WO2012005330A1 - Ni添加鋼板およびその製造方法 - Google Patents

Ni添加鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012005330A1
WO2012005330A1 PCT/JP2011/065599 JP2011065599W WO2012005330A1 WO 2012005330 A1 WO2012005330 A1 WO 2012005330A1 JP 2011065599 W JP2011065599 W JP 2011065599W WO 2012005330 A1 WO2012005330 A1 WO 2012005330A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cooling
thermal processing
steel
temperature
Prior art date
Application number
PCT/JP2011/065599
Other languages
English (en)
French (fr)
Inventor
仁志 古谷
斎藤 直樹
基裕 奥島
康哲 高橋
健裕 井上
植森 龍治
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US13/806,457 priority Critical patent/US8882942B2/en
Priority to JP2011547105A priority patent/JP4975888B2/ja
Priority to BR112013000436-3A priority patent/BR112013000436B1/pt
Priority to CN201180033640.7A priority patent/CN102985576B/zh
Priority to EP11803664.9A priority patent/EP2592166B1/en
Priority to KR1020137000242A priority patent/KR101312211B1/ko
Publication of WO2012005330A1 publication Critical patent/WO2012005330A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Definitions

  • the present invention relates to a Ni-added steel sheet excellent in fracture resistance performance (toughness, arrestability, unstable fracture prevention characteristics described later) of a base material of a steel sheet and a welded joint, and a method for producing the same.
  • This application claims priority on July 9, 2010 based on Japanese Patent Application No. 2010-156720 for which it applied to Japan, and uses the content here.
  • ⁇ Steel used for liquefied natural gas (LNG) tanks is required to have fracture resistance at extremely low temperatures of about -160 ° C.
  • LNG liquefied natural gas
  • a steel type used for an inner tank of an LNG tank there is a so-called 9% Ni steel.
  • This 9% Ni steel contains about 8.5 to 9.5% Ni by mass and has a structure mainly containing tempered martensite, and particularly low temperature toughness (for example, Charpy at ⁇ 196 ° C.). Steel material with excellent impact absorption energy).
  • Various techniques for improving the toughness of 9% Ni steel have been disclosed so far.
  • Patent Literature 1, Patent Literature 2, and Patent Literature 3 disclose techniques for reducing P that causes toughness reduction due to grain boundary embrittlement.
  • Patent Literature 4 Patent Literature 5, and Patent Literature 6 disclose techniques for reducing temper embrittlement susceptibility and improving toughness by two-phase region heat treatment.
  • Patent Document 7, Patent Document 8, and Patent Document 9 disclose techniques for significantly improving toughness by adding Mo that can increase strength without increasing temper embrittlement sensitivity.
  • Patent Literature 4, Patent Literature 8, and Patent Literature 10 disclose techniques for improving the toughness by reducing the amount of Si that increases the temper embrittlement sensitivity.
  • a steel plate having a thickness of 4.5 mm or more and 80 mm or less is used as the 9% Ni steel for the LNG tank. Among them, steel plates having a plate thickness of 6 mm or more and 50 mm or less are mainly used.
  • Non-Patent Document 1 discloses a method utilizing heat treatment (a two-phase region heat treatment) to an ⁇ - ⁇ two-phase region as a method for ensuring excellent base material toughness by reducing the amount of Ni added to the steel to 6%. ing.
  • This method is extremely effective for improving the fracture resistance of the base material. That is, even if the amount of Ni is about 6%, the steel material obtained by this method has the same fracture resistance (toughness described later) as the 9% Ni steel for the base material.
  • the fracture resistance performance (the toughness, arrestability, and unstable fracture prevention characteristics described later) of the welded joint is significantly reduced as the amount of Ni is reduced. Therefore, it is difficult to use the steel material manufactured by this method for the LNG tank.
  • Patent Document 11 Patent Document 12, Patent Document 13, and Patent Document 14 disclose a method of performing a preheat treatment for reducing segregation before heating and rolling a cast slab.
  • Patent Document 15 discloses a method of performing two-step rolling to reduce defects at the center portion of the plate thickness.
  • the effect of reducing segregation is small, so the fracture resistance (toughness described later) of the welded joint is not sufficient.
  • the reduction ratio from the thickness of the cast slab to the thickness after final rolling is small, and the conditions such as the reduction ratio and temperature in the first rolling process are not controlled.
  • the fracture resistance (toughness described later) of the base metal and the welded joint is not sufficient due to the coarsening of the structure and the segregation remaining.
  • An object of the present invention is to provide a steel sheet excellent in fracture resistance at about ⁇ 160 ° C. with a Ni content of around 6% and a method for producing the same.
  • the present invention provides a steel sheet excellent in fracture resistance at about ⁇ 160 ° C. with a Ni content of around 6% and a method for producing the same.
  • the summary is as follows.
  • the Ni-added steel sheet according to one embodiment of the present invention is, in mass%, C: 0.03% to 0.10%, Si: 0.02% to 0.40%, Mn: 0 .3% or more and 1.2% or less, Ni: 5.0% or more and 7.5% or less, Cr: 0.4% or more and 1.5% or less, Mo: 0.02% or more and 0.4 %: Al: 0.01% or more and 0.08% or less, T: O: 0.0001% or more and 0.0050% or less, P: 0.0100% or less, S: 0.0035%
  • N is limited to 0.0070% or less
  • the balance is Fe and inevitable impurities
  • the Ni segregation ratio is 1.3 or less at a site that is a distance of 1/4 of the plate thickness in the depth direction from the plate surface.
  • Ni-added steel sheet described in the above (1) is further mass%, Cu: 1.0% or less, Nb: 0.05% or less, Ti: 0.05% or less, V: 0.05%
  • B 0.05% or less
  • Ca 0.0040% or less
  • Mg 0.0040% or less
  • REM 0.0040% or less
  • the Ni content may be 5.3 to 7.3%.
  • the thickness may be 4.5 to 80 mm.
  • a first thermal processing is performed in which the air is cooled to 300 ° C. or lower; Heating to 70 ° C. or less, controlling the temperature before the final pass to 660 ° C. or more and 900 ° C. or less, performing hot rolling at a reduction ratio of 2.0 or more and 40 or less, and immediately starting cooling
  • a third heat processing is performed in which the steel slab is heated to 600 ° C. or higher and 750 ° C. or lower and then cooled; the steel slab is heated to 500 ° C. or higher and 650 ° C. or lower and then cooled.
  • a fourth thermal processing is performed.
  • the steel slab is further in mass%, Cu: 1.0% or less, Nb: 0.05% or less, Ti: 0.05%
  • V 0.05% or less
  • B 0.05% or less
  • Ca 0.0040% or less
  • Mg 0.0040% or less
  • REM 0.0040% or less. May be.
  • the temperature before the last pass is 800 ° C. or more and 1200 ° C. You may control below and perform hot rolling by the reduction ratio of 1.2 or more and 40 or less.
  • the steel sheet in the second thermal processing treatment, is cooled immediately after the hot rolling, and is restarted at 780 ° C. or more and 900 ° C. or less. Heating may be performed.
  • the present invention it is possible to secure fracture resistance performance at about ⁇ 160 ° C. in a steel material having a steel component with Ni reduced to about 6%. That is, the present invention can provide a steel sheet and a method for producing the same that are far lower in cost than the conventional 9% Ni steel, and has high industrial value.
  • the present inventors have found that three fracture resistances are important as characteristics (characteristics of a base material and a welded joint) necessary for a steel sheet used for a welded structure such as an LNG tank.
  • the characteristic that prevents the occurrence of brittle fracture (crack) is defined as toughness
  • the characteristic that stops the propagation of brittle fracture (crack) is defined as arrestability
  • the characteristic that suppresses unstable fracture (fracture form including ductile fracture) in the vicinity of a crack is defined as unstable fracture suppression characteristics.
  • the inventors diligently studied a method for producing a steel material having excellent fracture resistance at about ⁇ 160 ° C. when Ni in the steel component is reduced to about 6%. As a result of this examination, it was confirmed that the two-phase region heat treatment was important. However, only with the two-phase heat treatment, the properties of the steel material are insufficient, and it has been found that in addition to the arrestability of the base metal, the toughness and arrestability of the welded joint and the unstable fracture suppression property of the welded joint are inferior. . Furthermore, when the present inventors diligently studied to improve these characteristics, the heterogeneity of the alloy elements inside the steel plate has a great influence on the toughness and arrestability of the welded joint and the arrestability of the base metal. It became clear.
  • micro-segregation is a phenomenon in which an alloy concentrated portion is formed in the remaining molten steel between the dendritic secondary arms during solidification, and this alloy concentrated portion is stretched by rolling.
  • the inventors reduced the heterogeneity of the alloy elements by carrying out a plurality of thermal processing treatments under predetermined conditions, and improved the toughness and arrestability of the welded joint and the arrestability of the base metal. We succeeded in greatly improving.
  • the present inventors diligently studied a method for improving the unstable fracture inhibiting characteristic. As a result, it has been found that the presence of a large amount and a uniform amount of retained austenite is insufficient to prevent unstable fracture and the individual retained austenite needs to be fine. Therefore, the present inventors have succeeded in improving the unstable fracture suppression characteristics by optimizing the hot rolling and controlled cooling conditions and finely dispersing the retained austenite.
  • the solute elements are uniformly distributed, the retained austenite is dispersed in a large amount and uniformly, the individual retained austenite is refined, and the toughness and arrestability of the base material, It has been clarified that the toughness, arrestability, and unstable fracture inhibiting properties of the welded joint are all excellent.
  • Ni is an element effective for improving the fracture resistance of the base material and the welded joint. If the Ni content is less than 5.0%, the amount of increase in fracture resistance due to stabilization of the solid solution Ni and retained austenite is not sufficient, and if the Ni content exceeds 7.5%, the alloy cost increases. Therefore, the amount of Ni is limited to 5.0% or more and 7.5% or less. In order to further enhance the fracture resistance, the lower limit of the Ni amount may be limited to 5.3%, 5.6%, 5.8%, or 6.0%. Moreover, you may restrict
  • Mn is the most important element to compensate for the decrease in fracture resistance due to Ni reduction. Similar to Ni, Mn stabilizes retained austenite and improves the fracture resistance of the base metal and the welded joint. Therefore, it is necessary to add 0.3% or more of Mn to the steel at the minimum. However, if Mn exceeding 1.2% is added to the steel, the microsegregation and tempering embrittlement susceptibility increases, and the fracture resistance decreases. Therefore, the amount of Mn is limited to 0.3% or more and 1.2% or less. Note that the lower limit of the Mn content may be limited to 1.15%, 1.1%, 1.0%, or 0.95% in order to improve the fracture resistance performance by reducing the Mn content. In order to stabilize the retained austenite, the lower limit of the amount of Mn may be limited to 0.4%, 0.5%, 0.6%, or 0.7%.
  • Cr is also an important element in the present invention. Cr is important for securing the strength and has the effect of increasing the strength without greatly reducing the toughness and arrestability of the welded joint. In order to ensure the strength of the base material, it is necessary to contain at least 0.4% or more of Cr in the steel. However, when Cr exceeding 1.5% is contained in the steel, the toughness of the welded joint is lowered. Therefore, the Cr content is limited to 0.4% or more and 1.5% or less. In order to improve the strength, the lower limit of the Cr amount may be limited to 0.5%, 0.55%, or 0.6%. In order to improve the toughness of the welded joint, the upper limit of the Cr content may be limited to 1,3%, 1.0%, 0.9%, or 0.8%.
  • Mo is also an important element in the present invention.
  • the susceptibility to temper embrittlement increases as Mn increases. Mo can reduce this temper embrittlement sensitivity. If the amount of Mo is less than 0.02%, the effect of reducing the susceptibility to temper embrittlement is small. If the amount of Mo exceeds 0.4%, the manufacturing cost increases and the toughness of the welded joint decreases. Therefore, the amount of Mo is limited to 0.02% or more and 0.4% or less.
  • the lower limit of the Mo amount may be limited to 0.05%, 0.08%, 0.1%, or 0.13% in order to reduce temper embrittlement sensitivity.
  • the upper limit of the Mo amount may be limited to 0.35%, 0.3%, or 0.25%.
  • the C content is 0.03% or more.
  • the upper limit of the amount of C is made 0.10%. That is, the amount of C is limited to 0.03% or more and 0.10% or less.
  • the lower limit of the C amount may be limited to 0.04% or 0.05%.
  • the upper limit of the C content may be limited to 0.09%, 0.08%, or 0.07%.
  • the Si content is set to 0.02% or more.
  • the upper limit of the Si amount is set to 0.40%. That is, the amount of Si is limited to 0.02% or more and 0.40% or less. If the Si content is 0.12% or 0.08% or less, the temper embrittlement susceptibility decreases and the fracture resistance of the base material and the welded joint is improved, so the upper limit of the Si content is 0.12%. % Or 0.08% or less is preferable.
  • the amount of P is an element that is inevitably contained in steel and reduces the fracture resistance of the base metal.
  • the amount of P exceeds 0.0100%, the fracture resistance of the base material decreases due to the promotion of temper embrittlement. Therefore, the amount of P is limited to 0.0100% or less.
