WO2013018740A1 - 耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法 - Google Patents

耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013018740A1
WO2013018740A1 PCT/JP2012/069261 JP2012069261W WO2013018740A1 WO 2013018740 A1 WO2013018740 A1 WO 2013018740A1 JP 2012069261 W JP2012069261 W JP 2012069261W WO 2013018740 A1 WO2013018740 A1 WO 2013018740A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
strength
impact resistance
galvanized
Prior art date
Application number
PCT/JP2012/069261
Other languages
English (en)
French (fr)
Inventor
裕之 川田
丸山 直紀
映信 村里
昭暢 南
一 長谷川
千智 若林
剛 沖
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020147003703A priority Critical patent/KR101598307B1/ko
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201280037610.8A priority patent/CN103717771B/zh
Priority to MX2014000919A priority patent/MX360333B/es
Priority to PL12820097T priority patent/PL2740812T3/pl
Priority to CA2840816A priority patent/CA2840816C/en
Priority to US14/235,414 priority patent/US10351937B2/en
Priority to BR112014002023-0A priority patent/BR112014002023B1/pt
Priority to JP2013500258A priority patent/JP5240421B1/ja
Priority to EP12820097.9A priority patent/EP2740812B1/en
Priority to RU2014107493/02A priority patent/RU2573154C2/ru
Priority to ES12820097T priority patent/ES2755414T3/es
Publication of WO2013018740A1 publication Critical patent/WO2013018740A1/ja
Priority to ZA2014/01401A priority patent/ZA201401401B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength steel plate and a manufacturing method thereof, a high-strength galvanized steel plate and a manufacturing method thereof, and particularly relates to a high-strength steel plate having excellent impact resistance and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2011-167661 for which it applied to Japan on July 29, 2011, and uses the content here.
  • Patent Document 1 describes, in wt%, C: 0.05 to 0.3%, Si: 2.0% or less, Al: 0.01 to 2.0%, Mn: 0.5 to 4.0%, Ni: 0 to 5.0%, P: 0.1% or less, S: 0.1% or less, N: 0.01% or less, the balance being Fe and inevitable It has a chemical composition consisting of impurities and satisfying 1.5-3.0 ⁇ C ⁇ Si + Al ⁇ 3.5-5.0 ⁇ C and Mn + (Ni / 3) ⁇ 1.0 (%) Furthermore, a high-strength steel sheet is described in which the bake hardening amount of the steel sheet is 50 MPa or more.
  • Patent Document 2 discloses a high-tensile steel sheet having excellent impact absorbability and a volume ratio VB given by the formula VB ⁇ (TSs / 60) ⁇ 1 (TSs: tensile strength (MPa) in a static tensile test). It has a steel structure consisting of bainite, residual austenite with a C content of 1.2% by mass or less and a volume fraction of 5% or more, and the balance of ferrite, with a yield ratio in a static tensile test of 0.6.
  • the ratio TSd / TSs of the tensile strength in the dynamic tensile test and the tensile strength in the static tensile test is the formula TSd / TSs ⁇ 0.8 + (300 / TSs) (TSd: dynamics of strain rate 1000 / s)
  • TSd dynamics of strain rate 1000 / s
  • Patent Document 4 as a steel plate used as a steel plate for automobiles, C: 0.05 to 0.25%, Si: 0.5% or less, Mn: 1 to 3%, P: 0.1% in mass%.
  • S 0.01% or less
  • Al 0.1-2%
  • N less than 0.005%
  • An alloyed hot-dip galvanized steel sheet satisfying-(0.0026 ⁇ Al)%, Al ⁇ (1.25 ⁇ C 0.5 -0.57Si + 0.625Mn)% and comprising the balance Fe and inevitable impurities is described. Yes.
  • Patent Document 5 as a high-strength alloyed hot-dip galvanized steel sheet having excellent energy absorption characteristics, C: 0.05 to 0.20 mass%, Si: 0.3 to 1.5 mass%, Mn: 1. 0 to 2.5% by mass, P: 0.1% by mass or less, with the remainder being composed of Fe and inevitable impurities, and one or two of martensite and retained austenite in total 25 to 25% It describes a steel plate containing 50% by volume and the balance being ferrite and bainite and having a microstructure composed of ferrite and bainite, and both surfaces of which are subjected to alloying hot dip galvanization.
  • Patent Document 6 as a high ductility type high-tensile cold-rolled steel sheet having excellent surface properties and shock absorption, C: 0.06 to 0.25%, Si: 2.5% or less, Mn: 0.5 to 3.0%, P: 0.1% or less, S: 0.03% or less, Al: 0.1 to 2.5%, Ti: 0.003 to 0.08%, N: 0 .01% or less and the balance is composed of Fe and inevitable impurities, and the Ti content satisfies the relationship of (48/14) N ⁇ Ti ⁇ (48/14) N + (48/32) S + 0.01. Further, it is described that the structure after cold rolling-recrystallization annealing is a structure containing residual austenite of 5% or more by volume.
  • Patent Document 7 discloses a high-ductility high-strength steel sheet having excellent low-temperature toughness, having a structure of area%, bainite of 60% or more, residual ⁇ of 1 to 20%, and the balance substantially made of ferrite. Are present in bainite grains.
  • the present invention provides a high-strength zinc plate in which a galvanized layer is formed on the surface of a high-strength steel plate having excellent impact resistance and a manufacturing method thereof, and a high-strength steel plate excellent in impact resistance.
  • a plated steel sheet and a method for producing the same are provided.
  • the inventors of the present invention have made extensive studies in order to obtain a high-strength steel sheet having a tensile maximum strength of 900 MPa or more that provides excellent impact resistance.
  • the present inventors have a predetermined chemical component containing Al: 0.001 to 0.050%, Ti: 0.0010 to 0.0150%, and N: 0.0001 to 0.0050%.
  • the steel sheet structure contains 1-8% residual austenite in the range of 1/8 thickness to 3/8 thickness centered on 1/4 of the thickness, and the average aspect ratio of the residual austenite The ratio is 2.0 or less, and the amount of dissolved Mn in the retained austenite is 1.1 times or more of the average Mn amount, includes TiN particles having an average particle size of 0.5 ⁇ m or less, and has a particle size of 1 ⁇ m or more. It has been found that a steel sheet having a density of AlN particles of 1.0 particles / mm 2 or less may be used.
  • the high-strength steel sheet contains Al, Ti, and N in the above range, and the generation of fine TiN particles having an average particle size of 0.5 ⁇ m or less generates a starting point for fracture at low temperature. Since the generation of AlN particles having an average particle diameter of 1 ⁇ m or more is suppressed, the density of AlN particles having a particle diameter of 1 ⁇ m or more is as low as 1.0 particles / mm 2 or less. For this reason, the above-mentioned high-strength steel sheet has been prevented from being broken starting from AlN particles.
  • the volume fraction of retained austenite that is the starting point of fracture is as low as 1 to 8%, and the retained austenite is stable with excellent isotropy having an average aspect ratio of 2.0 or less. It has a shape and is chemically stable in which the amount of dissolved Mn in the retained austenite is 1.1 times or more the average amount of Mn. Therefore, the above-described high-strength steel sheet is prevented from breaking starting from retained austenite.
  • the breakage starting from the AlN particles and the breakage starting from the retained austenite are prevented, so that excellent impact resistance characteristics can be obtained.
  • the present invention has been completed on the basis of such knowledge, and the gist thereof is as follows.
  • the density of AlN particles containing TiN particles and having a particle size of 1 ⁇ m or more is 1.0 /
  • the steel sheet has a volume fraction of 10 to 75% or less of ferrite, a total of 10 to 50% of bainitic ferrite and / or bainite, and 10 to 50% or less of tempered martensite.
  • Nb 0.0010 to 0.0150%
  • V 0.010 to 0.150%
  • B 0.0001 to 0.0100% by mass%.
  • the high strength steel sheet having excellent impact resistance as described in (1) containing one or more of Ca, Ce, Mg, Zr, Hf, and REM in a total amount of 0.0001 to 0.5000% by mass. .
  • the slab is reduced under the conditions satisfying the following (formula 1): And Ar 3 complete the reduction at the finishing hot rolling temperature not lower than 970 ° C but higher than 970 ° C, winding in the temperature range not higher than 750 ° C, and cooling at an average cooling rate not higher than 15 ° C / hour 30% to 75% after the rolling process and the hot rolling process
  • a high-strength steel sheet with excellent impact resistance comprising a continuous annealing step in which the steel is cooled at an average cooling rate of 0 ° C./sec and annealed in a temperature range of 350 to 450 ° C. for 30 to 1000 seconds.
  • i is the number of passes
  • Ti is the processing temperature of the i-th pass
  • ti is the elapsed time from the i-th pass to the i + 1-th pass
  • ⁇ i is the reduction rate of the i-th pass.
  • the steel sheet is galvanized before or after the retention treatment in the temperature range of 350 to 450 ° C. after cooling in the temperature range of 700 to 500 ° C.
  • the steel sheet After being immersed in the galvanizing bath, the steel sheet is reheated to 460 to 600 ° C. and held for 2 seconds or more to alloy the galvanized layer. High strength excellent in impact resistance according to (10) Manufacturing method of galvanized steel sheet.
  • the high-strength steel sheet of the present invention since AlN particles and retained austenite are prevented from becoming the starting point of fracture, a high-strength steel sheet having excellent impact resistance characteristics and a tensile maximum strength of 900 MPa or more is obtained. Moreover, according to the manufacturing method of the high strength steel plate of the present invention, a high strength steel plate having excellent impact resistance and a tensile maximum strength of 900 MPa or more can be provided. Further, according to the present invention, it is possible to provide a high-strength galvanized steel sheet in which a galvanized layer is formed on the surface of a high-strength steel sheet having excellent impact resistance and a method for producing the same.
  • the high-strength steel sheet of the present invention has C: 0.075 to 0.300%, Si: 0.30 to 2.50%, Mn: 1.30 to 3.50%, P: 0.001 to 0.050. %, S: 0.0001 to 0.0050%, Al: 0.001 to 0.050%, Ti: 0.0010 to 0.0150%, N: 0.0001 to 0.0050%, O: 0.0. It contains 0001 to 0.0030%, and the balance consists of iron and inevitable impurities.
  • C: 0.075-0.300% C is contained to increase the strength of the high-strength steel plate. However, if the C content exceeds 0.300%, weldability becomes insufficient. From the viewpoint of weldability, the C content is preferably 0.250% or less, and more preferably 0.220% or less. On the other hand, if the C content is less than 0.075%, the strength is lowered, and the maximum tensile strength of 900 MPa or more cannot be ensured. In order to increase the strength, the C content is preferably 0.090% or more, and more preferably 0.100% or more.
  • Si: 0.30-2.50% Si is an element necessary for suppressing the formation of iron-based carbides in the steel sheet and enhancing strength and formability.
  • the Si content is preferably 2.20% or less, and more preferably 2.00% or less.
  • the lower limit value of Si is preferably 0.50% or more, and more preferably 0.70% or more.
  • Mn: 1.30 to 3.50% Mn is added to the steel sheet of the present invention in order to increase the strength of the steel sheet.
  • Mn content exceeds 3.50%, a coarse Mn-concentrated portion is formed at the center of the plate thickness of the steel sheet, and embrittlement is likely to occur, and troubles such as cracking of the cast slab are likely to occur.
  • the Mn content needs to be 3.50% or less.
  • the Mn content is preferably 3.20% or less, and more preferably 3.00% or less.
  • the Mn content needs to be 1.30% or more.
  • the Mn content is preferably 1.50% or more, more preferably 1.70% or more.
  • P 0.001 to 0.050%
  • P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle.
  • the P content exceeds 0.050%, the welded portion is significantly embrittled, so the P content is limited to 0.050% or less.
  • the lower limit of the content of P is not particularly defined, the effect of the present invention is exhibited. However, since the content of P is less than 0.001% is accompanied by a significant increase in production cost, 0.001 % Is the lower limit.
  • S 0.0001-0.0050% S adversely affects weldability and manufacturability during casting and hot rolling. Further, since it combines with Ti to produce sulfide, prevents Ti from becoming nitride, and indirectly induces formation of Al nitride, the upper limit of the S content is set to 0.0050%. . In this respect, the S content is preferably 0.035% or less, and more preferably 0.0025% or less. The lower limit of the content of S is not particularly defined, and the effect of the present invention is exhibited. However, if the content of S is less than 0.0001%, a significant increase in production cost is caused, so 0.0001% Is the lower limit.
  • Al 0.001% to 0.050%
  • the Al content is preferably 0.035% or less.
  • the lower limit of the content of Al is not particularly defined, and the effect of the present invention is exhibited. However, when the content of Al is less than 0.001% is accompanied by a significant increase in production cost, 0.001% Is the lower limit.
  • Al is an element effective as a deoxidizing material. From this viewpoint, the Al content is preferably 0.005% or more, and more preferably 0.010% or more.
  • N 0.0001-0.0050% N forms coarse nitrides that are the starting points of fracture at low temperatures and lowers the impact resistance, so the amount added must be suppressed. If the N content exceeds 0.0050%, this effect becomes significant. Therefore, the N content range is set to 0.0050% or less. In this respect, the N content is preferably 0.0040% or less, and more preferably 0.0030% or less.
  • the lower limit of the content of N is not particularly defined, and the effect of the present invention is exhibited. However, if the content of N is less than 0.0001%, a significant increase in manufacturing cost is caused, so 0.0001% Is the lower limit.
  • O forms a coarse oxide and generates a starting point of destruction at a low temperature, so the content needs to be suppressed. If the O content exceeds 0.0030%, this effect becomes significant, so the upper limit of the O content is set to 0.0030% or less. In this respect, the O content is preferably 0.0020% or less, and more preferably 0.0010% or less. Although the lower limit of the content of O is not particularly defined, the effects of the present invention are exhibited. However, if the content of O is less than 0.0001%, a significant increase in manufacturing cost is caused, so 0.0001% Is the lower limit.
  • Ti 0.0010 to 0.0150%
  • Ti is an element that forms fine nitrides by hot rolling under appropriate conditions and suppresses the formation of coarse Al nitrides, reduces the starting point of fracture at low temperature, and has impact resistance characteristics. Improve. In order to obtain this effect, the Ti content needs to be 0.0010% or more, the Ti content is preferably 0.0030% or more, and more preferably 0.0050% or more. . On the other hand, if the Ti content exceeds 0.0150%, the formability of the soft part in the steel sheet deteriorates due to the precipitation of fine carbonitrides, and on the contrary, the drawing value at low temperature is lowered. For this reason, content of Ti shall be 0.0150% or less. From the viewpoint of moldability, the Ti content is preferably 0.0120% or less, and more preferably 0.0100% or less.
  • the high-strength steel sheet of the present invention may further contain the following elements as necessary.
  • “Nb: 0.0010 to 0.0150%” Nb is an element that forms fine nitrides by hot rolling under appropriate conditions and suppresses the formation of coarse Al nitrides, and reduces the starting point of fracture at low temperatures.
  • the Nb content is preferably 0.0010% or more, more preferably 0.0030% or more, and further preferably 0.0050% or more. preferable.
  • the content of Nb exceeds 0.0150%, the formability of the soft part in the steel sheet deteriorates due to the precipitation of fine carbonitrides, and on the contrary, the drawing value at low temperature is lowered.
  • the content is preferably 0.0150% or less. From the viewpoint of moldability, the Nb content is more preferably 0.0120% or less, and further preferably 0.0100% or less.
  • V 0.010 to 0.150%
  • V is an element that forms fine nitrides by hot rolling under appropriate conditions and suppresses the formation of coarse Al nitrides, and reduces the starting point of fracture at low temperatures.
  • the V content needs to be 0.010% or more, the content is preferably 0.030% or more, and more preferably 0.050% or more.
  • the content of V exceeds 0.150%, the formability of the soft part in the steel sheet deteriorates due to the precipitation of fine carbonitride, and on the contrary, the drawing value at low temperature is lowered.
  • the content is preferably 0.150% or less. From the viewpoint of moldability, the V content is more preferably 0.120% or less, and further preferably 0.100% or less.
  • B 0.0001 to 0.0100%
  • B is an element that forms fine nitrides by hot rolling under appropriate conditions and suppresses the formation of coarse Al nitrides, and reduces the starting point of fracture at low temperatures.
  • the B content is preferably 0.0001% or more
  • the B content is preferably 0.0003% or more, and more preferably 0.0005% or more.
  • B is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be further added.
  • the content of B is preferably 0.0100% or less because the productivity is reduced. From the viewpoint of productivity, the B content is more preferably 0.0050% or less, and further preferably 0.0030% or less.
  • Cr: 0.01-2.00% Cr is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Cr content exceeds 2.00%, hot workability is impaired and productivity is lowered. Therefore, the Cr content is preferably 2.00% or less. Although the lower limit of the Cr content is not particularly defined, the effect of the present invention is exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Cr, the Cr content may be 0.01% or more. preferable.
  • Ni 0.01-2.00%
  • Ni is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Ni content exceeds 2.00%, weldability is impaired, so the Ni content is preferably 2.00% or less.
  • the lower limit of the Ni content is not particularly defined, and the effects of the present invention are exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Ni, the Ni content should be 0.01% or more. preferable.
  • Cu: 0.01-2.00% is an element that increases the strength by being present in the steel as fine particles, and can be added instead of a part of C and / or Mn. If the Cu content exceeds 2.00%, weldability is impaired, so the Cu content is preferably 2.00% or less. The lower limit of the Cu content is not particularly defined, and the effect of the present invention is exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Cu, the Cu content should be 0.01% or more. preferable.
  • Mo 0.01-1.00%
  • Mo is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Mo content exceeds 1.00%, hot workability is impaired and productivity is lowered. For this reason, the Mo content is preferably 1.00% or less.
