WO2012141263A1 - 局部変形能に優れた高強度冷延鋼板とその製造方法 - Google Patents

局部変形能に優れた高強度冷延鋼板とその製造方法 Download PDF

Info

Publication number
WO2012141263A1
WO2012141263A1 PCT/JP2012/060065 JP2012060065W WO2012141263A1 WO 2012141263 A1 WO2012141263 A1 WO 2012141263A1 JP 2012060065 W JP2012060065 W JP 2012060065W WO 2012141263 A1 WO2012141263 A1 WO 2012141263A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
steel sheet
reduction
rolled steel
Prior art date
Application number
PCT/JP2012/060065
Other languages
English (en)
French (fr)
Inventor
嘉宏 諏訪
和昭 中野
邦夫 林
力 岡本
藤田 展弘
幸一 佐野
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12771896.3T priority Critical patent/ES2683899T3/es
Priority to RU2013150346/02A priority patent/RU2551726C1/ru
Priority to CA2830146A priority patent/CA2830146C/en
Priority to EP12771896.3A priority patent/EP2698442B1/en
Priority to CN201280017774.4A priority patent/CN103459646B/zh
Priority to MX2013011750A priority patent/MX2013011750A/es
Priority to KR1020137026570A priority patent/KR101536847B1/ko
Priority to US14/110,891 priority patent/US9347122B2/en
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR112013026079-3A priority patent/BR112013026079B1/pt
Priority to JP2013509966A priority patent/JP5408386B2/ja
Priority to PL12771896T priority patent/PL2698442T3/pl
Publication of WO2012141263A1 publication Critical patent/WO2012141263A1/ja
Priority to ZA2013/06547A priority patent/ZA201306547B/en
Priority to US15/133,848 priority patent/US10060006B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet excellent in local deformability such as bending, stretch flange, and burring, and is mainly used for automobile parts.
  • This application claims priority based on Japanese Patent Application No. 2011-089250 for which it applied to Japan on April 13, 2011, and uses the content here.
  • Non-Patent Document 2 a method is disclosed in which uniform elongation is ensured even with the same strength by compounding the metal structure of a steel plate.
  • Non-Patent Document 3 discloses that inclusion control, single organization, and reduction in hardness difference between tissues are effective for bendability and hole expansion.
  • Non-Patent Document 4 This is to improve the hole expansion property by making a single structure by controlling the structure, but in order to make a single structure, heat treatment from an austenite single phase as in Non-Patent Document 4 is a manufacturing method. Basic. Further, Non-Patent Document 4 also discloses a technique for obtaining an appropriate fraction of ferrite and bainite by controlling the metal structure by cooling control after hot rolling for compatibility with ductility, and controlling the precipitate and the transformation structure. There is disclosure.
  • Patent Document 1 discloses a technique for improving hole expansibility.
  • the factors that degrade the local deformability are various “inhomogeneities” such as inter-structure hardness differences, non-metallic inclusions, and developed rolling texture.
  • the one having the greatest influence is the hardness difference between the structures shown in Non-Patent Document 3 above, and the other developed dominant texture is the developed rolling texture shown in Patent Document 1. .
  • These elements are complexly entangled and the local deformability of the steel sheet is determined. Therefore, in order to maximize the increase in local deformability due to texture control, it is necessary to control the texture together to eliminate as much as possible the non-uniformity due to the hardness difference between tissues.
  • the present invention it is possible to improve the local ductility of the high-strength steel sheet and improve the anisotropy in the steel sheet together with the texture control by making the bainite area ratio 95% or more.
  • a high-strength cold-rolled steel sheet having excellent local deformability and a method for producing the same are provided.
  • the present inventors newly focused on the influence of the texture of the steel sheet, and investigated and studied its effects in detail.
  • the improvement cost of the local deformability by the texture control is largely dependent on the steel structure, and after ensuring the strength of the steel by making the bainite area ratio 95% or more, It is also clarified that the improvement cost of local deformability is maximized.
  • the size of each grain unit greatly affects the local ductility in a structure in which the strength of each orientation of a specific crystal orientation group is controlled.
  • the “grain unit” of crystal grains defined in the present invention is EBSP (Electron In the analysis of the orientation of the steel sheet by the Back Scattering Pattern), it is determined as follows. That is, in the analysis of the orientation of a steel sheet by EBSP, for example, orientation measurement is performed at a magnification of 1500 times in a measurement step of 0.5 ⁇ m or less, and the position where the orientation difference between adjacent measurement points exceeds 15 ° Boundary. A region surrounded by the boundary is defined as a “grain unit” of crystal grains.
  • the crystal equivalent diameter d is determined for the crystal grains in the grain unit thus determined, and the volume of the crystal grain in each grain unit is obtained by 4 / 3 ⁇ d 3 . And the weighted average of the volume was calculated and the volume average diameter (Mean Volume Diameter) was calculated
  • the present invention is configured based on the above-mentioned knowledge, and the main points thereof are as follows.
  • the area ratio of bainite in the metal structure is 95% or more, ⁇ 100 ⁇ ⁇ 011>, ⁇ 116 ⁇ ⁇ 110>, ⁇ 114 ⁇ ⁇ 110>, ⁇ 113 ⁇ ⁇ 110> in the central portion of the thickness which is a thickness range of 5/8 to 3/8 from the surface of the steel plate.
  • the ratio of the length dL in the rolling direction to the length dt in the plate thickness direction the ratio of the crystal grains whose dL / dt is 3.0 or less is 50% or more
  • Ti 0.001% or more, 0.20% or less
  • Nb 0.001% or more, 0.20% or less
  • V 0.001% or more, 1.0% or less
  • W A high-strength cold-rolled steel sheet having excellent local deformability according to [1], containing one or more of 0.001% or more and 1.0% or less.
  • B 0.0001% or more, 0.0050% or less, Mo: 0.001% or more, 1.0% or less, Cr: 0.001% or more, 2.0% or less, Cu: 0.001% or more, 2.0% or less, Ni: 0.001% or more, 2.0% or less, Co: 0.0001% or more, 1.0% or less, Sn: 0.0001% or more, 0.2% or less, Zr: 0.0001% or more, 0.2% or less, As: The high-strength cold-rolled steel sheet having excellent local deformability according to [1], containing one or more of 0.0001% or more and 0.50% or less.
  • Mg 0.0001% or more, 0.010% or less
  • REM 0.0001% or more, 0.1% or less
  • Ca A high-strength cold-rolled steel sheet having excellent local deformability according to [1], containing one or more of 0.0001% or more and 0.010% or less.
  • a first hot rolling is performed in which rolling at a reduction rate of 40% or more is performed once or more, In the first hot rolling, the austenite grain size is 200 ⁇ m or less, In the temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C.
  • second hot rolling is performed to perform rolling with a reduction rate of 30% or more in one pass,
  • the total rolling reduction in the second hot rolling is 50% or more
  • primary cooling is started so that the waiting time t seconds satisfies the following formula (2),
  • the average cooling rate in the primary cooling is set to 50 ° C./second or more, and the primary cooling is performed in a range where the temperature change is 40 ° C. or more and 140 ° C.
  • T1 (° C.) 850 + 10 ⁇ (C + N) ⁇ Mn + 350 ⁇ Nb + 250 ⁇ Ti + 40 ⁇ B + 10 ⁇ Cr + 100 ⁇ Mo + 100 ⁇ V (1) t ⁇ 2.5 ⁇ t1 (2)
  • t1 is calculated
  • t1 0.001 ⁇ ((Tf ⁇ T1) ⁇ P1 / 100) 2 ⁇ 0.109 ⁇ ((Tf ⁇ T1) ⁇ P1 / 100) +3.1 (3)
  • Tf is the temperature of the steel slab after the final reduction at a reduction ratio of 30% or more
  • P1 is the reduction ratio at the final reduction of 30% or more.
  • HR1 (° C./sec) represented by the following formula (5)
  • HR2 (° C./sec) represented by the following formula (6): Manufacturing method. HR1 ⁇ 0.3 (5) HR2 ⁇ 0.5 ⁇ HR1 (6) [13] Furthermore, the manufacturing method of the high strength cold-rolled steel sheet excellent in the local deformability as described in [7] which forms a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface.
  • a high-strength cold-rolled steel sheet having excellent local deformability such as bending, stretch flange, and burring can be obtained.
  • the relationship between the average value of the pole densities of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups and the plate thickness / minimum bending radius is shown. ⁇ 332 ⁇ The relationship between the pole density in the ⁇ 113> orientation and the thickness / minimum bending radius is shown. The relationship between the rolling frequency
  • the average of the pole densities of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups in the central part of the thickness that is 5/8 to 3/8 from the surface of the steel sheet The value and the pole density of the ⁇ 332 ⁇ ⁇ 113> crystal orientation are particularly important characteristic values.
  • ⁇ 100 ⁇ ⁇ 011 when X-ray diffraction is performed at the thickness central portion that is a thickness range of 5/8 to 3/8 from the surface of the steel plate to determine the pole density in each direction. >- ⁇ 223 ⁇
  • the average value of the pole density of the ⁇ 110> orientation group is less than 4.0, and it is possible to satisfy the plate thickness / bending radius ⁇ 1.5 required for the processing of the most recently required skeleton parts.
  • the thickness / bending radius ⁇ 2.5 is satisfied.
  • the average value of the pole density of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups is preferably less than 3.0.
  • orientations included in this orientation group are ⁇ 100 ⁇ ⁇ 011>, ⁇ 116 ⁇ ⁇ 110>, ⁇ 114 ⁇ ⁇ 110>, ⁇ 113 ⁇ ⁇ 110>, ⁇ 112 ⁇ ⁇ 110>, ⁇ 335 ⁇ ⁇ 110>. And ⁇ 223 ⁇ ⁇ 110>.
  • the pole density is synonymous with the X-ray random intensity ratio.
  • Extreme density is a sample material obtained by measuring the X-ray intensity of a standard sample and a test material that do not accumulate in a specific orientation under the same conditions by the X-ray diffraction method, etc. Is a numerical value obtained by dividing the X-ray intensity by the X-ray intensity of the standard sample. This extreme density is determined by X-ray diffraction, EBSP (Electron Back Scattering Pattern) method, or ECP (Electron Measurement can be performed by any of the (Channeling Pattern) methods.
  • the pole density of the ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ ⁇ 110> orientation groups is a plurality of pole figures among ⁇ 110 ⁇ , ⁇ 100 ⁇ , ⁇ 211 ⁇ , ⁇ 310 ⁇ pole figures measured by these methods. ⁇ 100 ⁇ ⁇ 011>, ⁇ 116 ⁇ ⁇ 110>, ⁇ 114 ⁇ ⁇ 110>, ⁇ 110 ⁇ ⁇ 110>, ⁇ 110 ⁇ ⁇ 110>, ⁇ 116 ⁇ ⁇ 110>, ⁇ 110 ⁇ ⁇ 110>, ⁇ 103 ⁇ ⁇ 110>, ⁇ 3 ⁇ 112 ⁇ ⁇ 110>, ⁇ 223 ⁇ ⁇ 110>
  • the pole density of each orientation is obtained, and the pole density of the orientation group is obtained by arithmetically averaging these pole densities.
  • the intensities of (113) [1-10], (112) [1-10], (335) [1-10], and (223) [1-10] may be used as they are.
  • the pole density of the ⁇ 332 ⁇ ⁇ 113> crystal orientation of the plate surface in the plate thickness central portion in the plate thickness range of 5/8 to 3/8 from the surface of the steel plate is as shown in FIG. Must be below 5.0. Desirably, if it is 3.0 or less, the plate thickness / bending radius ⁇ 1.5 required for the processing of the most recently required skeleton parts is satisfied. In addition, when the steel structure satisfies 95% or more of the bainite fraction, the thickness / bending radius ⁇ 2.5 is satisfied.
  • the sample used for the X-ray diffraction, EBSP method, and ECP method is thinned from the surface to a predetermined plate thickness by mechanical polishing or the like.
  • the distortion is removed by chemical polishing, electrolytic polishing, or the like, and a sample is prepared so that an appropriate surface becomes a measurement surface within a range of 5/8 to 3/8 of the plate thickness.
  • a steel piece cut to a size of 30 mm ⁇ from the 1/4 W or 3/4 W position of the plate width W is ground with a three-side finish (centerline average roughness Ra: 0.4a to 1.6a).
  • the distortion is removed by chemical polishing or electrolytic polishing, and a sample for X-ray diffraction is produced.
  • the plate width direction it is desirable to collect at a position of 1/4 or 3/4 from the end of the steel plate.
  • the plate thickness which is a plate thickness range of 5/8 to 3/8 from the surface of the steel plate, but also satisfying the above-mentioned limit range of pole density at as many thickness positions as possible. Further, the spread performance (local elongation) becomes better. However, by measuring the range of 5/8 to 3/8 from the surface of the steel sheet, the material characteristics of the entire steel sheet can be generally represented. Therefore, the thickness of 5/8 to 3/8 is defined as the measurement range.
  • the crystal orientation represented by ⁇ hkl ⁇ ⁇ uvw> means that the normal direction of the steel plate surface is parallel to ⁇ hkl> and the rolling direction is parallel to ⁇ uvw>.
  • the orientation perpendicular to the plate surface is usually represented by [hkl] or ⁇ hkl ⁇
  • the orientation parallel to the rolling direction is represented by (uvw) or ⁇ uvw>.
  • ⁇ Hkl ⁇ and ⁇ uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes.
  • the body-centered cubic structure is targeted, for example, (111), ( ⁇ 111), (1-11), (11-1), ( ⁇ 1-11), ( ⁇ 11-1) ), (1-1-1) and (-1-1-1) planes are equivalent and indistinguishable. In such a case, these orientations are collectively referred to as ⁇ 111 ⁇ . Since the ODF display is also used to display the orientation of other crystal structures with low symmetry, the individual orientation is generally displayed as [hkl] (uvw). In the present invention, however, [hkl] (uvw) ) And ⁇ hkl ⁇ ⁇ uvw> are synonymous.
  • the present inventors diligently studied the texture control of the hot-rolled steel sheet. As a result, under the condition that the texture is controlled as described above, the effect of the crystal grains in the grain unit on the local ductility is extremely large, and by making the crystal grains finer, the local ductility can be dramatically improved. I understood that it was obtained.
  • the “grain unit” of the crystal grain is defined as a crystal grain boundary at a position where the orientation difference exceeds 15 ° in the analysis of the orientation of the steel sheet by EBSP.
  • the size of crystal grains is not a normal size average, but a volume average diameter defined by a weighted average of volumes provides a strong interphase with local ductility.
  • the volume average diameter of the crystal grains needs to be 7 ⁇ m or less. Further, in order to ensure the hole expandability at a high level, 5 ⁇ m or less is desirable.
  • the crystal grain measurement method is as described above.
  • the present inventors have also found that the local ductility is improved when the crystal grains are excellent in equiaxedness after satisfying the texture and the size of the crystal grains. .
  • a ratio of a length dL in the cold rolling direction to a length dt in the plate thickness direction of the crystal grain, dL / dt is 3.0.
  • the ratio of the following grains having excellent equiaxedness is required to be at least 50% of all bainite grains. If it is less than 50%, the local ductility deteriorates.
  • C 0.02% or more and 0.20% or less C has a lower limit of 0.02% in order to make 95% or more of the steel structure bainite. Further, since C is an element that increases the strength, it is preferably 0.025% or more for securing the strength. On the other hand, if the amount of C exceeds 0.20%, the weldability may be impaired, or the workability may be extremely deteriorated due to an increase in the hard structure, so the upper limit is made 0.20%. Further, if the C content exceeds 0.10%, the moldability deteriorates, so the C content is preferably 0.10% or less.
  • Si 0.001% or more, 2.5% or less Si is an element effective for increasing the mechanical strength of the steel sheet. However, if it exceeds 2.5%, workability deteriorates and surface flaws occur. This is the upper limit. Moreover, since chemical conversion processability will fall when there is much Si amount, it is preferable to set it as 1.20% or less. On the other hand, since it is difficult to make Si less than 0.001% in practical steel, this is the lower limit.
  • Mn 0.01% or more and 4.0% or less Mn is also an element effective for increasing the mechanical strength of the steel sheet, but if it exceeds 4.0%, the workability deteriorates, so this is the upper limit. . On the other hand, since it is difficult to make Mn less than 0.01% in practical steel, this is the lower limit. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S ⁇ 20 by mass%.
  • Mn is an element that expands the austenite temperature to the low temperature side with an increase in the content thereof, improves the hardenability, and facilitates the formation of a continuous cooling transformation structure having excellent burring properties. Since this effect is hardly exhibited when the Mn content is less than 1%, it is desirable to add 1% or more.
  • P 0.001% or more, 0.15% or less
  • S 0.0005% or more, 0.03% or less
  • P is 0.15% or less
  • S is 0.03% or less, respectively.
  • the lower limit was set to 0.001% for P and 0.0005% for S as possible values for P and S by current general refining (including secondary refining).
  • Al 0.001% to 2.0% Al is added in an amount of 0.001% or more for deoxidation. When deoxidation is sufficiently necessary, addition of 0.01% or more is preferable. Al is also an element that significantly increases the ⁇ ⁇ ⁇ transformation point. However, if the amount is too large, the weldability becomes poor, so the upper limit is made 2.0%. Preferably, it is 1.0% or less.
  • N 0.0005% or more
  • O 0.0005% or more
  • 0.01% or less N and O are impurities, and both are 0.01% or less so as not to deteriorate the workability.
  • the lower limit was set to 0.0005%, which is possible for both elements by current general refining (including secondary refining). However, 0.001% or more is preferable in order to suppress an extreme increase in steelmaking cost.
  • Si + Al less than 1.0% If excessive Si and Al are contained, cementite precipitation during overaging treatment is suppressed and the retained austenite fraction becomes too large. Therefore, the total amount of Si and Al added is 1 %.
  • Nb 0.001% or more
  • V 0.001% or more
  • W 0.001% or more
  • B 0.0001% or more, 0.0050% or less Mo: 0.001% or more, 1.0% or less Cr: 0.001% or more, 2.0% or less Cu: 0.001% or more, 2.0 %: Ni: 0.001% or more, 2.0% or less Co: 0.0001% or more, 1.0% or less Sn: 0.0001% or more, 0.2% or less Zr: 0.0001% or more, 0 .2% or less As: 0.0001% or more, 0.50% or less
  • B, Mo, Cr, Cu, Ni, Co Addition of one or more of Sn, Zr and As is effective.
  • the upper limit of B is 0.0050%
  • the upper limit of Mo is 1.00%
  • the upper limit of Cr, Cu, Ni is 2.0%
  • the upper limit of Co is 1.0%
  • the upper limit of Sn and Zr is 0.2%
  • the upper limit of As is 0.50%.
  • Mg 0.0001% or more, 0.010% or less REM: 0.0001% or more, 0.1% or less Ca: 0.0001% or more, 0.010% or less Mg, REM for improving local forming ability Ca is an important additive element for detoxifying inclusions. Each lower limit for obtaining this effect was made 0.0001%. On the other hand, excessive addition leads to deterioration of cleanliness, so 0.010% for Mg, 0.1% for REM, and 0.010% for Ca were made the upper limit.
  • the metal structure of the cold-rolled steel sheet according to the present invention has an area ratio of bainite of 95% or more, preferably a bainite single phase. This is because it is possible to achieve both strength and hole expansibility by using bainite as the metal structure. Further, since this structure is generated by transformation at a relatively high temperature, it is not necessary to cool to a low temperature during production, and this structure is preferable from the viewpoint of material stability and productivity.
  • proeutectoid ferrite As the balance, 5% or less proeutectoid ferrite, pearlite, martensite, and retained austenite are allowed. Proeutectoid ferrite is not a problem as long as it is sufficiently precipitation strengthened, but depending on the component, it may become soft, and when the area ratio exceeds 5%, the hole expandability slightly decreases due to the hardness difference from bainite. . In addition, when the area ratio of pearlite exceeds 5%, strength and workability may be impaired. When the area ratio of martensite and retained austenite that becomes martensite by processing-induced transformation is 1% or more and more than 5%, the interface between bainite and a structure harder than bainite becomes a starting point of cracking. Hole expandability deteriorates.
  • the bainite in the present invention is the Japan Iron and Steel Institute Basic Research Group, Bainite Research Section / Edition; Recent Research on Bainite Structure and Transformation Behavior of Low Carbon Steels-Final Report of the Bainite Research Group (1994)
  • the continuous cooling transformation structure (Zw) is mainly composed of Bainitic ferrite ( ⁇ ° B ), Granular bainitic ferrite ( ⁇ B ), Quasi, as described in the above-mentioned references 125 to 127 as an optical microscope observation structure. It is composed of -polygonal ferrite ( ⁇ q ), and is further defined as a microstructure containing a small amount of retained austenite ( ⁇ r ) and Martensite-austenite (MA).
  • ⁇ q is not distinguished from PF because the internal structure does not appear by etching as in polygonal ferrite (PF), but the shape is ashular.
  • ⁇ q is a grain whose ratio (lq / dq) satisfies lq / dq ⁇ 3.5 when the perimeter length lq of the target crystal grain and its equivalent circle diameter is dq.
  • the continuous cooling transformation structure (Zw) in the present invention is defined as a microstructure containing one or more of ⁇ ° B , ⁇ B , ⁇ q , ⁇ r and MA. Note that a small amount of ⁇ r and MA is 3% or less in total.
  • This continuously cooled transformation structure (Zw) may be difficult to distinguish by optical microscope observation during etching using a Nital reagent. In this case, the determination is made using EBSP-OIM TM .
  • EBSP-OIM Electron Back Scatter Diffraction Pattern-Orientation
  • the Image Microscopy (registered trademark) method uses a high-sensitivity camera to shoot a Kikuchi pattern formed by irradiating an electron beam onto a highly inclined sample in a scanning electron microscope SEM (Scanning Electron Microscope) and backscattering it, and then creating a computer image. By processing, it is composed of an apparatus and software for measuring the crystal orientation of the irradiation point in a short time.
  • the EBSP method can quantitatively analyze the microstructure and crystal orientation of the surface of the bulk sample, and the analysis area can be analyzed up to a resolution of 20 nm as long as it is within the region that can be observed with the SEM, although it depends on the resolution of the SEM.
  • the analysis by the EBSP-OIM method is performed by mapping several tens of thousands of regions to be analyzed in a grid at equal intervals over several hours. For polycrystalline materials, the crystal orientation distribution and crystal grain size in the sample can be seen.
  • an image that can be discriminated from an image mapped with the azimuth difference of each packet as 15 ° may be conveniently defined as a continuous cooling transformation structure (Zw).
  • the structural fraction of pro-eutectoid ferrite was determined by the KAM (Kernel Average Misorientation) method equipped in EBSP-OIM.
  • KAM Kernel Average Misorientation
  • this map represents a strain distribution based on local orientation changes in the grains.
  • the analysis condition is EBSP-OIM
  • the condition for calculating the azimuth difference between adjacent pixels is a third approximation, and the azimuth difference is 5 ° or less.
