.1%以下のREM
    のうちから選ばれる1種以上を含有する
    ことを特徴とする請求項10~12のいずれか一項に記載の熱延鋼板の製造方法。
PCT/JP2012/055586 2011-03-04 2012-03-05 熱延鋼板およびその製造方法 WO2012121219A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112013022394A BR112013022394A2 (pt) 2011-03-04 2012-03-05 folha de aço laminada a quente e método de produção da mesma
IN7179DEN2013 IN2013DN07179A (ja) 2011-03-04 2012-03-05
JP2013503540A JP5413536B2 (ja) 2011-03-04 2012-03-05 熱延鋼板およびその製造方法
KR1020137022766A KR101532156B1 (ko) 2011-03-04 2012-03-05 열연 강판 및 그 제조 방법
MX2013010066A MX360964B (es) 2011-03-04 2012-03-05 Láminas de acero, laminadas en caliente y método para producir las mismas.
US14/000,143 US9267196B2 (en) 2011-03-04 2012-03-05 Method of producing a hot rolled steel sheet
CN201280011272.0A CN103403208B (zh) 2011-03-04 2012-03-05 热轧钢板及其制造方法
ES12754891.5T ES2637662T3 (es) 2011-03-04 2012-03-05 Hoja de acero laminada en caliente y procedimiento para producir la misma
CA2827065A CA2827065C (en) 2011-03-04 2012-03-05 Hot-rolled steel sheet and method of producing the same
EP12754891.5A EP2682492B1 (en) 2011-03-04 2012-03-05 Hot rolled steel sheet and method for producing same
PL12754891T PL2682492T3 (pl) 2011-03-04 2012-03-05 Blacha stalowa cienka walcowana na gorąco i sposób jej wytwarzania

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-048231 2011-03-04
JP2011048231 2011-03-04
JP2011-047720 2011-03-04
JP2011047720 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012121219A1 true WO2012121219A1 (ja) 2012-09-13

Family

ID=46798178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055586 WO2012121219A1 (ja) 2011-03-04 2012-03-05 熱延鋼板およびその製造方法

Country Status (13)