  • the lower limit of the content of Mo is not particularly defined, and the effect of the present invention is exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Mo, the content of Mo is 0.01% or more. preferable.
  • W 0.01-1.00%
  • W is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the W content exceeds 1.00%, hot workability is impaired and productivity is lowered. Therefore, the W content is preferably 1.00% or less.
  • the lower limit of the W content is not particularly defined, and the effects of the present invention are exhibited. However, in order to sufficiently obtain the effect of increasing the strength by W, the W content may be 0.01% or more. preferable.
  • Ca, Ce, Mg, Zr, Hf, and REM are effective elements for improving formability, and one or more of them can be added.
  • the total content of one or more of Ca, Ce, Mg, Zr, Hf, and REM exceeds 0.5000%, the ductility may be impaired.
  • the total content of each element is preferably 0.5000% or less.
  • the lower limit of the content of one or more of Ca, Ce, Mg, Zr, Hf, and REM is not particularly defined, and the effect of the present invention is exhibited. However, the effect of improving the formability of the steel sheet is sufficient.
  • the total content of each element is 0.0001% or more.
  • the total content of one or more of Ca, Ce, Mg, Zr, Hf, and REM is more preferably 0.0005% or more, and 0.0010% or more. Is more preferable.
  • REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series.
  • REM and Ce are often added by misch metal and may contain a lanthanoid series element in combination with La and Ce. Even if these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. Even if the metal La or Ce is added, the effect of the present invention is exhibited.
  • the reason for defining the structure of the high-strength steel sheet of the present invention is as follows.
  • TiN particles The steel sheet structure of the high-strength steel sheet of the present invention includes TiN particles having an average particle diameter of 0.5 ⁇ m or less. Coarse TiN particles serve as a starting point for destruction, but fine TiN particles having an average particle size of 0.5 ⁇ m or less do not function as a starting point for destruction.
  • the average particle diameter of the TiN particles is preferably 0.3 ⁇ m or less in order to effectively prevent the TiN particles from starting to break and further improve the impact resistance of the high-strength steel sheet. More preferably, it is 1 ⁇ m or less.
  • the average particle diameter of the TiN particles is obtained by the following method, for example. That is, a sample for a transmission electron microscope (TEM) containing TiN particles is prepared from the plate thickness section parallel to the rolling direction by the extraction replica method, and 10 or more TiN particles are observed using the transmission electron microscope. The particle diameter of each TiN particle is determined as the diameter of a circle having an area equal to the projected area of the TiN particle particles obtained by image analysis. And a particle size is measured about ten or more TiN particles, and the average particle size of TiN particles is calculated
  • TEM transmission electron microscope
  • AlN particles In the steel structure of the high-strength steel sheet of the present invention, the density of AlN particles having a particle diameter of 1 ⁇ m or more is 1.0 piece / mm 2 or less. Coarse AlN particles having a particle size of 1 ⁇ m or more serve as a starting point for destruction. In the steel structure of the high-strength steel sheet according to the present invention, the density of AlN particles having a particle diameter of 1 ⁇ m or more is 1.0 piece / mm 2 or less, so that the breakage starting from the AlN particles is prevented.
  • the density of the AlN particles having a particle diameter of 1 ⁇ m or more is preferably 0.5 particles / mm 2 or less, more preferably 0.1 particles / mm 2 or less. More preferably.
  • the measurement of the average particle diameter of these TiN particles and the measurement of the density of AlN particles having a particle diameter of 1 ⁇ m or more are measured at any plate thickness position in the steel plate except for the outermost surface of the steel plate with few particles. It doesn't matter. For example, as in the case of residual austenite and ferrite described later, it is preferable to measure at a position of 1/8 to 3/8 thickness as a region representative of a steel plate.
  • an AlN particle having a particle diameter of 1 ⁇ m or more means an AlN particle having an equivalent circle diameter d of 1 ⁇ m or more.
  • the density of the AlN particles in the present invention is determined by the following method, for example. That is, an area of 10.0 mm 2 or more in the plate thickness section parallel to the rolling direction is observed using a field emission scanning electron microscope (FE-SEM), and AlN particles of 1 ⁇ m or more are observed. The number is counted and the density is calculated. The component of the AlN particles can be confirmed using an energy dispersive X-ray spectrometer attached to the FE-SEM.
  • FE-SEM field emission scanning electron microscope
  • the steel structure of the high-strength steel sheet according to the present invention contains 1-8% residual austenite in a volume fraction in the range of 1/8 thickness to 3/8 thickness centering on 1/4 of the thickness.
  • the average aspect ratio of the retained austenite is 2.0 or less
  • the amount of solute Mn in the retained austenite is 1.1 times or more of the average amount of Mn.
  • the entire steel sheet structure preferably contains 1 to 8% residual austenite in volume fraction.
  • the metal structure in the range of 1/8 thickness to 3/8 thickness centering on 1/4 of the thickness of the steel sheet represents the overall structure of the steel sheet.
  • the range of the volume fraction of retained austenite in the range of 1/8 to 3/8 thickness of the base steel sheet is specified.
  • the volume fraction is 10 to 75. % Of ferrite, a total of 10-50% of bainitic ferrite and / or bainite, and 5-50% of tempered martensite, and pearlite has a volume fraction of 5% or less
  • the fresh martensite is preferably limited to 15% or less in volume fraction.
  • the metal structure in the range of 1/8 thickness to 3/8 thickness centering on 1/4 of the thickness of the steel sheet represents the overall structure of the steel sheet. Therefore, in the range of 1/8 to 3/8 thickness of the steel sheet, the volume fraction of ferrite is 10 to 75% or less, and the total is 10 to 50% bainitic ferrite and / or bainite. And tempered martensite of 5 to 50% or less, pearlite is limited to 5% or less in volume fraction, and fresh martensite is substantially limited to 15% or less in volume fraction. Moreover, it can be considered that the metal structure such as ferrite is within a predetermined range in the entire structure of the steel sheet. Therefore, in the present invention, the range of the volume fraction of the metal structure such as ferrite is defined in the range of 1/8 to 3/8 thickness of the steel sheet.
  • the retained austenite has a stable shape and is chemically stable.
  • the average aspect ratio of retained austenite is 2.0 or less, and it has a stable shape with excellent isotropy.
  • the average aspect ratio of retained austenite is preferably 1.8 or less, and more preferably 1.6 or less.
  • the lower limit of the average aspect ratio of retained austenite is 1.0. When the average aspect ratio exceeds 2.0, a part of the retained austenite is easily transformed into martensite when pulled at a low temperature, a starting point of fracture is generated, and the aperture value is deteriorated.
  • the amount of dissolved Mn in the retained austenite is 1.1 times or more of the average amount of Mn, “(the amount of dissolved Mn in the retained austenite / average amount of Mn) ⁇ 1.1”.
  • the solid solution Mn content in the retained austenite is preferably 1.2 times or more, more preferably 1.3 times or more of the average Mn amount.
  • the upper limit is not particularly set, special equipment is required to make it 2.0 times or more, and 2.0 times is the actual upper limit.
  • “Ferrite” Ferrite is a structure effective for improving the drawing value at a low temperature, and is preferably contained in the steel sheet structure in a volume fraction of 10 to 75%. When the volume fraction of ferrite is less than 10%, a sufficient aperture value may not be obtained.
  • the volume fraction of ferrite contained in the steel sheet structure is more preferably 15% or more, and further preferably 20% or more, from the viewpoint of the drawing value. On the other hand, since ferrite is a soft structure, if the volume fraction exceeds 75%, sufficient strength may not be obtained.
  • the volume fraction of ferrite contained in the steel sheet structure is preferably 65% or less, and more preferably 50% or less.
  • the volume fraction of pearlite contained in the steel sheet structure is preferably limited to 5% or less, and more preferably 2% or less.
  • Bainitic ferrite, bainite are structures with an excellent balance between strength and ductility, and the steel sheet structure contains 10% to 50% of bainitic ferrite and / or bainite in total volume fraction. Preferably it is. Bainitic ferrite and bainite are microstructures having an intermediate strength between soft ferrite and hard martensite, tempered martensite, and retained austenite, and more preferably 15% or more in view of stretch flangeability. More preferably, it is contained at 20% or more. On the other hand, if the volume fraction of bainitic ferrite and bainite exceeds 50% in total, the yield stress is excessively increased and the shape freezing property is deteriorated. In addition, bainitic ferrite and bainite may contain only one or both.
  • Fresh martensite greatly improves the tensile strength, but on the other hand, it becomes a starting point of fracture and greatly deteriorates the drawing value at low temperature. Therefore, it is preferable that the volume fraction is limited to 15% or less in the steel sheet structure. In order to increase the aperture value at a low temperature, the volume fraction of fresh martensite is more preferably 10% or less, and further preferably 5% or less.
  • Tempered martensite is a structure that greatly improves the tensile strength, and may be contained in the steel sheet structure in a volume fraction of 50% or less. From the viewpoint of tensile strength, the volume fraction of tempered martensite is preferably 10% or more. On the other hand, when the volume fraction of the tempered martensite contained in the steel sheet structure exceeds 50%, the yield stress is excessively increased and the shape freezing property is deteriorated, which is not preferable.
  • the steel sheet structure of the high-strength steel sheet of the present invention may contain a structure other than the above, such as coarse cementite.
  • coarse cementite increases in the steel sheet structure, the bendability deteriorates. From this, the volume fraction of coarse cementite contained in the steel sheet structure is preferably 10% or less, and more preferably 5% or less.
  • the volume fraction of each structure included in the steel sheet structure of the high-strength steel sheet of the present invention can be measured, for example, by the method shown below.
  • the volume fraction of retained austenite is determined by performing an X-ray diffraction test on an arbitrary plane in the range of 1/8 to 3/8 thickness parallel to the plate surface of the steel sheet, and calculating the area fraction of retained austenite. With this, it can be regarded as a volume fraction in the range of 1/8 thickness to 3/8 thickness.
  • the microstructure in the range of 1/8 thickness to 3/8 thickness has high homogeneity, and if a sufficiently wide region is measured, it can be measured anywhere from 1/8 thickness to 3/8 thickness.
  • a microstructure fraction representative of the range of thickness to 3/8 thickness is obtained. Specifically, it is preferable to perform an X-ray diffraction test in a range of 250,000 square ⁇ m or more on a 1 ⁇ 4 thickness plane parallel to the plate surface of the steel plate.
  • the fraction of the microstructure (ferrite, bainitic ferrite, bainite, tempered martensite, pearlite, fresh martensite) excluding retained austenite was observed with an electron microscope in the range of 1/8 to 3/8 thickness. Can be measured. Specifically, a sample is taken with a surface perpendicular to the plate surface of the base steel plate and parallel to the rolling direction (rolling direction) as the observation surface, and the observation surface is polished and nital etched. Then, the range of 1/8 thickness to 3/8 thickness centered on 1/4 of the plate thickness is observed with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope) to determine the area fraction. taking measurement.
  • FE-SEM Field Emission Scanning Electron Microscope
  • observation with an electron microscope is performed in three or more fields of view set at intervals of 1 mm or more. Then, the area fraction of each structure such as ferrite in the range where the total observation area is 5000 square ⁇ m or more is calculated, and with that, the volume fraction of each structure in the range of 1/8 thickness to 3/8 thickness is obtained. Can be considered.
  • ferrite is a massive crystal grain and is an area where there is no iron-based carbide having a major axis of 100 nm or more.
  • the volume fraction of ferrite is the sum of the volume fraction of ferrite remaining at the maximum heating temperature and the ferrite newly generated in the ferrite transformation temperature range.
  • Bainitic ferrite is a collection of lath-like crystal grains and does not contain iron-based carbide having a major axis of 20 nm or more inside the lath.
  • Bainite is a collection of lath-like crystal grains, and has a plurality of iron-based carbides having a major axis of 20 nm or more inside the lath, and further, these carbides are a single variant, that is, a group of iron-based carbides extending in the same direction. Belongs to.
  • the iron-based carbide group extending in the same direction means that the difference in the extension direction of the iron-based carbide group is within 5 °.
  • Tempered martensite is an aggregate of lath-like crystal grains, and has a plurality of iron-based carbides having a major axis of 20 nm or more inside the lath, and further, these carbides are a plurality of variants, that is, a plurality of iron-based materials extending in different directions It belongs to the carbide group. Note that bainite and tempered martensite can be easily distinguished by observing the iron-based carbide inside the lath-like crystal grains using FE-SEM and examining the elongation direction.
  • the galvanized layer may be alloyed.
  • a galvanized layer is formed on the surface of a high-strength steel plate, it has excellent corrosion resistance.
  • an alloyed galvanized layer is formed on the surface of a high-strength steel plate, it has excellent corrosion resistance and excellent paint adhesion.
  • the galvanized layer or the alloyed galvanized layer may contain Al as an impurity.
  • the alloyed galvanized layer is one or two of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, Sr, I, Cs, and REM. These may be contained or they may be mixed. Even if the alloyed galvanized layer contains or is mixed with one or more of the above elements, the effects of the present invention are not impaired, and depending on the content, the corrosion resistance and workability are improved. In some cases, it is preferable.
  • the amount of adhesion of the galvanized layer or alloyed galvanized layer is preferably 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of economy.
  • the average thickness of the galvanized layer or the alloyed galvanized layer is 1.0 ⁇ m or more and 50 ⁇ m or less. If it is less than 1.0 ⁇ m, sufficient corrosion resistance cannot be obtained. Preferably, it is 2.0 ⁇ m or more. On the other hand, if it exceeds 50.0 ⁇ m, it is not economical, and the strength of the steel sheet is impaired.
  • the thickness of the galvanized layer or the alloyed galvanized layer is preferably as thin as possible, and is preferably 30.0 ⁇ m or less.
  • the average thickness of the plating layer is the same as the rolling direction of the steel sheet, and the cross section of the plate thickness is finished to a mirror surface and observed using FE-SEM. The thickness is measured, and the average value is defined as the plating layer thickness.
  • the iron content of the alloyed galvanized layer is set to 8.0% or more and preferably 9.0% or more in order to ensure good flaking resistance. Further, the iron content in the alloyed galvanized layer is 12.0% or less and preferably 11.0% or less in order to ensure good powdering resistance.
  • a film made of a phosphorus oxide and / or a composite oxide containing phosphorus may be formed on the surface of the galvanized layer or the alloyed galvanized layer.
  • the film made of phosphorus oxide and / or a composite oxide containing phosphorus can function as a lubricant when the steel sheet is processed, and can protect the galvanized layer formed on the surface of the steel sheet.
  • a slab having the above-described chemical component (composition) is cast.
  • a slab produced by a continuous casting slab, a thin slab caster or the like can be used.
  • the method for producing a high-strength steel sheet of the present invention is compatible with a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.
  • the slab heating temperature needs to be 1210 ° C. or higher in order to sufficiently dissolve the Ti-based inclusions generated during casting and uniformly dissolve Ti in the steel, and is 1225 ° C. or higher. It is preferable to do. If the slab heating temperature is too low, the finish rolling temperature will be lower than the Ar 3 transformation point. As a result, rolling is performed in the two-phase region of ferrite and austenite, the hot-rolled sheet structure becomes an inhomogeneous mixed grain structure, and the inhomogeneous structure is not eliminated even though it undergoes a cold rolling process and a continuous annealing process, The steel sheet is inferior in ductility and bendability.
  • a decrease in the slab heating temperature may cause an excessive increase in rolling load, which may make rolling difficult and may cause a defective shape of the steel sheet after rolling.
  • the upper limit of the slab heating temperature is not particularly defined, and the effect of the present invention is exhibited. However, since it is not economically preferable to make the heating temperature excessively high, the upper limit of the slab heating temperature is 1350 ° C. or less. It is desirable.
  • Ar 3 901-325 ⁇ C + 33 ⁇ Si-92 ⁇ (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2) + 52 ⁇ Al
  • C, Si, Mn, Ni, Cr, Cu, Mo, and Al are content [mass%] of each element. Elements not contained are calculated as 0.
  • any number of passes can be reduced in the temperature range from the slab taken out from the heating furnace to the rolling completion temperature with the lower one of 850 ° C. or Ar3 temperature being the lower limit.
  • the reduction performed in the range of 1100 ° C. to 1000 ° C. has a strong influence on the dispersion state of the TiN and AlN particles in question, and therefore heat in the same temperature range using (Equation 1).