  • pro-eutectoid ferrite is defined as the microstructure up to the surface area fraction of the pixel calculated as the above-mentioned third misalignment approximation of 1 ° or less. This is because the polygonal pro-eutectoid ferrite transformed at high temperature is formed by diffusion transformation, so the dislocation density is small and the intra-granular distortion is small, so the intra-granular difference in crystal orientation is small. From the various investigation results, the polygonal ferrite volume fraction obtained by optical microscope observation and the area fraction of the area obtained by the third approximation of the first difference of 1 ° measured by the KAM method were obtained. .
  • the production method prior to hot rolling is not particularly limited. That is, various secondary smelting may be performed following the smelting by a blast furnace or an electric furnace, and then the casting may be performed by a method such as a thin slab casting in addition to a normal continuous casting and an ingot method.
  • a method such as a thin slab casting in addition to a normal continuous casting and an ingot method.
  • continuous casting after cooling to low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled. Scrap may be used as a raw material.
  • sheet bars may be joined after rough rolling, and finish rolling may be performed continuously.
  • the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again to perform bonding.
  • the slab extracted from the heating furnace is subjected to a rough rolling process which is a first hot rolling to perform rough rolling to obtain a rough bar.
  • the high-strength steel sheet excellent in local deformability of the present invention is obtained when the following requirements are satisfied.
  • the austenite grain size in the coarse bar after rough rolling, that is, before finish rolling is important, and it is desirable that the austenite grain size before finish rolling is small. If it is 200 ⁇ m or less, the grain unit is refined and the main phase is homogenized. It turns out that it contributes greatly.
  • rolling is performed at least once at a rolling reduction of at least 40% by rough rolling in a temperature range of 1000 ° C. or more and 1200 ° C. or less. .
  • Finer grains can be obtained as the rolling reduction ratio and the number of rolling reductions are increased, and in order to obtain this effect more efficiently, it is desirable to obtain an austenite grain size of 100 ⁇ m or less, and for this purpose, 40% It is desirable to perform the above rolling twice or more. However, the reduction exceeding 70% or the rough rolling exceeding 10 times may cause a decrease in temperature or excessive generation of scale.
  • reducing the austenite grain size before finish rolling can improve the local deformability by controlling the recrystallization of austenite in the subsequent finish rolling, finer grain unit of final structure, and equiaxing. It is effective for. This is presumed to be due to the function of the austenite grain boundary after rough rolling (that is, before finish rolling) as one of the recrystallization nuclei during finish rolling.
  • the plate piece In order to confirm the austenite grain size after rough rolling, it is desirable to cool the plate piece before finishing rolling as much as possible, and the plate piece is cooled at a cooling rate of 10 ° C./s or more.
  • the structure of the cross section is etched to raise the austenite grain boundary and measured with an optical microscope. At this time, 20 fields of view or more are measured by image analysis or a point count method at a magnification of 50 times or more.
  • the finish rolling step which is the second hot rolling.
  • the time from the end of the rough rolling process to the start of the finish rolling process is preferably 150 seconds or less.
  • the finish rolling start temperature be 1000 ° C. or higher.
  • the finish rolling start temperature is less than 1000 ° C, the rolling temperature applied to the rough bar to be rolled is lowered in each finish rolling pass, and the texture is developed in the non-recrystallization temperature range and isotropic. Deteriorates.
  • the upper limit of the finish rolling start temperature is not particularly limited. However, if it is 1150 ° C. or higher, there is a possibility that blisters that will be the starting point of scale-like spindle scale defects occur between the steel plate base iron and the surface scale before finish rolling and between passes. desirable.
  • the temperature determined by the component composition of the steel sheet is T1, and rolling at 30% or more is performed at least once in a temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower.
  • the total rolling reduction is set to 50% or more.
  • T1 is a temperature calculated by the following formula (1).
  • T1 (° C.) 850 + 10 ⁇ (C + N) ⁇ Mn + 350 ⁇ Nb + 250 ⁇ Ti + 40 ⁇ B + 10 ⁇ Cr + 100 ⁇ Mo + 100 ⁇ V (1)
  • C, N, Mn, Nb, Ti, B, Cr, Mo, and V are content (mass%) of each element.
  • This T1 temperature itself is obtained empirically. Based on the T1 temperature, the inventors have empirically found that recrystallization in the austenitic region of each steel is promoted. In order to obtain better local deformability, it is important to accumulate strain due to large reduction, and the total reduction ratio of 50% or more is essential. Furthermore, it is desirable to take a reduction of 70% or more. On the other hand, taking a reduction ratio of more than 90% adds to securing temperature and adding excessive rolling.
  • finish rolling in order to promote uniform recrystallization by releasing accumulated strain, rolling is performed at T1 + 30 ° C. or higher and T1 + 200 ° C. or lower at least once with 30% or more in one pass.
  • the rolling reduction below T1 + 30 ° C. is 30% or less. From the standpoint of plate thickness accuracy and plate shape, a rolling reduction of 10% or less is desirable. In the case of obtaining more isotropic properties, the rolling reduction in the temperature range below T1 + 30 ° C. is desirably 0%.
  • Finish rolling is preferably completed at T1 + 30 ° C or higher.
  • the resized crystallized austenite grains may expand and the isotropic property may be lowered.
  • the production method of the present invention improves the local deformability such as hole expandability and bendability by controlling the texture of the product by recrystallizing austenite uniformly and finely in finish rolling.
  • the rolling rate can be obtained by actual results or calculation from rolling load, sheet thickness measurement, and the like.
  • the temperature can be actually measured with an inter-stand thermometer, and can be obtained by a calculation simulation considering processing heat generation from the line speed and the rolling reduction. Therefore, it can be easily confirmed whether or not the rolling specified in the present invention is performed.
  • the “final reduction with a reduction ratio of 30% or more” refers to the rolling performed at the end of the rolling with a reduction ratio of 30% or more among rollings of multiple passes performed in finish rolling.
  • the rolling performed in the final stage indicates that the rolling reduction is “30% or more. Is the final reduction.
  • the rolling reduction of the rolling performed before final stage among the rolling of multiple passes performed in finish rolling is 30% or more, and rolling performed before the final stage (the reduction ratio is 30).
  • % Rolling the rolling performed before the final stage (the rolling reduction is 30% or more) is performed if the rolling with a rolling reduction of 30% or more is not performed. Rolling) is “final reduction with a reduction ratio of 30% or more”.
  • the rough bar rolled to a predetermined thickness by the rough rolling mill 2 is then finish-rolled (second hot rolling) by the plurality of rolling stands 6 of the finish rolling mill 3 to form the hot-rolled steel sheet 4.
  • rolling at 30% or more is performed at least once in a temperature range of temperature T1 + 30 ° C. or higher and T1 + 200 ° C. or lower.
  • the total rolling reduction is 50% or more.
  • the waiting time t seconds satisfies the above formula (2) or the above formulas (2a) and (2b).
  • the primary cooling is started by the inter-stand cooling nozzle 10 disposed between the rolling stands 6 of the finish rolling mill 3 or the cooling nozzle 11 disposed on the run-out table 5.
  • the final reduction with a reduction ratio of 30% or more is performed only in the rolling stand 6 arranged in the front stage of the finish rolling mill 3 (left side in FIG. 6, upstream side of rolling), and the subsequent stage of the finish rolling mill 3 (see FIG. In the rolling stand 6 arranged on the right side in FIG. 6 (on the downstream side of the rolling), when the rolling with a reduction rate of 30% or more is not performed, the start of the primary cooling is started by the cooling nozzle 11 arranged in the runout table 5.
  • the waiting time t seconds may not satisfy the above equation (2) or the above equations (2a) and (2b). In such a case, primary cooling is started by the inter-stand cooling nozzle 10 disposed between the rolling stands 6 of the finish rolling mill 3.
  • the start of the primary cooling is started.
  • the waiting time t seconds may satisfy the above formula (2) or the above formulas (2a) and (2b).
  • the primary cooling may be started by the cooling nozzle 11 arranged on the run-out table 5.
  • the primary cooling may be started by the inter-stand cooling nozzle 10 disposed between the rolling stands 6 of the finish rolling mill 3 after the final reduction of 30% or more is performed. .
  • cooling is performed so that the temperature change (temperature drop) is 40 ° C. or more and 140 ° C. or less at an average cooling rate of 50 ° C./second or more.
  • the temperature change is less than 40 ° C.
  • recrystallized austenite grains grow and low temperature toughness deteriorates.
  • coarsening of austenite grains can be suppressed.
  • it is less than 40 ° C. the effect cannot be obtained.
  • it exceeds 140 ° C. recrystallization becomes insufficient, and it becomes difficult to obtain a target random texture. Further, it is difficult to obtain a ferrite phase effective for elongation, and the hardness of the ferrite phase is increased, so that elongation and local deformability are deteriorated.
  • the average cooling rate in the primary cooling is less than 50 ° C./second, the recrystallized austenite grains grow and the low temperature toughness deteriorates.
  • the upper limit of the average cooling rate is not particularly defined, but 200 ° C./second or less is considered appropriate from the viewpoint of the steel plate shape.
  • the rolling rate can be obtained from actual results or calculations from rolling load, sheet thickness measurement, and the like.
  • the temperature of the steel slab during rolling can be measured by placing a thermometer between the stands, simulating in consideration of the heat generated by processing from the line speed, the rolling reduction, or the like, or both.
  • the amount of processing in the temperature range below T1 + 30 ° C. is as small as possible, and the reduction rate in the temperature range below T1 + 30 ° C. is 30%.
  • the following is desirable.
  • the finish rolling mill 3 of the continuous hot rolling line 1 shown in FIG. 6 when passing one or more rolling stands 6 arranged on the front side (left side in FIG. 6, upstream side of rolling).
  • the steel sheet passes through one or two or more rolling stands 6 that are in a temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower (right side in FIG. 6, downstream of rolling).
  • the rolling speed is not particularly limited. However, if the rolling speed on the final stand side of finish rolling is less than 400 mpm, the ⁇ grains grow and become coarse, and the region where ferrite can be precipitated for obtaining ductility is reduced, which may deteriorate ductility. is there. Even if the upper limit of the rolling speed is not particularly limited, the effect of the present invention can be obtained, but 1800 mpm or less is realistic due to equipment restrictions. Therefore, in the finish rolling process, the rolling speed is preferably 400 mpm or more and 1800 mpm or less.
  • the microstructure of the cold-rolled steel sheet is mainly formed by a subsequent cold rolling or a heat treatment after the cold rolling. Therefore, the cooling pattern up to winding may not be controlled so strictly.
  • Cold rolling The hot-rolled original sheet produced as described above is pickled as necessary, and rolled in a cold state at a reduction rate of 30% to 70%.
  • the rolling reduction is 30% or less, it is difficult to cause recrystallization by subsequent heating and holding, and the equiaxed grain fraction is lowered and the crystal grains after heating are coarsened.
  • the anisotropy becomes strong because of the development of the texture during heating. For this reason, it is 70% or less.
  • the driving force for recrystallization generated in the steel sheet by heating is the strain stored in the steel sheet by cold rolling.
  • the average heating rate HR1 in the temperature range from room temperature to 650 ° C. is small, the dislocations introduced by cold rolling recover and recrystallization does not occur.
  • the texture developed during cold rolling remains as it is, and properties such as isotropic properties are deteriorated.
  • the average heating rate HR1 in the temperature range from room temperature to 650 ° C.
  • the average heating rate HR1 in the temperature range from room temperature to 650 ° C. needs to be 0.3 (° C./second) or more.
  • the average heating rate HR2 exceeding 650 ° C. and Ae3 to 950 ° C. is large, unrecrystallized ferrite remains as it is without recrystallization of ferrite existing in the steel sheet after cold rolling. .
  • the formed austenite inhibits the growth of recrystallized ferrite, and unrecrystallized ferrite is more likely to remain. Since this non-recrystallized ferrite has a strong texture, it adversely affects characteristics such as r-value and isotropic property, and includes a large amount of dislocations, so that the ductility is greatly deteriorated. Therefore, in the temperature range exceeding 650 ° C. and Ae 3 to 950 ° C., the average heating rate HR2 needs to be 0.5 ⁇ HR1 (° C./second) or less.
  • the steel sheet is heated to the temperature range of Ae 3 to 950 ° C. at the two-stage average heating rate in this way, and held at the temperature range of Ae 3 to 950 ° C. for 1 to 300 seconds.
  • the temperature is lower or shorter than this range, the fraction of the bainite structure does not become 95% or more in the subsequent secondary cooling process, and the increase in local ductility due to the texture control decreases.
  • the temperature exceeds 950 ° C. or the holding time exceeds 300 seconds, the crystal grains become coarse, and the area ratio of grains of 20 ⁇ m or less increases.
  • heating and holding does not mean only isothermal holding, but it is sufficient to retain the steel sheet in a temperature range of 3 to 950 ° C. Ae.
  • the temperature of the steel sheet may be changed within the temperature range of Ae3 to 950 ° C.
  • the secondary cooling is performed to a temperature of 500 ° C. or less so that the average cooling rate in the temperature range between Ae3 and 500 ° C. is 10 ° C./s or more and 200 ° C./s or less. If the secondary cooling rate is less than 10 ° C./s, ferrite is excessively generated and the fraction of the bainite structure cannot be increased to 95% or more, and the increase in local ductility due to texture control is reduced. On the other hand, even if the cooling rate exceeds 200 ° C./s, the controllability of the cooling end point temperature is remarkably deteriorated.
  • the average cooling rate at HF (heated holding temperature) to 0.5HF + 250 ° C. does not exceed the average cooling rate at 0.5HF + 250 ° C. to 500 ° C. To do.
  • holding does not only mean isothermal holding, but it is sufficient to retain the steel sheet in a temperature range of 350 ° C. or more and 500 ° C. or less.
  • the steel plate may be once cooled to 350 ° C. and then heated to 500 ° C., or the steel plate may be cooled to 500 ° C. and then cooled to 350 ° C.
  • a hot-dip galvanized layer or an alloyed hot-dip galvanized layer is formed on the surface of the steel sheet. You may do it.
  • the effects of the present invention can be obtained by any of electroplating, hot dipping, vapor deposition plating, organic film formation, film lamination, organic salt / inorganic salt treatment, non-chromic treatment, and the like.
  • the steel sheet according to the present invention can also be applied to stretch forming and composite forming mainly composed of bending, such as bending, stretching, and drawing.
  • Table 1 shows the chemical composition of each steel used in the examples.
  • Tables 2 and 3 show the production conditions.
  • Table 4 shows the structure and mechanical properties of each steel type according to the manufacturing conditions shown in Table 2.
  • Table 5 shows the structure and mechanical properties of each steel type according to the manufacturing conditions shown in Table 3.
  • surface shows that it is outside the range of the range of this invention, or the preferable range of this invention.
  • these steels are re-heated as they are or once cooled to room temperature, heated to a temperature range of 1000 ° C. to 1300 ° C., and then hot rolled under the conditions shown in Tables 2 and 3.
  • the hot rolling was finished at the Ar3 transformation temperature or higher.
  • Tables 2 and 3 the letters A to T and the letters a to i attached to the steel types are the components of steels A to T and a to i in Table 1. Show.
  • the hot rolling first, in the rough rolling which is the first hot rolling, rolling was performed at least once at a rolling reduction of 40% or more in a temperature range of 1000 ° C. or more and 1200 ° C. or less.
  • rolling with a rolling reduction of 40% or more was not performed in one pass in rough rolling.
  • Tables 2 and 3 show the number of reductions, the respective reduction ratios (%), and the austenite grain size ( ⁇ m) after rough rolling (before finish rolling) in rough rolling.
  • finish rolling as the second hot rolling was performed.
  • finish rolling rolling is performed at a temperature of T1 + 30 ° C. or more and T1 + 200 ° C. or less at least once with a reduction rate of 30% or more. In a temperature range of less than T1 + 30 ° C., the total reduction rate is 30% or less. It was.
  • finish rolling rolling with a rolling reduction of 30% or more was performed in one pass in the final pass in a temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower.
  • the total rolling reduction was set to 50% or more.
  • the total rolling reductions of the steel types G2, H4, and M3 in Table 2 and the steel types G2 ', H4', and M3 'in Table 3 were less than 50%.
  • the rolling reduction (%) of the final pass in the temperature range of T1 + 30 ° C or higher and T1 + 200 ° C or lower the rolling reduction of the pass one step before the final pass (rolling rate of the final previous pass) (%) 2 and shown in Table 3.
  • Table 2 shows the total rolling reduction (%) in the temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower in finish rolling, and the temperature Tf after rolling in the final pass in the temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower.
  • Table 3 shows.
  • the rolling reduction (%) of the final pass in the temperature range of T1 + 30 ° C. or higher and T1 + 200 ° C. or lower in finish rolling is particularly important, it is shown in Tables 2 and 3 as P1.
  • the steel type H13 'shown in Table 3 started the primary cooling after the waiting time t seconds passed 2.5 ⁇ t1 from the final reduction with a reduction ratio of 30% or more in finish rolling.
  • the steel type M2 in Table 2 and the steel type M2 ′ in Table 3 have a temperature change (cooling temperature amount) of less than 40 ° C. in the primary cooling, and the steel type H12 in Table 2 and the steel type H12 ′ in Table 3 are The temperature change (cooling temperature amount) in the primary cooling was over 140 ° C.
  • the steel type H8 in Table 2 and the steel type H8 'in Table 3 had an average cooling rate in primary cooling of less than 50 ° C / second.
  • Tables 2 and 3 show t1 (seconds) and 2.5 ⁇ t1 (seconds) of each steel type.
  • waiting time t (second) until the start of primary cooling, t / t1, average cooling rate (° C./second) in primary cooling, temperature Changes (cooling temperature amount) (° C.) are shown in Tables 2 and 3.
  • Tables 2 and 3 show the coiling temperature (° C.) of each steel type.
  • the hot-rolled original sheet was pickled and cold-rolled to a thickness of 1.2 to 2.3 mm at a rolling reduction of 30% to 70%.
  • the steel types E2 and L2 in Table 2 and the steel types E2 'and L2' in Table 3 had a cold rolling reduction of less than 30%.
  • the steel type H11 in Table 2 and the steel type H11 'in Table 3 had a cold rolling reduction of more than 70%.
  • Tables 2 and 3 show the reduction ratio (%) of each steel type in cold rolling.
  • the average heating rate HR1 (° C / second) from room temperature to 650 ° C is set to 0.3 or more (HR1 ⁇ 0.3), exceeds 650 ° C, and Ae3
  • the heating temperatures of steel types C2 and G3 in Table 2 and steel types C2 'and G3' in Table 3 were lower than Ae3.
  • the heating temperature of steel type H10 in Table 2 and steel type H10 'in Table 3 was higher than 950 ° C.
  • Steel type N2 in Table 2 and steel type N2 'in Table 3 had a retention time in the temperature range of Ae3 to 950 ° C. exceeding 300 seconds.
  • the steel type E2 of Table 2 and the steel type E2 'of Table 3 had an average heating rate HR1 of less than 0.3 (° C./second).
  • Steel types C2, H6, H8 in Table 2 and steel types C2 ', H6', H8 'in Table 3 had an average heating rate HR2 (° C / second) of more than 0.5 x HR1.
  • Tables 2 and 3 show Ae3 (° C), heating temperature (° C), holding time (seconds), and average heating rates HR1 and HR2 (° C / second) of each steel type.
  • an overaging heat treatment was performed in a temperature range of 350 ° C. or more and 500 ° C. or less for t2 seconds or more and 400 seconds or less.
  • the steel type H9 in Table 2 and the steel type H9 ′ in Table 3 have an overaging heat treatment temperature of less than 350 ° C.
  • the steel types A2 and I2 in Table 2 and the steel types A2 ′ and I2 ′ in Table 3 are 500 It was over °C.
  • Steel type D2 in Table 2 and steel type D2 ′ in Table 3 are overaged in less than t2 seconds, steel types A2, H9, I2 in Table 2, and steel types A2 ′, H9 ′ in Table 3.
  • I2 ′ was over 400 seconds.
  • Tables 2 and 3 show the overaging heat treatment temperature, t2 (second), and treatment time (second) of each steel type.
  • Tables 4 and 5 show the area ratio (structure fraction) (%) of bainite, pearlite, pro-eutectoid ferrite, martensite, and retained austenite in the metal structure of each steel type.
  • Table 4 shows the structure and mechanical properties of the steel types according to the production conditions in Table 2.
  • Table 5 shows the structure and mechanical properties of the steel types according to the manufacturing conditions in Table 3.
  • B is bainite
  • P is pearlite
  • F proeutectoid ferrite
  • M martensite
  • rA retained austenite.
  • Tables 4 and 5 show the ratio of crystal grains ( ⁇ m) and dL / dt of 3.0 or less (equal axis grain ratio) (%). Also, the tensile strength TS (MPa) of each steel type, the elongation El (%), the hole expansion ratio ⁇ (%) as an index of local deformability, and the critical bending radius (plate thickness / minimum bending radius by 60 ° V-bending) ) Are shown in Tables 4 and 5.
  • the bending test was C direction bending (C bending).
  • the tensile test and the bending test were based on JIS Z 2241 and Z 2248 (V block 90 ° bending test).
  • the hole expansion test complied with the Iron Federation standard JFS T1001.
  • the pole density in each crystal orientation was measured at a pitch of 0.5 ⁇ m in the region of 3/8 to 5 / of the plate thickness of the cross section parallel to the rolling direction using the above-mentioned EBSP.