  • the upper limit of the P content may be limited to 0.0060%, 0.0050%, or 0.0040%. Note that when the P content is 0.0010% or less, the productivity is greatly reduced due to an increase in the refining load, and therefore, it is not necessary to perform the low phosphorusization of 0.0010% or less. However, even if the P amount is 0.0010% or less, the effect of the present invention can be exhibited. Therefore, it is not necessary to specifically limit the lower limit of the P amount, and the lower limit of the P amount is 0%.
  • the amount of S is an element which is inevitably contained in steel and reduces the fracture resistance of the base material.
  • the amount of S exceeds 0.0035%, the toughness of the base material decreases. Therefore, the amount of S is limited to 0.0035% or less.
  • the upper limit of the amount of S may be limited to 0.0030%, 0.0025%, or 0.0020%. If the amount of S is less than 0.0001%, the productivity is greatly reduced due to an increase in the refining load, so that it is not necessary to perform low sulfidation of less than 0.0001%. However, even if the S amount is less than 0.0001%, the effect of the present invention can be exhibited. Therefore, it is not necessary to specifically limit the lower limit of the S amount, and the lower limit of the S amount is 0%.
  • Al is an element effective as a deoxidizer. Even if Al less than 0.01% is contained in the steel, the deoxidation is insufficient, so that the toughness of the base material is lowered. When more than 0.08% Al is contained in the steel, the toughness of the welded joint is lowered. Therefore, the Al content is limited to 0.01% or more and 0.08% or less. In order to reliably perform deoxidation, the lower limit of the Al amount may be limited to 0.015%, 0.02%, or 0.025%. In order to improve the toughness of the welded joint, the upper limit of the Al content may be limited to 0.06%, 0.05%, or 0.04%.
  • N is an element that is inevitably contained in the steel and reduces the fracture resistance of the base metal and the welded joint. If the amount of N is less than 0.0001%, productivity decreases due to an increase in the refining load, so denitrification less than 0.0001% is not necessary. However, since the effect of the present invention can be exhibited even if the N amount is less than 0.0001%, it is not necessary to specifically limit the lower limit of the N amount, and the lower limit of the N amount is 0%. When the N content exceeds 0.0070%, the toughness of the base material and the toughness of the welded joint are lowered. Therefore, the N content is limited to 0.0070% or less. In order to improve toughness, the upper limit of the N amount may be limited to 0.0060%, 0.0050%, or 0.0045%.
  • T TC is inevitably contained in the steel, which reduces the fracture resistance of the base metal.
  • the amount of T ⁇ O is less than 0.0001%, the refining load is very high and the productivity is lowered.
  • the amount of T ⁇ O exceeds 0.0050%, the toughness of the base material decreases. Therefore, the amount of T ⁇ O is limited to 0.0001% or more and 0.0050% or less. If the T / O amount is 0.0025% or 0.0015% or less, the toughness of the base material is remarkably improved, so the upper limit of the T / O amount is 0.0025% or 0.0015% or less. Is preferred.
  • the T ⁇ O amount is the sum of oxygen dissolved in the molten steel and oxygen of fine deoxidation products suspended in the molten steel. That is, the amount of T ⁇ O is the sum of oxygen dissolved in the steel and oxygen in the oxide dispersed in the steel.
  • the chemical composition which contains the above-mentioned basic chemical component (basic element) and consists of the balance Fe and inevitable impurities is the basic composition of the present invention.
  • the present invention may further contain the following elements (selective elements) as necessary. In addition, even if these selective elements are inevitably mixed in steel, the effect in this embodiment is not impaired.
  • Cu is an element effective for improving the strength, and may be added as necessary. Even if Cu of less than 0.01% is contained in steel, the effect of improving the strength of the base material is small. If more than 1.0% of Cu is contained in the steel, the toughness of the welded joint decreases. Therefore, when adding Cu, it is preferable to limit the amount of Cu to 0.01% or more and 1.0% or less. In order to improve the toughness of the welded joint, the upper limit of the Cu content may be limited to 0.5%, 0.3%, 0.1%, or 0.05%. In order to reduce the alloy cost, it is desirable not to intentionally add Cu, and the lower limit of Cu is 0%.
  • Nb is an element effective for improving the strength, and may be added as necessary. Even if Nb of less than 0.001% is contained in the steel, the effect of improving the strength of the base material is small. When Nb exceeding 0.05% is contained in the steel, the toughness of the welded joint is lowered. Therefore, when adding Nb, it is preferable to limit the amount of Nb to 0.001% or more and 0.05% or less. In order to improve the toughness of the welded joint, the upper limit of the Nb amount may be limited to 0.03%, 0.02%, 0.01%, or 0.005%. In order to reduce the alloy cost, it is desirable not to intentionally add Nb, and the lower limit of Nb is 0%.
  • Ti is an element effective for improving the toughness of the base material, and may be added as necessary. Even if Ti of less than 0.001% is contained in the steel, the effect of improving the toughness of the base material is small. When Ti is added, if more than 0.05% Ti is contained in the steel, the toughness of the welded joint decreases. Therefore, it is preferable to limit the amount of Ti to 0.001% or more and 0.05% or less. In order to improve the toughness of the welded joint, the upper limit of the Ti amount may be limited to 0.03%, 0.02%, 0.01%, or 0.005%. In order to reduce the alloy cost, it is desirable not to intentionally add Ti, and the lower limit of Ti is 0%.
  • V is an element effective for improving the strength of the base material, and may be added as necessary. Even if less than 0.001% of V is contained in the steel, the effect of improving the strength of the base material is small. When V exceeds 0.05%, the toughness of the welded joint is lowered. Therefore, when adding V, it is preferable to limit the amount of V to 0.001% or more and 0.05% or less. In order to improve the toughness of the welded joint, the upper limit of the V amount may be limited to 0.03%, 0.02%, or 0.01%. In order to reduce the alloy cost, it is desirable not to intentionally add V, and the lower limit of V is 0%.
  • B is an element effective for improving the strength of the base material, and may be added as necessary. Even if less than 0.0002% B is contained in the steel, the effect of improving the strength of the base material is small. When more than 0.05% B is contained in the steel, the toughness of the base material is lowered. Therefore, when adding B, it is preferable to limit the amount of B to 0.0002% or more and 0.05% or less. In order to improve the toughness of the base material, the upper limit of the B amount may be limited to 0.03%, 0.01%, 0.003%, or 0.002%. In order to reduce the alloy cost, it is desirable not to intentionally add B, and the lower limit of B is 0%.
  • Ca is an element effective for preventing nozzle clogging, and may be added as necessary. Even if Ca of less than 0.0003% is contained in the steel, the effect of preventing nozzle clogging is small. When more than 0.0040% of Ca is contained in the steel, the toughness of the base material is lowered. Therefore, when adding B, it is preferable to limit the amount of Ca to 0.0003% or more and 0.0040% or less. In order to prevent toughness reduction of the base material, the upper limit of the Ca content may be limited to 0.0030%, 0.0020%, or 0.0010%. In order to reduce the alloy cost, it is desirable not to intentionally add Ca, and the lower limit of Ca is 0%.
  • Mg is an element effective for improving toughness, and may be added as necessary. Even if Mg of less than 0.0003% is contained in the steel, the effect of improving the toughness of the base material is small. When more than 0.0040% Mg is contained in the steel, the toughness of the base material is lowered. Therefore, when adding Mg, it is preferable to limit the amount of Mg to 0.0003% or more and 0.0040% or less. In order to prevent a decrease in the toughness of the base material, the upper limit of the Mg content may be limited to 0.0030%, 0.0020%, or 0.0010%. In order to reduce the alloy cost, it is desirable not to intentionally add Mg, and the lower limit of Mg is 0%.
  • REM Radar Earth Metal
  • REM is an element effective for preventing nozzle clogging, and may be added as necessary. Even if less than 0.0003% of REM is contained in the steel, the effect of preventing nozzle clogging is small.
  • the toughness of the base material is lowered. Therefore, when adding REM, it is preferable to limit the amount of REM to 0.0003% or more and 0.0040% or less.
  • the upper limit of the REM amount may be limited to 0.0030%, 0.0020%, or 0.0010%.
  • it is desirable not to intentionally add REM and the lower limit of REM is 0%.
  • less than 0.002% of elements may be included in the steel as an inevitable impurity in the raw materials used including additive alloys and elements that can be mixed as an inevitable impurity eluted from heat-resistant materials such as furnace materials during melting.
  • Zn, Sn, Sb, and Zr that can be mixed in melting steel may be contained in the steel in less than 0.002% each (inevitable impurities mixed depending on the melting conditions of the steel). Therefore, 0% is included). Even if each of these elements is contained in steel in an amount of less than 0.002%, the effect of the present invention is not impaired.
  • the Ni-added steel sheet according to the present invention contains at least one selected from the above-mentioned basic elements and the chemical composition comprising the balance Fe and inevitable impurities, or the above-mentioned basic elements and the above-mentioned selective elements. And has a chemical composition composed of the balance Fe and inevitable impurities.
  • band-like segregation is a band-like form (band-like region) in which a portion where a solute element is concentrated in the remaining molten steel between dendritic arms at the time of solidification is stretched parallel to the rolling direction by hot rolling. That is, in the band-shaped segregation, the portion where the solute element is concentrated and the portion where the solute element is not concentrated are alternately formed in a band shape with an interval of 1 to 100 ⁇ m, for example.
  • this band-like segregation usually does not cause a significant decrease in toughness (for example, room temperature).
  • the effect of this band-like segregation is very large in steels with a Ni content as low as 6 to 7% used at an extremely low temperature of ⁇ 160 ° C. If solute elements such as Ni, Mn, and P are unevenly present in the steel due to band-like segregation, the stability of the retained austenite generated during the heat processing is greatly changed depending on the location (position in the steel). For this reason, the propagation stop performance (arrestability) of brittle fracture is greatly reduced for the base material.
  • the inventors first investigated the relationship between the Ni segregation ratio and the toughness and arrestability of the welded joint.
  • the Ni segregation ratio of the portion hereinafter referred to as 1/4 t part
  • the toughness and arrestability of the welded joint were excellent. Therefore, the Ni segregation ratio of the 1/4 t part is limited to 1.3 or less.
  • the Ni segregation ratio of the 1/4 t part is 1.15 or less
  • the toughness and arrestability of the welded joint is more excellent, and therefore, the Ni segregation ratio is preferably 1.15 or less.
  • the 1/4 se portion Ni segregation ratio can be measured by EPMA (Electron Probe MicroAnalysis). That is, the amount of Ni is measured by EPMA at intervals of 2 ⁇ m over a length of 2 mm in the thickness direction, centering on a position that is a distance of 1/4 of the thickness in the thickness direction (depth direction) from the steel plate surface (plate surface). taking measurement. Of the measured 1000 points of Ni amount data, 10 points of data in descending order of Ni amount and 10 points of data in descending order of Ni amount are excluded from data to be evaluated as abnormal values.
  • EPMA Electro Probe MicroAnalysis
  • the average of the remaining data of 980 points is defined as the average value of the Ni amount, and among the data of 980 points, the average of the data of 20 points in order from the data with the largest Ni amount is defined as the maximum value of the Ni amount.
  • a value obtained by dividing the maximum value of the Ni amount by the average value of the Ni amount is defined as the Ni segregation ratio in the 1/4 t portion.
  • the lower limit value of the Ni segregation ratio is 1.0 in calculation. Therefore, the lower limit of the Ni segregation ratio may be 1.0.
  • CTOD Cross Tip Opening Displacement
  • FIG. 1 shows the relationship between the Ni segregation ratio and the CTOD value of the welded joint at ⁇ 165 ° C. As shown in FIG.
  • FIG. 2 shows the relationship between the Ni segregation ratio and the ratio of the crack penetration distance (measured value of the hybrid ESSO test under the above conditions) to the plate thickness. As shown in FIG. 2, when the Ni segregation ratio is 1.3 or less, the crack penetration distance is 2 times or less of the plate thickness, and the arrestability of the welded joint is excellent.
  • the weld joint used in the CTOD test of FIG. 1 and the hybrid ESSO test of FIG. 2 was prepared by SMAW (Shield Metal Arc Welding) under the following conditions. That is, SMAW was performed by vertical welding under conditions of a heat input of 3.0 to 4.0 kJ / cm, preheating of 100 ° C. or less and interpass temperature. The notch position is a bond part.
  • the inventors next investigated the relationship between retained austenite after deep cooling and the arrestability of the base material. That is, the present inventors define the ratio between the maximum area ratio and the minimum area ratio of retained austenite after deep cooling as the austenite non-uniform index after deep cooling (hereinafter sometimes referred to as non-uniform index).
  • the relationship between this index and the arrestability of the base metal was investigated. As a result, it was found that when the austenite non-uniformity index after deep cooling exceeds 5.0, the arrestability of the base material decreases. Therefore, the austenite non-uniformity index after deep cooling in the present invention is limited to 5.0 or less. The lower limit of the austenite non-uniformity index after deep cooling is 1 in calculation.
  • the austenite non-uniformity index after deep cooling in the present invention may be 1.0 or more.
  • the maximum area ratio and the minimum area ratio of austenite can be evaluated from EBSP (Electron Back Scattering Pattern) of a sample deeply cooled in liquid nitrogen. Specifically, EBSP mapping in a 5 ⁇ 5 ⁇ m region is performed to evaluate the area ratio of austenite. The area ratio is evaluated in a total of 40 views continuously in the thickness direction centering on the 1/4 t portion of the steel plate.