  • Equation 1 Define the extension conditions.
  • the reduction applied in the temperature range exceeding 1100 ° C. does not act as a TiN precipitation site because dislocations introduced at the time of deformation immediately disappear, and does not affect the problem of dispersion of TiN and AlN particles.
  • nucleation of particles that can become coarse TiN and AlN is completed before rolling in a range of less than 1000 ° C., and subsequent rolling (temperature range of less than 1000 ° C.) causes problems with TiN and AlN particles. Does not affect the distributed state.
  • rolling is performed for 8 to 25 passes between taking out from the heating furnace and completing the rolling.
  • the reduction applied in the range of 1100 ° C. to 1000 ° C. is 2 to 10 passes.
  • the plate thickness generally starts from 200 to 500 mm and is rolled to 10 to 50 mm.
  • the plate width is generally 500 to 2000 mm.
  • the temperature of the steel sheet is the surface temperature, and the measurement method is not limited, but may be measured directly using, for example, a thermocouple.
  • the number of passes i can be in the range of 2 to 10, preferably in the range of 5 to 8.
  • the elapsed time from the i-th pass to the i + 1-th pass can be in the range of 2 to 300 seconds, preferably in the range of 5 to 180 seconds, and more preferably in the range of 10 to 120 seconds.
  • the processing temperature of the first pass which is the first pass in the hot rolling in the temperature range of 1100 to 1000 ° C., can be in the range of 1100 to 1050 ° C., preferably in the range of 1090 to 1065 ° C.
  • the reduction ratio of the i-th pass can be in the range of 5 to 50%, preferably in the range of 15 to 35%.
  • Equation 1 is an empirical expression representing the generation behavior of TiN particles.
  • the polynomial term representing the driving force for particle production, the exp term representing the diffusion coefficient of the atom, and the product of the time t are used to process the atomic diffusion distance.
  • the amount of dislocations introduced along with the above is represented by the strain amount ⁇ and multiplied by them.
  • the value shown by (Formula 1) is less than 1.0, the generation of TiN becomes insufficient, the solid solution N remains until it is hot-rolled to 1000 ° C., and coarse AlN is generated.
  • the value represented by (Equation 1) exceeds 5.0, TiN generation becomes excessively active, TiN coarsening proceeds, and on the contrary, the characteristics are impaired.
  • the elapsed time between the adjacent paths can be controlled in a relatively short time, Since the processing temperature and rolling reduction in each pass are appropriately controlled, a large amount of dislocations, which are Ti nitride generation sites, can be introduced into the steel, and fine Ti nitride can be generated in the steel. it can. In addition, it does not specifically limit about the reduction performed in the temperature range over 1100 degreeC, and the reduction applied in the temperature range less than 1000 degreeC.
  • the reduction may be performed under a condition that satisfies the above (Equation 1) in a temperature range exceeding 1100 ° C., or the reduction may be performed under a condition that does not satisfy the above (Equation 1).
  • the reduction may not be performed in a temperature range exceeding 1100 ° C.
  • the reduction may be performed under a condition that satisfies the above (Equation 1) in a temperature range of less than 1000 ° C., or the reduction may be performed under a condition that does not satisfy the above (Equation 1).
  • the finish in the temperature range of at least 1100 to 1000 ° C., after hot rolling under the conditions satisfying the above (formula 1), the finish is 800 ° C. and the higher temperature of Ar 3 transformation point to 970 ° C. Complete at the hot rolling temperature and wind up at 750 ° C. or lower.
  • the plate thickness after finish rolling is, for example, 2 mm to 10 mm. If the finish rolling temperature is less than 800 ° C., the rolling load during finish rolling becomes high, and hot rolling becomes difficult, and there is a concern that the hot rolled steel sheet obtained after hot rolling has a defective shape.
  • the hot rolling may be a two-phase rolling of ferrite and austenite, and the structure of the hot rolled steel sheet may be a heterogeneous mixed grain structure.
  • the upper limit of the finish rolling temperature is 970 ° C. or more, TiN is not sufficiently generated, and surplus N may generate Al and nitride.
  • hot rolling is performed in a temperature range of 1100 to 1000 ° C. under the condition satisfying the above (Equation 1), and the temperature of 800 ° C. and the higher Ar 3 transformation point is not lower than 970 ° C. Since it is completed at the finish hot rolling temperature, it is possible to suppress the formation of coarse Ti nitride in the temperature range of 1100 to 1000 ° C, and fine TiN particles are produced between 1000 ° C and the finish hot rolling temperature. The As a result, the finally obtained high-strength steel sheet has excellent impact resistance.
  • the coiling temperature is set to 750 ° C. or lower.
  • the winding temperature is preferably 720 ° C. or lower, and more preferably 700 ° C. or lower.
  • the coiling temperature is preferably 500 ° C or higher.
  • the winding temperature is preferably 550 ° C. or higher, more preferably 600 ° C. or higher.
  • the hot rolled steel sheet wound in the above temperature range is cooled at an average cooling rate of 15 ° C./hour or less.
  • the distribution of Mn dissolved in the steel sheet is promoted, and the retained austenite can be selectively left in the Mn-concentrated region, thereby increasing the amount of dissolved Mn in the retained austenite. Can do.
  • the high strength steel sheet finally obtained has a solid solution Mn amount in the retained austenite of 1.1 times or more of the average Mn amount. Distribution of Mn after winding is more likely to proceed at higher temperatures. Therefore, the cooling rate of the steel sheet needs to be 15 ° C./hour or less, particularly in the range from the coiling temperature to the coiling temperature ( ⁇ 50 ° C.).
  • pickling is important for improving the plateability of the steel sheet because it removes oxides on the surface of the hot-rolled steel sheet. Moreover, pickling may be performed once or may be performed in a plurality of times.
  • the rolling reduction in the cold rolling process is preferably 40% or more, and more preferably 45% or more.
  • the rolling reduction is preferably 75% or less. From the viewpoint of cold rolling load, the rolling reduction is more preferably 70% or less.
  • the effects of the present invention can be exhibited without particularly defining the number of rolling passes and the rolling reduction for each rolling pass.
  • the cold-rolled steel sheet obtained after the cold rolling process is passed through a continuous annealing line to perform a continuous annealing process.
  • the temperature range of 550 to 700 ° C.
  • the maximum heating temperature is set between (Ac 1 transformation point + 40) to 1000 ° C., and the maximum heating temperature to Cooling at an average cooling rate of 1.0 to 10.0 ° C./second in a temperature range of 700 ° C., cooling at an average cooling rate of 5.0 to 200.0 ° C./second in a temperature range of 700 to 500 ° C .; Annealing is performed in a temperature range of 350 to 450 ° C. for 30 to 1000 seconds. As a result, the high-strength steel sheet of the present invention is obtained.
  • the recrystallization of the cold-rolled steel sheet is sufficiently advanced, and the shape of the retained austenite becomes more isotropic. It becomes excellent and stable, and the austenite remaining at the end has a nearly spherical shape.
  • the average heating rate in the temperature range of 550 to 700 ° C. exceeds 10 ° C./second, the shape of retained austenite cannot be stabilized.
  • the maximum heating temperature in the continuous annealing step is less than (Ac 1 transformation point +40) ° C.
  • the maximum heating temperature is set to (Ac 1 Transformation point +40) C or higher.
  • the maximum heating temperature is preferably (Ac 1 transformation point + 50) ° C. or more, and more preferably (Ac 1 transformation point + 60) ° C. or more.
  • the maximum heating temperature exceeds 1000 ° C., the diffusion of atoms is promoted and the distribution of Si, Mn, and Al is weakened. Therefore, the maximum heating temperature is set to 1000 ° C. or less.
  • Si in the residual austenite, Mn, to control the Al content is preferably the maximum heating temperature is less than Ac 3 transformation temperature.
  • the average cooling rate In the temperature range from the maximum heating temperature to 700 ° C, if the average cooling rate exceeds 10.0 ° C / sec, the ferrite fraction in the steel sheet tends to be non-uniform and formability deteriorates. It is set to 10.0 ° C./second. On the other hand, if the average cooling rate is less than 1.0 ° C./sec, a large amount of ferrite and pearlite are generated and residual austenite cannot be obtained, so the lower limit of the average cooling rate is 1.0 ° C./sec. In order to obtain retained austenite, the average cooling rate is preferably 2.0 ° C./second or more, and more preferably 3.0 ° C./second or more.
  • the average cooling rate is less than 5.0 ° C./second, a large amount of pearlite and / or iron-based carbide is generated and no retained austenite remains, so the lower limit of the average cooling rate is 5 0 ° C / second or more.
  • the average cooling rate is preferably 7.0 ° C./second or more, and more preferably 8.0 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly defined, and the effect of the present invention is exhibited. However, in order to exceed the average cooling rate of 200 ° C./second, special equipment is required. The upper limit is 200 ° C./second.
  • the retention time is set to 1000 seconds or less.
  • the stopping time is preferably 800 seconds or shorter, and more preferably 600 seconds or shorter.
  • the steel sheet in the continuous annealing step of the manufacturing method described above, is made of zinc before cooling in the temperature range of 350 to 450 ° C. after the cooling in the temperature range of 700 to 500 ° C. or after the holding treatment. It is good also as a high intensity
  • the galvanizing bath is not particularly limited, and Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, Sr are contained in the galvanizing bath. Even if one, two or more of I, Cs, and REM are mixed, the effect of the present invention is not impaired, and depending on the amount, corrosion resistance and workability may be improved. Moreover, Al may be contained in the galvanizing bath. In this case, the Al concentration in the bath is preferably 0.05% or more and 0.15% or less.
  • the temperature for the alloying treatment is preferably 480 to 560 ° C., and the residence time for the alloying treatment is preferably 15 to 60 seconds.
  • the steel plate may be reheated to 460 ° C. to 600 ° C. and subjected to an alloying treatment for holding the galvanized layer for 2 seconds or longer to alloy it.
  • an alloying treatment By performing such an alloying treatment, a Zn—Fe alloy formed by alloying the zinc plating layer is formed on the surface, and a high-strength galvanized steel sheet having the alloyed zinc plating layer on the surface is obtained.
  • a coating made of a composite oxide containing phosphorus oxide and / or phosphorus may be applied to the surface of the zinc plating layer or alloyed zinc plating layer of these high-strength galvanized steel sheets.
  • the alloy is retained at a temperature of 200 to 350 ° C. for 30 to 1000 seconds after the alloying treatment.
  • the steel sheet structure includes tempered martensite.
  • the alloyed steel plate is cooled to 350 ° C. or lower to generate martensite, and then 350 ° C. or higher.
  • Tempered martensite may be generated by reheating to a temperature range of 550 ° C. or lower and retaining for 2 seconds or longer.
  • the steel sheet cooled to a temperature range of 500 ° C. or lower in the continuous annealing process is further cooled to 350 ° C. or lower to generate martensite, and then reheated and retained at 400 to 500 ° C.
  • Tempered martensite is generated in the steel sheet structure.
  • the steel plate before annealing may be plated with one or more selected from Ni, Cu, Co, and Fe.
  • the annealed steel sheet may be subjected to temper rolling for the purpose of shape correction.
  • the rolling reduction after annealing exceeds 10%, the soft ferrite part is work-hardened and the ductility is significantly deteriorated. Therefore, the rolling reduction is preferably less than 10%.
  • the present invention will be described in more detail with reference to examples.
  • the slabs having the chemical components (compositions) A to AF shown in Tables 1 and 2 and the chemical components (compositions) BA to BC shown in Table 3 were cast, and the conditions (slabs) shown in Tables 4 to 7 were cast immediately after casting. Heating temperature, rolling start temperature, hot rolling at a temperature range of 1100 to 1000 ° C. (value of (Formula 1), finishing hot rolling temperature), cooling, and winding temperatures shown in Tables 4 to 7 And cooled at an average cooling rate shown in Tables 4 to 7, and pickled. Thereafter, cold rolling at the rolling reduction shown in Tables 4 to 7 was performed.
  • annealing was performed under the conditions shown in Tables 8 to 11, and steel sheets of Experimental Examples 1 to 108 and 201 to 208 were obtained.
  • the temperature range of 550 to 700 ° C. is heated at the average heating rate shown in Tables 6 to 8, heated to the maximum heating temperature shown in Tables 8 to 11, and then the maximum heating temperature to 700 ° C.
  • the temperature range is cooled at an average cooling rate (cooling rate 1) shown in Tables 8 to 11, and the temperature range of 700 to 500 ° C. is cooled at an average cooling rate (cooling rate 2) shown in Tables 8 to 11, and 350
  • a holding treatment was carried out in the temperature range of ⁇ 450 ° C. for the time shown in Tables 8 to 11, and then cooled to room temperature.
  • the amount of retained austenite out of the microstructure fraction was determined by electron backscattering (FE-SEM: Field Emission Scanning Electron Microscope) attached to a field emission scanning electron microscope (FE-SEM) in a cross-section that was cut out of a plate thickness and polished to a mirror surface. Measurement was performed with an EBSD (Electron Back Scattering Diffraction) analyzer, and the others were obtained by performing a nital etching on a mirror-polished cross section and observing it using an FE-SEM.
  • FE-SEM Field Emission Scanning Electron Microscope
  • TiN average size a sample for a transmission electron microscope (TEM) was prepared by an extraction replica method from the surface in which the volume fraction of the microstructure was observed. The particle diameter (equivalent circle diameter) was measured and the average value was determined.
  • density of AlN particles having a particle size of 1 ⁇ m or more inclusions in the range of 10.0 mm 2 were observed with FE-SEM on the surface where the volume fraction of the microstructure was observed, and the equivalent circle diameter exceeded 1.0 ⁇ m. The composition of inclusions was measured, the number of inclusions identified as AlN was counted, and the density was determined.
  • the ratio (WMn ⁇ / WMn) of the solid solution Mn amount (WMn ⁇ ) in the retained austenite to the average Mn amount (WMn) was determined by measuring WMn and WMn ⁇ by the method described below. That is, on the observation surface where the microstructure fraction was obtained, EPMA analysis was performed in the same range as the EBSD analysis, WMn was obtained from the obtained Mn concentration map, and further, the Mn concentration map and the retained austenite map were overlapped, Only the measured value of Mn concentration in austenite was extracted, and WMn ⁇ was obtained as the average value.
  • Tables 16 to 19 show the results of evaluating the characteristics of the steel sheets of Experimental Examples 1 to 108 and 201 to 208 by the following method.
  • Tensile test pieces in accordance with JIS Z 2201 were collected from the steel plates of Experimental Examples 1 to 108 and 201 to 208, and the tensile test was conducted in accordance with JIS Z 2241. Yield stress “YS”, tensile strength “TS”, all The elongation “EL” was measured. Further, a hole expansion test (JFST1001) for evaluating the flange property was performed, and a hole expansion limit value “ ⁇ ”, which is an index of stretch flangeability, was calculated. Further, the same tensile test piece was immersed in alcohol containing liquid nitrogen, cooled to ⁇ 60 ° C., taken out and immediately subjected to a tensile test, and the drawing ratio (drawing value) of the fracture portion was obtained.
  • Experimental Examples 14 and 72 are examples in which a film made of a complex oxide containing phosphorus is provided on the surface of the galvanized layer, and good characteristics are obtained.
  • Experimental Example 5 is an example in which the slab heating temperature before hot rolling is low, coarse TiN remains, and the drawing value at low temperature is inferior.
  • Experimental example 10 is an example in which the value of (Equation 1) is large, and there is coarse TiN.
  • Experimental example 59 is an example in which the value of (Equation 1) is small, and coarse AlN is present. In Experimental Example 10 and Experimental Example 59, the aperture value at low temperatures is inferior.
  • Experimental Example 15 is an example in which the hot rolling temperature for hot rolling is low, and the microstructure is inhomogeneous in one direction, so that ductility, stretch flangeability, and drawing value at low temperatures are inferior.
  • Experimental example 20 is an example in which the winding is high after hot rolling, and the microstructure becomes very coarse, so that the ductility, stretch flangeability, and drawing value at low temperature are inferior.
  • Experimental Example 25 the average cooling rate after winding is high, the WMn ⁇ / WMn is low, the Mn concentration in the retained austenite is insufficient, and the drawing value at low temperatures is inferior. Since Experimental Example 30 has a low cold rolling reduction ratio and a large retained austenite aspect ratio ( ⁇ aspect ratio), the drawing value at low temperatures is inferior.
  • Experimental Example 35 since the average heating rate of annealing is large and the aspect ratio ( ⁇ aspect ratio) of retained austenite is large, the aperture value at low temperature is inferior.
  • Experimental Example 40 is an example in which the maximum heating temperature in annealing is low and includes a large number of coarse iron-based carbides that are the starting points of fracture, so the ductility, stretch flangeability, and drawing value at low temperatures are inferior.
  • Experimental Example 60 the cooling rate 2 is low, coarse carbides are generated, and ductility, stretch flangeability, and drawing value at low temperatures are inferior.
  • Experimental Examples 103 to 108 are examples in which the chemical components deviate from a predetermined range, and none of the aperture values at a sufficiently low temperature is obtained.