Abstract

質量%で、C:0.02%以上、0.20%以下、Si:0.001%以上、2.5%以下、Mn:0.01%以上、4.0%以下、P:0.001%以上、0.15%以下、S:0.0005%以上、0.03%以下、Al:0.001%以上、2.0%以下、N:0.0005%以上、0.01%以下、O:0.0005%以上、0.01%以下、を含有し、Si+Al:1.0%未満に制限され、残部鉄および不可避的不純物からなり、金属組織におけるベイナイトの面積率が95%以上であり、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における、{100}<011>~{223}<110>方位群の極密度の平均値が4.0以下、かつ、{332}<113>の結晶方位の極密度が5.0以下であり、前記金属組織の結晶粒の体積平均径が7μm以下である、局部変形能に優れた高強度冷延鋼板。

Description

局部変形能に優れた高強度冷延鋼板とその製造方法
 本発明は、曲げ、伸びフランジ、バーリング加工などの局部変形能に優れた高強度冷延鋼板に関するもので、自動車部品等が主たる用途である。
 本願は、2011年4月13日に日本に出願された特願2011-089250号に基づき優先権を主張し、その内容をここに援用する。
 自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に自動車車体の軽量化を今後進めていくためには、従来以上に高強度鋼板の使用強度レベルを高めなければならず、例えば足回り部品に高強度鋼板を用いるにはバーリング加工のための局部変形能を改善しなければならない。
 しかしながら、一般的に鋼板を高強度化すれば成形性が低下し、非特許文献1のように絞り成形や張り出し成形に重要な均一伸びが低下する。これに対して非特許文献2のように、鋼板の金属組織を複合化することで同一強度でも均一伸びを確保する方法が開示されている。
 一方では、曲げ成形、穴拡げ加工やバーリング加工に代表される局部延性を改善する鋼板の金属組織制御法についても開示されている。介在物制御や単一組織化すること、さらには組織間の硬度差を低減すれば、曲げ性や穴広げ加工に効果的であることが非特許文献3に開示されている。
 これは、組織制御により単一組織にすることにより、穴広げ性を改善するものであるが、単一組織にするためには、非特許文献4のようにオーステナイト単相からの熱処理が製法の基本となる。さらに、延性との両立から熱間圧延後の冷却制御により金属組織制御を行い、析出物の制御および変態組織を制御することでフェライトとベイナイトの適切な分率を得る技術も非特許文献4に開示がある。
 一方、熱間圧延の仕上温度、仕上圧延の圧下率及び温度範囲を制御し、オーステナイトの再結晶を促進させ、圧延集合組織の発達を抑制し、結晶方位をランダム化することにより、強度、延性、穴広げ性を向上させる手法が特許文献1に開示されている。
特開2009-263718号公報
岸田、新日鉄技報(1999)No.371,p.13 O. Matsumura et al、Trans.ISIJ(1987)vol.27,p.570 加藤ら、製鉄研究(1984)vol.312,p.41 K.Sugimoto et al、ISIJ International(2000)Vol.40,p.920
 上述したように、局部変形能を劣化させる要因は組織間硬度差、非金属介在物、発達した圧延集合組織などの様々な“不均一性”である。そのうち最も影響の大きいものは、上記非特許文献3に示されている組織間硬度差とされており、その他有力な支配因子として、特許文献1で示されている発達した圧延集合組織が挙げられる。これらの要素が複合的に絡み合い鋼板の局部変形能が決定されている。そのため、集合組織制御による局部変形能の上昇代を最大化するためには、併せて組織制御を行い、組織間硬度差に起因する不均一性を極力排除する必要がある。
 そこで本願発明では、集合組織制御と併せて、ベイナイトの面積率が95%以上の金属組織とすることで高強度鋼板の局部延性を改善し、併せて鋼板内の異方性についても改善できるような局部変形能に優れた高強度冷延鋼板とその製造方法を提供するものである。
 従来の知見によれば、前述のように穴拡げ性や曲げ性などの改善は、介在物制御、析出物微細化、組織均質・単相化および組織間の硬度差の低減などによって行われていた。しかし、これだけでは、NbやTiなどが添加されている高強度鋼板では異方性への影響が懸念される。これは、他の成形性因子を犠牲にしたり、成形前のブランクの取る方向を限定してしまうなどの問題が生じてしまうこととなり、用途も限定的になってしまう。
 そこで本発明者らは、穴拡げ性、曲げ加工性を向上させるために、新たに鋼板の集合組織の影響に着目して、その作用効果を詳細に調査、研究した。その結果、特定の結晶方位群の各方位の強度を制御することで、伸びや強度を大きく落とすことなく、局部変形能が飛躍的に向上することを明らかにした。強調すべき点は、その集合組織制御による局部変形能の向上代は鋼組織に大きく依存し、ベイナイトの面積率が95%以上の金属組織とすることで、鋼の強度を担保した上で、局部変形能の向上代が最大化されることをも明らかにしたことである。加えて、特定の結晶方位群の各方位の強度を制御した組織においては粒単位のサイズが局部延性に大きく影響を及ぼすことを見出した。
 一般に、低温生成相(ベイナイト、マルテンサイト等)が混在した組織において、結晶粒の定義は極めてあいまいで、定量化が困難であった。これに対し、本発明者らは、次のようにして結晶粒の”粒単位”を定めれば、結晶粒の定量化の問題を解決できることを見いだした。
 本発明で定められる結晶粒の“粒単位”は、EBSP(Electron
Back Scattering Pattern:電子後方散乱パターン)による鋼板の方位の解析において、次のようにして定められる。すなわち、EBSPによる鋼板の方位の解析において、例えば、1500倍の倍率で、0.5μm以下の測定ステップで方位測定を行い、隣りあう測定点の方位差が15°を超えた位置を結晶粒の境界とする。そして、この境界で囲まれた領域が、結晶粒の“粒単位”と定められる。
 このようにして定められた粒単位の結晶粒について、円相当径dを求め、個々の粒単位の結晶粒の体積を4/3πd3で求める。そして、体積の重み付き平均を算出して、体積平均径(Mean Volume Diameter)を求めた。
 本発明は前述の知見に基づいて構成されており、その主旨とするところは以下の通りである。
[1]
質量%で、
C:0.02%以上、0.20%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、4.0%以下、
P:0.001%以上、0.15%以下、
S:0.0005%以上、0.03%以下、
Al:0.001%以上、2.0%以下、
N:0.0005%以上、0.01%以下、
O:0.0005%以上、0.01%以下、
を含有し、Si+Al:1.0%未満に制限され、残部鉄および不可避的不純物からなり、
金属組織におけるベイナイトの面積率が95%以上であり、
鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>、及び、{223}<110>の各結晶方位で表わされる{100}<011>~{223}<110>方位群の極密度の平均値が4.0以下、かつ、{332}<113>の結晶方位の極密度が5.0以下であり、
前記金属組織の結晶粒の体積平均径が7μm以下である、局部変形能に優れた高強度冷延鋼板。
[2]
前記ベイナイトの結晶粒のうち、圧延方向の長さdLと板厚方向の長さdtの比:dL/dtが3.0以下である結晶粒の割合が50%以上である、[1]に記載の局部変形能に優れた高強度冷延鋼板。
[3]
更に、質量%で、
Ti:0.001%以上、0.20%以下、
Nb:0.001%以上、0.20%以下、
V:0.001%以上、1.0%以下、
W:0.001%以上、1.0%以下
の1種又は2種以上を含有する、[1]に記載の局部変形能に優れた高強度冷延鋼板。
[4]
更に、質量%で、
B:0.0001%以上、0.0050%以下、
Mo:0.001%以上、1.0%以下、
Cr:0.001%以上、2.0%以下、
Cu:0.001%以上、2.0%以下、
Ni:0.001%以上、2.0%以下、
Co:0.0001%以上、1.0%以下、
Sn:0.0001%以上、0.2%以下、
Zr:0.0001%以上、0.2%以下、
As:0.0001%以上、0.50%以下
の1種又は2種以上を含有する、[1]に記載の局部変形能に優れた高強度冷延鋼板。
[5]
更に、質量%で、
Mg:0.0001%以上、0.010%以下、
REM:0.0001%以上、0.1%以下、
Ca:0.0001%以上、0.010%以下
の1種又は2種以上を含有する、[1]に記載の局部変形能に優れた高強度冷延鋼板。
[6]
表面に、溶融亜鉛めっき層または、合金化溶融亜鉛めっき層を備える、[1]に記載の局部変形能に優れた高強度冷延鋼板。
[7]
質量%で、
C:0.02%以上、0.20%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、4.0%以下、
P:0.001%以上、0.15%以下、
S:0.0005%以上、0.03%以下、
Al:0.001%以上、2.0%以下、
N:0.0005%以上、0.01%以下、
O:0.0005%以上、0.01%以下、
を含有し、Si+Al:1.0%未満に制限され、残部鉄および不可避的不純物からなる鋼片を、
1000℃以上1200℃以下の温度範囲で、圧下率40%以上の圧延を1回以上行う第1の熱間圧延を行い、
前記第1の熱間圧延で、オーステナイト粒径を200μm以下とし、
下記式(1)で定まる温度T1+30℃以上、T1+200℃以下の温度域で、少なくとも1回は1パスで圧下率30%以上の圧延を行う第2の熱間圧延を行い、
前記第2の熱間圧延での合計の圧下率を50%以上とし、
前記第2の熱間圧延において、圧下率が30%以上の最終圧下を行った後、待ち時間t秒が下記式(2)を満たすように、1次冷却を開始し、
前記1次冷却における平均冷却速度を50℃/秒以上とし、かつ、前記1次冷却を温度変化が40℃以上140℃以下の範囲で行い、
圧下率30%以上、70%以下の冷間圧延を行い、
Ae3~950℃の温度域で1~300秒間保持し、
Ae3~500℃の温度域において、平均冷却速度10℃/s以上、200℃/s以下で2次冷却を行い、
350℃以上、500℃以下の温度域において、下記式(4)を満たすt2秒以上400秒以下保持する過時効熱処理を行う、局部変形能に優れた高強度冷延鋼板の製造方法。
T1(℃)=850+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V ・・・ (1)
t≦2.5×t1 ・・・ (2)
ここで、t1は、下記式(3)で求められる。
t1=0.001×((Tf-T1)×P1/100)2-0.109×((Tf-T1)×P1/100)+3.1 ・・・ (3)
ここで、上記式(3)において、Tfは、圧下率が30%以上の最終圧下後の鋼片の温度、P1は、30%以上の最終圧下の圧下率である。
log(t2)=0.0002(T2-425)+1.18 ・・・ (4)
ここで、T2は過時効処理温度であり、t2の最大値は400とする。
[8]
T1+30℃未満の温度範囲における合計の圧下率が30%以下である、請求項[7]に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
[9]
前記待ち時間t秒が、さらに、下記式(2a)を満たす、[7]に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
 t<t1 ・・・ (2a)
[10]
前記待ち時間t秒が、さらに、下記式(2b)を満たす、[7]に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
 t1≦t≦t1×2.5 ・・・ (2b)
[11]
前記一次冷却を、圧延スタンド間で開始する、[7]に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
[12]
前記冷間圧延後、Ae3~950℃の温度域まで加熱するにあたり、
室温以上、650℃以下の平均加熱速度を、下記式(5)で示されるHR1(℃/秒)とし、
650℃を超え、Ae3~950℃までの平均加熱速度を、下記式(6)で示されるHR2(℃/秒)とする、[7]に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
HR1≧0.3 ・・・ (5)
HR2≦0.5×HR1 ・・・ (6)
[13]
更に、表面に、溶融亜鉛めっき層、または、合金化溶融亜鉛めっき層を形成する、[7]に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
 本発明によれば、鋼板の集合組織と鋼組織を制御することで、曲げ、伸びフランジ、バーリング加工などの局部変形能に優れた高強度冷延鋼板を得ることができる。
{100}<011>~{223}<110>方位群の極密度の平均値と板厚/最小曲げ半径の関係を示す。 {332}<113>方位の極密度と板厚/最小曲げ半径の関係を示す。 粗圧延における40%以上の圧延回数と粗圧延のオーステナイト粒径の関係を示す。 T1+30~T1+200℃の圧下率と{100}<011>~{223}<110>方位群の極密度の平均値の関係を示す。 T1+30~T1+200℃の圧下率と{332}<113>の結晶方位の極密度の関係を示す。 連続熱間圧延ラインの説明図である。 本発明鋼と比較鋼の強度と穴拡げ性の関係を示す。 本発明鋼と比較鋼の強度と曲げ性の関係を示す。
 以下に本発明の内容を詳細に説明する。
(結晶方位)
 まず、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値、及び、{332}<113>の結晶方位の極密度について説明する。
 本発明の冷延鋼板において、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における{100}<011>~{223}<110>方位群の極密度の平均値、及び、{332}<113>の結晶方位の極密度は、特に重要な特性値である。
 図1のように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部においてX線回折を行い、各方位の極密度を求めたときの、{100}<011>~{223}<110>方位群の極密度の平均値が4.0未満で、直近要求される骨格部品の加工に必要な板厚/曲げ半径≧1.5を満たすことができる。加えて、鋼組織がベイナイト分率95%以上を満たす場合、板厚/曲げ半径≧2.5を満たす。穴拡げ性や小さな限界曲げ特性を必要とする場合には{100}<011>~{223}<110>方位群の極密度の平均値は、3.0未満が望ましい。
 この値が4.0以上では鋼板の機械的特性の異方性が極めて強くなり、ひいてはある方向のみの局部変形能を改善するものの、それとは異なる方向での材質が著しく劣化し板厚/曲げ半径≧1.5を満足できなくなる。一方、現行の一般的な連続熱延工程では実現が難しいが、0.5未満になると局部変形能の劣化が懸念される。
 この方位群に含まれる方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>および{223}<110>である。
 極密度とは、X線ランダム強度比と同義である。極密度(X線ランダム強度比)とは、特定の方位への集積を持たない標準試料と供試材のX線強度を同条件でX線回折法等により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。この極密度は、X線回折、EBSP(電子後方散乱パターン:Electron Back Scattering Pattern)法、またはECP(Electron
Channeling Pattern)法のいずれでも測定が可能である。