  • the average of the 5 points of data is defined as the maximum area rate in order from the data with the largest austenite area ratio, and the average of the 5 points of data in order from the data with the smallest austenite area ratio is the minimum area It is defined as rate. Further, a value obtained by dividing the above-mentioned maximum area ratio by this minimum area ratio is defined as an austenite non-uniformity index after deep cooling. In the X-ray diffraction described below, EBSP is used because such microscopic austenite inhomogeneities cannot be investigated.
  • the absolute amount of retained austenite is also important.
  • austenite amount is less than 2% of the amount of the entire structure, the toughness and arrestability of the base material are greatly reduced. Therefore, the amount of austenite after deep cooling is 2% or more. Further, when the amount of retained austenite after deep cooling is significantly increased, austenite becomes unstable under plastic deformation, and on the contrary, the toughness and arrestability of the base material are lowered. Therefore, the amount of austenite after deep cooling is preferably 2% or more and 20% or less.
  • the retained austenite is fine. Even when the amount of retained austenite after deep cooling is 2% or more and 20% or less and the non-uniformity index is 1.0 or more and 5.0 or less, if the retained austenite is coarse, unstable fracture of the welded joint Is likely to occur. When a crack that has once stopped propagates again through the entire cross section in the thickness direction due to unstable fracture, the base material is included in a part of the crack propagation path. Therefore, when the austenite stability of the base material is lowered, unstable fracture is likely to occur. That is, when the retained austenite becomes coarse, the amount of C contained in the retained austenite decreases, so the stability of the retained austenite decreases.
  • unstable fracture is a phenomenon in which fracture stops after brittle fracture occurs and propagates, and fracture propagates again.
  • This unstable fracture mode includes the case where the entire fracture surface is a ductile fracture surface, and the surfaces near both ends (both surfaces) of the thickness of the fracture surface are ductile fracture surfaces, and the thickness of the fracture surface. Both the case where the surface near the center is a brittle fracture surface are observed.
  • the average equivalent circle diameter of austenite after deep cooling can be obtained, for example, by observing 20 dark field images at 10,000 times the transmission electron microscope and quantifying the average equivalent circle diameter.
  • the lower limit of the average equivalent circle diameter of the austenite after deep cooling may be, for example, 1 nm. Therefore, the steel sheet of the present invention has excellent fracture resistance at about ⁇ 160 ° C., and can be used in general for welded structures such as shipbuilding, bridges, buildings, marine structures, pressure vessels, tanks, and line pipes.
  • the steel sheet of the present invention is effective when used as an LNG tank that requires fracture resistance at an extremely low temperature of about ⁇ 160 ° C.
  • 1st heat processing band segregation reduction processing
  • 2nd heat processing hot rolling and controlled cooling processing
  • 3rd heat A steel plate is manufactured in a manufacturing process including processing (high temperature two-phase region processing) and fourth thermal processing (low temperature two-phase region processing).
  • the first thermal processing treatment band segregation reduction treatment
  • the heat treatment heatating
  • thermal processing a process in which processes such as hot rolling and controlled cooling are combined as necessary with respect to heat treatment at a high temperature, which is basically defined, is defined as thermal processing.
  • the steel piece of the said alloy element range (the said steel component) is used for a 1st heat processing process.
  • the third thermal processing treatment (high temperature two-phase region treatment) will be described.
  • This thermal processing is an essential process for improving the toughness and arrestability of the base material at about ⁇ 160 ° C. in steel with the Ni content reduced to about 6%.
  • reverse transformed austenite is formed in the shape of needles, rods, or plates along the interface of prior austenite grain boundaries, martensite packets, blocks, laths, etc. to refine the structure.
  • the heating temperature in the high-temperature two-phase region treatment is 600 ° C. or higher and 750 ° C. or lower.
  • the temperature of the high-temperature two-phase region treatment is preferably 650 ° C. or more and 700 ° C. or less.
  • the water cooling is cooling in which the cooling rate at the 1/4 t portion of the steel plate is more than 3 ° C./s.
  • the upper limit of the water cooling rate is not particularly limited.
  • the first thermal processing process band segregation reduction process
  • the segregation ratio of the solute elements can be reduced, and the retained austenite can be uniformly dispersed in the steel, so that the toughness and arrestability of the welded joint and the arrestability of the base material can be enhanced.
  • heat treatment is performed at a high temperature for a long time.
  • the inventors investigated the influence of the combination of the heating temperature and the holding time of the first thermal processing treatment (band segregation reduction treatment) on the Ni segregation ratio. As a result, as shown in FIG.
  • the temperature is 1250 ° C. or more. It has been found that it is necessary to hold at heating temperature for 8 hours or more. Therefore, the heating temperature of the first thermal processing treatment (band segregation reduction treatment) is 1250 ° C. or more, and the holding time is 8 hours or more. Note that when the heating temperature is 1380 ° C. or higher and the holding time is 50 hours, the productivity is greatly reduced. Therefore, the heating temperature is controlled to 1380 ° C. or lower and the holding time is limited to 50 hours or shorter.
  • heating temperature when heating temperature shall be 1300 degreeC or more, or holding time shall be 30 hours or more, Ni segregation ratio and an austenite nonuniformity index will reduce further. Therefore, the heating temperature is preferably 1300 ° C. or higher, and the holding time is preferably 30 hours or longer.
  • the first thermal processing the steel slab of the steel component is heated and held under the above conditions and then air-cooled. If the temperature at which this air cooling is transferred to the second thermal processing (quenching) exceeds 300 ° C., the transformation is not completed and the material becomes non-uniform. Therefore, the surface temperature (end temperature of air cooling) of the steel slab at the time of transition from air cooling to the second thermal processing (quenching) is 300 ° C. or less.
  • the lower limit of the air cooling end temperature is not particularly limited.
  • the lower limit of the air cooling end temperature may be room temperature or ⁇ 40 ° C.
  • the heating temperature is the temperature of the slab surface
  • the holding time is the holding time after 3 hours have passed since the heating temperature reached the set slab surface.
  • Air cooling is cooling at a cooling rate of 3 ° C./s or less when the temperature of the 1/4 t part of the steel plate is between 800 ° C. and 500 ° C. In this air cooling, the cooling rate above 800 ° C. or below 500 ° C. is not particularly limited. From the viewpoint of productivity, the lower limit of the cooling rate of air cooling may be, for example, 0.01 ° C./s or more.
  • the second thermal processing process hot rolling and controlled cooling process
  • heating, hot rolling (second hot rolling), and controlled cooling are performed.
  • a hardened structure can be generated to increase the strength, and the structure can be refined.
  • the generation of fine stable austenite through the introduction of processing strain can improve the unstable fracture inhibiting characteristics of the welded joint.
  • it is important to control the rolling temperature When the temperature before the final pass in hot rolling is lowered, the residual strain in the steel is increased, and the average equivalent circular diameter of the retained austenite is decreased.
  • the present inventors have controlled the temperature before the final pass to 900 ° C. or less, so that the average equivalent circle diameter is 1 ⁇ m or less. Found out to be. Further, when the temperature before the final pass is 660 ° C. or higher, hot rolling can be efficiently performed without reducing productivity. Therefore, the temperature before the last pass in the hot rolling of the second thermal processing is 660 ° C. or higher and 900 ° C. or lower. In addition, when the temperature before the last pass is controlled to 660 ° C. or more and 800 ° C.
  • the average equivalent circular diameter of the retained austenite becomes smaller, so the temperature before the last pass is 660 ° C. or more and 800 ° C. or less. It is preferable.
  • the temperature before the last pass is the temperature of the surface of the slab (steel piece) measured immediately before the final pass of rolling (hot rolling) (slab biting into the rolling roll).
  • the temperature before the last pass can be measured by a thermometer such as a radiation thermometer.
  • the heating temperature is also important to control the heating temperature before hot rolling in the second thermal processing (hot rolling and controlled cooling).
  • the present inventors have found that when the heating temperature is higher than 1270 ° C., the amount of austenite decreases after deep cooling, and the toughness and arrestability of the base material are significantly decreased. Further, when the heating temperature is less than 900 ° C., the productivity is significantly reduced. Therefore, this heating temperature is 900 ° C. or more and 1270 ° C. or less. When the heating temperature is 1120 ° C. or lower, the toughness of the base material can be further increased. Therefore, the heating temperature is preferably 900 ° C. or higher and 1120 ° C. or lower.
  • the holding time after heating is not particularly defined. However, from the viewpoint of uniform heating and ensuring productivity, the holding time at the heating temperature is preferably 2 hours or more and 10 hours or less. The hot rolling may be started within this holding time.
  • the reduction ratio of hot rolling in the second hot working process is also important.
  • the reduction ratio is increased, the structure after hot rolling is refined through recrystallization or an increase in dislocation density, and the final austenite (residual austenite) is also refined.
  • the present inventors need to make the reduction ratio 2.0 or more in order to make the average equivalent circle diameter of austenite 1 ⁇ m or less. Found that there is.
  • the reduction ratio exceeds 40, the productivity is significantly reduced. Therefore, the reduction ratio of hot rolling in the second heat processing is 2.0 or more and 40 or less.
  • the rolling ratio of the hot rolling in the second thermal processing is 10 or more, the average equivalent circle diameter of austenite further decreases. Therefore, the rolling ratio is preferably 10 or more and 40 or less.
  • the rolling reduction ratio of hot rolling is a value obtained by dividing the plate thickness before rolling by the plate thickness after rolling.
  • Control cooling is performed immediately after hot rolling in the second thermal processing (hot rolling and controlled cooling).
  • controlled cooling means cooling controlled for structure control, and includes accelerated cooling by water cooling and cooling by air cooling on a steel plate having a plate thickness of 15 mm or less.
  • this cooling is preferably finished at 200 ° C. or lower.
  • the lower limit of the water cooling end temperature is not particularly limited.
  • the lower limit of the water cooling end temperature may be room temperature or ⁇ 40 ° C.
  • the water cooling is a cooling in which the cooling rate at a 1/4 t portion of the steel plate exceeds 3 ° C./s.
  • the upper limit of the cooling rate of water cooling need not be particularly limited.
  • the fourth thermal processing treatment (low temperature two-phase region treatment) will be described.
  • the toughness of the base material is improved by tempering martensite.
  • thermally stable and fine austenite is generated, and since this austenite exists stably even at room temperature, fracture resistance (particularly, the toughness and arrestability of the base metal and Unstable fracture prevention characteristics of welded joints are improved.
  • the heating temperature in the low-temperature two-phase region treatment is below 500 ° C., the toughness of the base material is lowered.
  • the heating temperature in the low-temperature two-phase region treatment exceeds 650 ° C., the strength of the base material is not sufficient.
  • the heating temperature in the low temperature two-phase region treatment is 500 ° C. or more and 650 ° C. or less.
  • both air cooling and water cooling can be performed after heating in the low-temperature two-phase treatment.
  • air cooling and water cooling may be combined.
  • the water cooling is a cooling in which the cooling rate at a 1/4 t portion of the steel plate exceeds 3 ° C./s.
  • the upper limit of the water cooling rate is not particularly limited.
  • Air cooling is cooling at a cooling rate of 3 ° C./s or less when the temperature of the 1/4 t part of the steel plate is between 800 ° C. and 500 ° C. In this air cooling, it is not necessary to limit the cooling rate above 800 ° C. or below 500 ° C.
  • the lower limit of the cooling rate of air cooling may be, for example, 0.01 ° C./s or more.
  • the heating temperature of the first thermal processing is 1250 ° C. or higher, and the holding time is 8 hours or longer.
  • the heating temperature is limited to 1380 ° C. or less, and the holding time is limited to 50 hours or less.
  • the heating temperature is set to 1300 ° C. or higher, or the holding time is set to 30 hours or longer, the Ni segregation ratio is further reduced. Therefore, the heating temperature is preferably 1300 ° C. or higher, and the holding time is preferably 30 hours or longer. Note that hot rolling may be started within this holding time.
  • a segregation reduction effect can be expected during rolling and during air cooling after rolling. That is, when recrystallization occurs, an effect of reducing segregation through grain boundary movement occurs, and when no recrystallization occurs, an effect of reducing segregation through diffusion under a high dislocation density occurs. For this reason, the band-like Ni segregation ratio decreases as the reduction ratio during hot rolling increases. As a result of investigating the influence of the reduction ratio of hot rolling on the segregation ratio, the inventors of the present invention are effective when the reduction ratio is 1.2 or more in order to achieve a Ni segregation ratio of 1.3 or less. I found out.
  • the reduction ratio of hot rolling in the first thermal processing is 1.2 or more and 40 or less. Further, when the rolling ratio is 2.0 or more, the segregation ratio becomes smaller, and therefore the rolling ratio is preferably 2.0 or more and 40 or less. Considering that hot rolling is performed in the second thermal processing, the reduction ratio of hot rolling in the first thermal processing is more preferably 10 or less.