Abstract

 所定の含有量で、C、Si、Mn、P、S、Al、Ti、N、Oを含有し、残部が鉄および不可避的不純物からなり、板厚の1/4を中心とした1/8厚~3/8厚の範囲において、体積分率で1~8%の残留オーステナイトを含有し、前記残留オーステナイトの平均アスペクト比が2.0以下であり、かつ前記残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上であり、平均粒径0.5μm以下のTiN粒子を含み、平均粒径1μm以上のAlN粒子の密度が1.0個/mm以下である鋼板組織を有し、引張最大強度が900MPa以上である耐衝撃特性に優れた高強度鋼板。

Description

耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法
 本発明は、高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法に関し、特に、優れた耐衝撃特性を有する高強度鋼板およびその製造方法に関する。本願は、2011年7月29日に日本に出願された特願2011-167661号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車の軽量化を図りつつ衝突安全性を高めるために、自動車に用いられる鋼板の強度を向上させるとともに耐衝撃特性を向上させることが要求されている。
 衝突吸収エネルギーの大きい高強度鋼板として、特許文献1には、重量%で,C:0.05~0.3%、Si:2.0%以下、Al:0.01~2.0%、Mn:0.5~4.0%、Ni:0~5.0%、P:0.1%以下、S:0.1%以下、N:0.01%以下、残部はFeおよび不可避的不純物からなり、かつ1.5-3.0×C≦Si+Al≦3.5-5.0×C、およびMn+(Ni/3)≧1.0(%)、を満足する化学組成を有し、さらに鋼板の焼付硬化量が50MPa以上である高強度鋼板が記載されている。
 また、特許文献2には、衝突吸収性に優れる高張力鋼板として、式VB≦(TSs/60)-1(TSs:静的な引張試験における引張強度(MPa))で与えられる体積率VBのべイナイトと、C含有量が1.2質量%以下で体積率が5%以上の残留オーステナイトと、残部がフエライトとからなる鋼組織を有し、静的な引張試験における降伏比が0.6以上で、動的な引張試験における引張強度と静的な引張試験における引張強度との比TSd/TSsが式TSd/TSs≧0.8+(300/TSs) (TSd:歪み速度1000/sの動的引張試験における引張強度(MPa))で与えられる関係を満たす高静動比を有する高延性高張力鋼板が記載されている。
 また、特許文献3には、衝撃特性に優れた高強度冷延鋼板の製造方法として、C:0.08~0.18質量%,Si:1.00~2.0質量%,Mn:1.5~3.0質量%,P:0.03質量%以下,S:0.005%質量%以下,T.Al:0.01~0.1質量%の組成を有し、式(Mn偏析度=(スラブ中心部Mn濃度-ベースMn濃度)/ベースMn濃度)で定義されるMn偏析度が1.05~1.10であるスラブを熱間圧延し、さらに冷間圧延した後、連続焼鈍ラインで750~870℃の2相域または単相域で保持時間60秒以上加熱し、その後720~600℃の温度域を平均冷却速度10℃/s以下で冷却した後、平均冷却速度10℃/s以上で350~460℃まで冷却して30秒~20分保持後、室温まで冷却してポリゴナルフェライト+アシュキュラーフェライト+ベイナイト+残留オーステナイト+マルテンサイトの5相組織とする製造方法が記載されている。
 特許文献4には、自動車用鋼板として用いる鋼板として、質量%で、C:0.05~0.25%、Si:0.5%以下、Mn:1~3%、P:0.1%以下、S:0.01%以下、Al:0.1~2%、N:0.005%未満を含み、かつSi+Al≧0.6%、(0.0006Al)%≦N≦0.0058%-(0.0026×Al)%、Al≦(1.25×C0.5-0.57Si+0.625Mn)%を満たし、残部Feおよび不可避的不純物からなる合金化溶融亜鉛めっき鋼板が記載されている。
 特許文献5には、エネルギー吸収特性に優れた高強度合金化溶融亜鉛めっき鋼板として、C:0.05~0.20質量%,Si:0.3~1.5質量%,Mn:1.0~2.5質量%,P:0.1質量%以下を含み、残部がFe及び不可避的不純物からなる成分組成と、マルテンサイトと残留オーステナイトの内の1種又は2種を合計で25~50体積%を含み、残部がフェライトとベイナイトとからなるミクロ組織を有する鋼板を基材とし、その両面に合金化溶融亜鉛めっきが施されているものが記載されている。
 特許文献6には、表面性状並びに衝撃吸収性に優れた高延性型高張力冷延鋼板として、重量割合にてC:0.06~0.25%,Si:2.5%以下,Mn:0.5~3.0%,P:0.1%以下,S:0.03%以下,Al:0.1~2.5%,Ti:0.003~0.08%,N:0.01%以下を含むと共に残部がFe及び不可避的不純物から成り、かつTi含有量が(48/14)N≦Ti≦(48/14)N+(48/32)S+0.01なる関係を満足していて、冷延-再結晶焼鈍後の組織が体積率で5%以上の残留オ-ステナイトを含んだ組織であるものが記載されている。
 特許文献7には、低温靱性に優れた高延性高強度鋼板として、面積%で、ベイナイトが60%以上、残留γが1~20%、残部実質的にフェライトからなる組織を有し、残留γがベイナイト粒内に存在するものが記載されている。
特開2001-11565号公報 特開2002-294400号公報 特開2004-300452号公報 特開2006-307327号公報 特開2009-68039号公報 特開平10-130776号公報 特開平11-21653号公報
 しかしながら、従来の技術では、引張最大強度900MPa以上の高強度を有する鋼板において、十分な耐衝撃特性が得られず、より一層耐衝撃特性を向上させることが要求されていた。
 以上のような現状に鑑み、本発明は、優れた耐衝撃特性を有する高強度鋼板およびその製造方法、耐衝撃特性に優れた高強度鋼板の表面に亜鉛めっき層が形成されてなる高強度亜鉛めっき鋼板およびその製造方法を提供するものである。
 本発明者らは、優れた耐衝撃特性の得られる引張最大強度900MPa以上の高強度鋼板を得るために鋭意検討を重ねた。その結果、本発明者らは、Al:0.001~0.050%、Ti:0.0010~0.0150%、N:0.0001~0.0050%を含有する所定の化学成分を有し、鋼板組織が、板厚の1/4を中心とした1/8厚~3/8厚の範囲において、体積分率で1~8%の残留オーステナイトを含有し、前記残留オーステナイトの平均アスペクト比が2.0以下であり、かつ前記残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上であり、平均粒径0.5μm以下のTiN粒子を含み、粒径1μm以上のAlN粒子の密度が1.0個/mm以下である鋼板とすればよいことを見出した。
 すなわち、上記の高強度鋼板は、Al、Ti、Nを上記範囲で含有するものであって、平均粒径0.5μm以下の微細なTiN粒子が生成されることによって、低温での破壊の起点となる平均粒径1μm以上のAlN粒子の生成が抑制されているものであるので、粒径1μm以上のAlN粒子の密度が1.0個/mm以下の少ないものとなっている。このため、上記の高強度鋼板は、AlN粒子が起点となる破壊が防止されたものとなっている。
 また、上記の高強度鋼板では、破壊の起点となる残留オーステナイトの体積分率が1~8%と少なく、残留オーステナイトが、平均アスペクト比が2.0以下である等方性に優れた安定な形状を有し、かつ、残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上である化学的に安定なものとされている。したがって、上記の高強度鋼板は、残留オーステナイトが起点となる破壊が防止されたものとなっている。
 このように、上記の高強度鋼板では、AlN粒子が起点となる破壊および残留オーステナイトが起点となる破壊が防止されているので、優れた耐衝撃特性が得られる。
 本発明は、かかる知見に基づいて完成させたものであり、その要旨とするところは以下の通りである。
(1)
 質量%で、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0050%、Al:0.001~0.050%、Ti:0.0010~0.0150%、N:0.0001~0.0050%、O:0.0001~0.0030%を含有し、残部が鉄および不可避的不純物からなり、板厚の1/4を中心とした1/8厚~3/8厚の範囲において、体積分率で1~8%の残留オーステナイトを含有し、前記残留オーステナイトの平均アスペクト比が2.0以下であり、かつ前記残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上であり、平均粒径0.5μm以下のTiN粒子を含み、粒径1μm以上のAlN粒子の密度が1.0個/mm以下である鋼板組織を有し、引張最大強度が900MPa以上であることを特徴とする耐衝撃特性に優れた高強度鋼板。
(2)
 前記鋼板組織が、体積分率で10~75%以下のフェライトと、合計で10~50%のベイニティックフェライトとベイナイトのいずれか一方もしくは両方と、10~50%以下の焼戻しマルテンサイトとを含み、
 パーライトが、体積分率で5%以下に制限され、フレッシュマルテンサイトが、体積分率で15%以下に制限されている、(1)に記載の耐衝撃特性に優れた高強度鋼板。
(3)
 さらに、質量%で、Nb:0.0010~0.0150%、V:0.010~0.150%、B:0.0001~0.0100%の1種または2種以上を含有する、(1)に記載の耐衝撃特性に優れた高強度鋼板。 
(4)
 さらに、質量%で、Cr:0.01~2.00%、Ni:0.01~2.00%、Cu:0.01~2.00%、Mo:0.01~1.00%、W:0.01~1.00%の1種または2種以上を含有する、(1)に記載の耐衝撃特性に優れた高強度鋼板。
(5)
 さらに、Ca、Ce、Mg、Zr,Hf、REMの1種または2種以上を合計で0.0001~0.5000質量%含有する、(1)に記載の耐衝撃特性に優れた高強度鋼板。
(6)
 表面に亜鉛めっき層が形成されている、(1)に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板。
(7)
 前記亜鉛めっき層の表面に、リン酸化物および/またはリンを含む複合酸化物からなる皮膜が形成されている、(6)に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板。
(8)
 質量%で、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0050%、Al:0.001~0.050%、Ti:0.0010~0.0150%、N:0.0001~0.0050%、O:0.0001~0.0030%を含有し、残部が鉄および不可避的不純物からなるスラブを1210℃以上に加熱し、少なくとも1100~1000℃の温度範囲においては、下記(式1)を満たす条件で圧下を行い、800℃とAr変態点の高い方の温度以上970℃以下の仕上げ熱延温度で圧下を完了し、750℃以下の温度域にて巻き取り、15℃/時以下の平均冷却速度で冷却する熱間圧延工程と、前記熱間圧延工程後、30~75%の圧下率で冷延する冷間圧延工程と、前記冷間圧延工程後、550~700℃の温度範囲を10℃/秒以下の平均加熱速度で加熱し、最高加熱温度を(Ac変態点+40)~1000℃間とし、最高加熱温度~700℃の温度範囲において1.0~10.0℃/秒の平均冷却速度で冷却し、700~500℃の温度範囲において5.0~200.0℃/秒の平均冷却速度で冷却し、350~450℃の温度範囲で30~1000秒停留処理させる焼鈍を行う連続焼鈍工程と、を具備する、耐衝撃特性に優れた高強度鋼板の製造方法。
Figure JPOXMLDOC01-appb-M000002
 (式1)において、iはパス数、Tiはiパス目の加工温度、tiはiパス目からi+1パス目までの経過時間、εiはiパス目の圧下率を示す。
(9)
 (8)に記載の製造方法の連続焼鈍工程において、停留処理の後に電気亜鉛めっきを施して前記鋼板の表面に亜鉛めっき層を形成する、耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
(10)
 (8)に記載の製造方法の連続焼鈍工程において、700~500℃の温度範囲における冷却後350~450℃の温度範囲での停留処理の前、または前記停留処理の後に、前記鋼板を亜鉛めっき浴に浸漬して前記鋼板の表面に亜鉛めっき層を形成する、耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
(11)
 前記亜鉛めっき浴に浸漬した後、前記鋼板を460~600℃まで再加熱し、2秒以上保持して前記亜鉛めっき層を合金化させる、(10)に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
(12)
 前記亜鉛めっき層を形成した後、該亜鉛めっき層の表面に、リン酸化物とリンのいずれか一方もしくは両方を含む複合酸化物からなる皮膜を付与する、(10)に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
(13)
 前記亜鉛めっき層を合金化させた後、該合金化した亜鉛めっき層の表面に、リン酸化物とリンのいずれか一方もしくは両方を含む複合酸化物からなる皮膜を付与する、(11)に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
 本発明の高強度鋼板では、AlN粒子および残留オーステナイトが破壊の起点となるこ
とが防止されているので、優れた耐衝撃特性を有し、引張最大強度が900MPa以上の
高強度鋼板が得られる。また、本発明の高強度鋼板の製造方法によれば、優れた耐衝撃特
性を有する引張最大強度900MPa以上の高強度鋼板を提供できる。また、本発明によ
れば、耐衝撃特性に優れた高強度鋼板の表面に亜鉛めっき層が形成されてなる高強度亜鉛
めっき鋼板およびその製造方法を提供できる。
(化学成分)
 まず、本発明の高強度鋼板の化学成分(組成)について説明する。なお、以下の説明における[%]は[質量%]である。
 本発明の高強度鋼板は、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0050%、Al:0.001~0.050%、Ti:0.0010~0.0150%、N:0.0001~0.0050%、O:0.0001~0.0030%を含有し、残部が鉄および不可避的不純物からなるものである。
「C:0.075~0.300%」
 Cは、高強度鋼板の強度を高めるために含有される。しかし、Cの含有量が0.300%を超えると溶接性が不十分となる。溶接性の観点から、Cの含有量は0.250%以下であることが好ましく、0.220%以下であることがより好ましい。一方、Cの含有量が0.075%未満であると強度が低下し、900MPa以上の引張最大強度を確保することが出来ない。強度を高めるため、Cの含有量は0.090%以上であることが好ましく、0.100%以上であることがより好ましい。
「Si:0.30~2.50%」
 Siは、鋼板における鉄系炭化物の生成を抑制し、強度と成形性を高めるために必要な元素である。しかし、Siの含有量が2.50%を超えると鋼板が脆化し、延性が劣化する。延性の観点から、Siの含有量は2.20%以下であることが好ましく、2.00%以下であることがより好ましい。一方、Siの含有量が0.30%未満では焼鈍工程において粗大な鉄系炭化物が多量に生成し、強度および成形性が劣化する。この観点から、Siの下限値は0.50%以上であることが好ましく、0.70%以上がより好ましい。
「Mn:1.30~3.50%」
 Mnは、鋼板の強度を高めるために本発明の鋼板に添加される。しかし、Mnの含有量が3.50%を超えると鋼板の板厚中央部に粗大なMn濃化部が生じ、脆化が起こりやすくなり、鋳造したスラブが割れるなどのトラブルが起こりやすい。また、Mnの含有量が3.50%を超えると溶接性も劣化する。したがって、Mnの含有量は、3.50%以下とする必要がある。溶接性の観点から、Mnの含有量は3.20%以下であることが好ましく、3.00%以下であることがより好ましい。一方、Mnの含有量が1.30%未満であると、焼鈍後の冷却中に軟質な組織が多量に形成されるため、900MPa以上の引張最大強度を確保することが難しくなる。このことから、Mnの含有量を1.30%以上とする必要がある。強度を高めるため、Mnの含有量は1.50%以上であることが好ましく、1.70%以上であることがより好ましい。
「P:0.001~0.050%」
 Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。Pの含有量が0.050%を超えると溶接部が大幅に脆化するため、Pの含有量を0.050%以下に限定した。Pの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Pの含有量を0.001%未満とすることは製造コストの大幅な増加を伴うことから、0.001%を下限値とする。
「S:0.0001~0.0050%」
 Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。また、Tiと結びついて硫化物を生成し、Tiが窒化物となることを妨げ、間接的にAl窒化物の生成を誘発することから、Sの含有量の上限値を0.0050%とした。この観点から、Sの含有量は0.035%以下とすることが好ましく、0.0025%以下とすることがさらに好ましい。Sの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Sの含有量を0.0001%未満とすることは製造コストの大幅な増加を伴うため、0.0001%を下限値とする。
「Al:0.001%~0.050%」
 Alは、多量に添加すると粗大な窒化物を形成し、低温における絞り値を低下させ、耐衝撃特性を低下させることから、Alの含有量の上限を0.050%とする。粗大な窒化物の生成を避けるため、Alの含有量は0.035%以下とすることが好ましい。Alの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Alの含有量を0.001%未満とすることは製造コストの大幅な増加を伴うため、0.001%を下限値とする。また、Alは脱酸材としても有効な元素であり、この観点から、Alの含有量を0.005%以上とすることが好ましく、0.010%以上とすることがさらに好ましい。
「N:0.0001~0.0050%」
 Nは、低温での破壊の起点となる粗大な窒化物を形成し、耐衝撃特性を低下させることから、添加量を抑える必要がある。Nの含有量が0.0050%を超えると、この影響が顕著となることから、N含有量の範囲を0.0050%以下とした。この観点から、Nの含有量は0.0040%以下であることが好ましく、0.0030%以下であることがより好ましい。Nの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Nの含有量を0.0001%未満にすると、製造コストの大幅な増加を招くことから、0.0001%を下限値とする。
「O:0.0001~0.0030%」
 Oは、粗大な酸化物を形成し、低温での破壊の起点を生じさせることから、含有量を抑える必要がある。Oの含有量が0.0030%を超えると、この影響が顕著となることから、O含有量の上限を0.0030%以下とした。この観点から、Oの含有量は0.0020%以下であることが好ましく0.0010%以下であることがさらに好ましい。Oの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Oの含有量を0.0001%未満とすることは製造コストの大幅な増加を伴うため、0.0001%を下限とする。
「Ti:0.0010~0.0150%」
 Tiは、適当な条件で熱間圧延を施すことによって微細な窒化物を形成し、粗大なAl窒化物の生成を抑制する元素であり、低温での破壊の起点を減少させ、耐衝撃特性を向上させる。この効果を得るには、Tiの含有量を0.0010%以上とする必要があり、Tiの含有量を0.0030%以上とすることが好ましく、0.0050%以上とすることがさらに好ましい。一方、Tiの含有量が0.0150%を超えると、微細な炭窒化物の析出によって鋼板の中で軟質な部位の成形性が劣化し、却って低温での絞り値を低下させる。このため、Tiの含有量を0.0150%以下とする。成形性の観点から、Tiの含有量は0.0120%以下であることが好ましく、0.0100%以下であることがより好ましい。
 本発明の高強度鋼板は、更に、必要に応じて、以下に示す元素を含んでいてもよい。
「Nb:0.0010~0.0150%」
 Nbは、適当な条件で熱間圧延を施すことによって微細な窒化物を形成し、粗大なAl窒化物の生成を抑制する元素であり、低温での破壊の起点を減少させる。この効果を得るには、Nbの含有量を0.0010%以上とすることが好ましく、Nbの含有量を0.0030%以上とすることがより好ましく、0.0050%以上とすることがさらに好ましい。一方、Nbの含有量が0.0150%を超えると、微細な炭窒化物の析出によって鋼板の中で軟質な部位の成形性が劣化し、却って低温での絞り値を低下させるため、Nbの含有量は0.0150%以下であることが好ましい。成形性の観点から、Nbの含有量は0.0120%以下であることがより好ましく、0.0100%以下であることがさらに好ましい。
「V:0.010~0.150%」
 Vは、適当な条件で熱間圧延を施すことによって微細な窒化物を形成し、粗大なAl窒化物の生成を抑制する元素であり、低温での破壊の起点を減少させる。この影響を得るには、Vの含有量を0.010%以上とする必要が有り、含有量を0.030%以上とすることが好ましく、0.050%以上とすることがさらに好ましい。一方、Vの含有量が0.150%を超えると、微細な炭窒化物の析出によって鋼板の中で軟質な部位の成形性が劣化し、却って低温での絞り値を低下させるため、Vの含有量は0.150%以下であることが好ましい。成形性の観点から、Vの含有量は0.120%以下であることがより好ましく、0.100%以下であることがさらに好ましい。
「B:0.0001~0.0100%」
 Bは、適当な条件で熱間圧延を施すことによって微細な窒化物を形成し、粗大なAl窒化物の生成を抑制する元素であり、低温での破壊の起点を減少させる。この効果を得るには、Bの含有量を0.0001%以上とすることが好ましく、Bの含有量を0.0003%以上とすることが好ましく、0.0005%以上とすることがさらに好ましい。また、Bは高温での相変態を抑制し、高強度化に有効な元素であり、さらに添加してもよいが、Bの含有量が0.0100%を超えると、熱間での加工性が損なわれ生産性が低下することから、Bの含有量は0.0100%以下であることが好ましい。生産性の観点から、Bの含有量は0.0050%以下であることがより好ましく、0.0030%以下であることがさらに好ましい。