 例えば、{100}<011>~{223}<110>方位群の極密度は、これらの方法によって測定された{110}、{100}、{211}、{310}極点図のうち、複数の(好ましくは3つ以上の)極点図を用いて級数展開法で計算した3次元集合組織(ODF)から{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の極密度を求め、これら極密度を相加平均することで、上記方位群の極密度が求められる。なお、上記の全ての方位の強度を得ることができない場合は、{100}<011>、{116}<110>、{114}<110>、{112}<110>、及び、{223}<110>の各方位の極密度の相加平均で代替してもよい。
 例えば、上記各結晶方位の極密度は、3次元集合組織のφ2=45゜の断面における(001)[1-10]、(116)[1-10]、(114)[1-10]、(113)[1-10]、(112)[1-10]、(335)[1-10]、及び、(223)[1-10]の各強度を、そのまま用いればよい。
 さらに同様な理由から、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における板面の{332}<113>の結晶方位の極密度は、図2のように5.0以下でなくてはならない。望ましくは3.0以下であれば、直近要求される骨格部品の加工に必要な板厚/曲げ半径≧1.5を満たす。加えて、鋼組織がベイナイト分率95%以上を満たす場合、板厚/曲げ半径≧2.5を満たす。一方、{332}<113>の結晶方位の極密度が5.0超であると、鋼板の機械的特性の異方性が極めて強くなり、ひいてはある方向のみの局部変形能を改善するもののそれとは異なる方向での材質が著しく劣化し、板厚/曲げ半径≧1.5を確実に満足できなくなる。また、現行の一般的な連続熱延工程では実現が難しいが、0.5未満になると局部変形能の劣化が懸念される。
 以上述べた結晶方位の極密度が曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
 X線回折、EBSP法、ECP法に供する試料は、機械研磨などによって、鋼板を表面から所定の板厚まで減厚する。次いで、化学研磨や電解研磨などによって歪みを除去し、板厚の5/8~3/8の範囲で適当な面が測定面となるように試料を作製する。例えば、板幅Wの1/4W又は3/4W位置より30mmφの大きさで切り取った鋼片に、三山仕上げ(中心線平均粗さRa:0.4a~1.6a)の研削が行われる。次いで、化学研磨又は電解研磨によって歪みが除去されて、X線回折に供する試料が作製される。板幅方向については、鋼板の端部から1/4もしくは、3/4の位置で採取することが望ましい。
 当然のことであるが、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部だけでなく、なるべく多くの厚み位置について、上述の極密度の限定範囲を満たすことで、より一層、局延性能(局部伸び)が良好になる。しかし、鋼板の表面から5/8~3/8の範囲を測定することで、概ね、鋼板全体の材質特性を代表することができる。そこで、板厚の5/8~3/8を測定範囲と規定する。
 なお、{hkl}<uvw>で表される結晶方位は、鋼板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを意味している。結晶の方位は、通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)または<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。すなわち、本発明においては体心立方構造を対象としているため、例えば(111)、(-111)、(1-11)、(11-1)、(-1-11)、(-11-1)、(1-1-1)、(-1-1-1)面は等価であり区別がつかない。このような場合、これらの方位を総称して{111}と称する。ODF表示では他の対称性の低い結晶構造の方位表示にも用いられるため、個々の方位を[hkl](uvw)で表示するのが一般的であるが、本発明においては[hkl](uvw)と{hkl}<uvw>は同義である。X線による結晶方位の測定は、例えば、新版カリティX線回折要論(1986年発行、松村源太郎訳、株式会社アグネ出版)の274~296頁に記載の方法に従って行われる。
(結晶粒の体積平均径)
 本発明者らは、熱延鋼板の集合組織制御について鋭意検討した。その結果、集合組織が、上記のように制御された条件下では、粒単位の結晶粒が局部延性に及ぼす影響が極めて大きく、結晶粒を微細化することで、局部延性の飛躍的な向上が得られることが解った。なお、上述したように、結晶粒の“粒単位”は、EBSPによる鋼板の方位の解析において、方位差が15°を超えた位置を結晶粒の境界として定めた。
 このように局部延性が向上する理由は明らかでない。しかし、鋼板の集合組織がランダム化し、結晶粒が微細化すると、ミクロオーダーで生じる局部的な歪みの集中が抑制され、変形の均質化が高まり、歪がミクロオーダーで均一に分散されるためであると考えられる。
 個数が少量であっても結晶粒の大きなものが多い程、局部延性の劣化は大きくなる。このため、結晶粒のサイズは通常のサイズ平均ではなく、体積の重み付け平均で定義される体積平均径が、局部延性と強い相間が得られる。この効果を得るためには、結晶粒の体積平均径は7μm以下であることが必要である。より、穴拡げ性を高いレベルで確保するためには、5μm以下が望ましい。なお、結晶粒の測定方法については、前述のとおりとする。
(結晶粒の等軸性)
 本発明者らは、更に局部延性を追求した結果、上記の集合組織と結晶粒のサイズを満たした上で、結晶粒が等軸性に優れたときに、局部延性が向上することも見出した。この等軸性を表す指標としては、粒単位で表される結晶粒において、結晶粒の冷間圧延方向の長さdLと板厚方向の長さdtの比、dL/dtが、3.0以下の等軸性に優れた粒の割合が全ベイナイト粒のうち、少なくとも50%以上必要である。50%未満では局部延性が劣化する。
(成分組成)
 続いて、成分の限定条件について述べる。なお、含有量の%は質量%である。
C:0.02%以上、0.20%以下
 Cは鋼組織の95%以上をベイナイトとするために下限を0.02%とする。また、Cは強度を増加させる元素であるので、強度確保のためには0.025%以上とすることが好ましい。一方で、C量が0.20%を超えると溶接性を損なうことがあったり、硬質組織の増加により加工性が極端に劣化することあったりするため、上限を0.20%とする。また、C量が0.10%を超えると成形性が劣化するため、C量を0.10%以下とすることが好ましい。
Si:0.001%以上、2.5%以下
 Siは鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化したり、表面疵が発生したりするので、これを上限とする。また、Si量が多いと化成処理性が低下するので、1.20%以下とすることが好ましい。一方、実用鋼でSiを0.001%未満とするのは困難であるので、これを下限とする。
Mn:0.01%以上、4.0%以下
 Mnも鋼板の機械的強度を高めるのに有効な元素であるが、4.0%超となると加工性が劣化するので、これを上限とする。一方、実用鋼でMnを0.01%未満とするのは困難であるので、これを下限とする。また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%でMn/S≧20となるMn量を添加することが望ましい。さらに、Mnは、その含有量の増加に伴いオーステナイト域温度を低温側に拡大させて焼入れ性を向上させ、バーリング性に優れる連続冷却変態組織の形成を容易にする元素である。この効果は、Mn含有量が、1%未満では発揮しにくいので、1%以上添加することが望ましい。
P:0.001%以上、0.15%以下
S:0.0005%以上、0.03%以下
 PとSの上限はそれぞれPが0.15%以下、Sが0.03%以下とする。これは、加工性の劣化や熱間圧延または冷間圧延時の割れを防ぐためである。下限は、P、Sとも現行の一般的な精錬(二次精錬を含む)で可能な値として、Pでは0.001%、Sでは0.0005%とした。
Al:0.001%以上、2.0%以下
 Alは脱酸のために0.001%以上添加する。脱酸が十分に必要な場合は、0.01%以上の添加が好ましい。また、Alはγ→α変態点を顕著に上昇させる元素でもある。しかし、多すぎると溶接性が劣悪となるため、上限を2.0%とする。好ましくは、1.0%以下とする。
N:0.0005%以上、0.01%以下
O:0.0005%以上、0.01%以下
 NとOは不純物であり、加工性を悪くさせないように、ともに0.01%以下とする。下限は、両元素とも現行の一般的な精錬(二次精錬を含む)で可能な0.0005%とした。ただし、極端な製鋼コストの上昇を抑えるためには0.001%以上とすることが好ましい。
Si+Al:1.0%未満
 SiおよびAlが過剰に含まれると過時効処理中のセメンタイト析出が抑制され、残留オーステナイト分率が大きく成り過ぎてしまうため、SiとAlの合計添加量は1%未満とする。
Ti:0.001%以上、0.20%以下
Nb:0.001%以上、0.20%以下
V:0.001%以上、1.0%以下
W:0.001%以上、1.0%以下
 更に、析出強化によって強度を得る場合、微細な炭窒化物を生成させることがよい。析出強化を得るためには、Ti、Nb、V、Wの添加が有効であり、これらの1種または2種以上を含有しても構わない。
 Ti、Nb、V、Wの添加でこの効果を得るためには、Tiは0.001%、Nbは0.001%、Vは0.001%以上、Wは0.001%以上の添加が必要である。析出強化が特に必要である場合は、Tiを0.01%以上、Nbを0.005%以上、Vを0.01%以上、Wを0.01%以上添加することが望ましい。ただし、過度な添加でも強度上昇は飽和してしまうこと、加えて、熱延後の再結晶を抑制することで、冷延焼鈍後の結晶方位制御を困難にすることから、Tiを0.20%以下、Nbを0.20%以下、Vを1.0%以下、Wを1.0%以下とする必要がある。
B:0.0001%以上、0.0050%以下
Mo:0.001%以上、1.0%以下
Cr:0.001%以上、2.0%以下
Cu:0.001%以上、2.0%以下
Ni:0.001%以上、2.0%以下
Co:0.0001%以上、1.0%以下
Sn:0.0001%以上、0.2%以下
Zr:0.0001%以上、0.2%以下
As:0.0001%以上、0.50%以下
 組織の焼き入れ性を上昇させ第二相制御を行うことで強度を確保する場合、B、Mo、Cr、Cu、Ni、Co、Sn、Zr、Asの1種または2種以上の添加が有効である。この効果を得るためには、Bは0.0001%以上、Mo、Cr、Cu、Niは0.001%以上、Co、Sn、Zr、Asは0.0001%以上を添加する必要がある。しかし、過度の添加は逆に加工性を劣化させるので、Bの上限を0.0050%、Moの上限を1.00%、Cr、Cu、Niの上限を2.0%、Coの上限を1.0%、Sn、Zrの上限を0.2%、Asの上限を0.50%とする。
Mg:0.0001%以上、0.010%以下
REM:0.0001%以上、0.1%以下
Ca:0.0001%以上、0.010%以下
 局部成形能を向上のため、Mg、REM、Caは介在物を無害化するため重要な添加元素である。この効果を得るためのそれぞれの下限を0.0001%とした。一方、過剰添加は清浄度の悪化につながるためMgで0.010%、REMで0.1%、Caで0.010%を上限とした。
(金属組織)
 次に、本発明の冷延鋼板の金属組織について説明する。
 本発明の冷延鋼板の金属組織は、ベイナイトの面積率が95%以上であり、好ましくはベイナイト単相である。これは、金属組織を、ベイナイトとすることにより、強度と穴広げ性の両立が可能になるためである。更に、この組織は比較的高温での変態によって生成するため、製造する際に低温まで冷却する必要がなくなり、材質安定性、生産性の観点でも好ましい組織である。
 残部として、5%以下の初析フェライト、パーライト、マルテンサイト、残留オーステナイトは許容される。初析フェライトは、十分に析出強化されていれば問題ないが、成分によっては軟質になることがあり、面積率が5%超になると、ベイナイトとの硬度差により、穴広げ性が若干低下する。また、パーライトは、面積率が5%超になると、強度、加工性を損なうことがある。マルテンサイトや、加工誘起変態してマルテンサイトになる残留オーステナイトの面積率がそれぞれ1%以上、5%超になると、ベイナイトと、ベイナイトよりも硬質な組織との界面が割れ発生の起点になり、穴広げ性が劣化する。
 したがって、ベイナイトの面積率を95%以上にすれば、残部の初析フェライト、パーライト、マルテンサイト、残留γの面積率は5%以下になるので、強度と穴広げ性のバランスが良好になる。ただし、上記の通りマルテンサイトは1%未満とする必要がある。
 ここで、本発明おけるベイナイトとは、日本鉄鋼協会基礎研究会ベイナイト調査研究部会/編;低炭素鋼のベイナイト組織と変態挙動に関する最近の研究-ベイナイト調査研究部会最終報告書-(1994年 日本鉄鋼協会)に記載されているように拡散的機構により生成するポリゴナルフェライトやパーライトを含むミクロ組織と無拡散でせん断的機構により生成するマルテンサイトとの中間段階にある連続冷却変態組織(Zw)と定義されるミクロ組織をいう。
 すなわち、連続冷却変態組織(Zw)とは、光学顕微鏡観察組織として上記参考文献125~127項にあるように、主にBainitic ferrite(α°)と、Granular bainitic ferrite(α)と、Quasi-polygonal ferrite(α)とから構成され、さらに少量の残留オーステナイト(γ)と、Martensite-austenite(MA)とを含むミクロ組織であると定義される。
 なお、αとは、ポリゴナルフェライト(PF)と同様にエッチングにより内部構造が現出しないが、形状がアシュキュラーでありPFとは明確に区別される。ここでは、対象とする結晶粒の周囲長さlq、その円相当径をdqとするとそれらの比(lq/dq)がlq/dq≧3.5を満たす粒がαである。
 本発明における連続冷却変態組織(Zw)とは、このうちα°、α、α、γ、MAのうちいずれか一種又は二種以上を含むミクロ組織と定義される。なお、少量のγ、MAはその合計量を3%以下とする。
 この連続冷却変態組織(Zw)は、ナイタール試薬を用いたエッチングでの光学顕微鏡観察では判別しにくい場合がある。その場合は、EBSP-OIMTMを用いて判別する。
 EBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation
Image Microscopy登録商標)法は、走査型電子顕微鏡SEM(Scaninng Electron Microscope)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、コンピュータ画像処理する事により照射点の結晶方位を短時間で測定する装置及びソフトウエアで構成されている。
 EBSP法では、バルク試料表面の微細構造並びに結晶方位の定量的解析ができ、分析エリアは、SEMの分解能にもよるが、SEMで観察できる領域内であれば最小20nmの分解能まで分析できる。EBSP-OIM法による解析は、数時間かけて、分析したい領域を等間隔のグリッド状に数万点マッピングして行う。多結晶材料では、試料内の結晶方位分布や結晶粒の大きさを見ることができる。本発明おいては、その各パケットの方位差を15°としてマッピングした画像より判別が可能なものを連続冷却変態組織(Zw)と便宜的に定義しても良い。
 また、初析フェライトの組織分率は、EBSP-OIMに装備されているKAM(Kernel Average Misorientation)法にて求めた。KAM法は測定データのうちのある正六角形のピクセルの隣り合う6個(第一近似)もしくはさらにその外側12(第二近似)、さらにはさらにその外側の18個(第三近似)のピクセル間の方位差の平均し、その値をその中心のピクセルの値とする計算を各ピクセルに行う。