  • the first thermal processing treatment (band segregation reduction treatment) in the second embodiment it is also very important to control the temperature before the last one pass in hot rolling to an appropriate temperature. This is because if the temperature before the final pass is too low, diffusion does not proceed during air cooling after the end of rolling, so that the Ni segregation ratio increases. Conversely, if the temperature before the final pass is too high, the dislocation density rapidly decreases due to recrystallization, the diffusion effect under high dislocation density during air cooling after rolling ends, and the Ni segregation ratio increases. . In the hot rolling of the first thermal processing treatment (band segregation reduction treatment) in the second embodiment, there is a temperature range in which dislocations remain moderately in the steel and diffusion is likely to proceed.
  • the present inventors have found that the Ni segregation ratio becomes very high at temperatures below 800 ° C. or above 1200 ° C. Therefore, in 2nd embodiment, the temperature before the last 1 pass in the hot rolling of a 1st heat processing process (band segregation reduction process) is 800 degreeC or more and 1200 degrees C or less. When the temperature before the final pass is 950 ° C. or higher and 1150 ° C. or lower, the effect of reducing the segregation ratio is further increased. Therefore, the final one pass in the hot rolling of the first thermal processing treatment (band segregation reduction treatment).
  • the previous temperature is preferably 950 ° C.
  • the surface temperature (end temperature of air cooling) of the steel slab at the time of transition from air cooling after rolling to the second heat processing (quenching) is 300 ° C. or less.
  • the lower limit of the air cooling end temperature is not particularly limited.
  • the lower limit of the air cooling end temperature may be room temperature or ⁇ 40 ° C.
  • the heating temperature is the temperature of the slab surface
  • the holding time is the holding time after 3 hours have passed since the heating temperature reached the set slab surface.
  • the reduction ratio is a value obtained by dividing the plate thickness before rolling by the plate thickness after rolling. In this second embodiment, the reduction ratio is calculated for hot rolling of each thermal processing treatment.
  • the temperature before the last pass is the temperature of the slab surface measured immediately before the final pass of rolling (slab biting into the rolling roll), and can be measured by a thermometer such as a radiation thermometer.
  • Air cooling is cooling at a cooling rate of 3 ° C./s or less when the temperature of a 1/4 t part of the steel plate is between 800 ° C. and 500 ° C. In this air cooling, the cooling rate above 800 ° C. or below 500 ° C.
  • the lower limit of the cooling rate of air cooling is, for example, 0.01 ° C./s or more.
  • control cooling is performed promptly after reheating after this cooling.
  • this cooling is preferably finished at 200 ° C. or lower.
  • the lower limit of the water cooling end temperature is not particularly limited.
  • the first thermal processing (band segregation reduction processing) and the second thermal processing (hot rolling) including reheating after cooling.
  • a controlled cooling process a third thermal processing (high-temperature two-phase region processing), and a fourth thermal processing (low-temperature two-phase region processing). Therefore, descriptions of the first thermal processing (band segregation reduction processing), the third thermal processing (high-temperature two-phase region processing), and the fourth thermal processing (low-temperature two-phase region processing) are omitted.
  • the steel plates produced by the first embodiment, the second embodiment or the modifications thereof are excellent in fracture resistance at about ⁇ 160 ° C., and shipbuilding, bridges, buildings, marine structures, pressure vessels, tanks, It can be used for general welded structures such as line pipes.
  • the steel sheet produced by this production method is effective for use in an LNG tank that requires fracture resistance at an extremely low temperature of about ⁇ 160 ° C.
  • the Ni-added steel sheet of the present invention can be suitably manufactured by the above-described embodiment schematically shown in FIG. 4, but these embodiments show an example of the method for manufacturing the Ni-added steel sheet of the present invention. It's just that.
  • the method for producing the Ni-added steel sheet of the present invention is as follows. There is no particular restriction.
  • the following evaluation was performed on steel plates having a thickness of 6 mm to 50 mm manufactured under various chemical components and manufacturing conditions.
  • the yield stress and tensile strength of the base material were evaluated by a tensile test, and the CTOD values of the base material and the welded joint were obtained by a CTOD test, and the toughness of the base material and the welded joint was evaluated.
  • the crack penetration distance between the base material and the welded joint was obtained by a hybrid ESSO test, and the arrestability of the base material and the welded joint was evaluated. Furthermore, it was confirmed whether or not unstable ductile fracture occurred from the brittle crack stopped in the above-mentioned hybrid ESSO test on the welded joint, and the unstable fracture suppression characteristics of the welded joint were evaluated.
  • Table 1 shows the chemical composition of the steel sheet.
  • Table 2 shows the thickness of the steel sheet, the Ni segregation ratio, the amount of austenite after deep cooling, and the minimum amount of austenite after deep cooling. Furthermore, the manufacturing method of a steel plate is shown in Table 3, and the evaluation results of the fracture resistance performance of the base metal and the welded joint are shown in Table 4. Note that in the first thermal processing, air cooling was performed to 300 ° C. or lower before the second thermal processing.
  • Yield stress and tensile strength were measured by a metal material tensile test method described in JIS Z 2241.
  • the test piece is a metal material tensile test piece described in JIS Z 2201.
  • a No. 5 test piece was used for a steel plate having a thickness of 20 mm or less, and a No. 10 test piece taken from the 1/4 t portion was used for a steel plate having a thickness of 40 mm or more.
  • the test piece was collected so that the longitudinal direction of the test piece was perpendicular to the rolling direction.
  • the yield stress is a 0.2% proof stress calculated by the offset method. Two tests were performed at room temperature, and the average values of yield stress and tensile strength were adopted.
  • the toughness of the base metal and the welded joint was evaluated by a CTOD test based on BS7448.
  • a three-point bending test was performed using a B ⁇ 2B type test piece.