「Cr:0.01~2.00%」
 Crは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Crの含有量が2.00%を超えると、熱間での加工性が損なわれ、生産性が低下することから、Crの含有量は2.00%以下であることが好ましい。Crの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Crによる高強度化の効果を十分に得るには、Crの含有量は0.01%以上であることが好ましい。
「Ni:0.01~2.00%」
 Niは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Niの含有量が2.00%を超えると、溶接性が損なわれることから、Niの含有量は2.00%以下であることが好ましい。Niの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Niによる高強度化の効果を十分に得るには、Niの含有量は0.01%以上であることが好ましい。
「Cu:0.01~2.00%」
 Cuは微細な粒子として鋼中に存在することで強度を高める元素であり、Cおよび/またはMnの一部に替えて添加することができる。Cuの含有量が2.00%を超えると、溶接性が損なわれることから、Cuの含有量は2.00%以下であることが好ましい。Cuの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Cuによる高強度化の効果を十分に得るには、Cuの含有量は0.01%以上であることが好ましい。
「Mo:0.01~1.00%」
 Moは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Moの含有量が1.00%を超えると、熱間での加工性が損なわれ、生産性が低下する。このことから、Moの含有量は1.00%以下であることが好ましい。Moの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Moによる高強度化の効果を十分に得るには、Moの含有量は0.01%以上であることが好ましい。
「W:0.01~1.00%」
 Wは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Wの含有量が1.00%を超えると、熱間での加工性が損なわれ、生産性が低下することから、Wの含有量は1.00%以下であることが好ましい。Wの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Wによる高強度化の効果を十分に得るには、Wの含有量は0.01%以上であることが好ましい。
「Ca、Ce、Mg、Zr,Hf、REMの1種または2種以上を合計で0.0001~0.5000%」
 Ca、Ce、Mg、Zr,Hf、REMは、成形性の改善に有効な元素であり、1種又は2種以上を添加することができる。しかし、Ca、Ce、Mg、Zr,Hf、REMの1種または2種以上の含有量の合計が0.5000%を超えると、却って延性を損なう恐れがある。このため、各元素の含有量の合計は0.5000%以下であることが好ましい。Ca、Ce、Mg、Zr,Hf、REMの1種または2種以上の含有量の下限は、特に定めることなく本発明の効果は発揮されるが、鋼板の成形性を改善する効果を十分に得るには、各元素の含有量の合計が0.0001%以上であることが好ましい。成形性の観点から、Ca、Ce、Mg、Zr,Hf、REMの1種または2種以上の含有量の合計が0.0005%以上であることがより好ましく、0.0010%以上であることがさらに好ましい。
 なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明において、REMやCeはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本発明の効果は発揮される。また、金属LaやCeを添加したとしても本発明の効果は発揮される。
(鋼板組織)
 本発明の高強度鋼板の組織を規定した理由は以下のとおりである。
「TiN粒子」
 本発明の高強度鋼板の鋼板組織は、平均粒径0.5μm以下のTiN粒子を含むものである。粗大なTiN粒子は破壊の起点となるが、平均粒径0.5μm以下の微細なTiN粒子は破壊の起点として働かない。TiN粒子の平均粒径は、TiN粒子が破壊の起点となることを効果的に防止し、高強度鋼板の耐衝撃特性をさらに向上させるために、0.3μm以下であることが好ましく、0.1μm以下であることがより好ましい。
 TiN粒子の平均粒径は、例えば、以下に示す方法により求められる。
 すなわち、圧延方向に平行な板厚断面から、抽出レプリカ法によってTiN粒子を含む透過型電子顕微鏡(TEM)用サンプルを作成し、透過型電子顕微鏡を用いてTiN粒子を10個以上観察する。各TiN粒子の粒径は、画像解析により得られるTiN粒子粒子の投影面積と等しい面積を有する円の直径と定められる。そして、10個以上のTiN粒子について粒径を測定し、その平均値からTiN粒子の平均粒径が求められる。
「AlN粒子」
 また、本発明の高強度鋼板の鋼板組織は、粒径1μm以上のAlN粒子の密度が1.0個/mm以下である。粒径1μm以上の粗大なAlN粒子は破壊の起点となる。本発明の高強度鋼板の鋼板組織は、粒径1μm以上のAlN粒子の密度が1.0個/mm以下であるため、AlN粒子が起点となる破壊が防止される。AlN粒子が起点となる破壊をより効果的に防止するために、粒径1μm以上のAlN粒子の密度は、0.5個/mm以下であることが好ましく、0.1個/mm以下であることがさらに好ましい。
 なお、これらTiN粒子の平均粒径の測定、および、粒径1μm以上のAlN粒子の密度の測定は、粒子の少ない鋼板最表面を除いて、鋼板中のいずれの板厚の位置において測定しても構わない。例えば、後述する残留オーステナイトやフェライト等と同様、鋼板を代表する領域として1/8~3/8厚の位置において測定することが好ましい。
 本発明において、粒径1μm以上のAlN粒子とは、円相当径dで1μm以上のAlN粒子のことを意味する。円相当径dとは、画像解析により得られる粒子の投影面積Sと等しい面積を有する円の直径であり、以下の式で求められる。d=√(4S/π)
 本発明におけるAlN粒子の密度は、例えば、以下に示す方法により求められる。
 すなわち、圧延方向に平行な板厚断面の10.0mm以上の面積を、電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)を使用して観察し、1μm以上のAlN粒子の個数を数え、密度を算出する。なお、AlN粒子の成分は、FE-SEMに併設したエネルギー分散型X線分光器を用いて確認できる。
 本発明の高強度鋼板の鋼板組織は、板厚の1/4を中心とした1/8厚~3/8厚の範囲において、体積分率で1~8%の残留オーステナイトを含有するものであり、残留オーステナイトの平均アスペクト比が2.0以下であり、かつ残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上のものである。
 なお、鋼板組織の全体において、体積分率で1~8%の残留オーステナイトを含有することが望ましい。しかしながら、鋼板の板厚の1/4を中心とした1/8厚~3/8厚の範囲における金属組織は、鋼板全体の組織を代表する。従って、鋼板の1/8厚~3/8厚の範囲において、体積分率で1~8%の残留オーステナイトを含有していれば、実質的に、鋼板の組織全体において、体積分率で1~8%の残留オーステナイトを含有ているとみなすことができる。このため、本発明では、母材鋼板の1/8厚~3/8厚の範囲における残留オーステナイトの体積分率の範囲について規定した。
 さらに、本発明の高強度鋼板の鋼板組織では、板厚の1/4を中心とした1/8厚~3/8厚の範囲において、残留オーステナイトの他に、体積分率で、10~75%以下のフェライトと、合計で10~50%のベイニティックフェライトとベイナイトのいずれか一方もしくは両方と、5~50%以下の焼戻しマルテンサイトとを含み、パーライトが、体積分率で5%以下に制限され、フレッシュマルテンサイトが、体積分率で15%以下に制限されていることが好ましい。本発明の高強度鋼板がこのような鋼板組織を有するものである場合、より優れた成形性を有するものとなる。
 なお同様に、これらフェライト等の金属組織が、鋼板組織の全体において所定の範囲であることが望ましい。しかしながら、鋼板の板厚の1/4を中心とした1/8厚~3/8厚の範囲における金属組織は、鋼板全体の組織を代表する。従って、鋼板の1/8厚~3/8厚の範囲において、体積分率で、10~75%以下のフェライトと、合計で10~50%のベイニティックフェライトとベイナイトのいずれか一方もしくは両方と、5~50%以下の焼戻しマルテンサイトとを含み、パーライトが、体積分率で5%以下に制限され、フレッシュマルテンサイトが、体積分率で15%以下に制限されていれば、実質的に、鋼板の組織全体において、これらフェライト等の金属組織が所定の範囲内であるとみなすことができる。このため、本発明では、鋼板の1/8厚~3/8厚の範囲において、これらフェライト等の金属組織の体積分率の範囲を規定した。
「残留オーステナイト」
 残留オーステナイトは、強度および延性を大きく向上させるため、残留オーステナイトを低温での絞り値を損なわない範囲で含む必要がある。残留オーステナイトの体積率が1%未満では、強度および延性の向上が不十分であり、これを下限とする。強度および成形性の観点から、残留オーステナイトの量は1.5%以上とすることが好ましく、2.0%以上とすることが好ましい。一方、残留オーステナイトは、破壊の起点となって曲げ性を大きく劣化させるため、鋼板組織に体積分率で8%以下に制限する必要がある。曲げ性を高めるには残留オーステナイトの体積分率を6%以下とすることがより好ましい。
 また、残留オーステナイトが起点となる破壊を防止するためには、残留オーステナイトが安定な形状を有し、かつ、化学的に安定なものとされていることが好ましい。
 本発明においては、残留オーステナイトの平均アスペクト比が2.0以下とされており、等方性に優れた安定な形状を有している。残留オーステナイトの形状をより安定なものとするために、残留オーステナイトの平均アスペクト比は、1.8以下であることが好ましく、1.6以下であることがより好ましい。残留オーステナイトの平均アスペクト比の下限は1.0とする。平均アスペクト比が2.0を超えると、低温で引張った際に残留オーステナイトの一部が容易にマルテンサイトへと変態し、破壊の起点が生まれ、絞り値が劣化する。
 本発明においては、残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上「(残留オーステナイト中の固溶Mn量/平均Mn量)≧1.1」とされており、残留オーステナイトが化学的に安定にされている。残留オーステナイトを化学的により安定させるために、残留オーステナイト中の固溶Mn量は平均Mn量の1.2倍以上であることが好ましく、1.3倍以上であることがより好ましい。上限は特に設定しないが、2.0倍以上とするには特殊な設備が必要であり、2.0倍を実際の上限とする。
「フェライト」
 フェライトは、低温における絞り値の向上に有効な組織であり、鋼板組織に体積分率で10~75%含まれていることが好ましい。フェライトの体積分率が10%未満である場合、十分な絞り値が得られない恐れがある。鋼板組織に含まれるフェライトの体積分率は、絞り値の観点から15%以上含まれることがより好ましく、20%以上含まれることがさらに好ましい。一方、フェライトは軟質な組織であるため、体積分率が75%を超えると十分な強度が得られない場合がある。鋼板の引張強度を十分高めるには、鋼板組織に含まれるフェライトの体積分率を65%以下とすることが好ましく、50%以下とすることがさらに好ましい。
「パーライト」
 パーライトが多くなると、延性が劣化する。このことから、鋼板の組織に含まれるパーライトの体積分率は、5%以下に制限されることが好ましく、2%以下であることがより好ましい。
「ベイニティックフェライト、ベイナイト」
 ベイニティックフェライトとベイナイトは、強度と延性のバランスに優れた組織であり、鋼板組織に体積分率の合計で10~50%のベイニティックフェライトとベイナイトのいずれか一方もしくは両方が含まれていることが好ましい。また、ベイニティックフェライトとベイナイトは軟質なフェライトと硬質なマルテンサイト、焼戻しマルテンサイトおよび残留オーステナイトの中間の強度を有するミクロ組織であり、伸びフランジ性の観点から15%以上含まれることがより好ましく、20%以上含まれることがさらに好ましい。一方、ベイニティックフェライトとベイナイトの体積分率が合計で50%を超えると、降伏応力が過度に高まり、形状凍結性が劣化するため好ましくない。なお、ベイニティックフェライトおよびベイナイトは、どちらか一方のみ含有しても良いし、両方を含有しても良い。
「フレッシュマルテンサイト」
 フレッシュマルテンサイトは、引張強度を大きく向上させるが、一方で破壊の起点となって低温での絞り値を大きく劣化させるため、鋼板組織に体積分率で15%以下に制限されることが好ましい。低温での絞り値を高めるにはフレッシュマルテンサイトの体積分率を10%以下とすることがより好ましく、5%以下とすることが更に好ましい。
「焼戻しマルテンサイト」
 焼戻しマルテンサイトは、引張強度を大きく向上させる組織であり、鋼板組織に体積分率で50%以下含まれていてもよい。引張強度の観点から、焼戻しマルテンサイトの体積分率は10%以上とすることが好ましい。一方、鋼板組織に含まれる焼戻しマルテンサイトの体積分率が50%を超えると、降伏応力が過度に高まり、形状凍結性が劣化するため好ましくない。
「その他」
 本発明の高強度鋼板の鋼板組織には、粗大なセメンタイトなど上記以外の組織が含まれていてもよい。しかし、鋼板組織中に粗大なセメンタイトが多くなると、曲げ性が劣化する。このことから、鋼板組織に含まれる粗大なセメンタイトの体積分率は、10%以下であることが好ましく、5%以下であることがより好ましい。
 本発明の高強度鋼板の鋼板組織に含まれる各組織の体積分率は、例えば、以下に示す方法により測定できる。
 残留オーステナイトの体積分率は、鋼板の板面に平行な、1/8厚~3/8厚の範囲にある任意の面においてX線回折試験を行い、残留オーステナイトの面積分率を算出し、それを持って1/8厚~3/8厚の範囲における体積分率と見なすことができる。
 なお、1/8厚~3/8厚の範囲におけるミクロ組織は均質性が高く、十分に広い領域を測定すれば、1/8厚~3/8厚のどこで測定しても、1/8厚~3/8厚の範囲を代表するミクロ組織分率が得られる。具体的には、鋼板の板面に平行な1/4厚の面において、250000平方μm以上の範囲でX線回折試験を行うことが好ましい。
 また、残留オーステナイトを除くミクロ組織(フェライト、ベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、パーライト、フレッシュマルテンサイト)の分率は、1/8厚~3/8厚の範囲において電子顕微鏡で観察して測定することができる。具体的には母材鋼板の板面に垂直かつ圧延方向(圧下方向)に平行な面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングする。そして、板厚の1/4を中心とした1/8厚~3/8厚の範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察して面積分率を測定する。この場合、例えば、1/8厚~3/8厚の範囲において、互いに1mm以上の間隔をおいて設定した3つ以上の視野において電子顕微鏡による観察を行う。そして、観察面積の合計が5000平方μm以上の範囲におけるフェライト等の各組織の面積分率を算出し、それを持って1/8厚~3/8厚の範囲における各組織の体積分率と見なすことができる。
 フェライトは塊状の結晶粒であって、内部に長径100nm以上の鉄系炭化物が無い領域である。なお、フェライトの体積分率は、最高加熱温度において残存するフェライトと、フェライト変態温度域で新たに生成したフェライトの体積分率の和である。
 ベイニティックフェライトは、ラス状の結晶粒の集合であり、ラスの内部に長径20nm以上の鉄系炭化物を含まないものである。
 ベイナイトは、ラス状の結晶粒の集合であり、ラスの内部に長径20nm以上の鉄系炭化物を複数有し、さらにそれらの炭化物が単一のバリアント、すなわち同一の方向に伸張した鉄系炭化物群に属するものである。ここで、同一の方向に伸長した鉄系炭化物群とは、鉄系炭化物群の伸長方向の差異が5°以内であるものを意味している。
 焼戻しマルテンサイトは、ラス状の結晶粒の集合であり、ラスの内部に長径20nm以上の鉄系炭化物を複数有し、さらにそれらの炭化物が複数のバリアント、すなわち異なる方向に伸長した複数の鉄系炭化物群に属するものである。
 なお、FE-SEMを用いてラス状結晶粒内部の鉄系炭化物を観察し、その伸長方向を調べることによって、ベイナイトと焼戻しマルテンサイトは容易に区別しうる。
 また、フレッシュマルテンサイトおよび残留オーステナイトは、ナイタールエッチングでは十分に腐食されない。したがって、FE-SEMによる観察において上述の組織(フェライト、ベイニティックフェライト、ベイナイト、焼戻しマルテンサイト)とは明瞭に区別される。
 したがって、フレッシュマルテンサイトの体積分率は、FE-SEMにて観察された腐食されていない領域の面積分率と、X線によって測定した残留オーステナイトの面積分率との差分として求められる。
(亜鉛めっき層)
 また、本発明においては、高強度鋼板の表面に、亜鉛めっき層が形成されてなる耐衝撃特性に優れた高強度亜鉛めっき鋼板とすることができる。亜鉛めっき層は合金化されていてもよい。高強度鋼板の表面に亜鉛めっき層が形成されている場合、優れた耐食性を有するものとなる。また、高強度鋼板の表面に、合金化した亜鉛めっき層が形成されている場合、優れた耐食性を有し、塗料の密着性に優れたものとなる。また、亜鉛めっき層または合金化亜鉛めっき層には、不純物としてAlが含まれても良い。
 合金化亜鉛めっき層は、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、Sr、I、Cs、REMの1種または2種以上を含有しても良く、あるいは、それらが混入されてもよい。合金化亜鉛めっき層が、上記の元素の1種または2種以上を含有、あるいは混入されたものであっても、本発明の効果は損なわれず、その含有量によっては耐食性や加工性が改善される等好ましい場合もある。
 亜鉛めっき層または合金化亜鉛めっき層の付着量については特に制約は設けないが、耐食性の観点から20g/m以上、経済性の観点から150g/m以下であることが望ましい。また、亜鉛めっき層または合金化亜鉛めっき層のの平均厚さは、1.0μm以上、50μm以下とする。1.0μm未満では十分な耐食性が得られない。好ましくは2.0μm以上とする。一方、50.0μm超では経済的でなく、鋼板の強度を損なうため好ましくない。原料コストの観点からは、亜鉛めっき層または合金化亜鉛めっき層の厚さは薄いほど好ましく、30.0μm以下であることが好ましい。
 めっき層の平均厚さは、鋼板の圧延方向に平行な板厚断面を鏡面に仕上げ、FE-SEMを用いて観察し、鋼板の表面と裏面でそれぞれ5箇所ずつ、合計で10箇所のめっき層厚さを測定し、その平均値をもってめっき層厚さとする。
 なお、合金化処理を施す場合、合金化亜鉛めっき層の鉄の含有量は、良好な耐フレーキング性を確保するために8.0%以上とし、9.0%以上であることが好ましい。また、合金化亜鉛めっき層中の鉄の含有量は、良好な耐パウダリング性を確保するために12.0%以下とし、11.0%以下であることが好ましい。
 また、本発明においては、上記亜鉛めっき層または合金化した亜鉛めっき層の表面に、リン酸化物および/またはリンを含む複合酸化物からなる皮膜が形成されていてもよい。リン酸化物および/またはリンを含む複合酸化物からなる皮膜は、鋼板を加工する際に潤滑剤として機能させることができ、鋼板表面に形成した亜鉛めっき層を保護することができる。
(製造方法)
 次に、本発明の高強度鋼板を製造する方法について詳細に説明する。
 本発明の高強度鋼板を製造するには、まず、上述した化学成分(組成)を有するスラブを鋳造する。
 熱間圧延に供するスラブは、連続鋳造スラブや薄スラブキャスターなどで製造したものを用いることができる。本発明の高強度鋼板の製造方法は、鋳造後に直ちに熱間圧延を行う連続鋳造-直接圧延(CC-DR)のようなプロセスに適合する。
(熱間圧延工程)
 熱間圧延工程において、スラブ加熱温度は、鋳造時に生成したTi系の介在物を十分に溶解させ、鋼中にTiを均等に固溶させるため1210℃以上にする必要があり、1225℃以上とすることが好ましい。また、スラブ加熱温度が過度に低いと、仕上げ圧延温度がAr変態点を下回ってしまう。その結果、フェライト及びオーステナイトの二相域で圧延が行われ、熱延板組織が不均質な混粒組織となり、冷間圧延工程及び連続焼鈍工程を経たとしても不均質な組織は解消されず、延性や曲げ性に劣る鋼板となる。また、スラブ加熱温度の低下は、過度の圧延荷重の増加を招き、圧延が困難となったり、圧延後の鋼板の形状不良を招いたりする懸念がある。スラブ加熱温度の上限は特に定めることなく、本発明の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくないことから、スラブ加熱温度の上限は1350℃以下とすることが望ましい。
 なお、Ar変態点は次の式により計算する。
 Ar=901-325×C+33×Si-92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)+52×Al
 上記式において、C、Si、Mn、Ni、Cr、Cu、Mo、Alは各元素の含有量[質量%]である。含有していない元素は、0として計算する。
 本発明においては、上記スラブ加熱温度に加熱した後、少なくとも1100~1000℃の温度範囲において、下記(式1)を満たす条件で圧下を施す。(式1)において、iはパス数、Tiはiパス目の加工温度、tiはiパス目からi+1パス目までの経過時間、εiはiパス目の圧下率を示す。
Figure JPOXMLDOC01-appb-M000003
 粗大なTi窒化物やAl窒化物の生成を抑制して、微細なTiN粒子を含む鋼板を製造するには、1100~1000℃の温度範囲での熱間圧延により、鋼中にTi窒化物の生成サイトである転位を多量に導入する必要がある。しかし、1100~1000℃の温度範囲では、加工により導入された転位が、Fe原子の拡散によって容易に消滅する。このため、転位が十分に導入されるだけの歪量が得られる加工(圧下)を、比較的短時間に連続して行う必要がある。すなわち、パス数を複数とし、隣接するパス間における経過時間を短時間にするとともに、各パスにおける加工温度および圧下率を適切に制御する必要がある。