 粒界を越えないようにこの計算を実施することで粒内の方位変化を表現するマップを作成できる。すなわち、このマップは粒内の局所的な方位変化に基づくひずみの分布を表している。なお、本発明において解析条件はEBSP-OIMにおいて隣接するピクセル間の方位差を計算する条件は第三近似として、この方位差が5°以下となるものを表示させた。
 本発明において、初析フェライトとは、上記の方位差第三近似1°以下と算出されたピクセルの面性分率までのミクロ組織と定義した。これは、高温で変態したポリゴナルな初析フェライトは拡散変態で生成するので、転位密度が小さく、粒内の歪みが少ないため、結晶方位の粒内差が小さく、これまで発明者らが実施してきた様々な調査結果より、光学顕微鏡観察で得られるポリゴナルなフェライト体積分率とKAM法にて測定した方位差第三近似1°で得られるエリアの面積分率がほぼ良い一致を得たためである。
(製造方法)
 次に本発明の冷延鋼板の製造方法について述べる。優れた局部変形能を実現するためには、所定の極密度をもつ集合組織を形成させること、および、結晶粒の微細化、結晶粒の等軸性、均質化の条件を満たした鋼板とすることが重要である。これらを同時に満たすための製造条件の詳細を以下に記す。
 熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延しても良いし、鋳造スラブを連続的に熱延しても良い。原料にはスクラップを使用しても構わない。
 また、熱間圧延においては粗圧延後にシートバーを接合し、連続的に仕上げ圧延をしても良い。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行っても良い。
(第1の熱間圧延)
 加熱炉より抽出したスラブを、第1の熱間圧延である粗圧延工程に供して粗圧延を行い、粗バーを得る。本発明の局部変形能に優れた高強度鋼板は、以下の要件を満たす場合に得られる。まず、粗圧延後すなわち仕上げ圧延前の粗バーにおけるオーステナイト粒径が重要で、仕上げ圧延前のオーステナイト粒径が小さいことが望ましく、200μm以下であれば粒単位の微細化及び主相の均質化に大きく寄与することが判明した。
 仕上げ圧延前においてこの200μm以下のオーステナイト粒径を得るためには、図3のように、1000℃以上1200℃以下の温度域での粗圧延で少なくとも40%以上の圧下率で1回以上圧延する。
 圧下率およびその圧下の回数は大きいほど、細粒を得ることができ、この効果をより効率的に得るためには、100μm以下のオーステナイト粒径にすることが望ましく、このためには、40%以上の圧延は2回以上行うことが望ましい。ただし、70%を超える圧下や10回を超える粗圧延は温度の低下やスケールの過剰生成の懸念がある。
 このように、仕上げ圧延前のオーステナイト粒径を小さくすることが、後の仕上げ圧延でのオーステナイトの再結晶促進、最終組織の粒単位の微細、等軸化の制御を通した局部変形能の改善に有効である。これは、仕上げ圧延中の再結晶核の1つとして粗圧延後の(すなわち仕上げ圧延前の)オーステナイト粒界が機能することによると推測される。
 粗圧延後のオーステナイト粒径を確認するためには、仕上げ圧延に入る前の板片を可能な限り急冷することが望ましく、10℃/s以上の冷却速度で板片を冷却して、板片断面の組織をエッチングしてオーステナイト粒界を浮き立たせて光学顕微鏡にて測定する。この際、50倍以上の倍率にて20視野以上を、画像解析やポイントカウント法にて測定する。
(第2の熱間圧延)
 粗圧延工程(第1の熱間圧延)が終了した後、第2の熱間圧延である仕上げ圧延工程を開始する。粗圧延工程終了から仕上げ圧延工程開始までの時間は150秒以下とすることが望ましい。
 仕上げ圧延工程(第2の熱間圧延)においては、仕上げ圧延開始温度を1000℃以上とすることが望ましい。仕上げ圧延開始温度が1000℃未満であると、各仕上げ圧延パスにおいて、圧延対象の粗バーに与える圧延温度が低温化し、未再結晶温度域での圧下となって集合組織が発達し等方性が劣化する。
 なお、仕上げ圧延開始温度の上限は特に限定しない。しかし、1150℃以上であると、仕上げ圧延前及びパス間で、鋼板地鉄と表面スケールの間に、ウロコ状の紡錘スケール欠陥の起点となるブリスターが発生する恐れがあるので、1150℃未満が望ましい。
 仕上げ圧延では、鋼板の成分組成により決定される温度をT1として、T1+30℃以上、T1+200℃以下の温度域において、少なくとも1回は1パスで30%以上の圧延を行う。また、仕上げ圧延では、合計の圧下率を50%以上とする。この条件を満足することにより、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における、{100}<011>~{223}<110>方位群の極密度の平均値が4.0未満となり、{332}<113>の結晶方位の極密度が5.0以下となる。これにより、最終製品の局部変形能を確保することができる。
 ここで、T1は、下記式(1)で算出される温度である。
 T1(℃)=850+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V  ・・・(1)
 C、N、Mn、Nb、Ti、B、Cr、Mo、及び、Vは、各元素の含有量(質量%)である。
 図4及び図5に、各温度域での圧下率と各方位の極密度の関係を示す。図4と図5に示すように、T1+30℃以上、T1+200℃以下の温度域における大圧下と、その後のT1以上、T1+30℃未満での軽圧下は、後述の実施例の表2、3に見られるように、鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における、{100}<011>~{223}<110>方位群の極密度の平均値、{332}<113>の結晶方位の極密度を制御して最終製品の局部変形能を飛躍的に改善する。
 このT1温度自体は経験的に求めたものである。T1温度を基準として、各鋼のオーステナイト域での再結晶が促進されることを発明者らは実験により経験的に知見した。さらに良好な局部変形能を得るためには、大圧下による歪を蓄積することが重要で、合計の圧下率として50%以上は必須である。さらには、70%以上の圧下を取ることが望ましく、一方で90%を超える圧下率をとることは温度確保や過大な圧延付加を加えることとなる。
 T1+30℃以上、T1+200℃以下の温度域での合計圧下率が50%未満であると、熱間圧延中に蓄積される圧延歪みが十分ではなく、オーステナイトの再結晶が十分に進行しない。そのため、集合組織が発達して等方性が劣化する。合計圧下率が70%以上であると、温度変動等に起因するバラツキを考慮しても、十分な等方性が得られる。一方、合計圧下率が90%を超えると、加工発熱により、T1+200℃以下の温度域することが難しくなり、また、圧延荷重が増加し圧延が困難となる恐れがある。
 仕上げ圧延では、蓄積した歪みの開放による均一な再結晶を促すため、T1+30℃以上、T1+200℃以下で、少なくとも1回は、1パスで30%以上の圧延を行う。
 なお、均一な再結晶を促すためには、T1+30℃未満の温度域での加工量をなるべく少なく抑えることが必要である。そのためには、T1+30℃未満での圧下率が30%以下であることが望ましい。板厚精度や板形状の観点からは、10%以下の圧下率が望ましい。より等方性を求める場合には、T1+30℃未満の温度域での圧下率は0%が望ましい。
 仕上げ圧延は、T1+30℃以上で終了することが望ましい。T1+30℃未満での熱間圧延では、一旦再結晶した整粒なオーステナイト粒が展伸して等方性が低下する恐れがある。
 即ち、本発明の製造方法は、仕上げ圧延において、オーステナイトを均一・微細に再結晶させることで製品の集合組織を制御して、穴拡げ性や曲げ性等の局部変形能を改善する。
 圧延率は、圧延荷重、板厚測定などから実績又は計算により求めることができる。温度は、スタンド間温度計で実測可能であり、また、ラインスピードや圧下率などから加工発熱を考慮した計算シミュレーションで得ることができる。よって、本発明で規定した圧延が行われているか否は、容易に確認できる。
 熱間圧延をAr3以下で終了すると、オーステナイトとフェライトに2相域圧延になってしまい、{100}<011>~{223}<110>方位群への集積が強くなる。その結果、局部変形能が著しく劣化する。
 結晶粒を微細化し、伸展粒を抑制するためには、T1+30℃以上T1+200℃以下での圧下時の最大加工発熱量、即ち、圧下による温度上昇代を18℃以下に抑えることが望ましい。この達成のために、スタンド間冷却などを適用するのが望ましい。
(1次冷却)
 仕上げ圧延において、圧下率が30%以上の最終圧下が行われた後、待ち時間t秒が下記式(2)を満たすように、1次冷却を開始する。
t≦2.5×t1 ・・・ (2)
ここで、t1は、下記式(3)で求められる。
t1=0.001×((Tf-T1)×P1/100)2-0.109×((Tf-T1)×P1/100)+3.1 ・・・ (3)
ここで、上記式(3)において、Tfは、圧下率が30%以上の最終圧下後の鋼片の温度、P1は、30%以上の最終圧下の圧下率である。
 なお、”圧下率が30%以上の最終圧下”とは、仕上げ圧延において行われる複数パスの圧延のうち、圧下率が30%以上となる圧延の中の最後に行われた圧延を指す。例えば、仕上げ圧延において行われる複数パスの圧延のうち、最終段で行われた圧延の圧下率が30%以上である場合は、その最終段で行われた圧延が、”圧下率が30%以上の最終圧下”である。また、仕上げ圧延において行われる複数パスの圧延のうち、最終段よりも前に行われた圧延の圧下率が30%以上であり、その最終段よりも前に行われた圧延(圧下率が30%以上の圧延)が行われた後は、圧下率が30%以上となる圧延が行われなかった場合であれば、その最終段よりも前に行われた圧延(圧下率が30%以上の圧延)が、”圧下率が30%以上の最終圧下”である。
 仕上げ圧延において、圧下率が30%以上の最終圧下が行われた後、1次冷却が開始されるまでの待ち時間t秒は、オーステナイト粒径に大きな影響を与える。すなわち、鋼板の等軸粒分率、粗粒面積率に大きな影響を与える。
 待ち時間tが、t1×2.5を超えると、再結晶は既にほとんど完了している一方で、結晶粒が著しく成長して粗粒化が進むことで、r値及び伸びが低下する。
 待ち時間t秒が、さらに、下記式(2a)を満たすことで、結晶粒の成長を優先的に抑制することができる。その結果、再結晶が十分に進行していなくても鋼板の伸びを十分に向上させることができ、同時に、疲労特性を向上させることができる。
 t<t1 ・・・ (2a)
 一方、待ち時間t秒が、さらに、下記式(2b)を満たすことで、再結晶化が十分に進み結晶方位がランダム化する。そのため、鋼板の伸びを十分に向上させることができ、同時に、等方性を大きく向上させることができる。
 t1≦t≦t1×2.5 ・・・ (2b)
 ここで、図6に示すように、連続熱間圧延ライン1では、加熱炉で所定温度に加熱された鋼片(スラブ)が、粗圧延機2、仕上げ圧延機3で順に圧延され、所定の厚みの熱延鋼板4となってランナウトテーブル5に送り出される。本発明の製造方法では、粗圧延機2で行われる粗圧延工程(第1の熱間圧延)において、1000℃以上1200℃以下の温度範囲で、圧下率40%以上の圧延が鋼片(スラブ)に1回以上行われる。
 こうして粗圧延機2で所定厚みに圧延された粗バーは、次に、仕上げ圧延機3の複数の圧延スタンド6で仕上げ圧延(第2の熱間圧延)され、熱延鋼板4となる。そして、仕上げ圧延機3では、温度T1+30℃以上、T1+200℃以下の温度域で、少なくとも1回は1パスで30%以上の圧延が行われる。また、仕上げ圧延機3では、合計の圧下率は50%以上となる。
 さらに、仕上げ圧延工程において、圧下率が30%以上の最終圧下が行われた後、待ち時間t秒が上記式(2)、あるいは、上記式(2a)、(2b)のいずれかを満たすように、1次冷却が開始される。この1次冷却の開始は、仕上げ圧延機3の各圧延スタンド6間に配置されたスタンド間冷却ノズル10、あるいは、ランナウトテーブル5に配置された冷却ノズル11によって行われる。
 例えば、仕上げ圧延機3の前段(図6において左側、圧延の上流側)に配置された圧延スタンド6においてのみ、圧下率が30%以上の最終圧下が行われ、仕上げ圧延機3の後段(図6において右側、圧延の下流側)に配置された圧延スタンド6では、圧下率が30%以上となる圧延が行われない場合、1次冷却の開始を、ランナウトテーブル5に配置された冷却ノズル11によって行ったのでは、待ち時間t秒が上記式(2)、あるいは、上記式(2a)、(2b)を満たさなくなってしまう場合がある。かかる場合は、仕上げ圧延機3の各圧延スタンド6間に配置されたスタンド間冷却ノズル10によって、1次冷却を開始する。
 また、例えば、仕上げ圧延機3の後段(図6において右側、圧延の下流側)に配置された圧延スタンド6で、圧下率が30%以上の最終圧下が行われる場合、1次冷却の開始を、ランナウトテーブル5に配置された冷却ノズル11によって行っても、待ち時間t秒が上記式(2)、あるいは、上記式(2a)、(2b)を満たすことが可能な場合もある。かかる場合は、ランナウトテーブル5に配置された冷却ノズル11によって、1次冷却を開始しても構わない。もちろん、圧下率が30%以上の最終圧下が行われた後であれば、仕上げ圧延機3の各圧延スタンド6間に配置されたスタンド間冷却ノズル10によって、1次冷却を開始しても良い。
 そして、この1次冷却では、50℃/秒以上の平均冷却速度で、温度変化(温度降下)が40℃以上140℃以下となる冷却を行う。
 温度変化が40℃未満であると、再結晶したオーステナイト粒が粒成長して、低温靭性が劣化する。40℃以上とすることで、オーステナイト粒の粗大化を抑制することができる。40℃未満では、その効果は得られない。一方、140℃を超えると、再結晶が不十分となり、狙いのランダム集合組織が得られにくくなる。また、伸びに有効なフェライト相も得られにくく、またフェライト相の硬さが高くなることで、伸び、局部変形能も劣化する。また、温度変化が140℃超では、Ar3変態点温度以下まで、オーバーシュートする恐れがある。その場合、再結晶オーステナイトからの変態であっても、バリアント選択の先鋭化の結果、やはり、集合組織が形成されて等方性が低下する。
 1次冷却での平均冷却速度が50℃/秒未満であると、やはり、再結晶したオーステナイト粒が粒成長して、低温靭性が劣化する。平均冷却速度の上限は特に定めないが、鋼板形状の観点から、200℃/秒以下が妥当と思われる。
 また、粒成長を押え、さらに優れた低温靭性を得るためには、パス間の冷却装置等を使用し、仕上げ圧延の各スタンド間の加工発熱を18℃以下とすることが望ましい。
 圧延率(圧下率)は、圧延荷重、板厚測定などから、実績又は計算で求めることができる。圧延中の鋼片の温度は、スタンド間に温度計を配置して実測するか、ラインスピードや圧下率などから加工発熱を考慮してシミュレーションするか、又は、その両方で得ることができる。
 また、先にも説明したように、均一な再結晶を促すためには、T1+30℃未満の温度域での加工量がなるべく少ないことが望ましく、T1+30℃未満の温度域での圧下率が30%以下であることが望ましい。例えば、図6に示す連続熱間圧延ライン1の仕上げ圧延機3において、前段側(図6において左側、圧延の上流側)に配置された1または2以上の圧延スタンド6を通過する際には、鋼板がT1+30℃以上、T1+200℃以下の温度域であり、その後段側(図6において右側、圧延の下流側)に配置された1または2以上の圧延スタンド6を通過する際には、鋼板がT1+30℃未満の温度域である場合、その後段側(図6において右側、圧延の下流側)に配置された1または2以上の圧延スタンド6を通過する際には、圧下が行わないか、あるいは、圧下が行われても、T1+30℃未満での圧下率が合計で30%以下であることが望ましい。板厚精度や板形状の観点からは、T1+30℃未満での圧下率が合計で10%以下の圧下率が望ましい。より等方性を求める場合には、T1+30℃未満の温度域での圧下率は0%が望ましい。