  • the base material was evaluated in the C direction (plate width direction) in which the longitudinal direction of the test piece was perpendicular to the rolling direction.
  • evaluation was performed only in the L direction (rolling direction).
  • CTOD value a test piece was collected so that the tip of the fatigue crack corresponds to a weld bond.
  • Three tests were performed at a test temperature of ⁇ 165 ° C., and the lowest value of the obtained measurement data was adopted as the CTOD value.
  • CTOD value 0.3 mm or more was evaluated as “pass”, and less than 0.3 mm was evaluated as “fail”.
  • FIG. 5 shows a partial schematic diagram of an example of the crack surface of the test part after the hybrid ESSO test.
  • the crack surface is a region where the embrittlement plate (running plate) 1, the attachment weld 2, and the crack entry portion 3 in FIG. 5 are combined, and the crack entry distance L is perpendicular to the direction of the plate thickness t. It is the maximum length of the crack entry part 3 (the crack part that entered the test part (base metal or weld metal part) 4) in the direction.
  • FIG. 5 shows only a part of the embrittlement plate 1 and the test part 4.
  • the hybrid ESSO test is, for example, H.264. Miyakoshi, N .; Ishikura, T .; Suzuki and K.K. Tanaka: Proceedings for Transmission Conf. , Atlanta, 1981, American Gas Association, T155-T166
  • FIG. 6 is a test method as shown in the schematic diagram of the hybrid ESSO test.
  • the weld joint used for the CTOD test and the hybrid ESSO test was produced by SMAW.
  • This SMAW was vertical welding under conditions of a heat input of 3.5 to 4.0 kJ / cm, preheating of 100 ° C. or less, and interpass temperature.
  • the unstable ductile fracture inhibition characteristics of welded joints were evaluated from the hybrid ESSO test results (changes in fracture surface) of the welded joints described above. That is, after the propagation of the brittle crack stopped, when the crack propagated again due to the unstable ductile fracture, the distance that the crack propagated due to the unstable ductile fracture (unstable ductile fracture occurrence distance) was recorded.
  • Comparative Example 17 and Comparative Examples 21 to 23 since the amount of austenite after deep cooling was not an appropriate amount, either the base metal or the fracture resistance performance of the welded joint was “failed”. In Comparative Examples 17, 21, and 22, the conditions for the second thermal processing were not appropriate. In Comparative Examples 22 and 23, the conditions for the third thermal processing were not appropriate.
  • Comparative Example 24 since the average equivalent circle diameter of austenite after deep cooling is not appropriate, either the base metal or the fracture resistance performance of the welded joint was “failed”. In Comparative Example 24, the conditions for the fourth thermal processing treatment were not appropriate.
  • Example 19 since the average equivalent circle diameter of austenite after deep cooling was not appropriate, either the base metal or the fracture resistance performance of the welded joint was “failed”. In Comparative Example 19, the conditions for the second thermal processing were not appropriate. In Example 6 and Comparative Example 6, the controlled cooling in the second thermal processing, the cooling in the third thermal processing, and the fourth thermal processing are air cooling. Similarly, in Example 17 and Comparative Example 17, the controlled cooling in the second thermal processing is air cooling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 このNi添加鋼板は、質量%で、C:0.03%以上かつ0.10%以下、Si:0.02%以上かつ0.40%以下、Mn:0.3%以上かつ1.2%以下、Ni:5.0%以上かつ7.5%以下、Cr:0.4%以上かつ1.5%以下、Mo:0.02%以上かつ0.4%以下、Al:0.01%以上かつ0.08%以下、T・O:0.0001%以上かつ0.0050%以下を含有し、P:0.0100%以下、S:0.0035%以下、N:0.0070%以下に制限し、残部がFe及び不可避的不純物からなり、板面から深さ方向に板厚の1/4の距離離れた部位のNi偏析比が1.3以下であり、深冷後オーステナイトの量が2%以上であり、深冷後オーステナイト不均一指数が5.0以下であり、深冷後オーステナイトの平均円相当径が1μm以下である。

Description

Ni添加鋼板およびその製造方法
 本発明は、鋼板の母材及び溶接継手の耐破壊性能(後述の靭性、アレスト性、不安定破壊抑止特性)に優れたNi添加鋼板およびその製造方法に関する。
 本願は、2010年7月9日に、日本に出願された特願2010-156720号に基づき優先権を主張し、その内容をここに援用する。
 液化天然ガス(LNG)タンクに使用される鋼には、-160℃程度の極低温での耐破壊性能が要求されている。例えば、LNGタンクの内槽に使用される鋼種として、いわゆる9%Ni鋼がある。この9%Ni鋼は、質量%で8.5~9.5%程度のNiを含有し、主に焼き戻しマルテンサイトを含む組織を有し、特に低温靱性(例えば、-196℃でのシャルピー衝撃吸収エネルギー)に優れる鋼材である。9%Ni鋼の靱性を向上させる種々の技術がこれまでに開示されている。たとえば、粒界脆化により靱性低下を引き起こすPを低減する技術が、特許文献1、特許文献2、特許文献3に開示されている。また、二相域熱処理により焼戻し脆化感受性を低減して靱性を向上する技術が、特許文献4、特許文献5、特許文献6に開示されている。加えて、焼戻し脆化感受性を増大させずに強度を高めることができるMoを添加して、大幅に靱性を向上する技術が、特許文献7、特許文献8、特許文献9に開示されている。さらに、焼戻し脆化感受性を増大させるSi量を低減して靱性を向上する技術が、特許文献4、特許文献8、特許文献10に開示されている。なお、このLNGタンク用の9%Ni鋼として、板厚4.5mm以上かつ80mm以下の鋼板が用いられている。その中でも、主に板厚6mm以上かつ50mm以下の鋼板が用いられている。
 昨今のNi価格高騰を背景として、LNGタンク建造コスト低減のためにNi添加量を低減した鋼材が求められている。鋼材のNi添加量を6%まで低減して優れた母材靱性を確保する方法として、α-γ二相域への熱処理(二相域熱処理)を活用した方法が非特許文献1に開示されている。この方法は、母材の耐破壊性能の向上には、きわめて有効である。すなわち、6%程度のNi量であっても、この方法により得られた鋼材は、母材について9%Ni鋼と同様の耐破壊性能(後述の靭性)を有する。しかし、Ni量の低減に伴って溶接継手の耐破壊性能(後述の靱性、アレスト性、不安定破壊抑止特性)が大幅に低下する。そのため、この方法で製造された鋼材をLNGタンクに使用することは困難である。
 これまで、溶接継手の耐破壊性能(後述の靱性)を改善するための方法がいくつか提案されている。たとえば、鋳造スラブを加熱、圧延する前に偏析低減のための予備熱処理を行う方法が、特許文献11、特許文献12、特許文献13、特許文献14に開示されている。また、二工程の圧延を行い、板厚中心部の欠陥を減らす方法が、特許文献15に開示されている。しかし、特許文献11~14の方法では、偏析低減の効果が小さいため溶接継手の耐破壊性能(後述の靱性)が十分ではない。また、特許文献15の方法では、鋳造スラブの板厚から最終圧延後の板厚までの圧下比が小さく、かつ1回目の圧延工程における圧下比や温度などの条件を制御していない。そのため、組織粗大化及び偏析残存により母材および溶接継手の耐破壊性能(後述の靱性)が十分でない。このように、Niを6%程度に低減した鋼板に対して-160℃程度での耐破壊性能を確保することは、既存技術では困難である。
日本国特開平7-278734号公報 日本国特開平6-179909号公報 日本国特開昭63-130245号公報 日本国特開平9-143557号公報 日本国特開平4-107219号公報 日本国特開昭56-156715号公報 日本国特開2002-129280号公報 日本国特開平4-371520号公報 日本国特開昭61-133312号公報 日本国特開平7-316654号公報 日本国特公平4-14179号公報 日本国特開平9-20922号公報 日本国特開平9-41036号公報 日本国特開平9-41088号公報 日本国特開2000-129351号公報
鉄と鋼,第59年,1973年,第6号,p752
 本発明は、6%前後のNi含有量で-160℃程度での耐破壊性能に優れた鋼板およびその製造方法を提供することを目的とする。
 本発明は、6%前後のNi含有量で-160℃程度での耐破壊性能に優れた鋼板およびその製造方法を提供する。その要旨は、以下の通りである。
(1)本発明の一態様に係るNi添加鋼板は、質量%で、C:0.03%以上かつ0.10%以下、Si:0.02%以上かつ0.40%以下、Mn:0.3%以上かつ1.2%以下、Ni:5.0%以上かつ7.5%以下、Cr:0.4%以上かつ1.5%以下、Mo:0.02%以上かつ0.4%以下、Al:0.01%以上かつ0.08%以下、T・O:0.0001%以上かつ0.0050%以下を含有し、P:0.0100%以下、S:0.0035%以下、N:0.0070%以下に制限し、残部がFe及び不可避的不純物からなり、板面から深さ方向に板厚の1/4の距離離れた部位のNi偏析比が1.3以下であり、深冷後オーステナイトの量が2%以上であり、深冷後オーステナイト不均一指数が5.0以下であり、深冷後オーステナイトの平均円相当径が1μm以下である。
(2)上記(1)に記載のNi添加鋼板は、さらに質量%で、Cu:1.0%以下、Nb:0.05%以下、Ti:0.05%以下、V:0.05%以下、B:0.05%以下、Ca:0.0040%以下、Mg:0.0040%以下、REM:0.0040%以下のいずれか1種以上を含有してもよい。
(3)上記(1)または(2)に記載のNi添加鋼板では、Ni量が、5.3~7.3%であってもよい。
(4)上記(1)または(2)に記載のNi添加鋼板では、板厚が、4.5~80mmであってもよい。
(5)本発明の一態様に係るNi添加鋼板の製造方法では、質量%で、C:0.03%以上かつ0.10%以下、Si:0.02%以上かつ0.40%以下、Mn:0.3%以上かつ1.2%以下、Ni:5.0%以上かつ7.5%以下、Cr:0.4%以上かつ1.5%以下、Mo:0.02%以上かつ0.4%以下、Al:0.01%以上かつ0.08%以下、T・O:0.0001%以上かつ0.0050%以下を含有し、P:0.0100%以下、S:0.0035%以下、N:0.0070%以下に制限し、残部がFe及び不可避的不純物からなる鋼片を、1250℃以上かつ1380℃以下の加熱温度で8時間以上かつ50時間以下保持した後300℃以下まで空冷する第1の熱加工処理を行い;前記鋼片を900℃以上かつ1270℃以下に加熱し、最終1パス前の温度を660℃以上かつ900℃以下に制御して2.0以上かつ40以下の圧下比で熱間圧延を行い、直ちに冷却を開始する第2の熱加工処理を行い;前記鋼片を600℃以上かつ750℃以下に加熱した後冷却を行う第3の熱加工処理を行い;前記鋼片を500℃以上かつ650℃以下に加熱した後冷却する第4の熱加工処理を行う。