 熱間圧延工程では、加熱炉からスラブを取出してから、850℃あるいはAr3温度の高い方を下限とする圧延完了温度までの温度域で任意のパス数の圧下を行うことができる。この熱間圧延のうち、1100℃から1000℃の範囲で行われる圧下は、問題となるTiNおよびAlN粒子の分散状態に強く影響することから、(式1)を用いて同温度範囲での熱延条件を規定する。
 1100℃超の温度範囲で施される圧下は、変形時に導入された転位が即座に消滅するため、TiNの析出サイトとして働かず、問題となるTiNおよびAlN粒子の分散状態に影響しない。一方、1000℃未満の範囲で圧延を施すまでに粗大なTiNおよびAlNとなりうる粒子の核生成は完了しており、以降(1000℃未満の温度範囲)の圧延は問題となるTiNおよびAlN粒子の分散状態に影響しない。
 一般的に、加熱炉から取出し、圧延完了までの間に8~25パスの圧延を施す。1100℃~1000℃の範囲で施す圧下は2~10パスである。当該温度範囲における圧下は、板厚は200~500mmから始まり、10~50mmまで圧延することが一般的である。板幅は一般的に500~2000mmである。なお、鋼板の温度は表面の温度であり、その測定方法は問わないが、例えば熱電対を用いて直接測定しても構わない。
 (式1)において、具体的には、例えば、パス数iは、2~10の範囲、好ましくは、5~8の範囲とすることができる。iパス目からi+1パス目までの経過時間は、2~300秒の範囲、好ましくは、5~180秒の範囲、さらに好ましくは10~120秒の範囲とすることができる。
 また、1100~1000℃の温度範囲での熱間圧延における最初のパスである1パス目の加工温度は、1100~1050℃の範囲、好ましくは、1090~1065℃の範囲とすることができる。iパス目の圧下率は、5~50%の範囲、好ましくは、15~35%の範囲とすることができる。
 (式1)は、TiN粒子の生成挙動を表す経験式であり、粒子生成の駆動力を表す多項式の項、原子の拡散係数を表すexp項と時間tの積で原子の拡散距離を、加工に伴い導入される転位の量をひずみ量εで代表して表し、それらを掛け合わせたものである。(式1)で示される値が1.0を下回ると、TiNの生成が不十分となり、固溶Nが1000℃まで熱間圧延した時点まで残留し、粗大なAlNが生成する。一方、(式1)で示される値が5.0を上回ると、TiNの生成が過度に活発となり、TiNの粗大化が進み、却って特性を損なうことになる。
 本発明においては、少なくとも1100~1000℃の温度範囲において、上記(式1)を満たす条件で圧下を行うことにより、隣接する複数のパス間における経過時間が比較的短時間に制御されるともに、各パスにおける加工温度および圧下率が適切に制御されるので、Ti窒化物の生成サイトである転位を鋼中に多量に導入することができ、鋼中に微細なTi窒化物を生成させることができる。なお、1100℃超の温度範囲で施される圧下、および、1000℃未満の温度範囲で施される圧下については、特に限定されない。たとえば、1100℃超の温度範囲で上記(式1)を満たす条件で圧下を行っても良いし、上記(式1)を満たさない条件で圧下を行っても良い。あるいは、1100℃超の温度範囲では圧下を行わなくても良い。同様に、1000℃未満の温度範囲で上記(式1)を満たす条件で圧下を行っても良いし、上記(式1)を満たさない条件で圧下を行っても良い。
 本発明においては、少なくとも1100~1000℃の温度範囲において、上記(式1)を満たす条件で熱間圧延を行った後、800℃とAr変態点の高い方の温度以上970℃以下の仕上げ熱延温度で完了し、750℃以下の温度域にて巻き取る。なお、仕上げ圧延後の板厚は、例えば2mm~10mmである。仕上げ圧延温度が、800℃未満であると、仕上げ圧延時の圧延荷重が高くなって、熱間圧延が困難となったり、熱間圧延後に得られる熱延鋼板の形状不良を招く懸念がある。また、仕上げ圧延温度が、Ar変態点未満であると、熱間圧延がフェライト及びオーステナイトの二相域圧延となって、熱延鋼板の組織が不均質な混粒組織になる場合がある。一方、仕上げ圧延温度の上限が970℃以上であると、TiNの生成が不十分となり、余剰のNがAlと窒化物を生成する可能性がある。
 本発明では、熱間圧延工程において、1100~1000℃の温度範囲で上記(式1)を満たす条件で熱間圧延を施し、800℃とAr変態点の高い方の温度以上970℃以下の仕上げ熱延温度で完了するので、1100~1000℃の温度範囲において粗大なTi窒化物が生成されることを抑制できるとともに、1000℃~仕上げ熱延温度までの間に微細なTiN粒子が生成される。その結果、最終的に得られる高強度鋼板が優れた耐衝撃特性を有するものとなる。
 熱延鋼板の表面に形成される酸化物の厚さが過度に増大して、酸洗性が劣化することを防止するため、巻き取り温度は750℃以下とする。酸洗性をより一層高めるために、巻き取り温度は720℃以下であることが好ましく、700℃以下であることがさらに好ましい。
 一方、巻き取り温度が500℃未満となると熱延鋼板の強度が過度に高まり、冷間圧延が困難となるため、巻き取り温度は500℃以上とすることが好ましい。冷間圧延の負荷を軽減するため、巻き取り温度は550℃以上とすることが好ましく、600℃以上とすることがより好ましい。
 次に、上記の温度域で巻き取った熱延鋼板を15℃/時以下の平均冷却速度で冷却する。このことにより、鋼板中に固溶しているMnの分配が進められ、残留オーステナイトをMnの濃化した領域に選択的に残留させることができ、残留オーステナイト中の固溶Mn量を増加させることができる。その結果、最終的に得られる高強度鋼板が、残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上であるものとなる。巻取り後のMnの分配は高温ほど進みやすい。そのため、特に巻取り温度から(巻取り温度-50℃)の範囲において、鋼板の冷却速度を15℃/時以下にする必要がある。
 次に、このようにして製造した熱延鋼板に、酸洗を行うことが好ましい。酸洗は、熱延鋼板の表面の酸化物を除去するものであることから、鋼板のめっき性向上のために重要である。また、酸洗は、一回でも良いし、複数回に分けて行っても良い。
(冷間圧延工程)
 次に、酸洗後の熱延鋼板に対して、残留オーステナイトを等方性に優れた安定な形状を有するものとするために、30~75%の圧下率で冷延する冷間圧延工程を行う。圧下率が30%未満であると、残留オーステナイトの形状を安定なものとすることができず、最終的に得られる高強度鋼板が、残留オーステナイトの平均アスペクト比が2.0以下であるものとならない。残留オーステナイトを安定な形状を有するものとするために、冷間圧延工程における圧下率は40%以上であることが好ましく、45%以上であることがより好ましい。一方、圧下率が75%を超える冷延では、冷延荷重が大きくなりすぎて冷延が困難となる。このことから、圧下率は75%以下であることが好ましい。冷延荷重の観点から、圧下率は70%以下であることがより好ましい。
 なお、冷間圧延工程において、圧延パスの回数、各圧延パス毎の圧下率については特に規定することなく本発明の効果は発揮される。
(連続焼鈍工程)
 次に、冷間圧延工程後に得られた冷延鋼板を、連続焼鈍ラインに通板させて連続焼鈍工程を行う。本発明における連続焼鈍工程では、550~700℃の温度範囲を10℃/秒以下の平均加熱速度で加熱し、最高加熱温度を(Ac変態点+40)~1000℃間とし、最高加熱温度~700℃の温度範囲において1.0~10.0℃/秒の平均冷却速度で冷却し、700~500℃の温度範囲において5.0~200.0℃/秒の平均冷却速度で冷却し、350~450℃の温度範囲で30~1000秒停留処理させる焼鈍を行う。このことにより、本発明の高強度鋼板が得られる。
 連続焼鈍工程において、550~700℃の温度範囲を10℃/秒以下の平均加熱速度で加熱することにより、冷延鋼板の再結晶が十分に進められ、残留オーステナイトの形状がより等方性に優れた安定なものとなり、最後に残留するオーステナイトが球状に近い形状となる。550~700℃の温度範囲での平均加熱速度が10℃/秒を超えると、残留オーステナイトの形状を安定なものとすることができなくなる。
 また、連続焼鈍工程における最高加熱温度が(Ac変態点+40)℃未満では、鋼板中に粗大な鉄系炭化物が多数溶け残り、成形性が著しく劣化することから、最高加熱温度を(Ac変態点+40)℃以上とする。成形性の観点から、最高加熱温度は(Ac変態点+50)℃以上とすることが好ましく、(Ac変態点+60)℃以上とすることがさらに好ましい。一方、最高加熱温度が1000℃を超えると、原子の拡散が促進され、Si、Mn、Alの分配が弱まることから、最高加熱温度を1000℃以下とする。残留オーステナイト中のSi、Mn、Al量を制御するには、最高加熱温度はAc変態点温度以下であることが好ましい。
 最高加熱温度~700℃の温度範囲において、平均冷却速度が10.0℃/秒を超えると鋼板中のフェライト分率が不均一となりやすく、成形性が劣化することから、平均冷却速度の上限を10.0℃/秒とする。一方、平均冷却速度が1.0℃/秒未満では、フェライトおよびパーライトが多量に生成し、残留オーステナイトが得られないことから、平均冷却速度の下限を1.0℃/秒とする。残留オーステナイトを得るには、平均冷却速度を2.0℃/秒以上とすることが好ましく、3.0℃/秒以上とすることがさらに好ましい。
 700~500℃の温度範囲において、平均冷却速度が5.0℃/秒未満となると、パーライトおよび、または鉄系炭化物が多量に生成し、残留オーステナイトが残らないため、平均冷却速度の下限を5.0℃/秒以上とする。この観点から、平均冷却速度は7.0℃/秒以上であることが好ましく、8.0℃/秒以上であることがより好ましい。一方、平均冷却速度の上限は特に定めることなく本発明の効果は発揮されるが、平均冷却速度が200℃/秒を超えるためには特殊な設備が必要となり、コストの観点から平均冷却速度の上限を200℃/秒とする。
 さらに、ベイナイト変態を進め残留オーステナイトを得るため、350~450℃の温度範囲で30~1000秒間保持する停留処理を行う。停留時間が短いと、ベイナイト変態が進まず、残留オーステナイトへのCの濃化が不十分となり、残留オーステナイトを十分に残すことができない。この観点から、停留時間の下限を30秒とする。停留時間は40秒以上であることが好ましく、60秒以上であることがさらに好ましい。一方、停留時間が過度に長いと、鉄系炭化物が生成し、Cがこの鉄系炭化物として消費されてしまい、残留オーステナイトが十分に得られないことから、停留時間は1000秒以下とする。この観点から、停留時間は800秒以下であることが好ましく、600秒以下であることがさらに好ましい。
 さらに、本発明においては、上述した製造方法の連続焼鈍工程において、上記停留処理後に電気亜鉛めっきを施して、鋼板の表面に亜鉛めっき層を形成することにより、高強度亜鉛めっき鋼板としてもよい。
 また、本発明においては、上述した製造方法の連続焼鈍工程において、700~500℃の温度範囲における冷却後350~450℃の温度範囲での停留処理の前、または停留処理の後に、鋼板を亜鉛めっき浴に浸漬して前記鋼板の表面に亜鉛めっき層を形成することにより、高強度亜鉛めっき鋼板としてもよい。
 このことにより、表面に亜鉛めっき層の形成された耐衝撃特性に優れた高強度亜鉛めっき鋼板が得られる。
 亜鉛めっき浴としては、特に限定されるものではなく、亜鉛めっき浴中にPb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、Sr、I、Cs、REMの1種または2種以上が混入されていても本発明の効果を損なわず、その量によっては耐食性や加工性が改善される等好ましい場合もある。また、亜鉛めっき浴中にAlが含まれていても良い。この場合、浴中のAl濃度が0.05%以上、0.15%以下とすることが好ましい。
 また、合金化処理の温度は、480~560℃であることが好ましく、合金化処理の滞留時間は、15~60秒であることが好ましい。
 さらに、鋼板を亜鉛めっき浴に浸漬した後、鋼板を460℃~600℃まで再加熱し、2秒以上保持して亜鉛めっき層を合金化させる合金化処理を施してもよい。
 このような合金化処理を行うことで、亜鉛めっき層が合金化されてなるZn-Fe合金が表面に形成され、表面に合金化した亜鉛めっき層を有する高強度亜鉛めっき鋼板が得られる。
 さらに、これらの高強度亜鉛めっき鋼板の亜鉛めっき層または合金化した亜鉛めっき層表面に、リン酸化物および/またはリンを含む複合酸化物からなる皮膜を付与しても構わない。
 本実施形態においては、合金化処理後に、200~350℃の温度で30~1000秒滞留させることが好ましい。このことにより、鋼板組織が、焼戻しマルテンサイトを含むものとなる。
 また、合金化処理後に、200~350℃の温度で30~1000秒滞留させることに代えて、合金化処理後の鋼板を350℃以下まで冷却してマルテンサイトを生成させた後、350℃以上、550℃以下の温度範囲まで再加熱し、2秒以上滞留させることにより、焼戻しマルテンサイトを生成させても良い。また、連続焼鈍工程で500℃以下の温度域まで冷却された鋼板を、さらに350℃以下まで冷却してマルテンサイトを生成させてから再加熱し、400~500℃で滞留させることによっても、母材鋼板組織中に焼戻しマルテンサイトが生成される。
 なお、本発明は、上記の例に限定されるものではない。
 例えば、めっき密着性を向上させるために、焼鈍前の鋼板にNi、Cu、Co、Feから選ばれる1種あるいは複数種よりなるめっきを施してもよい。
 また、本実施形態においては、焼鈍後の鋼板に、形状矯正を目的とした調質圧延を施しても構わない。但し、焼鈍後の圧下率が10%を超えると、軟質なフェライト部が加工硬化して延性が大幅に劣化するため、圧下率は10%未満とすることが好ましい。
 本発明を、実施例を用いてさらに詳しく説明する。
 表1および表2に示すA~AFの化学成分(組成)と表3に示すBA~BCの化学成分(組成)を有するスラブを鋳造し、鋳造後直ちに表4~表7に示す条件(スラブ加熱温度、圧延開始温度、1100~1000℃の温度範囲の熱間圧延における(式1)の値、仕上げ熱延温度)で熱間圧延し、冷却し、表4~表7に示す巻き取り温度で巻き取り、表4~表7に示す平均冷却速度で冷却し、酸洗を施した。その後、表4~表7に示す圧下率での冷間圧延を施した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 続いて、表8~表11に示す条件で焼鈍を施して実験例1~108、201~208の鋼板とした。焼鈍工程においては、550~700℃の温度範囲を表6~表8に示す平均加熱速度で加熱し、表8~表11に示す最高加熱温度まで加熱してから、最高加熱温度~700℃の温度範囲を表8~表11に示す平均冷却速度(冷却速度1)で冷却し、700~500℃の温度範囲を表8~表11に示す平均冷却速度(冷却速度2)で冷却し、350~450℃の温度範囲で表8~表11に示す時間で停留する停留処理を行い、その後室温まで冷却した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 室温まで冷却後、実験例6~20、実験例70~108では0.15%の冷間圧延を施し、実験例23では1.50%の冷間圧延を施し、実験例28では1.00%の冷間圧延を施し、実験例31~55では0.25%の冷間圧延を施した。
 また、実験例34,44,78,81には焼鈍工程の後に電気めっきラインにて電気めっきを施し、電気亜鉛めっき鋼板とした。
 実験例19,24,84では、冷却速度2で500℃まで冷却した後、350~450℃の温度範囲へ冷却するまでの間に亜鉛めっき浴に浸漬し、溶融亜鉛めっき鋼板とした。
 また、実験例29,87では、350~450℃の温度範囲での停留処理後に、亜鉛めっき浴に浸漬してから室温まで冷却し、溶融亜鉛めっき鋼板とした。
 実験例4,14,75では、冷却速度2で500℃まで冷却した後、350~450℃の温度範囲へ冷却するまでの間に亜鉛めっき浴に浸漬し、さらに表8~表11に示す合金化温度で30秒保持して合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。
 また、実験例9,58、72では、350~450℃の温度範囲での停留処理後に亜鉛めっき浴に浸漬し、さらに表8~表11に示す合金化温度で30秒保持して合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。
 また、実験例14および72では、亜鉛めっき層の表面にリンを含む複合酸化物からなる皮膜を付与した。
 なお、表8~表11に示す「CR」は冷延鋼板を意味し「GA」は合金化溶融亜鉛めっき鋼板を意味し「GI]は溶融亜鉛めっき鋼板を意味し「EG」は電気亜鉛めっき鋼板を意味する。
 実験例1~108、201~208の鋼板における1/8厚から3/8厚の範囲におけるミクロ組織を観察し体積分率を測定した。その結果を、表12~表15に示す。表12~表15において「F」はフェライトを意味し「B」はベイナイトを意味し「BF」はベイニティックフェライトを意味し「TM」は焼戻しマルテンサイトを意味し「M」はフレッシュマルテンサイトを意味し「残留γ」残留オーステナイトを意味する。
 ミクロ組織分率のうち残留オーステナイト量は、板厚断面を切り出し、鏡面に研磨した断面において電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)に併設された電子線後方散乱(EBSD:Electron Back Scattaring Diffraction)解析機によって測定し、他は、鏡面に研磨した断面をナイタールエッチングし、FE-SEMを用いて観察して求めた。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 また、残留オーステナイト(γ)の平均アスペクト比(γアスペクト比)として、先述のEBSD解析機によって得られる残留オーステナイトのマップにおいて、大きい方から20個の残留オーステナイトのアスペクト比を測定した結果と、板表面と平行な1/4厚の面を観察する試験片を作成し、同様にEBSD解析を行って大きい方から20個の残留オーステナイトのアスペクト比を測定した結果とを合わせて、40個の残留オーステナイトのアスペクト比の平均値を求めた。
 また、TiN粒子の平均粒径(TiN平均サイズ)として、ミクロ組織の体積分率を観察した面から、抽出レプリカ法によって透過型電子顕微鏡(TEM)用のサンプルを作成し、TEMでTiN10個の粒径(円相当径)を測定し、その平均値を求めた。
 粒径1μm以上のAlN粒子の密度として、ミクロ組織の体積分率を観察した面において、FE-SEMにて10.0mmの範囲の介在物を観察し、円相当径で1.0μmを超える介在物の組成を測定し、AlNと確認された介在物の個数を数え、密度を求めた。
 平均Mn量(WMn)に対する残留オーステナイト中の固溶Mn量(WMnγ)の比(WMnγ/WMn)は、以下に示す方法によりWMnとWMnγとを測定して求めた。
 すなわち、ミクロ組織分率を求めた観察面において、EBSD解析と同じ範囲においてEPMA解析を行い、得られたMn濃度マップからWMnを求め、さらにMn濃度マップと残留オーステナイトマップとを重ねることで、残留オーステナイトにおけるMn濃度の測定値のみ抽出し、その平均値としてWMnγを得た。
 表16~表19に実験例1~108、201~208の鋼板の特性を以下に示す方法により評価した結果を示す。
 実験例1~108、201~208の鋼板からJIS Z 2201に準拠した引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、降伏応力「YS」、引張強度「TS」、全伸び「EL」を測定した。
 また、フランジ性を評価する穴広げ試験(JFST1001)を行い、伸びフランジ性の指標である穴広げ限界値「λ」を算出した。
 また、同じ引張試験片を、液体窒素を加えたアルコール中に浸漬し、-60℃まで冷やし、取出して直ちに引張試験を行い、破断部の絞り比(絞り値)を求めた。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表16~表19に示すように、実験例1~108、201~208のうち本発明の実施例である実験例は全て、引張強度が900MPa以上であり、かつ絞り値の結果が20%以上と高く、耐衝撃特性に優れているものであった。
 これに対し、実験例1~108のうち比較例である実験例は、引張強度が900MPa未満である、および/または絞り値の結果が低く、高強度でかつ耐衝撃特性に優れたものではなかった。
 また、実験例14および72は、亜鉛めっき層の表面にリンを含む複合酸化物からなる皮膜を付与した例であり、良好な特性が得られている。
 実験例5は、熱間圧延前のスラブ加熱温度が低い例であり、粗大なTiNが残存し、低温での絞り値が劣位である。
 実験例10は、(式1)の値が大きい例であり、粗大なTiNが存在し、実験例59は、(式1)の値が小さい例であり、粗大なAlNが存在している。実験例10および実験例59は、低温での絞り値が劣位である。
 実験例15は熱間圧延の仕上げ熱延温度が低い例であり、ミクロ組織が一方向に伸長した不均質なものとなるため、延性、伸びフランジ性、低温での絞り値が劣位である。
 実験例20は熱間圧延後に巻き取りが高い例であり、ミクロ組織が非常に粗大なものとなるため、延性、伸びフランジ性、低温での絞り値が劣位である。
 実験例25は巻取り後の平均冷却速度が高く、WMnγ/WMnが低く、残留オーステナイトへのMn濃化が不十分であり、低温での絞り値が劣位である。
 実験例30は冷間圧延の圧下率が小さく、残留オーステナイトのアスペクト比(γアスペクト比)が大きいため、低温での絞り値が劣位である。
 実験例35は焼鈍の平均加熱速度が大きく、残留オーステナイトのアスペクト比(γアスペクト比)が大きいため、低温での絞り値が劣位である。
 実験例40は焼鈍における最高加熱温度が低い例であり、破壊の起点となる粗大な鉄系炭化物を多数含むため、延性、伸びフランジ性および低温での絞り値が劣位である。
 実験例45は700℃までの冷却速度が過度に高く、十分な軟質組織が得られないため、延性および低温での絞り値が劣位である。
 実験例50は、冷却速度1が過度に低く、粗大な炭化物が生成し、硬質組織が十分に得られず、強度が劣位、延性、伸びフランジ性および低温での絞り値が劣位である。
 実験例54は350~450℃での停留時間が短く、残留オーステナイトが少なく、延性および低温での絞り値が劣位である。
 実験例55は350~450℃での停留時間が長く、残留オーステナイトが少なく、かつ粗大な炭化物が生成しており、延性および低温での絞り値が劣位である。
 実験例60は冷却速度2が低く、粗大な炭化物が生成し、延性、伸びフランジ性、低温での絞り値が劣位である。
 実験例103~108は化学成分が所定の範囲を逸脱した例であり、いずれも十分な低温での絞り値が得られていない。