 本発明製造方法において、圧延速度は特に限定されない。しかし、仕上げ圧延の最終スタンド側での圧延速度が400mpm未満であると、γ粒が成長して粗大化し、延性を得るためのフェライトの析出可能な領域が減少して、延性が劣化する恐れがある。圧延速度の上限を特に限定しなくとも、本発明の効果は得られるが、設備制約上、1800mpm以下が現実的である。それ故、仕上げ圧延工程において、圧延速度は、400mpm以上1800mpm以下が望ましい。
 なお、この1次冷却後、適当な温度で巻き取り、熱延原板を得ることができる。本発明においては、冷延鋼板のミクロ組織は、後の冷間圧延や、冷間圧延後の熱処理で主に作られる。よって、巻き取りまでの冷却パターンはそれほど厳密に制御しなくても構わない。
(冷間圧延)
 上記のようにして製造した熱延原板を、必要に応じて酸洗し、冷間にて圧下率30%以上70%以下の圧延を行う。圧下率が30%以下では、その後の加熱保持で再結晶を起こすことが困難となり、等軸粒分率が低下する上、加熱後の結晶粒が粗大化してしまう。70%を超える圧延では、加熱時の集合組織の発達させるため、異方性が強くなってしまう。このため、70%以下とする。
(加熱保持)
 冷間圧延された鋼板は、その後、オーステナイト単相鋼若しくはほぼオーステナイト単相鋼とするため、Ae3~950℃の温度域まで加熱され、Ae3~950℃の温度域で1~300秒間保持される。この加熱保持により、加工硬化が除去される。冷間圧延後の鋼板を、このようにAe3~950℃の温度域まで加熱するにあたり、室温以上、650℃以下の平均加熱速度を、下記式(5)で示されるHR1(℃/秒)とし、650℃を超え、Ae3~950℃までの平均加熱速度を、下記式(6)で示されるHR2(℃/秒)とする。
HR1≧0.3 ・・・ (5)
HR2≦0.5×HR1 ・・・ (6)
 上記の条件で熱間圧延が行われ、更に1次冷却が行われることにより、結晶粒の微細化と結晶方位のランダム化が両立させられる。しかしながら、その後に行われる冷間圧延により、強い集合組織が発達し、その集合組織が鋼板中に残り易くなる。その結果、鋼板のr値及び伸びが低下し、等方性が低下してしまう。そこで、冷間圧延後に行われる加熱を適切に行うことにより、冷間圧延で発達した集合組織をなるべく消滅させることが望ましい。そのためには、加熱の平均加熱速度を、上記式(5)、(6)で示される2段階に分けることが必要となる。
 この二段階の加熱によって、鋼板の集合組織や特性が向上する詳細な理由は不明なものの、本効果は冷延時に導入された転位の回復と再結晶に関連があると考えられる。即ち、加熱によって鋼板中に生ずる再結晶の駆動力は、冷間圧延により鋼板中に蓄えられた歪である。室温以上、650℃以下の温度範囲での平均加熱速度HR1が小さい場合、冷間圧延によって導入された転位は回復してしまい、再結晶は起こらなくなる。その結果、冷間圧延時に発達した集合組織がそのまま残ることとなり、等方性などの特性が劣化してしまう。室温以上、650℃以下の温度範囲の平均加熱速度HR1が0.3℃/秒未満では、冷間圧延にて導入された転位が回復してしまい、冷間圧延時に形成された強い集合組織が残存してしまう。このため、室温以上、650℃以下の温度範囲の平均加熱速度HR1は、0.3(℃/秒)以上とする必要がある。
 一方、650℃を超え、Ae3~950℃までの平均加熱速度HR2が大きいと、冷延後の鋼板中に存在していたフェライトが再結晶することなく、加工ままの未再結晶フェライトが残留する。特に、Cを0.01%以上含む鋼は、フェライト及びオーステナイトの二相域に加熱すると、形成したオーステナイトが再結晶フェライトの成長の阻害し、未再結晶フェライトがより残り易くなる。この未再結晶フェライトは、強い集合組織を持つことから、r値や等方性といった特性に悪影響を及ぼすと共に、転位を多く含むことから延性を大幅に劣化させる。このことから、650℃を超え、Ae3~950℃までの温度範囲では、平均加熱速度HR2が、0.5×HR1(℃/秒)以下である必要がある。
 また、このように2段階の平均加熱速度でAe3~950℃の温度域まで鋼板が加熱され、Ae3~950℃の温度域で1~300秒間保持される。この範囲より低温もしくは短時間では、その後の2次冷却工程でベイナイト組織の分率が95%以上とならず、集合組織制御による局部延性の上昇代が低下する。一方、950℃を超えたり、300秒を超える保持が続くと、結晶粒が粗大化してしまうため、20μm以下の粒の面積率が増大する。なお、Ae3[℃]は、C、Mn、Si、Cu、Ni、Cr、Moの含有量[質量%]によって、以下の式(7)によって計算される。なお、選択元素を含有しない場合は、選択元素の含有量[質量%]は0として計算する。
 Ae3=911-239C-36Mn+40Si-28Cu-20Ni-12Cr+63Mo ・・・ (7)
 なお、この加熱保持において、保持とは等温保持のみを意味せず、Ae3~950℃の温度範囲で、鋼板を滞留させれば足りる。Ae3~950℃の温度範囲であれば、鋼板の温度が変化しても構わない。
(2次冷却)
 その後、Ae3から500℃間の温度域における平均冷却速度が10℃/s以上、200℃/s以下となるよう、500℃以下の温度まで2次冷却する。2次冷却速度が、10℃/s未満では、フェライトが過剰に生じてしまいベイナイト組織の分率を95%以上とすることが出来ず、集合組織制御による局部延性の上昇代が低下する。一方、200℃/sを超える冷却速度としても、冷却終点温度の制御性が著しく劣化するため、200℃/s以下とする。好ましくは、フェライト変態とパーライト変態を確実に抑制するため、HF(加熱保持温度)~0.5HF+250℃における平均冷却速度は、0.5HF+250℃~500℃における平均冷却速度を超えないものとする。
(過時効熱処理)
 ベイナイト変態を促進させるため、2次冷却に続いて350℃以上、500℃以下の温度範囲で、過時効熱処理を行う。この温度範囲で保持する時間は、過時効処理温度T2に応じて下記式(4)を満たすt2秒以上とする。ただし、式(4)の適用可能温度範囲を考慮し、t2の最大値は400秒とする。
log(t2)=0.0002(T2-425)+1.18 ・・・ (4)
 なお、この過時効熱処理において、保持とは等温保持のみを意味せず、350℃以上、500℃以下の温度範囲で、鋼板を滞留させれば足りる。例えば、鋼板を、一旦、350℃に冷却した後、500℃まで加熱しても良いし、鋼板を、500℃に冷却後、350℃まで冷却しても良い。
 なお、本発明の高強度冷延鋼板に表面処理してもその局部変形能改善効果を失うものでなく、例えば、鋼板の表面に、溶融亜鉛めっき層、または、合金化溶融亜鉛めっき層を形成しても良い。この場合、電気めっき、溶融めっき、蒸着めっき、有機皮膜形成、フィルムラミネート、有機塩類/無機塩類処理、ノンクロ処理等の何れによっても、本発明の効果が得られる。また、本発明に係る鋼板は張り出し成形と、曲げ、張り出し、絞り等、曲げ加工を主体とする複合成形にも適用できる。
 次に、本発明の実施例について説明する。なお、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。実施例に用いた各鋼の化学成分を表1に示す。表2、表3に各製造条件を示す。また、表2の製造条件による各鋼種の組織構成と機械的特性を表4に示す。表3の製造条件による各鋼種の組織構成と機械的特性を表5に示す。なお、各表における下線は、本発明の範囲外もしくは本発明の好ましい範囲の範囲外であることを示す。
 実施例として、表1に示した成分組成を有する、AからTまでの本発明の請求項の成分を満たす鋼、及び、aからiの比較鋼を用いて検討した結果について説明する。なお、表1において、各成分組成の数値は、質量%を示す。
 これらの鋼は、鋳造後、そのまま、もしくは一旦室温まで冷却された後に再加熱し、1000℃~1300℃の温度範囲に加熱され、その後、表2、表3の条件で熱間圧延が施され、Ar3変態温度以上で熱間圧延を終了した。なお、表2、表3において、鋼種に付されているAからTまでの英文字とaからiまでの英文字は、表1の各鋼A~Tおよびa~iの成分であることを示す。
 熱間圧延では、先ず、第1の熱間圧延である粗圧延において、1000℃以上1200℃以下の温度域で、40%以上の圧下率で1回以上圧延した。但し、表2の鋼種B2、H3、J2、および、表3の鋼種B2’、H3’、J2’については、粗圧延において、1パスで圧下率が40%以上の圧延は行われなかった。粗圧延における、圧下回数、各圧下率(%)、粗圧延後(仕上げ圧延前)のオーステナイト粒径(μm)を表2、表3に示す。
 粗圧延が終了した後、第2の熱間圧延である仕上げ圧延を行った。仕上げ圧延では、T1+30℃以上、T1+200℃以下の温度域で、少なくとも1回は1パスで圧下率30%以上の圧延を行い、T1+30℃未満の温度範囲においては、合計の圧下率を30%以下とした。なお、仕上げ圧延では、T1+30℃以上、T1+200℃以下の温度域での最終パスで、1パスで圧下率30%以上の圧延を行った。
 但し、表2の鋼種G2、H4、M3、および、表3の鋼種G2’、H4’、M3’については、T1+30℃以上、T1+200℃以下の温度域で、圧下率30%以上の圧延は行われなかった。また、表2の鋼種F3、H6、および、表3の鋼種F3’、H6’は、T1+30℃未満の温度範囲での合計の圧下率が30%超であった。
 また、仕上げ圧延では、合計の圧下率を50%以上とした。但し、表2の鋼種G2、H4、M3、および、表3の鋼種G2’、H4’、M3’は、合計の圧下率が50%未満であった。
 仕上げ圧延における、T1+30℃以上、T1+200℃以下の温度域での最終パスの圧下率(%)、最終パスよりも1段前のパスの圧下率(最終前パスの圧下率)(%)を表2、表3に示す。また、仕上げ圧延における、T1+30℃以上、T1+200℃以下の温度域での合計の圧下率(%)、T1+30℃以上、T1+200℃以下の温度域での最終パスでの圧下後の温度Tfを表2、表3に示す。なお、仕上げ圧延における、T1+30℃以上、T1+200℃以下の温度域での最終パスの圧下率(%)は特に重要であるため、P1として表2、表3に示す。
 仕上げ圧延において圧下率が30%以上の最終圧下を行った後、待ち時間t秒が2.5×t1を経過する前に、1次冷却を開始した。1次冷却では、平均冷却速度を50℃/秒以上とした。また、1次冷却での温度変化(冷却温度量)は、40℃以上140℃以下の範囲とした。
 表2に示した製造条件では、仕上げ圧延において圧下率が30%以上の最終圧下を行った後、待ち時間t秒がt1を経過する前(t<t1)に、1次冷却を開始した。一方、表3に示した製造条件では、仕上げ圧延において圧下率が30%以上の最終圧下を行った後、待ち時間t秒がt1以上、2.5×t1を経過する前(t1≦t≦t1×2.5)に、1次冷却を開始した。なお、待ち時間t秒の範囲を区別するために、表3に示した製造条件に従う鋼種については、符号に「’」(ダッシュ)を付した。
 但し、表3に示した鋼種H13’は、仕上げ圧延における圧下率が30%以上の最終圧下から、待ち時間t秒が2.5×t1を経過した後に、1次冷却を開始した。表2の鋼種M2、および、表3の鋼種M2’は、1次冷却での温度変化(冷却温度量)が40℃未満であり、表2の鋼種H12、および、表3の鋼種H12’は、1次冷却での温度変化(冷却温度量)が140℃超であった。表2の鋼種H8、および、表3の鋼種H8’は、1次冷却での平均冷却速度が50℃/秒未満であった。
 各鋼種のt1(秒)、2.5×t1(秒)を表2、表3に示す。また、圧下率が30%以上の最終圧下を行った後、1次冷却を開始するまでの待ち時間t(秒)、t/t1、1次冷却での平均冷却速度(℃/秒)、温度変化(冷却温度量)(℃)を表2、表3に示す。
 1次冷却後、巻取りを行い、2~5mm厚の熱延原板を得た。各鋼種の巻取り温度(℃)を表2、表3に示す。
 次に、熱延原板を、酸洗した後、圧下率30%以上、70%以下で、1.2~2.3mm厚に冷間圧延した。但し、表2の鋼種E2、L2、および、表3の鋼種E2’、L2’は、冷間圧延の圧下率が30%未満であった。また、表2の鋼種H11、および、表3の鋼種H11’は、冷間圧延の圧下率が70%超であった。冷間圧延における、各鋼種の圧下率(%)を表2、表3に示す。
 冷間圧延後、Ae3~950℃の温度域まで加熱し、Ae3~950℃の温度域で1~300秒間保持した。また、Ae3~950℃の温度域まで加熱するにあたり、室温以上、650℃以下の平均加熱速度HR1(℃/秒)を0.3以上(HR1≧0.3)とし、650℃を超え、Ae3~950℃までの平均加熱速度HR2(℃/秒)を、0.5×HR1以下(HR2≦0.5×HR1)とした。
 但し、表2の鋼種C2、G3、および、表3の鋼種C2’、G3’は、加熱温度がAe3未満であった。また、表2の鋼種H10、および、表3の鋼種H10’は、加熱温度が950℃超であった。表2の鋼種N2、および、表3の鋼種N2’は、Ae3~950℃の温度域での保持時間が300秒超であった。また、表2の鋼種E2、表3の鋼種E2’は、平均加熱速度HR1が0.3(℃/秒)未満であった。表2の鋼種C2、H6、H8、および、表3の鋼種C2’、H6’、H8’は、平均加熱速度HR2(℃/秒)が0.5×HR1超であった。各鋼種のAe3(℃)、加熱温度(℃)、保持時間(秒)、平均加熱速度HR1、HR2(℃/秒)を表2、表3に示す。
 加熱保持後、Ae3~500℃の温度域において、平均冷却速度10℃/s以上、200℃/s以下で2次冷却をおこなった。但し、表2の鋼種H2、および、表3の鋼種H2’は、2次冷却における平均冷却速度が10℃/s未満であった。2次冷却における各鋼種の平均冷却速度(℃/秒)を表2、表3に示す。
 2次冷却後、350℃以上、500℃以下の温度域において、t2秒以上400秒以下、過時効熱処理を行った。但し、表2の鋼種H9、および、表3の鋼種H9’は、過時効の熱処理温度が350℃未満、表2の鋼種A2、I2、および、表3の鋼種A2’、I2’は、500℃超であった。また、表2の鋼種D2、および、表3の鋼種D2’は、過時効の処理時間がt2秒未満、表2の鋼種A2、H9、I2、および、表3の鋼種A2’、H9’、I2’は、400秒超であった。各鋼種の過時効の熱処理温度、t2(秒)、処理時間(秒)を表2、表3に示す。
 表2、表3のいずれの場合も、過時効熱処理後、0.5%のスキンパス圧延を行い、材質評価を行った。
 各鋼種の金属組織における、ベイナイト、パーライト、初析フェライト、マルテンサイト、残留オーステナイトの面積率(組織分率)(%)を表4、表5に示す。なお、表2の製造条件に従う鋼種の組織構成と機械的特性を表4に示した。また、表3の製造条件に従う鋼種の組織構成と機械的特性を表5に示した。なお、表4、表5の組織分率において、Bはベイナイト、Pはパーライト、Fは初析フェライト、Mはマルテンサイト、rAは残留オーステナイトを意味する。各鋼種の{100}<011>~{223}<110>方位群の極密度の平均値、{332}<113>の結晶方位の極密度、結晶粒の体積平均径(粒単位のサイズ)(μm)、dL/dtが3.0以下である結晶粒の割合(等軸粒率)(%)を表4、表5に示す。また、各鋼種の引張強度TS(MPa)、伸び率El(%)、局部変形能の指標としての穴拡げ率λ(%)および60°V字曲げによる限界曲げ半径(板厚/最小曲げ半径)を表4、表5に示す。曲げ試験はC方向曲げ(C曲げ)とした。なお、引っ張り試験および曲げ試験は、JIS Z 2241およびZ 2248(Vブロック90°曲げ試験)に準拠した。穴拡げ試験は、鉄連規格JFS T1001に準拠した。各結晶方位の極密度は、前述のEBSPを用いて、圧延方向に平行な断面の板厚の3/8~5/の領域を0.5μmピッチで測定した。
 穴拡げ性と曲げ性の指標として、TS≧440MPa、El≧15%、λ≧90%、板厚/曲げ半径≧2.5を満足することを条件とした。本発明の規定を満たすもののみが、図7、8に示すように優れた穴拡げ性と、曲げ性を併せ持つことができることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
1 連続熱間圧延ライン
2 粗圧延機
3 仕上げ圧延機
4 熱延鋼板
5 ランナウトテーブル
6 圧延スタンド
10 スタンド間冷却ノズル
11 冷却ノズル11