(6)上記(5)に記載のNi添加鋼板の製造方法では、前記鋼片が、さらに質量%で、Cu:1.0%以下、Nb:0.05%以下、Ti:0.05%以下、V:0.05%以下、B:0.05%以下、Ca:0.0040%以下、Mg:0.0040%以下、REM:0.0040%以下のいずれか1種以上を含有してもよい。
(7)上記(5)または(6)に記載のNi添加鋼板の製造方法では、前記第1の熱加工処理において、前記空冷の前に、最終1パス前の温度を800℃以上かつ1200℃以下に制御して1.2以上かつ40以下の圧下比で熱間圧延を行ってもよい。
(8)上記(5)または(6)に記載のNi添加鋼板の製造方法では、前記第2の熱加工処理において、前記熱間圧延の直後に冷却し、780℃以上かつ900℃以下で再加熱を行ってもよい。
(9)上記(5)または(6)に記載のNi添加鋼板の製造方法では、前記第1の熱加工処理において、前記空冷の前に、最終1パス前の温度を800℃以上かつ1200℃以下に制御して1.2以上かつ40以下の圧下比で熱間圧延を行い、前記第2の熱加工処理において、前記熱間圧延の直後に冷却し、780℃以上かつ900℃以下で再加熱を行ってもよい。
 本発明によれば、Niを6%程度に低減した鋼成分の鋼材において-160℃程度での耐破壊性能を確保できる。つまり、本発明は、従来の9%Ni鋼よりも圧倒的にコストが低い鋼板およびその製造方法を提供することが可能であり、産業上の価値が高い。
溶接継手靭性とNi偏析比との関係を示すグラフである。 溶接継手のアレスト性とNi偏析比との関係を示すグラフである。 第1の熱加工処理における加熱時間と保持時間とがNi偏析比に与える影響を示す説明図である。 本発明の各実施形態に係るNi添加鋼板の製造方法のフローチャートを示す図である。 混成ESSO試験後の試験部の亀裂面の一例の部分概略図である。
 本発明者らは、LNGタンク等の溶接構造物に使用する鋼板に必要な特性(母材及び溶接継手の特性)として、3つの耐破壊性能が重要であることを見出した。以下では、本発明における耐破壊性能として、脆性破壊(き裂)の発生を阻止する特性を靭性と定義し、脆性破壊(き裂)の伝播を停止する特性をアレスト性と定義し、伝播停止したき裂近傍における不安定な破壊(延性破壊を含む破壊形態)を抑制する特性を不安定破壊抑止特性と定義する。これらの3つの耐破壊性能は、鋼板の母材と溶接継手との両方に対して評価される。
 本発明を詳細に説明する。
 最初に本発明に至った経緯を説明する。本発明者らは、鋼成分中のNiを6%程度に減らした場合に、-160℃程度での耐破壊性能に優れた鋼材を製造する方法を鋭意検討した。この検討の結果、二相域熱処理が重要であることを確認した。しかしながら、二相域熱処理のみでは、鋼材の特性が不十分であり、母材のアレスト性に加え、溶接継手の靭性及びアレスト性と、溶接継手の不安定破壊抑止特性とが劣ることが解った。さらに、本発明者らがこれらの特性を高める検討を鋭意行ったところ、鋼板内部の合金元素の不均一性が、溶接継手の靭性及びアレスト性と、母材のアレスト性とに大きな影響を与えることが明らかになった。合金元素の不均一性が大きい場合、鋼の母材においては、残留オーステナイトの分布が不均一になり、脆性き裂の伝播を停止する性能(アレスト性)が低下する。鋼の溶接継手においては、溶接の熱影響によって二相域温度に加熱された部位の一部に、硬質のマルテンサイトが島状に密集した状態で生成し、脆性き裂の発生を阻止する性能(靭性)および脆性き裂の伝播を停止する性能(アレスト性)が著しく低下する。
 普通、破壊特性が合金元素の不均一性の影響を受ける場合、鋼板の板厚方向(深さ方向)中央部付近の中心偏析が問題になる。これは、材料中の脆い中心偏析部と力学的に応力三軸度(応力状態)が高くなる板厚中央部とが重畳して脆性破壊が優先的に発生するためである。しかし、LNGタンクに使用される鋼では、溶接材料として大抵の場合オーステナイト系合金が使用される。この場合には、脆性破壊しないオーステナイト系合金が板厚中央部に多く存在するような溶接継手形状が使用されるため、中心偏析によって脆性破壊が生じる可能性は少ない。
 そこで、本発明者らは、ミクロ偏析と脆性破壊に対する破壊性能(靭性及びアレスト性)との関係について検討を行った。その結果、ミクロ偏析は、鋼材の板厚全体に生じるため、母材および溶接熱影響部の組織変化を通じて脆性破壊の発生を阻止する性能(靭性)および伝播を停止する性能(アレスト性)に大きな影響を与えるという非常に重要な知見が得られた。このミクロ偏析は、凝固の際、デンドライト二次アーム間の残部溶鋼に合金濃縮部を形成する現象であり、この合金濃縮部は、圧延により引き伸ばされている。本発明者らは、複数回の熱加工処理を所定の条件のもとで実施することにより合金元素の不均一性を低減し、溶接継手の靭性及びアレスト性と、母材のアレスト性とを大幅に向上することに成功した。
 このように、二相域熱処理に加えて合金元素の不均一性を低減することで、母材および溶接継手の靭性とアレスト性とに優れた鋼板を製造することができた。しかし、LNGタンクとして使用するためには、これらの耐破壊性能以外に溶接継手の不安定破壊抑止特性が必要であり、上述の方法では、この不安定破壊抑止特性が不十分であることが明らかになった。本発明者らは、この不安定破壊抑止特性を高める方法を鋭意検討した。その結果、残留オーステナイトが多量に、かつ均一に母材中に存在するだけでは不安定破壊抑止特性が不十分であり、個々の残留オーステナイトが微細である必要があることが判明した。そこで、本発明者らは、熱間圧延および制御冷却条件を最適化して、残留オーステナイトを微細に分散させることで不安定破壊抑止特性を高めることに成功した。
 このように、二相域熱処理に加え、溶質元素を均一に分布させ、かつ残留オーステナイトを多量かつ均一に分散させ、個々の残留オーステナイトを微細化することで、母材の靭性及びアレスト性と、溶接継手の靭性、アレスト性、及び不安定破壊抑止特性とがいずれも優れることが明らかになった。
 以下に、鋼中の合金元素の範囲を規定する。なお、以下、「%」は「質量%」を意味する。
 Niは、母材及び溶接継手の耐破壊性能の向上に有効な元素である。Ni量が5.0%未満では、固溶Niおよび残留オーステナイトの安定化による耐破壊性能の増加量が十分でなく、Ni量が7.5%を超えると、合金コストが増大する。よって、Ni量を5.0%以上かつ7.5%以下に制限する。なお、耐破壊性能をより高めるために、Ni量の下限を5.3%、5.6%、5.8%又は6.0%に制限してもよい。また、合金コストの低下のため、Ni量の上限を7.3%、7.0%、6.8%又は6.5%に制限してもよい。
 Ni低減による耐破壊性能の低下を補うための最も重要な元素は、Mnである。Mnは、Niと同様に、残留オーステナイトを安定化させ、母材及び溶接継手の耐破壊性能を改善する。そのため、最低でも0.3%以上のMnを鋼中に添加する必要がある。しかしながら、1.2%を超えるMnを鋼中に添加すると、ミクロ偏析及び焼戻し脆化感受性が増大し、耐破壊性能が低下する。よって、Mn量を0.3%以上かつ1.2%以下に制限する。なお、Mn量の低減により耐破壊性能が向上するために、Mn量の下限を1.15%、1.1%、1.0%又は0.95%に制限してもよい。残留オーステナイトを安定化のため、Mn量の下限を0.4%、0.5%、0.6%又は0.7%に制限してもよい。
 Crも、本発明において重要な元素である。Crは、強度確保に重要であり、溶接継手の靭性及びアレスト性を大きく低下させることなく強度を増大させる効果を有する。母材の強度を確保するためには、最低でも0.4%以上のCrを鋼中に含有させる必要がある。しかしながら、1.5%を超えるCrを鋼中に含有させると、溶接継手の靭性が低下する。よって、Cr量を0.4%以上かつ1.5%以下に制限する。なお、強度向上のため、Cr量の下限を0.5%、0.55%又は0.6%に制限してもよい。溶接継手の靭性向上のため、Cr量の上限を、1,3%、1.0%、0.9%又は0.8%に制限してもよい。
 Moも、本発明において重要な元素である。Niの一部をMnで代替する場合、Mnの増加とともに焼き戻し脆化感受性が増大する。Moは、この焼戻し脆化感受性を低下させることができる。0.02%未満のMo量では、焼き戻し脆化感受性を低下させる効果が小さく、0.4%を超えるMo量では、製造コストが増大するとともに、溶接継手の靱性が低下する。よって、Mo量を0.02%以上かつ0.4%以下に制限する。なお、焼戻し脆化感受性の低下のために、Mo量の下限を0.05%、0.08%、0.1%又は0.13%に制限してもよい。溶接継手の靭性向上のため、Mo量の上限を0.35%、0.3%又は0.25%に制限してもよい。
 Cは、強度確保に必須の元素であるため、C量を0.03%以上にする。しかし、C量が増加すると、粗大析出物の生成によって母材の靱性及び溶接性が低下するため、C量の上限を0.10%にする。すなわち、C量を0.03%以上かつ0.10%以下に制限する。なお、強度向上のため、C量の下限を0.04%又は0.05%に制限してもよい。母材の靱性及び溶接性の向上のため、C量の上限を0.09%、0.08%又は0.07%に制限してもよい。
 Siは、強度確保に必須の元素であるため、Si量を0.02%以上にする。しかし、Si量が増加すると、溶接性が低下するため、Si量の上限を0.40%にする。すなわち、Si量を0.02%以上かつ0.40%以下に制限する。なお、Si量を0.12%又は0.08%以下にすると、焼き戻し脆化感受性が低下して、母材及び溶接継手の耐破壊性能が向上するため、Si量の上限を0.12%又は0.08%以下にすることが好ましい。
 Pは、不可避的に鋼中に含まれ、母材の耐破壊性能を低下させる元素である。P量が0.0100%を超えると、焼戻し脆化の促進により母材の耐破壊性能が低下する。よって、P量を0.0100%以下に制限する。母材の耐破壊性能の向上のため、P量の上限を0.0060%、0.0050%又は0.0040%に制限してもよい。なお、P量が0.0010%以下では、精錬負荷の増大により生産性が大幅に低下するため、0.0010%以下の低燐化を行う必要はない。しかし、P量が0.0010%以下であっても本発明の効果を発揮できるため、P量の下限を特に限定する必要はなく、P量の下限は0%である。
 Sは、不可避的に鋼中に含まれ、母材の耐破壊性能を低下させる元素である。S量が0.0035%を超えると、母材の靱性が低下する。よって、S量を0.0035%以下に制限する。母材の耐破壊性能の向上のため、S量の上限を0.0030%、0.0025%又は0.0020%に制限してもよい。S量が0.0001%未満では、精錬負荷の増大により生産性が大幅に低下するため、0.0001%未満の低硫化を行う必要はない。しかし、S量が0.0001%未満であっても本発明の効果を発揮できるため、S量の下限を特に限定する必要はなく、S量の下限は0%である。
 Alは、脱酸材として有効な元素である。0.01%未満のAlを鋼中に含有させても、脱酸が不十分であるため、母材の靱性が低下する。0.08%超のAlを鋼中に含有させると、溶接継手の靱性が低下する。よって、Al量を0.01%以上かつ0.08%以下に制限する。脱酸を確実に行うために、Al量の下限を0.015%、0.02%又は0.025%に制限してもよい。溶接継手の靱性の向上のため、Al量の上限を0.06%、0.05%又は0.04%に制限してもよい。
 Nは、不可避的に鋼中に含まれ、母材及び溶接継手の耐破壊性能を低下させる元素である。N量が0.0001%未満では、精錬負荷の増大によって生産性が低下するため、0.0001%未満の脱窒を行う必要はない。しかし、N量が0.0001%未満であっても本発明の効果を発揮できるため、N量の下限を特に限定する必要はなく、N量の下限は0%である。N量が0.0070%を超えると、母材の靱性と、溶接継手の靱性とが低下する。よって、N量を0.0070%以下に制限する。靭性向上のため、N量の上限を0.0060%、0.0050%又は0.0045%に制限してもよい。
 T・Oは、不可避的に鋼中に含まれ、母材の耐破壊性能を低下させる。T・O量が0.0001%未満では、精錬負荷が非常に高く生産性が低下する。T・O量が0.0050%を超える場合には、母材の靱性が低下する。よって、T・O量を0.0001%以上かつ0.0050%以下に制限する。なお、T・O量を0.0025%又は0.0015%以下にすると、母材の靱性向上が著しいことから、T・O量の上限を0.0025%又は0.0015%以下にすることが好ましい。なお、T・O量は、溶鋼中に溶解している酸素と溶鋼中に懸濁している微細な脱酸生成物の酸素との総和である。すなわち、T・O量は、鋼中に固溶している酸素と鋼中に分散する酸化物中の酸素との総和である。
 なお、上述の基本的な化学成分(基本元素)を含み、残部Fe及び不可避的不純物からなる化学組成が、本発明の基本組成である。しかしながら、この基本組成に加え(残部Feの一部の代わりに)、本発明では、さらに必要に応じて以下の元素(選択元素)を含有させてもよい。なお、これらの選択元素が鋼中に不可避的に混入しても、本実施形態における効果を損なわない。
 Cuは、強度向上に有効な元素であり、必要に応じて添加してもよい。0.01%未満のCuを鋼中に含有させても、母材の強度を向上する効果が小さい。1.0%超のCuを鋼中に含有させると、溶接継手の靱性が低下する。よって、Cuを添加する場合には、Cu量を0.01%以上かつ1.0%以下に制限することが好ましい。溶接継手の靭性の向上のため、Cu量の上限を0.5%、0.3%、0.1%又は0.05%に制限してもよい。なお、合金コストの低減のためには、Cuの意図的添加を行わないことが望ましく、Cuの下限は0%である。
 Nbは、強度向上に有効な元素であり、必要に応じて添加してもよい。0.001%未満のNbを鋼中に含有させても、母材の強度を向上する効果が小さい。0.05%超のNbを鋼中に含有させると、溶接継手の靱性が低下する。よって、Nbを添加する場合には、Nb量を0.001%以上かつ0.05%以下に制限することが好ましい。溶接継手の靭性の向上のため、Nb量の上限を0.03%、0.02%、0.01%又は0.005%に制限してもよい。なお、合金コストの低減のためには、Nbの意図的添加を行わないことが望ましく、Nbの下限は0%である。
 Tiは、母材の靭性向上に有効な元素であり、必要に応じて添加してもよい。0.001%未満のTiを鋼中に含有させても、母材の靭性を向上させる効果が小さい。Tiを添加する場合には、0.05%超のTiを鋼中に含有させると、溶接継手の靱性が低下する。よって、Ti量を0.001%以上かつ0.05%以下に制限することが好ましい。溶接継手の靭性の向上のため、Ti量の上限を0.03%、0.02%、0.01%又は0.005%に制限してもよい。なお、合金コストの低減のためには、Tiの意図的添加を行わないことが望ましく、Tiの下限は0%である。
 Vは、母材の強度の向上に有効な元素であり、必要に応じて添加してもよい。0.001%未満のVを鋼中に含有させても、母材の強度を向上する効果が小さい。0.05%超のVを鋼中に含有させると、溶接継手の靱性が低下する。よって、Vを添加する場合には、V量を0.001%以上かつ0.05%以下に制限することが好ましい。溶接継手の靭性の向上のため、V量の上限を0.03%、0.02%又は0.01%に制限してもよい。なお、合金コストの低減のためには、Vの意図的添加を行わないことが望ましく、Vの下限は0%である。
 Bは、母材の強度の向上に有効な元素であり、必要に応じて添加してもよい。0.0002%未満のBを鋼中に含有させても、母材の強度を向上する効果が小さい。0.05%超のBを鋼中に含有させると、母材の靱性が低下する。よって、Bを添加する場合には、B量を0.0002%以上かつ0.05%以下に制限することが好ましい。母材の靭性の向上のため、B量の上限を0.03%、0.01%、0.003%又は0.002%に制限してもよい。なお、合金コストの低減のためには、Bの意図的添加を行わないことが望ましく、Bの下限は0%である。