Claims (13)

  1.  質量%で、
    C:0.075~0.300%、
    Si:0.30~2.50%、
    Mn:1.30~3.50%、
    P:0.001~0.050%、
    S:0.0001~0.0050%、
    Al:0.001~0.050%、
    Ti:0.0010~0.0150%、
    N:0.0001~0.0050%、
    O:0.0001~0.0030%
    を含有し、残部が鉄および不可避的不純物からなり、
     板厚の1/4を中心とした1/8厚~3/8厚の範囲において、体積分率で1~8%の残留オーステナイトを含有し、前記残留オーステナイトの平均アスペクト比が2.0以下であり、かつ前記残留オーステナイト中の固溶Mn量が平均Mn量の1.1倍以上であり、
     平均粒径0.5μm以下のTiN粒子を含み、粒径1μm以上のAlN粒子の密度が1.0個/mm以下である鋼板組織を有し、
     引張最大強度が900MPa以上であることを特徴とする耐衝撃特性に優れた高強度鋼板。
  2.  前記鋼板組織が、前記母材鋼板の1/8厚~3/8厚の範囲において、体積分率で10~75%以下のフェライトと、合計で10~50%のベイニティックフェライトとベイナイトのいずれか一方もしくは両方と、10~50%以下の焼戻しマルテンサイトとを含み、
     パーライトが、体積分率で5%以下に制限され、フレッシュマルテンサイトが、体積分率で15%以下に制限されている、請求項1に記載の耐衝撃特性に優れた高強度鋼板。
  3.  さらに、質量%で、
    Nb:0.0010~0.0150%、
    V:0.010~0.150%、
    B:0.0001~0.0100%の1種または2種以上を含有する、請求項1に記載の耐衝撃特性に優れた高強度鋼板。
  4.  さらに、質量%で、
    Cr:0.01~2.00%、
    Ni:0.01~2.00%、
    Cu:0.01~2.00%、
    Mo:0.01~1.00%、
    W:0.01~1.00%の1種または2種以上を含有する、請求項1に記載の耐衝撃特性に優れた高強度鋼板。
  5.  さらに、
    Ca、Ce、Mg、Zr,Hf、REMの1種または2種以上を合計で0.0001~0.5000質量%含有する、請求項1に記載の耐衝撃特性に優れた高強度鋼板。
  6.  表面に亜鉛めっき層が形成されている、請求項1に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板。
  7.  前記亜鉛めっき層の表面に、リン酸化物および/またはリンを含む複合酸化物からなる皮膜が形成されている、請求項6に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板。
  8.  質量%で、
    C:0.075~0.300%、
    Si:0.30~2.50%、
    Mn:1.30~3.50%、
    P:0.001~0.050%、
    S:0.0001~0.0050%、
    Al:0.001~0.050%、
    Ti:0.0010~0.0150%、
    N:0.0001~0.0050%、
    O:0.0001~0.0030%
    を含有し、残部が鉄および不可避的不純物からなるスラブを1210℃以上に加熱し、少なくとも1100~1000℃の温度範囲においては、下記(式1)を満たす条件で圧下を行い、800℃とAr変態点の高い方の温度以上970℃以下の仕上げ熱延温度で圧下を完了し、750℃以下の温度域にて巻き取り、15℃/時以下の平均冷却速度で冷却する熱間圧延工程と、
     前記熱間圧延工程後、30~75%の圧下率で冷延する冷間圧延工程と、
     前記冷間圧延工程後、550~700℃の温度範囲を10℃/秒以下の平均加熱速度で加熱し、最高加熱温度を(Ac変態点+40)~1000℃間とし、最高加熱温度~700℃の温度範囲において1.0~10.0℃/秒の平均冷却速度で冷却し、700~500℃の温度範囲において5.0~200.0℃/秒の平均冷却速度で冷却し、350~450℃の温度範囲で30~1000秒停留処理させる焼鈍を行う連続焼鈍工程と、を具備する、耐衝撃特性に優れた高強度鋼板の製造方法。
    Figure JPOXMLDOC01-appb-M000001
     (式1)において、iはパス数、Tiはiパス目の加工温度、tiはiパス目からi+1パス目までの経過時間、εiはiパス目の圧下率を示す。
  9.  請求項8に記載の製造方法の連続焼鈍工程において、停留処理の後に電気亜鉛めっきを施して前記鋼板の表面に亜鉛めっき層を形成する、耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
  10.  請求項8に記載の製造方法の連続焼鈍工程において、700~500℃の温度範囲における冷却後350~450℃の温度範囲での停留処理の前、または前記停留処理の後に、前記鋼板を亜鉛めっき浴に浸漬して前記鋼板の表面に亜鉛めっき層を形成する、耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
  11.  前記亜鉛めっき浴に浸漬した後、前記鋼板を460~600℃まで再加熱し、2秒以上保持して前記亜鉛めっき層を合金化させる、請求項10に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
  12.  前記亜鉛めっき層を形成した後、該亜鉛めっき層の表面に、リン酸化物とリンのいずれか一方もしくは両方を含む複合酸化物からなる皮膜を付与する、請求項10に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
  13.  前記亜鉛めっき層を合金化させた後、該合金化した亜鉛めっき層の表面に、リン酸化物とリンのいずれか一方もしくは両方を含む複合酸化物からなる皮膜を付与する、請求項11に記載の耐衝撃特性に優れた高強度亜鉛めっき鋼板の製造方法。
PCT/JP2012/069261 2011-07-29 2012-07-27 耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法 WO2013018740A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US14/235,414 US10351937B2 (en) 2011-07-29 2012-07-27 High-strength steel sheet excellent in impact resistance and manufacturing method thereof, and high-strength galvanized steel sheet and manufacturing method thereof
CN201280037610.8A CN103717771B (zh) 2011-07-29 2012-07-27 耐冲击特性优异的高强度钢板及其制造方法、高强度镀锌钢板及其制造方法
MX2014000919A MX360333B (es) 2011-07-29 2012-07-27 Lamina de acero de alta resistencia excelente en resistencia al impacto y metodo de fabricacion de la misma y lamiana de acero galvanizada de alta resistencia y metodo de fabricacion de la misma.
PL12820097T PL2740812T3 (pl) 2011-07-29 2012-07-27 Blacha stalowa cienka o dużej wytrzymałości i doskonałej odporności na uderzenie oraz sposób jej wytwarzania i blacha stalowa cienka ocynkowana o dużej wytrzymałości oraz sposób jej wytwarzania
CA2840816A CA2840816C (en) 2011-07-29 2012-07-27 High-strength steel sheet excellent in impact resistance and manufacturing method thereof, and high-strength galvanized steel sheet and manufacturing method thereof
KR1020147003703A KR101598307B1 (ko) 2011-07-29 2012-07-27 내충격 특성이 우수한 고강도 강판 및 그 제조 방법, 고강도 아연 도금 강판 및 그 제조 방법
BR112014002023-0A BR112014002023B1 (pt) 2011-07-29 2012-07-27 Chapa de aço de alta resistência excelente em resistência ao impacto e seu método de produção.
RU2014107493/02A RU2573154C2 (ru) 2011-07-29 2012-07-27 Высокопрочный стальной лист, имеющий превосходную ударопрочность, и способ его производства, и высокопрочный гальванизированный стальной лист и способ его производства
EP12820097.9A EP2740812B1 (en) 2011-07-29 2012-07-27 High-strength steel sheet excellent in impact resistance and manufacturing method thereof,and high-strength galvanized steel sheet and manufacturing method thereof
JP2013500258A JP5240421B1 (ja) 2011-07-29 2012-07-27 耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法
ES12820097T ES2755414T3 (es) 2011-07-29 2012-07-27 Lámina de acero de alta resistencia excelente en resistencia al impacto y método de fabricación de la misma, y lámina de acero galvanizado de alta resistencia y método de fabricación de la misma
ZA2014/01401A ZA201401401B (en) 2011-07-29 2014-02-24 High-strength steel sheet excellent in impact resistance and manufacturing method thereof,and high-strength galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011167661 2011-07-29
JP2011-167661 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018740A1 true WO2013018740A1 (ja) 2013-02-07