Claims (13)

  1. 質量%で、
    C:0.02%以上、0.20%以下、
    Si:0.001%以上、2.5%以下、
    Mn:0.01%以上、4.0%以下、
    P:0.001%以上、0.15%以下、
    S:0.0005%以上、0.03%以下、
    Al:0.001%以上、2.0%以下、
    N:0.0005%以上、0.01%以下、
    O:0.0005%以上、0.01%以下、
    を含有し、Si+Al:1.0%未満に制限され、残部鉄および不可避的不純物からなり、
    金属組織におけるベイナイトの面積率が95%以上であり、
    鋼板の表面から5/8~3/8の板厚範囲である板厚中央部における、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>、及び、{223}<110>の各結晶方位で表わされる{100}<011>~{223}<110>方位群の極密度の平均値が4.0以下、かつ、{332}<113>の結晶方位の極密度が5.0以下であり、
    前記金属組織の結晶粒の体積平均径が7μm以下である、局部変形能に優れた高強度冷延鋼板。
  2. 前記ベイナイトの結晶粒のうち、圧延方向の長さdLと板厚方向の長さdtの比:dL/dtが3.0以下である結晶粒の割合が50%以上である、請求項1に記載の局部変形能に優れた高強度冷延鋼板。
  3. 更に、質量%で、
    Ti:0.001%以上、0.20%以下、
    Nb:0.001%以上、0.20%以下、
    V:0.001%以上、1.0%以下、
    W:0.001%以上、1.0%以下
    の1種又は2種以上を含有する、請求項1に記載の局部変形能に優れた高強度冷延鋼板。
  4. 更に、質量%で、
    B:0.0001%以上、0.0050%以下、
    Mo:0.001%以上、1.0%以下、
    Cr:0.001%以上、2.0%以下、
    Cu:0.001%以上、2.0%以下、
    Ni:0.001%以上、2.0%以下、
    Co:0.0001%以上、1.0%以下、
    Sn:0.0001%以上、0.2%以下、
    Zr:0.0001%以上、0.2%以下、
    As:0.0001%以上、0.50%以下
    の1種又は2種以上を含有する、請求項1に記載の局部変形能に優れた高強度冷延鋼板。
  5. 更に、質量%で、
    Mg:0.0001%以上、0.010%以下、
    REM:0.0001%以上、0.1%以下、
    Ca:0.0001%以上、0.010%以下
    の1種又は2種以上を含有する、請求項1に記載の局部変形能に優れた高強度冷延鋼板。
  6. 表面に、溶融亜鉛めっき層または、合金化溶融亜鉛めっき層を備える、請求項1に記載の局部変形能に優れた高強度冷延鋼板。
  7. 質量%で、
    C:0.02%以上、0.20%以下、
    Si:0.001%以上、2.5%以下、
    Mn:0.01%以上、4.0%以下、
    P:0.001%以上、0.15%以下、
    S:0.0005%以上、0.03%以下、
    Al:0.001%以上、2.0%以下、
    N:0.0005%以上、0.01%以下、
    O:0.0005%以上、0.01%以下、
    を含有し、Si+Al:1.0%未満に制限され、残部鉄および不可避的不純物からなる鋼片を、
    1000℃以上1200℃以下の温度範囲で、圧下率40%以上の圧延を1回以上行う第1の熱間圧延を行い、
    前記第1の熱間圧延で、オーステナイト粒径を200μm以下とし、
    下記式(1)で定まる温度T1+30℃以上、T1+200℃以下の温度域で、少なくとも1回は1パスで圧下率30%以上の圧延を行う第2の熱間圧延を行い、
    前記第2の熱間圧延での合計の圧下率を50%以上とし、
    前記第2の熱間圧延において、圧下率が30%以上の最終圧下を行った後、待ち時間t秒が下記式(2)を満たすように、1次冷却を開始し、
    前記1次冷却における平均冷却速度を50℃/秒以上とし、かつ、前記1次冷却を温度変化が40℃以上140℃以下の範囲で行い、
    圧下率30%以上、70%以下の冷間圧延を行い、
    Ae3~950℃の温度域で1~300秒間保持し、
    Ae3~500℃の温度域において、平均冷却速度10℃/s以上、200℃/s以下で2次冷却を行い、
    350℃以上、500℃以下の温度域において、下記式(4)を満たすt2秒以上400秒以下保持する過時効熱処理を行う、局部変形能に優れた高強度冷延鋼板の製造方法。
    T1(℃)=850+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V ・・・ (1)
    t≦2.5×t1 ・・・ (2)
    ここで、t1は、下記式(3)で求められる。
    t1=0.001×((Tf-T1)×P1/100)2-0.109×((Tf-T1)×P1/100)+3.1 ・・・ (3)
    ここで、上記式(3)において、Tfは、圧下率が30%以上の最終圧下後の鋼片の温度、P1は、30%以上の最終圧下の圧下率である。
    log(t2)=0.0002(T2-425)+1.18 ・・・ (4)
    ここで、T2は過時効処理温度であり、t2の最大値は400とする。
  8. T1+30℃未満の温度範囲における合計の圧下率が30%以下である、請求項7に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
  9. 前記待ち時間t秒が、さらに、下記式(2a)を満たす、請求項7に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
     t<t1 ・・・ (2a)
  10. 前記待ち時間t秒が、さらに、下記式(2b)を満たす、請求項7に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
     t1≦t≦t1×2.5 ・・・ (2b)
  11. 前記一次冷却を、圧延スタンド間で開始する、請求項7に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
  12. 前記冷間圧延後、Ae3~950℃の温度域まで加熱するにあたり、
    室温以上、650℃以下の平均加熱速度を、下記式(5)で示されるHR1(℃/秒)とし、
    650℃を超え、Ae3~950℃までの平均加熱速度を、下記式(6)で示されるHR2(℃/秒)とする、請求項7に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
    HR1≧0.3 ・・・ (5)
    HR2≦0.5×HR1 ・・・ (6)
  13. 更に、表面に、溶融亜鉛めっき層、または、合金化溶融亜鉛めっき層を形成する、請求項7に記載の局部変形能に優れた高強度冷延鋼板の製造方法。
PCT/JP2012/060065 2011-04-13 2012-04-12 局部変形能に優れた高強度冷延鋼板とその製造方法 WO2012141263A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
KR1020137026570A KR101536847B1 (ko) 2011-04-13 2012-04-12 국부 변형능이 우수한 고강도 냉연 강판과 그 제조 방법
CA2830146A CA2830146C (en) 2011-04-13 2012-04-12 High-strength cold-rolled steel sheet having excellent local deformability and manufacturing method thereof
EP12771896.3A EP2698442B1 (en) 2011-04-13 2012-04-12 High-strength cold-rolled steel sheet with excellent local formability, and manufacturing method therefor
CN201280017774.4A CN103459646B (zh) 2011-04-13 2012-04-12 局部变形能力优异的高强度冷轧钢板及其制造方法
MX2013011750A MX2013011750A (es) 2011-04-13 2012-04-12 Laminas de acero laminadas en frio, de alta resistencia, que tienen deformabilidad local excelente y metodo de fabricacion de las mismas.
ES12771896.3T ES2683899T3 (es) 2011-04-13 2012-04-12 Chapa de acero laminada en frío de alta resistencia con excelente capacidad de conformación local y método de fabricación de la misma
US14/110,891 US9347122B2 (en) 2011-04-13 2012-04-12 Manufacturing method of a high-strength cold-rolled steel sheet having excellent local deformability
RU2013150346/02A RU2551726C1 (ru) 2011-04-13 2012-04-12 Высокопрочный холоднокатаный стальной лист с улучшенной способностью к локальной деформации и способ его получения
BR112013026079-3A BR112013026079B1 (pt) 2011-04-13 2012-04-12 chapa de aço laminada a frio de alta resistência tendo excelente deformabilidade local, e método de produção da mesma
JP2013509966A JP5408386B2 (ja) 2011-04-13 2012-04-12 局部変形能に優れた高強度冷延鋼板とその製造方法
PL12771896T PL2698442T3 (pl) 2011-04-13 2012-04-12 Blacha stalowa cienka walcowana na zimno o dużej wytrzymałości mająca doskonałą miejscową podatność na odkształcenie oraz sposób jej wytwarzania
ZA2013/06547A ZA201306547B (en) 2011-04-13 2013-08-30 High-strength cold-rolled steel sheet with excellent local formability,and manufacturing method therefor
US15/133,848 US10060006B2 (en) 2011-04-13 2016-04-20 High-strength cold-rolled steel sheet having excellent local deformability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011089250 2011-04-13
JP2011-089250 2011-04-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/110,891 A-371-Of-International US9347122B2 (en) 2011-04-13 2012-04-12 Manufacturing method of a high-strength cold-rolled steel sheet having excellent local deformability
US15/133,848 Division US10060006B2 (en) 2011-04-13 2016-04-20 High-strength cold-rolled steel sheet having excellent local deformability