Country Link
US (1) US9267196B2 (ja)
EP (1) EP2682492B1 (ja)
JP (1) JP5413536B2 (ja)
KR (1) KR101532156B1 (ja)
CN (1) CN103403208B (ja)
BR (1) BR112013022394A2 (ja)
CA (1) CA2827065C (ja)
ES (1) ES2637662T3 (ja)
IN (1) IN2013DN07179A (ja)
MX (1) MX360964B (ja)
PL (1) PL2682492T3 (ja)
TW (1) TWI454581B (ja)
WO (1) WO2012121219A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103125A1 (ja) * 2012-01-05 2013-07-11 新日鐵住金株式会社 熱延鋼板およびその製造方法
WO2017169941A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN110851964A (zh) * 2019-10-28 2020-02-28 上海思致汽车工程技术有限公司 一种钢板fld0确定方法
KR20210079342A (ko) 2018-11-28 2021-06-29 닛폰세이테츠 가부시키가이샤 열연 강판
KR20210079350A (ko) 2018-11-28 2021-06-29 닛폰세이테츠 가부시키가이샤 열연 강판
WO2021131876A1 (ja) 2019-12-23 2021-07-01 日本製鉄株式会社 熱延鋼板
WO2021167079A1 (ja) 2020-02-20 2021-08-26 日本製鉄株式会社 熱延鋼板
WO2021230149A1 (ja) * 2020-05-13 2021-11-18 日本製鉄株式会社 ホットスタンプ成形体
WO2021230150A1 (ja) * 2020-05-13 2021-11-18 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
RU2768396C1 (ru) * 2020-12-28 2022-03-24 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства горячекатаного хладостойкого проката
CN115917030A (zh) * 2020-09-30 2023-04-04 日本制铁株式会社 高强度钢板
CN115917030B (zh) * 2020-09-30 2024-05-31 日本制铁株式会社 高强度钢板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2599887B1 (en) * 2010-07-28 2021-12-01 Nippon Steel Corporation Hot-rolled steel sheet, cold-rolled steel sheet and galvanized steel sheet
JP5408386B2 (ja) * 2011-04-13 2014-02-05 新日鐵住金株式会社 局部変形能に優れた高強度冷延鋼板とその製造方法
PL2700728T3 (pl) * 2011-04-21 2018-03-30 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka walcowana na zimno o wysokiej wytrzymałości, wysoce jednorodnej rozciągliwości i doskonałej podatności na powiększanie otworu oraz sposób jej wytwarzania
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
JP6023563B2 (ja) * 2012-11-19 2016-11-09 アイシン精機株式会社 ロール成形方法およびロール成形装置
JP6369537B2 (ja) * 2014-04-23 2018-08-08 新日鐵住金株式会社 テーラードロールドブランク用熱延鋼板、テーラードロールドブランク、及びそれらの製造方法
CN104120358B (zh) * 2014-07-03 2016-08-17 西南石油大学 一种含微量锡元素、高强度、耐腐蚀和易成型的超低碳钢及其制备方法
CN105132827B (zh) * 2015-09-09 2017-03-29 南京工程学院 一种用于获得超微细复合尺度碳化物的高热强性锻钢材料
EP3526360A1 (en) * 2016-10-17 2019-08-21 Tata Steel IJmuiden B.V. Steel for painted parts
CN108611568A (zh) * 2016-12-12 2018-10-02 上海梅山钢铁股份有限公司 抗拉强度400MPa级高扩孔热轧钢板及其制造方法
CN112662953B (zh) * 2020-11-09 2022-03-04 刘祖瑜 一种耐高温抗氧化腐蚀的内胎及含该内胎的铜模及制备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119804A (ja) * 1998-10-16 2000-04-25 Nippon Steel Corp 深絞り性に優れる熱延鋼板およびその製造方法
JP2000144314A (ja) * 1998-11-02 2000-05-26 Nippon Steel Corp 角筒絞り性に優れる熱延鋼板およびその製造方法
JP2003160836A (ja) * 2001-11-26 2003-06-06 Nippon Steel Corp 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP2007291514A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP2009263718A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2009270191A (ja) * 2008-04-10 2009-11-19 Nippon Steel Corp 深絞り性に優れた冷延鋼板およびその製造方法
JP2010090476A (ja) * 2008-09-11 2010-04-22 Nippon Steel Corp 穴広げ性に優れた高強度熱延鋼板及びその製造方法
WO2012014926A1 (ja) * 2010-07-28 2012-02-02 新日本製鐵株式会社 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304259A (en) 1990-12-28 1994-04-19 Nisshin Steel Co., Ltd. Chromium containing high strength steel sheet excellent in corrosion resistance and workability
JPH05271758A (ja) 1992-03-25 1993-10-19 Nippon Steel Corp 伸びフランジ性のすぐれた高強度熱延鋼板の製造方法
US6962631B2 (en) 2000-09-21 2005-11-08 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP4393467B2 (ja) * 2006-02-28 2010-01-06 株式会社神戸製鋼所 強伸線加工用の熱間圧延線材およびその製造方法
JP5228447B2 (ja) * 2006-11-07 2013-07-03 新日鐵住金株式会社 高ヤング率鋼板及びその製造方法
JP5037413B2 (ja) 2007-04-19 2012-09-26 新日本製鐵株式会社 低降伏比高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板、及び、鋼管、並びに、それらの製造方法
JP5320798B2 (ja) 2008-04-10 2013-10-23 新日鐵住金株式会社 時効性劣化が極めて少なく優れた焼付け硬化性を有する高強度鋼板とその製造方法
JP5245647B2 (ja) * 2008-08-27 2013-07-24 Jfeスチール株式会社 プレス成形性と磁気特性に優れた熱延鋼板およびその製造方法
JP5338525B2 (ja) 2009-07-02 2013-11-13 新日鐵住金株式会社 バーリング性に優れた高降伏比型熱延鋼板及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119804A (ja) * 1998-10-16 2000-04-25 Nippon Steel Corp 深絞り性に優れる熱延鋼板およびその製造方法
JP2000144314A (ja) * 1998-11-02 2000-05-26 Nippon Steel Corp 角筒絞り性に優れる熱延鋼板およびその製造方法
JP2003160836A (ja) * 2001-11-26 2003-06-06 Nippon Steel Corp 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP2007291514A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP2009270191A (ja) * 2008-04-10 2009-11-19 Nippon Steel Corp 深絞り性に優れた冷延鋼板およびその製造方法
JP2009263718A (ja) * 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法
JP2010090476A (ja) * 2008-09-11 2010-04-22 Nippon Steel Corp 穴広げ性に優れた高強度熱延鋼板及びその製造方法
WO2012014926A1 (ja) * 2010-07-28 2012-02-02 新日本製鐵株式会社 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087499B2 (en) 2012-01-05 2018-10-02 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
WO2013103125A1 (ja) * 2012-01-05 2013-07-11 新日鐵住金株式会社 熱延鋼板およびその製造方法
US10920293B2 (en) 2016-03-31 2021-02-16 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing plated steel sheet
WO2017169941A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6260750B1 (ja) * 2016-03-31 2018-01-17 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
KR20210079342A (ko) 2018-11-28 2021-06-29 닛폰세이테츠 가부시키가이샤 열연 강판
KR20210079350A (ko) 2018-11-28 2021-06-29 닛폰세이테츠 가부시키가이샤 열연 강판
US11939650B2 (en) 2018-11-28 2024-03-26 Nippon Steel Corporation Hot-rolled steel sheet
CN110851964A (zh) * 2019-10-28 2020-02-28 上海思致汽车工程技术有限公司 一种钢板fld0确定方法
KR20220099570A (ko) 2019-12-23 2022-07-13 닛폰세이테츠 가부시키가이샤 열연 강판
WO2021131876A1 (ja) 2019-12-23 2021-07-01 日本製鉄株式会社 熱延鋼板
WO2021167079A1 (ja) 2020-02-20 2021-08-26 日本製鉄株式会社 熱延鋼板
KR20220130775A (ko) 2020-02-20 2022-09-27 닛폰세이테츠 가부시키가이샤 열연 강판
WO2021230149A1 (ja) * 2020-05-13 2021-11-18 日本製鉄株式会社 ホットスタンプ成形体
JP7436916B2 (ja) 2020-05-13 2024-02-22 日本製鉄株式会社 ホットスタンプ成形体
JP7436917B2 (ja) 2020-05-13 2024-02-22 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
WO2021230150A1 (ja) * 2020-05-13 2021-11-18 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
CN115917030A (zh) * 2020-09-30 2023-04-04 日本制铁株式会社 高强度钢板
CN115917030B (zh) * 2020-09-30 2024-05-31 日本制铁株式会社 高强度钢板
RU2768396C1 (ru) * 2020-12-28 2022-03-24 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства горячекатаного хладостойкого проката