 Caは、ノズルの閉塞防止に有効な元素であり、必要に応じて添加してもよい。0.0003%未満のCaを鋼中に含有させても、ノズルの閉塞を防止する効果が小さい。0.0040%超のCaを鋼中に含有させると、母材の靭性が低下する。よって、Bを添加する場合には、Ca量を0.0003%以上かつ0.0040%以下に制限することが好ましい。母材の靭性低下を防止するため、Ca量の上限を0.0030%、0.0020%又は0.0010%に制限してもよい。なお、合金コストの低減のためには、Caの意図的添加を行わないことが望ましく、Caの下限は0%である。
 Mgは、靭性向上に有効な元素であり、必要に応じて添加してもよい。0.0003%未満のMgを鋼中に含有させても、母材の靭性を向上させる効果が小さい。0.0040%超のMgを鋼中に含有させると、母材の靭性が低下する。よって、Mgを添加する場合には、Mg量を0.0003%以上かつ0.0040%以下に制限することが好ましい。母材の靭性低下を防止するため、Mg量の上限を0.0030%、0.0020%又は0.0010%に制限してもよい。なお、合金コストの低減のためには、Mgの意図的添加を行わないことが望ましく、Mgの下限は0%である。
 REM(Rare Earth Metal)は、ノズルの閉塞防止に有効な元素であり、必要に応じて添加してもよい。0.0003%未満のREMを鋼中に含有させても、ノズルの閉塞を防止する効果が小さい。0.0040%超のREMを鋼中に含有させると、母材の靭性が低下する。よって、REMを添加する場合には、REM量を0.0003%以上かつ0.0040%以下に制限することが好ましい。母材の靭性低下を防止するため、REM量の上限を0.0030%、0.0020%又は0.0010%に制限してもよい。なお、合金コストの低減のためには、REMの意図的添加を行わないことが望ましく、REMの下限は0%である。
 なお、添加合金を含めた使用原料中の不可避的不純物及び溶製中に炉材等の耐熱材料から溶出する不可避的不純物として混入しうる元素が鋼中に0.002%未満含まれてもよい。例えば、鋼を溶製する上で混入しうるZn、Sn、Sb、Zrが鋼中に各々0.002%未満含まれてもよい(鋼の溶製条件に応じて混入する不可避的不純物であるため、0%を含む)。鋼中にこれらの元素が各々0.002%未満含まれても、何ら本発明の効果を損なわない。
 以上のように、本発明のNi添加鋼板は、上述の基本元素を含み、残部Fe及び不可避的不純物からなる化学組成、または、上述の基本元素と、上述の選択元素から選択される少なくとも1種とを含み、残部Fe及び不可避的不純物からなる化学組成を有する。
 本発明では、先に述べたように鋼中への溶質元素の均一な分布が非常に重要である。具体的には、Niなどの溶質元素のバンド状偏析の低減が溶接継手の靭性及びアレスト性の向上に有効である。バンド状偏析は、凝固時点でデンドライトアーム間の残部溶鋼に溶質元素が濃化した部分が熱間圧延によって圧延方向に平行に引き延ばされたバンド状形態(バンド状領域)である。すなわち、バンド状偏析では、溶質元素が濃化した部分と、溶質元素が濃化していない部分とが、例えば、1~100μmの間隔でバンド状に交互に形成されている。鋳片中央部に形成される中心偏析と異なり、このバンド状偏析は、通常(例えば、室温)、靭性低下の大きな原因とはならない。しかし、-160℃の極低温で使用される6から7%程度の低いNi量の鋼においては、このバンド状偏析の影響が非常に大きい。バンド状偏析によってNiやMn、Pといった溶質元素が鋼中に不均一に存在すると、熱加工処理時に生成する残留オーステナイトの安定性が、場所(鋼中の位置)によって大きく変化する。そのため、母材については、脆性破壊の伝播停止性能(アレスト性)が大きく低下する。また、溶接継手の場合、NiやMn、Pのような溶質元素が濃化したバンド状領域が溶接熱影響を受けた際、このバンド状領域に沿って密集した島状マルテンサイトが生じる。この島状マルテンサイトが低応力破壊するため、溶接継手の靭性およびアレスト性が低下する。
 本発明者らは、最初にNi偏析比と溶接継手の靭性及びアレスト性との関係を調査した。その結果、鋼板表面から板厚方向(深さ方向)に板厚の1/4の距離離れた部位(以後、1/4t部と呼称する)のNi偏析比が1.3以下の場合に、溶接継手の靭性及びアレスト性が優れることを知見した。よって、1/4t部のNi偏析比を1.3以下に制限する。なお、1/4t部のNi偏析比が1.15以下の場合には、溶接継手の靭性及びアレスト性がより優れるため、Ni偏析比を1.15以下にすることが好ましい。
 1/4t部のNi偏析比は、EPMA(Electron Probe MicroAnalysis)により測定できる。すなわち、鋼板表面(板面)から板厚方向(深さ方向)に板厚の1/4の距離離れた位置を中心に、板厚方向に2mmの長さにわたって2μm間隔でNi量をEPMAにより測定する。測定された1000点のNi量のデータのうち、Ni量が大きいデータから順に10点のデータとNi量が小さいデータから順に10点のデータとを異常値として評価すべきデータから除外する。残りの980点のデータの平均をNi量の平均値と定義し、この980点のデータのうち、Ni量が大きいデータから順に20点のデータの平均をNi量の最大値と定義する。このNi量の最大値をNi量の平均値で除した値を1/4t部におけるNi偏析比と定義する。Ni偏析比の下限値は、計算上1.0となる。そのため、Ni偏析比の下限は、1.0であってもよい。なお、本発明では、-165℃の溶接継手のCTOD(Crack Tip Opening Displacement)試験の結果(CTOD値δ)が0.3mm以上である場合に、溶接継手の靭性が優れていると評価する。また、試験温度-165℃、負荷応力392MPaの条件で行われた溶接継手の混成ESSO試験において、試験板への脆性き裂の突入距離が板厚の2倍以下である場合に、溶接継手のアレスト性が優れていると評価する。逆に、試験板の途中で脆性き裂が停止したが、試験板への脆性き裂の突入距離が板厚の2倍以上の場合及び脆性き裂が試験板を貫通した場合には、溶接継手のアレスト性が劣っていると評価する。
 図1に、Ni偏析比と-165℃における溶接継手のCTOD値との関係を示す。図1に示すように、Ni偏析比が1.3以下であると、溶接継手のCTOD値が0.3mm以上であり、溶接継手の靭性が優れる。また、図2に、Ni偏析比と板厚に対するき裂突入距離(上述の条件の混成ESSO試験の測定値)の割合との関係を示す。図2に示すように、Ni偏析比が1.3以下であると、亀裂突入距離が板厚の2倍以下になり、溶接継手のアレスト性が優れる。図1のCTOD試験及び図2の混成ESSO試験に使用した溶接継手は、SMAW(Shield Metal Arc Welding)により次のような条件で作製した。すなわち、3.0~4.0kJ/cmの入熱量、かつ100℃以下の予熱およびパス間温度の条件の立向き溶接でSMAWを行った。なお、ノッチ位置は、ボンド部である。
 本発明者らは、次に深冷後の残留オーステナイトと母材のアレスト性との関係を調査した。すなわち、本発明者らは、深冷後の残留オーステナイトの最大面積率と最小面積率との比を深冷後オーステナイト不均一指数(以後、不均一指数と呼称することもある)と定義して、この指数と母材のアレスト性との関係を調べた。その結果、深冷後オーステナイト不均一指数が5.0を超えると、母材のアレスト性が低下することが判明した。よって、本発明における深冷後オーステナイト不均一指数を5.0以下に制限する。深冷後オーステナイト不均一指数の下限は、計算上1である。よって、本発明における深冷後オーステナイト不均一指数は、1.0以上であってもよい。なお、オーステナイトの最大面積率と最小面積率とは、液体窒素に深冷したサンプルのEBSP(Electron Back Scattering Pattern)から評価できる。具体的には、5×5μmの領域におけるEBSPのマッピングを行い、オーステナイトの面積率を評価する。この面積率の評価を鋼板の1/4t部を中心に板厚方向に連続的に合計40視野行う。これら全40点のデータのうち、オーステナイトの面積率が大きいデータから順に5点のデータの平均を最大面積率と定義し、オーステナイトの面積率が小さいデータから順に5点のデータの平均を最小面積率と定義する。さらに、上述の最大面積率をこの最小面積率で除した値を深冷後オーステナイト不均一指数と定義する。なお、以下に説明するX線回折では、このようなミクロ的なオーステナイトの不均一性を調査することができないため、EBSPを使用している。
 残留オーステナイトは、その絶対量も重要である。深冷後の残留オーステナイトの量(以後、オーステナイトの量と呼称することもある)が全組織の量の2%を下回ると、母材の靭性及びアレスト性が大幅に低下する。よって、深冷後のオーステナイトの量は、2%以上である。また、深冷後の残留オーステナイトの量が大幅に増加すると、塑性変形下でオーステナイトが不安定化し、却って母材の靭性及びアレスト性が低下する。よって、深冷後のオーステナイトの量を2%以上かつ20%以下であることが好ましい。なお、鋼板の1/4t部から採取したサンプルを液体窒素で60分間深冷し、その後室温でこのサンプルのX線回折を行うことによって深冷後の残留オーステナイトの量を測定することが可能である。なお、本発明では、サンプルを液体窒素に浸漬し、少なくとも60分間保持する処理を、深冷処理という。
 さらに、前述のように、残留オーステナイトは、微細であることも非常に重要である。深冷後の残留オーステナイトの量が2%以上かつ20%以下、かつ不均一指数が1.0以上かつ5.0以下である場合でも、残留オーステナイトが粗大であると、溶接継手の不安定破壊が生じやすくなる。一旦停止したき裂が再度不安定破壊によって板厚方向の全断面を伝播する場合、き裂の伝播経路の一部に母材が含まれる。そのため、母材のオーステナイトの安定性が低くなると、不安定破壊が生じやすくなる。すなわち、残留オーステナイトが粗大になると、残留オーステナイト中に含まれるC量が低下するため、残留オーステナイトの安定性が低下する。深冷後の残留オーステナイトの円相当径の平均(平均円相当径)が1μm以上である場合、不安定破壊が生じやすくなる。したがって、十分な不安定破壊抑止特性を得るために、深冷後オーステナイトの平均円相当径を1μm以下に制限する。なお、不安定破壊(不安定延性破壊)は、脆性破壊が発生及び伝播した後に停止し、再度破壊が伝播する現象である。この不安定破壊の形態には、破面の全面が延性破面である場合と、破面中の板厚の両端部(両表面)付近における面が延性破面、破面中の板厚の中央部付近における面が脆性破面である場合との両方がみられる。なお、深冷後オーステナイトの平均円相当径は、たとえば透過型電子顕微鏡の1万倍で暗視野像を20箇所観察し、平均の円相当径を定量化することで得ることが出来る。深冷後オーステナイトの平均円相当径の下限は、例えば1nmであってもよい。
 したがって、本発明の鋼板は、-160℃程度での耐破壊性能に優れ、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができる。特に、本発明の鋼板は、-160℃程度の極低温での耐破壊性能が要求されるLNGタンクとして使用する場合に有効である。
 次に、本発明のNi添加鋼板の製造方法について説明する。本発明のNi添加鋼板の製造方法の第一の実施形態では、第1の熱加工処理(バンド偏析低減処理)、第2の熱加工処理(熱間圧延および制御冷却処理)、第3の熱加工処理(高温二相域処理)、第4の熱加工処理(低温二相域処理)を含む製造工程で鋼板を製造する。さらに、本発明のNi添加鋼板の製造方法の第二の実施形態に示すように、第1の熱加工処理(バンド偏析低減処理)について、後述するように熱処理(加熱)に引き続いて熱間圧延を行ってもよい。ここでは、基本とする高温での熱処理に対し、必要に応じて熱間圧延や制御冷却等の処理を組み合わせた工程を熱加工処理と定義する。また、上記合金元素の範囲(上記鋼成分)の鋼片を、第一の熱加工処理に使用する。
 以下に、本発明のNi添加鋼板の製造方法の第一の実施形態を示す。
 (第一の実施形態)
 最初に、第3の熱加工処理(高温二相域処理)について説明する。この熱加工処理は、Ni量を6%程度に低減した鋼において、-160℃程度での母材の靭性およびアレスト性を高めるために必須の工程である。この熱加工処理では、逆変態オーステナイトが、旧オーステナイトの粒界、マルテンサイトのパケット、ブロック、ラスなどの界面に沿って針状、棒状、または板状に生成して組織を微細化する。さらに、この逆変態オーステナイトが旧オーステナイト粒界を覆い尽くすと、焼き戻し脆化感受性が低下するため、母材の靭性およびアレスト性の十分な向上効果を達成できる。さらに、微細な逆変態オーステナイト中に溶質元素が濃化するため、この第3の熱加工処理(高温二相域処理)は、引き続く第4の熱加工処理(低温二相域処理)において極めて熱的に安定なオーステナイトを微細分散させる効果を有する。しかしながら、バンド偏析が低減されていない鋼に対して二相域処理を実施しても、溶質元素の濃度が鋼中でばらついているため、逆変態オーステナイトの分率及び寸法と、逆変態オーステナイト中の溶質濃度とが変動しやすい。そのため、鋼の耐破壊性能の向上効果がばらつき、鋼全体として極めて優れた耐破壊性能を発揮させることができない。したがって、バンド偏析低減処理と高温二相域処理とを組み合わせることにより、6%程度の低いNi量の鋼板に対して-160℃における優れた耐破壊性能(母材の靭性およびアレスト性)を付与することができる。第3の熱加工処理(高温二相域処理)の温度管理は、逆変態オーステナイトの分率やオーステナイト中への溶質の拡散に影響するため極めて重要である。加熱温度が600℃を下回ったり、750℃を超えたりすると、残留オーステナイトの量が2%未満になるため、母材の靭性及びアレスト性が低下する。よって、高温二相域処理における加熱温度は、600℃以上かつ750℃以下である。また、加熱温度が650℃以上かつ700℃以下の場合には、耐破壊性能の向上が一層顕著である。そのため、高温二相域処理の温度は、650℃以上かつ700℃以下であることが好ましい。この第3の熱加工処理では、第2の熱加工処理後の鋼を上記加熱温度に加熱後、水冷あるいは空冷を行う。ここでは、水冷は、鋼板の1/4t部での冷却速度が3℃/s超の冷却である。水冷の冷却速度の上限は、特に制限されない。
 次に、第1の熱加工処理(バンド偏析低減処理)について説明する。この熱加工処理によって、溶質元素の偏析比を低減させるとともに、残留オーステナイトを鋼中に均一分散させて、溶接継手の靭性及びアレスト性と、母材のアレスト性とを高めることができる。第1の熱加工処理(バンド偏析低減処理)では、高温、かつ長時間の熱処理を行う。本発明者らは、第1の熱加工処理(バンド偏析低減処理)の加熱温度と保持時間との組み合わせがNi偏析比に与える影響を調査した。その結果、図3に示すように、1/4t部のNi偏析比が1.3以下であり、かつ深冷後オーステナイト不均一指数が5以下である鋼板を得るためには、1250℃以上の加熱温度で8時間以上保持する必要があることを見出した。よって、第1の熱加工処理(バンド偏析低減処理)の加熱温度は、1250℃以上であり、保持時間は、8時間以上である。なお、加熱温度を1380℃以上、保持時間を50時間にすると、生産性が大幅に低下するため、加熱温度を1380℃以下に制御し、保持時間を50時間以下に制限する。なお、加熱温度を1300℃以上にしたり、保持時間を30時間以上にしたりすると、Ni偏析比とオーステナイト不均一指数とが一層低減する。そのため、加熱温度は、1300℃以上であることが好ましく、保持時間は、30時間以上であることが好ましい。この第1の熱加工処理では、上記鋼成分の鋼片を上記条件で加熱保持後、空冷を行う。この空冷から第2の熱加工処理(焼き入れ処理)に移行する温度が300℃超であると、変態が完了せず材質が不均一になる。そのため、空冷から第2の熱加工処理(焼き入れ処理)に移行する時点の鋼片の表面温度(空冷の終了温度)は、300℃以下である。この空冷の終了温度の下限は、特に制限されない。例えば、空冷の終了温度の下限は、室温であってもよく、-40℃であってもよい。なお、加熱温度は、スラブ表面の温度であり、保持時間は、スラブ表面が設定された加熱温度に到達して、3時間経過した後に、保持された時間である。また、空冷は、鋼板の1/4t部の温度が800℃から500℃の間における冷却速度が3℃/s以下の冷却である。この空冷において、800℃超または500℃未満での冷却速度は、特に制限されない。生産性の観点から、空冷の冷却速度の下限は、例えば、0.01℃/s以上であってもよい。