Family

ID=47629263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069261 WO2013018740A1 (ja) 2011-07-29 2012-07-27 耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法

Country Status (14)

Country Link
US (1) US10351937B2 (ja)
EP (1) EP2740812B1 (ja)
JP (1) JP5240421B1 (ja)
KR (1) KR101598307B1 (ja)
CN (1) CN103717771B (ja)
BR (1) BR112014002023B1 (ja)
CA (1) CA2840816C (ja)
ES (1) ES2755414T3 (ja)
MX (1) MX360333B (ja)
PL (1) PL2740812T3 (ja)
RU (1) RU2573154C2 (ja)
TW (1) TWI471425B (ja)
WO (1) WO2013018740A1 (ja)
ZA (1) ZA201401401B (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185359A (ja) * 2013-03-22 2014-10-02 Jfe Steel Corp 高強度鋼板
WO2015046364A1 (ja) * 2013-09-27 2015-04-02 株式会社神戸製鋼所 加工性および低温靭性に優れた高強度鋼板、並びにその製造方法
WO2015046339A1 (ja) * 2013-09-27 2015-04-02 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
KR101518551B1 (ko) 2013-05-06 2015-05-07 주식회사 포스코 충격특성이 우수한 초고강도 열연강판 및 그 제조방법
KR101518600B1 (ko) 2013-10-23 2015-05-07 주식회사 포스코 충격특성이 우수한 초고강도 열연강판 및 그 제조방법
WO2016129550A1 (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
WO2016129548A1 (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板
WO2016152675A1 (ja) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 加工性に優れた高強度鋼板
JP2016180140A (ja) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 成形性に優れた高強度鋼板
JP2019002078A (ja) * 2018-09-10 2019-01-10 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板
CN109863255A (zh) * 2016-10-25 2019-06-07 株式会社Posco 具有优异的低温韧性的高强度高锰钢及其制造方法
US10526687B2 (en) 2015-02-13 2020-01-07 Kobe Steel, Ltd. Ultra-high-strength steel sheet having excellent delayed fracture resistance at cut end thereof

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699877B2 (ja) * 2011-09-13 2015-04-15 新日鐵住金株式会社 耐かじり性に優れた高強度鋼板及びその製造方法
JP6306481B2 (ja) * 2014-03-17 2018-04-04 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
KR102000854B1 (ko) * 2014-12-12 2019-07-16 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그 제조방법
WO2016113789A1 (ja) * 2015-01-15 2016-07-21 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN104711481B (zh) * 2015-03-20 2017-03-15 苏州纽东精密制造科技有限公司 一种货架承重高强度钢及其热处理工艺
JP6554397B2 (ja) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
MX2017014559A (es) 2015-06-03 2018-03-15 Salzgitter Flachstahl Gmbh Componente endurecido por deformacion hecho de acero galvanizado, metodo de produccion para el mismo y metodo para producir una tira de acero adecuada para el endurecimiento por deformacion de los componentes.
EP3330396B1 (en) 2015-07-29 2020-05-06 JFE Steel Corporation Cold rolled steel sheet, plated steel sheet and methods for producing same
WO2017085135A1 (de) * 2015-11-16 2017-05-26 Benteler Steel/Tube Gmbh Stahllegierung mit hohem energieaufnahmevermögen und stahlrohrprodukt
EP3382049B1 (en) * 2015-11-26 2023-05-10 JFE Steel Corporation Method for manufacturing cold-rolled steel sheet for high-strength hot-dip galvanized steel sheet, method for manufacturing high-strength hot-dip galvanized steel sheet
WO2017164346A1 (ja) * 2016-03-25 2017-09-28 新日鐵住金株式会社 高強度鋼板および高強度亜鉛めっき鋼板
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
KR102557715B1 (ko) 2016-05-10 2023-07-20 유나이테드 스테이츠 스틸 코포레이션 고강도 철강 제품 및 이의 제조를 위한 소둔 공정
CN109790606B (zh) * 2016-10-19 2021-08-06 日本制铁株式会社 镀覆钢板、热浸镀锌钢板的制造方法及合金化热浸镀锌钢板的制造方法
TWI626318B (zh) * 2016-10-20 2018-06-11 Nippon Steel & Sumitomo Metal Corp 鍍敷鋼板、熔融鍍鋅鋼板的製造方法及合金化熔融鍍鋅鋼板的製造方法
RU2635643C1 (ru) * 2017-03-13 2017-11-14 Юлия Алексеевна Щепочкина Сталь
WO2018179386A1 (ja) 2017-03-31 2018-10-04 新日鐵住金株式会社 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板
CN110462090A (zh) * 2017-03-31 2019-11-15 日本制铁株式会社 铁路车轮
US9987567B1 (en) * 2017-09-29 2018-06-05 NextLeaf Solutions Ltd. Cannabinoid extraction process and system
WO2019122959A1 (en) 2017-12-19 2019-06-27 Arcelormittal A hot-dip coated steel substrate
KR102031445B1 (ko) * 2017-12-22 2019-10-11 주식회사 포스코 내충격특성이 우수한 고강도 강판 및 그 제조방법
US11788163B2 (en) * 2018-03-30 2023-10-17 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
KR102098482B1 (ko) 2018-07-25 2020-04-07 주식회사 포스코 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
KR102131538B1 (ko) * 2018-11-30 2020-07-08 주식회사 포스코 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
TWI667356B (zh) * 2018-12-11 2019-08-01 日商新日鐵住金股份有限公司 High-strength steel sheet excellent in moldability and impact resistance, and method for producing high-strength steel sheet excellent in moldability and impact resistance
KR102487316B1 (ko) * 2018-12-11 2023-01-13 닛폰세이테츠 가부시키가이샤 성형성 및 내충격성이 우수한 고강도 강판, 및 성형성 및 내충격성이 우수한 고강도 강판의 제조 방법
KR102536689B1 (ko) * 2018-12-11 2023-05-30 닛폰세이테츠 가부시키가이샤 성형성, 인성 및 용접성이 우수한 고강도 강판, 및 그 제조 방법
KR102178728B1 (ko) * 2018-12-18 2020-11-13 주식회사 포스코 강도 및 연성이 우수한 강판 및 그 제조방법
KR102599376B1 (ko) * 2019-02-06 2023-11-09 닛폰세이테츠 가부시키가이샤 용융 아연 도금 강판 및 그 제조 방법
EP3992314A4 (en) * 2019-06-28 2023-07-19 Nippon Steel Corporation GALVANISED STEEL
KR20220050935A (ko) * 2019-08-19 2022-04-25 유나이테드 스테이츠 스틸 코포레이션 고강도 강 제품 및 이의 제조를 위한 어닐링 공정
KR102255821B1 (ko) * 2019-09-17 2021-05-25 주식회사 포스코 저온 충격인성이 우수한 고강도 극후물 강재 및 이의 제조방법
KR102457019B1 (ko) * 2020-06-17 2022-10-21 주식회사 포스코 성형성이 우수한 고강도 강판 및 이의 제조방법
KR102485009B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485004B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR20230055740A (ko) * 2021-10-19 2023-04-26 주식회사 포스코 친환경 고강도 고성형성 강판 및 그 제조방법
KR20230072050A (ko) * 2021-11-17 2023-05-24 주식회사 포스코 냉간 성형 후 내충격성이 우수한 고항복비형 고강도강 및 그 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130776A (ja) 1996-10-23 1998-05-19 Sumitomo Metal Ind Ltd 高延性型高張力冷延鋼板
JPH1121653A (ja) 1997-07-02 1999-01-26 Kobe Steel Ltd 低温靱性に優れた高延性高強度鋼板
JP2001011565A (ja) 1999-07-02 2001-01-16 Sumitomo Metal Ind Ltd 衝撃エネルギー吸収性に優れた高強度鋼板およびその製造方法
JP2002294400A (ja) 2001-03-28 2002-10-09 Sumitomo Metal Ind Ltd 高張力鋼板およびその製造方法
JP2004300452A (ja) 2003-03-28 2004-10-28 Nisshin Steel Co Ltd 衝撃特性と形状凍結性に優れた高強度冷延鋼板の製造方法
JP2006307327A (ja) 2005-03-31 2006-11-09 Jfe Steel Kk 表面性状および耐二次加工脆性に優れる高延性高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP2008274355A (ja) * 2007-04-27 2008-11-13 Jfe Steel Kk 表面品質、破壊靱性および耐サワー性に優れる熱延鋼板の製造方法
JP2009068039A (ja) 2007-09-11 2009-04-02 Nisshin Steel Co Ltd エネルギー吸収特性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2010202949A (ja) * 2009-03-05 2010-09-16 Sumitomo Metal Ind Ltd ラインパイプ用鋼材の製造方法
JP2011111672A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 衝突吸収エネルギーに優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
JP2012172203A (ja) * 2011-02-22 2012-09-10 Nippon Steel Corp 局部変形能に優れ、成形性の方位依存性の少ない延性に優れた高強度熱延鋼板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111672A (ja) * 1999-10-05 2001-04-20 Kenwood Corp 移動体通信端末
JP3872621B2 (ja) 1999-11-05 2007-01-24 新日本製鐵株式会社 自動車車体用亜鉛系メッキ鋼板
JP4320891B2 (ja) * 2000-01-13 2009-08-26 Jfeスチール株式会社 スケール密着性に優れた熱延鋼板の製造方法
JP2001329340A (ja) * 2000-05-17 2001-11-27 Nippon Steel Corp 成形性の優れた高強度鋼板及びその製造方法
KR100451247B1 (ko) * 2002-11-06 2004-10-13 엘지전자 주식회사 전기밥솥
JP4227431B2 (ja) * 2003-02-12 2009-02-18 新日本製鐵株式会社 高強度高延性鋼板及びその製造方法
CA2520814C (en) * 2003-03-31 2009-09-15 Nippon Steel Corporation Alloyed molten zinc plated steel sheet and process of production of same
KR20070122581A (ko) * 2003-04-10 2007-12-31 신닛뽄세이테쯔 카부시키카이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
JP4956998B2 (ja) * 2005-05-30 2012-06-20 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4676923B2 (ja) * 2006-06-05 2011-04-27 新日本製鐵株式会社 耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
RU2358025C1 (ru) * 2007-11-21 2009-06-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаного проката повышенной прочности
WO2009072559A1 (ja) 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN101960034B (zh) * 2008-03-27 2012-10-31 新日本制铁株式会社 成形性和焊接性优良的高强度冷轧钢板、高强度镀锌钢板、高强度合金化热浸镀锌钢板、及它们的制造方法
WO2011065591A1 (ja) 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130776A (ja) 1996-10-23 1998-05-19 Sumitomo Metal Ind Ltd 高延性型高張力冷延鋼板
JPH1121653A (ja) 1997-07-02 1999-01-26 Kobe Steel Ltd 低温靱性に優れた高延性高強度鋼板
JP2001011565A (ja) 1999-07-02 2001-01-16 Sumitomo Metal Ind Ltd 衝撃エネルギー吸収性に優れた高強度鋼板およびその製造方法
JP2002294400A (ja) 2001-03-28 2002-10-09 Sumitomo Metal Ind Ltd 高張力鋼板およびその製造方法
JP2004300452A (ja) 2003-03-28 2004-10-28 Nisshin Steel Co Ltd 衝撃特性と形状凍結性に優れた高強度冷延鋼板の製造方法
JP2006307327A (ja) 2005-03-31 2006-11-09 Jfe Steel Kk 表面性状および耐二次加工脆性に優れる高延性高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP2008274355A (ja) * 2007-04-27 2008-11-13 Jfe Steel Kk 表面品質、破壊靱性および耐サワー性に優れる熱延鋼板の製造方法
JP2009068039A (ja) 2007-09-11 2009-04-02 Nisshin Steel Co Ltd エネルギー吸収特性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2010202949A (ja) * 2009-03-05 2010-09-16 Sumitomo Metal Ind Ltd ラインパイプ用鋼材の製造方法
JP2011111672A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 衝突吸収エネルギーに優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
JP2012172203A (ja) * 2011-02-22 2012-09-10 Nippon Steel Corp 局部変形能に優れ、成形性の方位依存性の少ない延性に優れた高強度熱延鋼板

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185359A (ja) * 2013-03-22 2014-10-02 Jfe Steel Corp 高強度鋼板
KR101518551B1 (ko) 2013-05-06 2015-05-07 주식회사 포스코 충격특성이 우수한 초고강도 열연강판 및 그 제조방법
WO2015046364A1 (ja) * 2013-09-27 2015-04-02 株式会社神戸製鋼所 加工性および低温靭性に優れた高強度鋼板、並びにその製造方法
WO2015046339A1 (ja) * 2013-09-27 2015-04-02 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
JP5728115B1 (ja) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
JP2015200006A (ja) * 2013-09-27 2015-11-12 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
US10066274B2 (en) 2013-09-27 2018-09-04 Kobe Steel, Ltd. High-strength steel sheet having excellent ductility and low-temperature toughness, and method for producing same
KR101518600B1 (ko) 2013-10-23 2015-05-07 주식회사 포스코 충격특성이 우수한 초고강도 열연강판 및 그 제조방법
WO2016129548A1 (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板
JP2016148098A (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板
WO2016129550A1 (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
US10526687B2 (en) 2015-02-13 2020-01-07 Kobe Steel, Ltd. Ultra-high-strength steel sheet having excellent delayed fracture resistance at cut end thereof
WO2016152675A1 (ja) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 加工性に優れた高強度鋼板
JP2016180138A (ja) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 加工性に優れた高強度鋼板
JP2016180140A (ja) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 成形性に優れた高強度鋼板
CN109863255A (zh) * 2016-10-25 2019-06-07 株式会社Posco 具有优异的低温韧性的高强度高锰钢及其制造方法
CN109863255B (zh) * 2016-10-25 2021-02-19 株式会社Posco 具有优异的低温韧性的高强度高锰钢及其制造方法
US11149326B2 (en) 2016-10-25 2021-10-19 Posco High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor
JP2019002078A (ja) * 2018-09-10 2019-01-10 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板

Also Published As

Publication number Publication date
TWI471425B (zh) 2015-02-01
MX2014000919A (es) 2014-05-12
CN103717771A (zh) 2014-04-09
ES2755414T3 (es) 2020-04-22
CA2840816A1 (en) 2013-02-07
CN103717771B (zh) 2016-06-01
EP2740812B1 (en) 2019-09-11
KR101598307B1 (ko) 2016-02-26
BR112014002023A2 (pt) 2017-02-21
US10351937B2 (en) 2019-07-16
RU2573154C2 (ru) 2016-01-20
EP2740812A1 (en) 2014-06-11
BR112014002023B1 (pt) 2019-03-26
TW201313919A (zh) 2013-04-01
MX360333B (es) 2018-10-29
EP2740812A4 (en) 2015-04-08
US20140205855A1 (en) 2014-07-24
ZA201401401B (en) 2015-09-30
RU2014107493A (ru) 2015-09-10
JPWO2013018740A1 (ja) 2015-03-05
CA2840816C (en) 2016-05-31
KR20140041838A (ko) 2014-04-04
PL2740812T3 (pl) 2020-03-31
JP5240421B1 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5240421B1 (ja) 耐衝撃特性に優れた高強度鋼板およびその製造方法、高強度亜鉛めっき鋼板およびその製造方法
EP2762589B1 (en) High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manzfacturing method thereof
JP5365217B2 (ja) 高強度鋼板およびその製造方法
JP5352793B2 (ja) 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5163835B2 (ja) 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
JP5141811B2 (ja) 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5709151B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5418168B2 (ja) 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法
JP5299591B2 (ja) 形状凍結性に優れた高強度鋼板、高強度亜鉛めっき鋼板およびそれらの製造方法
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP5967320B2 (ja) 高強度鋼板およびその製造方法
WO2013018739A1 (ja) 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
JP2013076114A (ja) 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法
US11230744B2 (en) Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP7235102B2 (ja) 鋼板及びその製造方法
EP3954792A1 (en) Steel sheet and production method for same
JP5141235B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN114585765B (zh) 高强度钢板及其制造方法
JP2009144225A (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP7216933B2 (ja) 鋼板およびその製造方法
JP7252499B2 (ja) 鋼板およびその製造方法
CN114945690B (zh) 钢板及其制造方法
TW201702398A (zh) 鋼板、熔融鍍鋅鋼板及合金化熔融鍍鋅鋼板以及其等之製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013500258

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2840816

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000919

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003703

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012820097

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014107493

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235414

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002023

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002023

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140127