Also Published As

Publication number Publication date
US9267196B2 (en) 2016-02-23
MX2013010066A (es) 2013-10-01
EP2682492A4 (en) 2015-03-04
TW201245464A (en) 2012-11-16
CA2827065A1 (en) 2012-09-13
KR101532156B1 (ko) 2015-06-26
KR20130121962A (ko) 2013-11-06
CN103403208B (zh) 2015-11-25
JPWO2012121219A1 (ja) 2014-07-17
PL2682492T3 (pl) 2017-10-31
ES2637662T3 (es) 2017-10-16
IN2013DN07179A (ja) 2015-05-15
JP5413536B2 (ja) 2014-02-12
MX360964B (es) 2018-11-23
CN103403208A (zh) 2013-11-20
CA2827065C (en) 2016-01-26
EP2682492B1 (en) 2017-06-07
BR112013022394A2 (pt) 2016-12-06
US20130323112A1 (en) 2013-12-05
TWI454581B (zh) 2014-10-01
EP2682492A1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5413536B2 (ja) 熱延鋼板およびその製造方法
KR101536845B1 (ko) 열연 강판 및 그 제조 방법
JP5163835B2 (ja) 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
JP5488764B2 (ja) 熱延鋼板及びその製造方法
JP5408387B2 (ja) 局部変形能に優れた高強度熱延鋼板とその製造方法
WO2012144567A1 (ja) 均一伸びと穴拡げ性に優れた高強度冷延鋼板及びその製造方法
JP5533765B2 (ja) 局部変形能に優れた高強度冷延鋼板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503540

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2827065

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012754891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14000143

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137022766

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/010066

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004864

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022394

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022394

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130902