Publications (1)

Publication Number Publication Date
WO2012141263A1 true WO2012141263A1 (ja) 2012-10-18

Family

ID=47009430

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/060065 WO2012141263A1 (ja) 2011-04-13 2012-04-12 局部変形能に優れた高強度冷延鋼板とその製造方法
PCT/JP2012/060067 WO2012141265A1 (ja) 2011-04-13 2012-04-12 局部変形能に優れた高強度熱延鋼板とその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060067 WO2012141265A1 (ja) 2011-04-13 2012-04-12 局部変形能に優れた高強度熱延鋼板とその製造方法

Country Status (14)

Country Link
US (3) US9347122B2 (ja)
EP (2) EP2698442B1 (ja)
JP (2) JP5408386B2 (ja)
KR (2) KR101536847B1 (ja)
CN (2) CN103459646B (ja)
BR (2) BR112013026079B1 (ja)
CA (2) CA2832159C (ja)
ES (2) ES2684144T3 (ja)
MX (2) MX2013011863A (ja)
PL (2) PL2698440T3 (ja)
RU (1) RU2551726C1 (ja)
TW (2) TWI457447B (ja)
WO (2) WO2012141263A1 (ja)
ZA (2) ZA201306549B (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060715B (zh) * 2013-01-22 2015-08-26 宝山钢铁股份有限公司 一种具有低屈服比的超高强韧钢板及其制造方法
EP3112488B1 (en) * 2014-02-27 2019-05-08 JFE Steel Corporation High-strength hot-rolled steel sheet and manufacturing method therefor
KR101863486B1 (ko) * 2014-04-23 2018-05-31 신닛테츠스미킨 카부시키카이샤 테일러드 롤드 블랭크용 열연 강판, 테일러드 롤드 블랭크 및 그들의 제조 방법
CN106460109B (zh) 2014-05-28 2019-01-29 新日铁住金株式会社 热轧钢板及其制造方法
CN104018069B (zh) * 2014-06-16 2016-01-20 武汉科技大学 一种高性能低碳含Mo贝氏体钢及其制备方法
WO2016005780A1 (fr) * 2014-07-11 2016-01-14 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à chaud et procédé de fabrication associé
EP2975146A1 (en) * 2014-07-16 2016-01-20 Uddeholms AB Cold work tool steel
EP3318652B1 (en) * 2015-06-30 2021-05-26 Nippon Steel Corporation High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength galvannealed steel sheet
KR101701649B1 (ko) * 2015-11-24 2017-02-02 현대제철 주식회사 강재 및 이의 제조방법
CN109563586B (zh) * 2016-08-05 2021-02-09 日本制铁株式会社 钢板及镀覆钢板
CN108611568A (zh) * 2016-12-12 2018-10-02 上海梅山钢铁股份有限公司 抗拉强度400MPa级高扩孔热轧钢板及其制造方法
KR101879068B1 (ko) * 2016-12-13 2018-07-16 주식회사 포스코 충격인성이 우수한 고강도 선재 및 그 제조방법
TWI679285B (zh) * 2017-07-07 2019-12-11 日商日本製鐵股份有限公司 熱軋鋼板及其製造方法
US10633726B2 (en) * 2017-08-16 2020-04-28 The United States Of America As Represented By The Secretary Of The Army Methods, compositions and structures for advanced design low alloy nitrogen steels
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
CN108130481A (zh) * 2017-12-07 2018-06-08 安徽科汇钢结构工程有限公司 一种拉伸凸缘性优的冷轧钢板
CN108165881A (zh) * 2018-01-08 2018-06-15 哈尔滨工程大学 一种800MPa级多特性热轧钢板及其制备方法
JP6901417B2 (ja) * 2018-02-21 2021-07-14 株式会社神戸製鋼所 高強度鋼板および高強度亜鉛めっき鋼板、並びにそれらの製造方法
CN110484805B (zh) * 2019-08-30 2021-06-15 武汉钢铁有限公司 一种局部强化的刀板型钢及其生产方法
CN110527908A (zh) * 2019-09-06 2019-12-03 武汉科技大学 一种中碳微纳结构贝氏体钢及其热处理方法
KR102326684B1 (ko) * 2019-09-17 2021-11-17 주식회사 포스코 크리프 강도와 고온 연성이 우수한 크롬강판 및 그 제조방법
WO2021123887A1 (en) * 2019-12-19 2021-06-24 Arcelormittal High toughness hot rolled steel sheet and method of manufacturing the same
JP7226458B2 (ja) * 2020-01-23 2023-02-21 Jfeスチール株式会社 高強度熱延鋼板の製造方法
CN111187985A (zh) * 2020-02-17 2020-05-22 本钢板材股份有限公司 一种具有高扩孔性能和疲劳寿命的热轧延伸凸缘钢及其制备工艺
CN112319129A (zh) * 2020-02-27 2021-02-05 浙江航通机械制造股份有限公司 一种轻量化汽车轮辋结构及制造方法
EP4245878A1 (en) * 2021-02-26 2023-09-20 Nippon Steel Corporation Steel sheet and method for producing same
EP4303334A1 (en) * 2021-03-02 2024-01-10 Nippon Steel Corporation Steel plate
RU2762448C1 (ru) * 2021-04-05 2021-12-21 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Способ производства холоднокатаной полосы
CN113215500B (zh) * 2021-04-14 2022-05-17 首钢集团有限公司 一种超高强析出强化钢及其制备工艺、应用
CN114892092B (zh) * 2022-05-31 2024-01-09 本钢板材股份有限公司 超宽幅高韧性700MPa级热轧汽车用钢及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182225A (ja) * 1986-02-05 1987-08-10 Nippon Steel Corp 延性の良い高強度鋼板の製造方法
JPS6386819A (ja) * 1986-09-30 1988-04-18 Kawasaki Steel Corp 深絞り用冷延鋼板の製造方法
JPH0892655A (ja) * 1994-09-28 1996-04-09 Sumitomo Metal Ind Ltd 面内異方性の小さい高加工性冷延鋼板の製造方法
JP2001220647A (ja) * 2000-02-04 2001-08-14 Kawasaki Steel Corp 加工性に優れた高強度冷延鋼板およびその製造方法
JP2002363693A (ja) * 2001-06-05 2002-12-18 Nippon Steel Corp 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
JP2005256020A (ja) * 2004-03-09 2005-09-22 Nippon Steel Corp 形状凍結性に極めて優れた低降伏比型高強度冷延鋼板およびその製造方法
JP2007291514A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP2009263718A (ja) 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362739B2 (ja) * 1991-10-02 2003-01-07 住友金属工業株式会社 深絞り性に優れた熱延鋼板の製造方法
JP3440894B2 (ja) * 1998-08-05 2003-08-25 Jfeスチール株式会社 伸びフランジ性に優れる高強度熱延鋼板およびその製造方法
JP3539548B2 (ja) * 1999-09-20 2004-07-07 Jfeスチール株式会社 加工用高張力熱延鋼板の製造方法
JP3532138B2 (ja) 2000-04-25 2004-05-31 新日本製鐵株式会社 形状凍結性に優れたフェライト系薄鋼板及びその製造方法
JP3990553B2 (ja) * 2000-08-03 2007-10-17 新日本製鐵株式会社 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
EP1327695B1 (en) * 2000-09-21 2013-03-13 Nippon Steel & Sumitomo Metal Corporation Steel plate excellent in shape freezing property and method for production thereof
JP3927384B2 (ja) 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
JP2002363893A (ja) 2001-06-01 2002-12-18 Daio Paper Corp 疑似接着用紙の製造方法
KR100627429B1 (ko) 2001-10-04 2006-09-25 신닛뽄세이테쯔 카부시키카이샤 드로잉이 가능하고 형상 동결성이 우수한 고강도 박강판과 이를 제조하는 방법
BRPI0409569B1 (pt) * 2003-04-10 2013-06-11 processo de produÇço de uma chapa de aÇo revestida de zinco fundido de alta resistÊncia.
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
TWI248977B (en) 2003-06-26 2006-02-11 Nippon Steel Corp High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
JP4430444B2 (ja) * 2004-03-26 2010-03-10 新日本製鐵株式会社 形状凍結性に優れた低降伏比型高強度熱延鋼板とその製造方法
WO2006011503A1 (ja) 2004-07-27 2006-02-02 Nippon Steel Corporation 高ヤング率鋼板、それを用いた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および高ヤング率鋼管、並びにそれらの製造方法
CN100526493C (zh) 2004-07-27 2009-08-12 新日本制铁株式会社 高杨氏模量钢板、使用了它的热浸镀锌钢板、合金化热浸镀锌钢板、和高杨氏模量钢管以及它们的制造方法
JP4555693B2 (ja) * 2005-01-17 2010-10-06 新日本製鐵株式会社 深絞り性に優れた高強度冷延鋼板およびその製造方法
US7960035B2 (en) * 2005-03-30 2011-06-14 Kobe Steel, Ltd. High-strength hot-rolled steel sheet excellent in chemical treatability
JP4740099B2 (ja) * 2006-03-20 2011-08-03 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
JP4646881B2 (ja) * 2006-09-15 2011-03-09 株式会社神戸製鋼所 伸びフランジ性に優れた熱延鋼板
JP4309946B2 (ja) * 2007-03-05 2009-08-05 新日本製鐵株式会社 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
JP5037413B2 (ja) * 2007-04-19 2012-09-26 新日本製鐵株式会社 低降伏比高ヤング率鋼板、溶融亜鉛メッキ鋼板、合金化溶融亜鉛メッキ鋼板、及び、鋼管、並びに、それらの製造方法
JP5139015B2 (ja) * 2007-09-18 2013-02-06 株式会社神戸製鋼所 母材低温靭性のばらつきが少なく熱影響部の靭性に優れた大入熱溶接用厚肉高強度鋼板およびその製造方法
JP5157375B2 (ja) * 2007-11-08 2013-03-06 新日鐵住金株式会社 剛性、深絞り性及び穴拡げ性に優れた高強度冷延鋼板及びその製造方法
RU2361934C1 (ru) * 2008-01-09 2009-07-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаного проката повышенной прочности
WO2009125874A1 (ja) 2008-04-10 2009-10-15 新日本製鐵株式会社 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法
CN103038383B (zh) * 2010-07-28 2014-12-24 新日铁住金株式会社 热轧钢板、冷轧钢板、镀锌钢板及这些钢板的制造方法
KR101091510B1 (ko) * 2011-01-07 2011-12-08 주식회사 포스코 저온인성이 우수한 고강도 강판 및 그 제조방법
ES2637662T3 (es) * 2011-03-04 2017-10-16 Nippon Steel & Sumitomo Metal Corporation Hoja de acero laminada en caliente y procedimiento para producir la misma
WO2012161248A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 熱延鋼板及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182225A (ja) * 1986-02-05 1987-08-10 Nippon Steel Corp 延性の良い高強度鋼板の製造方法
JPS6386819A (ja) * 1986-09-30 1988-04-18 Kawasaki Steel Corp 深絞り用冷延鋼板の製造方法
JPH0892655A (ja) * 1994-09-28 1996-04-09 Sumitomo Metal Ind Ltd 面内異方性の小さい高加工性冷延鋼板の製造方法
JP2001220647A (ja) * 2000-02-04 2001-08-14 Kawasaki Steel Corp 加工性に優れた高強度冷延鋼板およびその製造方法
JP2002363693A (ja) * 2001-06-05 2002-12-18 Nippon Steel Corp 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
JP2005256020A (ja) * 2004-03-09 2005-09-22 Nippon Steel Corp 形状凍結性に極めて優れた低降伏比型高強度冷延鋼板およびその製造方法
JP2007291514A (ja) * 2006-03-28 2007-11-08 Jfe Steel Kk 冷延−再結晶焼鈍後の面内異方性が小さい熱延鋼板、面内異方性が小さい冷延鋼板およびそれらの製造方法
JP2009263718A (ja) 2008-04-24 2009-11-12 Nippon Steel Corp 穴広げ性に優れた熱延鋼板及びその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Recent Research on Bainitic Microstructures and Transformation Behavior of Low Carbon Steels - Final Report of Bainite Research Committee", 1994, THE IRON AND STEEL INSTITUTE OF JAPAN
"The Iron and Steel Institute of Japan, Society of basic research"
GENTARO: "translated by MATSUMURA", 1986, AGNE INC., pages: 274 - 296
K. SUGIMOTO ET AL., ISIJ INTERNATIONAL, vol. 40, 2000, pages 920
KATO ET AL., STEELMAKING RESEARCH, vol. 312, 1984, pages 41
KISHIDA, NIPPON STEEL TECHNICAL REPORT, 1999, pages 13
O. MATSUMURA ET AL., TRANS. ISIJ, vol. 27, 1987, pages 570

Also Published As

Publication number Publication date
TWI457447B (zh) 2014-10-21
CN103459645A (zh) 2013-12-18
PL2698440T3 (pl) 2019-03-29
US20140124101A1 (en) 2014-05-08
EP2698440A4 (en) 2015-03-04
ES2684144T3 (es) 2018-10-01
EP2698442B1 (en) 2018-05-30
KR101536847B1 (ko) 2015-07-14
CN103459646B (zh) 2015-07-29
US20140030546A1 (en) 2014-01-30
JPWO2012141265A1 (ja) 2014-07-28
JP5408386B2 (ja) 2014-02-05
US20160230245A1 (en) 2016-08-11
ZA201306549B (en) 2015-04-29
CN103459645B (zh) 2015-11-25
KR101542676B1 (ko) 2015-08-06
ZA201306547B (en) 2015-04-29
US9347122B2 (en) 2016-05-24
EP2698440B1 (en) 2018-05-30
MX2013011750A (es) 2013-11-04
BR112013026024B1 (pt) 2019-01-29
EP2698442A4 (en) 2015-01-28
TWI457448B (zh) 2014-10-21
EP2698440A1 (en) 2014-02-19
CA2832159A1 (en) 2012-10-18
MX2013011863A (es) 2013-11-01
BR112013026079A2 (pt) 2017-01-10
CA2830146A1 (en) 2012-10-18
BR112013026024A2 (pt) 2016-12-20
RU2013150346A (ru) 2015-05-20
TW201247896A (en) 2012-12-01
EP2698442A1 (en) 2014-02-19
JPWO2012141263A1 (ja) 2014-07-28
KR20130126739A (ko) 2013-11-20
PL2698442T3 (pl) 2018-12-31
WO2012141265A1 (ja) 2012-10-18
RU2013150096A (ru) 2015-05-20
CA2832159C (en) 2016-06-14
KR20130133032A (ko) 2013-12-05
BR112013026079B1 (pt) 2019-01-29
CN103459646A (zh) 2013-12-18
TW201247895A (en) 2012-12-01
RU2551726C1 (ru) 2015-05-27
JP5408387B2 (ja) 2014-02-05
ES2683899T3 (es) 2018-09-28
US9988697B2 (en) 2018-06-05
US10060006B2 (en) 2018-08-28
CA2830146C (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP5408386B2 (ja) 局部変形能に優れた高強度冷延鋼板とその製造方法
US10066283B2 (en) High-strength cold-rolled steel sheet having excellent uniform elongation and hole expandability
JP5252138B1 (ja) 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法
JP5413536B2 (ja) 熱延鋼板およびその製造方法
JP5488763B2 (ja) 冷延鋼板及びその製造方法
JP5163835B2 (ja) 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
WO2012133636A1 (ja) 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
JP5533765B2 (ja) 局部変形能に優れた高強度冷延鋼板とその製造方法
JP2011214070A (ja) 冷延鋼板およびその製造方法
JP5776764B2 (ja) 冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509966

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2830146

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137026570

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14110891

Country of ref document: US

Ref document number: MX/A/2013/011750

Country of ref document: MX

Ref document number: 2012771896

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013150346

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013026079

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013026079

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131009