 次に、第2の熱加工処理(熱間圧延および制御冷却処理)について説明する。この第2の熱加工処理では、加熱と、熱間圧延(第2の熱間圧延)と、制御冷却とを行う。これらの処理によって焼き入れ組織を生成させて強度を増大させ、組織を微細化することができる。加えて、加工歪みの導入を通じた微細な安定オーステナイトの生成によって、溶接継手の不安定破壊抑止特性を高めることができる。微細な安定オーステナイトを生成させるためには、圧延温度の制御が重要である。熱間圧延における最終1パス前の温度が低くなると、鋼中の残存歪みが大きくなり、残留オーステナイトの平均円相当径が小さくなる。本発明者らは、残留オーステナイトの平均円相当径と最終1パス前の温度との関係を調査した結果、最終1パス前の温度を900℃以下に制御することによって平均円相当径が1μm以下になることを見いだした。また、最終1パス前の温度が660℃以上であると、生産性を低下させることなく、効率よく熱間圧延を行うことができる。よって、2回目の熱加工処理の熱間圧延における最終1パス前の温度は、660℃以上かつ900℃以下である。なお、最終1パス前の温度を660℃以上かつ800℃以下に制御すると、残留オーステナイトの平均円相当径が一層小さくなるため、最終1パス前の温度は、660℃以上かつ800℃以下であることが好ましい。なお、最終1パス前の温度は、圧延(熱間圧延)の最終パスの噛込(圧延ロールへのスラブの噛込)直前に測定されたスラブ(鋼片)表面の温度である。この最終1パス前の温度は、放射温度計などの温度計により測定することができる。
 第2の熱加工処理(熱間圧延および制御冷却処理)における熱間圧延前の加熱温度の制御も重要である。本発明者らは、加熱温度を1270℃超にすると、深冷後オーステナイトの量が低下し、母材の靭性及びアレスト性が大幅に低下することを見出した。また、加熱温度を900℃未満にすると、生産性が大幅に低下する。よって、この加熱温度は、900℃以上かつ1270℃以下である。なお、加熱温度を1120℃以下にすると、さらに母材の靭性を高めることができる。よって、加熱温度は、900℃以上かつ1120℃以下であることが好ましい。加熱後の保持時間は、特に規定しない。しかしながら、均一加熱と生産性確保との観点から、上記加熱温度での保持時間が、2時間以上かつ10時間以下であることが好ましい。なお、この保持時間内に上記熱間圧延が開始されてもよい。
 第2の熱加工処理(熱間圧延および制御冷却処理)における熱間圧延の圧下比も重要である。圧下比が大きくなると、再結晶あるいは転位密度の増大を通じてこの熱間圧延後の組織が微細化され、最終的なオーステナイト(残留オーステナイト)も微細化される。本発明者らは、深冷後オーステナイトの円相当径と圧下比との関係を調査した結果、オーステナイトの平均円相当径を1μm以下にするためには、圧下比を2.0以上にする必要があることを見出した。また、圧下比が40を超えると、生産性が大幅に低下する。よって、第二の熱加工処理における熱間圧延の圧下比は、2.0以上かつ40以下である。なお、第二の熱加工処理における熱間圧延の圧下比が10以上である場合には、オーステナイトの平均円相当径がさらに減少する。そのため、圧下比が10以上かつ40以下であることが好ましい。なお、熱間圧延の圧下比は、圧延前の板厚を圧延後の板厚で除した値である。
 第2の熱加工処理(熱間圧延および制御冷却処理)における熱間圧延後、直ちに制御冷却を行う。本発明においては、制御冷却は、組織制御のために制御された冷却を意味し、水冷による加速冷却と、板厚が15mm以下の鋼板に対する空冷による冷却とを含むものとする。制御冷却が水冷で行われる場合、この冷却は、200℃以下で終了することが好ましい。この水冷終了温度の下限は、特に制限されない。例えば、水冷終了温度の下限は、室温であってもよく、-40℃であってもよい。直ちに制御冷却を行うことにより、焼き入れ組織が生成して、母材の強度を十分に確保できる。なお、ここで、「直ちに」という記載について、圧延の最終パス噛み込みの後、150秒以内に加速冷却を開始することが好ましく、120秒以内又は90秒以内に加速冷却を開始することがより好ましい。また、水冷を200℃で終了すると、より確実に母材の強度を確保することができる。また、水冷は、鋼板の1/4t部での冷却速度が3℃/s超の冷却である。水冷の冷却速度の上限は、特に制限する必要はない。
 このように、第2の熱加工処理では、第1の熱加工処理後の鋼片を上記加熱温度に加熱し、最終1パス前の温度を上記温度範囲に制御して上記圧下比で熱間圧延を行い、直ちに制御冷却を行って上記温度まで冷却する。
 次に、第4の熱加工処理(低温二相域処理)について説明する。この低温二相域処理では、マルテンサイトの焼き戻しによって母材の靱性が向上する。さらに、この低温二相域処理では、熱的に安定で、かつ微細なオーステナイトが生成し、このオーステナイトが常温でも安定的に存在するため、耐破壊性能(特に、母材の靭性及びアレスト性及び溶接継手の不安定破壊抑止特性)が向上する。低温二相域処理における加熱温度が500℃を下回ると、母材の靱性が低下する。また、低温二相域処理における加熱温度が650℃を超えると、母材の強度が十分でない。よって、低温二相域処理における加熱温度は、500℃以上かつ650℃以下である。なお、低温二相域処理における加熱後、空冷と水冷のどちらの冷却も実施可能である。この冷却では、空冷と水冷とを組み合わせてもよい。また、水冷は、鋼板の1/4t部での冷却速度が3℃/s超の冷却である。水冷の冷却速度の上限は、特に制限されない。また、空冷は、鋼板の1/4t部の温度が800℃から500℃の間における冷却速度が3℃/s以下の冷却である。この空冷において、800℃超または500℃未満での冷却速度を、特に制限する必要はない。生産性の観点から、空冷の冷却速度の下限は、例えば、0.01℃/s以上であってもよい。
 このように、第4の熱加工処理では、第3の熱加工処理後の鋼片を上記加熱温度に加熱し、冷却を行う。
 以上第一の実施形態について、説明を行った。
 また、以下に、本発明のNi添加鋼板の製造方法の第二の実施形態を示す。
 (第二の実施形態)
 この第二の実施形態における第1の熱加工処理(バンド偏析低減処理)では、熱処理(加熱)に引き続いて熱間圧延(第1の熱間圧延)を行うことで溶質の均一性を一層高め、耐破壊性能を著しく向上させることができる。ここでは、第1の熱加工処理(バンド偏析低減処理)における加熱温度と、保持時間と、熱間圧延の圧下比と、熱間圧延の圧延温度とを規定することが必要になる。加熱温度と保持時間とに関しては、温度が高いほど、保持時間が長いほど拡散によってNi偏析比が小さくなる。本発明者らは、第1の熱加工処理(バンド偏析低減処理)の加熱温度と保持時間との組み合わせがNi偏析比に与える影響を調査した。その結果、1/4t部のNi偏析比が1.3以下である鋼板を得るためには、1250℃以上の加熱温度で8時間以上保持する必要があることを見出した。よって、第1の熱加工処理の加熱温度は、1250℃以上であり、保持時間は、8時間以上である。なお、加熱温度を1380℃以上、保持時間を50時間にすると、生産性が大幅に低下するため、加熱温度を1380℃以下に制限し、保持時間を50時間以下に制限する。なお、加熱温度を1300℃以上にしたり、保持時間を30時間以上にしたりすると、一層Ni偏析比が低減する。そのため、加熱温度は、1300℃以上であることが好ましく、保持時間は、30時間以上であることが好ましい。なお、この保持時間内に熱間圧延が開始されてもよい。
 第二の実施形態における第1の熱加工処理(バンド偏析低減処理)では、圧延中および圧延後空冷時にも、偏析低減効果が期待できる。すなわち、再結晶が生じる場合には、粒界移動を通じた偏析低減効果が生じ、再結晶が生じない場合には、高転位密度下での拡散を通じた偏析低減効果が生じる。このため、熱間圧延時の圧下比が大きいほどバンド状Ni偏析比が減少する。本発明者らは、熱間圧延の圧下比が偏析比に与える影響を調査した結果、1.3以下のNi偏析比を達成するためには圧下比を1.2以上にすると効果的であることを見いだした。また、圧下比が40を超えると、生産性が大幅に低下する。よって、第二の実施形態では、第1の熱加工処理(バンド偏析低減処理)における熱間圧延の圧下比は、1.2以上かつ40以下である。また、圧下比が2.0以上では、偏析比がより小さくなることから、圧下比は、2.0以上かつ40以下であることが好ましい。第2の熱加工処理において熱間圧延を行うことを考慮すると、第1の熱加工処理における熱間圧延の圧下比は、10以下であることがより好ましい。
 第二の実施形態における第1の熱加工処理(バンド偏析低減処理)では、熱間圧延における最終1パス前の温度を適正な温度に制御することも非常に重要である。これは、最終1パス前の温度が低すぎると、圧延終了後の空冷時に拡散が進まないためNi偏析比が高くなる。逆に、最終1パス前の温度が高すぎると、再結晶によって急速に転位密度が低下し、圧延終了後の空冷時の高転位密度下での拡散効果が低下し、Ni偏析比が高くなる。第二の実施形態における第1の熱加工処理(バンド偏析低減処理)の熱間圧延では、鋼中に適度に転位が残存して、かつ拡散が進行しやすい温度域が存在する。本発明者らは、この熱間圧延における最終1パス前の温度とNi偏析比との関係を調査した結果、800℃未満または1200℃超でNi偏析比が非常に高くなることを見いだした。よって、第二の実施形態では、第1の熱加工処理(バンド偏析低減処理)の熱間圧延における最終1パス前温度は、800℃以上かつ1200℃以下である。なお、最終1パス前の温度が950℃以上かつ1150℃以下では、偏析比の低減効果がさらに大きくなることから、第1の熱加工処理(バンド偏析低減処理)の熱間圧延における最終1パス前の温度は、950℃以上かつ1150℃以下であることが好ましい。この熱間圧延後、空冷を行う。圧延後の空冷によって置換型溶質の拡散がさらに進み、偏析が低減する。なお、この圧延後の空冷から第2の熱加工処理(焼き入れ処理)に移行する温度が300℃超であると、変態が完了せず材質が不均一になる。そのため、圧延後の空冷から第2の熱加工処理(焼き入れ処理)に移行する時点の鋼片の表面温度(空冷の終了温度)は、300℃以下である。この空冷の終了温度の下限は、特に制限されない。例えば、空冷の終了温度の下限は、室温であってもよく、-40℃であってもよい。なお、加熱温度は、スラブ表面の温度であり、保持時間は、スラブ表面が設定された加熱温度に到達して、3時間経過した後に、保持された時間である。圧下比は、圧延前の板厚を圧延後の板厚で除した値である。この第二の実施形態では、圧下比は、各熱加工処理の熱間圧延に対して算出される。また、最終1パス前の温度は、圧延の最終パスの噛込(圧延ロールへのスラブの噛込)直前に測定されたスラブ表面の温度であり、放射温度計などの温度計により測定できる。空冷は、鋼板の1/4t部の温度が800℃から500℃の間における冷却速度が3℃/s以下の冷却である。この空冷において、800℃超または500℃未満での冷却速度は、特に制限されない。生産性の観点から、空冷の冷却速度の下限は、例えば、0.01℃/s以上である。
 第1の熱加工処理(バンド偏析低減処理)の後、第一の実施形態と同様に、第2の熱加工処理(熱間圧延および制御冷却処理)、第3の熱加工処理(高温二相域処理)及び第4の熱加工処理(低温二相域処理)が行われる。したがって、第2の熱加工処理(熱間圧延および制御冷却処理)、第3の熱加工処理(高温二相域処理)及び第4の熱加工処理(低温二相域処理)の説明を省略する。
 また、以下に、本発明に係るNi添加鋼板の製造方法の第一の実施形態の変形例及び第二の実施形態の変形例を示す。
 (第一の実施形態の変形例及び第二の実施形態の変形例)
 第一の実施形態の変形例及び第二の実施形態の変形例では、第2の熱加工処理(熱間圧延および制御冷却処理)において、熱間圧延と、制御冷却との間に、冷却後再加熱を行う。つまり、熱間圧延後空冷し、その後再加熱を行う。再加熱温度が900℃超であると、オーステナイトの粒径が増加して母材靭性が低下する。また、再加熱温度が780℃未満であると、焼入れ性を確保しにくいため、強度が低下する。このため、冷却後再加熱における再加熱温度は、780℃以上かつ900℃以下とする必要がある。
なお、焼き入れ組織を生成させて、母材の強度を十分に確保するために、この冷却後再加熱を行なった後、速やかに制御冷却を行う。制御冷却が水冷で行われる場合、この冷却は、200℃以下で終了することが好ましい。この水冷終了温度の下限は、特に制限されない。
 これらの変形例では、第一の実施形態及び第二の実施形態と同様に、第1の熱加工処理(バンド偏析低減処理)、冷却後再加熱を含む第2の熱加工処理(熱間圧延および制御冷却処理)、第3の熱加工処理(高温二相域処理)及び第4の熱加工処理(低温二相域処理)が行われる。したがって、第1の熱加工処理(バンド偏析低減処理)、第3の熱加工処理(高温二相域処理)及び第4の熱加工処理(低温二相域処理)の説明を省略する。
 上記第一の実施形態、第二の実施形態またはこれらの変形例により製造した鋼板は、-160℃程度での耐破壊性能に優れ、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができる。特に、この製造方法により製造した鋼板は、-160℃程度の極低温での耐破壊性能が要求されるLNGタンクでの使用において有効である。
 なお、本発明のNi添加鋼板は、図4に概略的に示すような上記実施形態により好適に製造可能であるが、これらの実施形態は、本発明のNi添加鋼板の製造方法の一例を示したに過ぎない。例えば、Ni偏析比、深冷後オーステナイトの量及び平均円相当径、深冷後オーステナイト不均一指数を上述した適切な範囲に制御可能な方法であれば、本発明のNi添加鋼板の製造方法は、特に制限されない。
 種々の化学成分及び製造条件で製造した板厚6mmから50mmの鋼板について、以下の評価を行った。引張試験により母材の降伏応力及び引張強さを評価し、CTOD試験により母材および溶接継手のCTOD値を求めて、母材および溶接継手の靭性を評価した。また、混成ESSO試験により母材および溶接継手のき裂突入距離を求めて、母材および溶接継手のアレスト性を評価した。さらに、溶接継手に対する上述の混成ESSO試験で停止した脆性き裂から不安定延性破壊が発生したか否かを確認し、溶接継手の不安定破壊抑止特性を評価した。鋼板の化学成分を表1に示す。また、鋼板の板厚、Ni偏析比、深冷後オーステナイトの量、深冷後最小オーステナイト量を表2に示す。さらに、鋼板の製造方法を表3に、母材及び溶接継手の耐破壊性能の評価結果を表4に示す。なお、第1の熱加工処理では、第2の熱加工処理前に300℃以下まで空冷した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 降伏応力及び引張強さを、JIS Z 2241に記載の金属材料引張試験方法により測定した。試験片は、JIS Z 2201に記載の金属材料引張試験片である。ここで、板厚20mm以下の鋼板に対しては、5号試験片を使用し、板厚40mm以上の鋼板に対しては、上記1/4t部から採取した10号試験片を使用した。なお、試験片の長手方向が圧延方向と垂直になるように試験片を採取した。降伏応力は、オフセット法で算出した0.2%耐力である。常温で2本の試験を行い、降伏応力及び引張強さについてそれぞれの平均値を採用した。
 母材および溶接継手の靱性を、BS7448に準拠したCTOD試験によって評価した。B×2Bタイプの試験片を使用し、3点曲げ試験を行った。母材については、試験片の長手方向が圧延方向と垂直になるC方向(板幅方向)について評価を行った。溶接継手については、L方向(圧延方向)についてのみ評価を行った。溶接継手のCTOD値の評価においては、疲労き裂の先端が溶接ボンドに相当するように試験片を採取した。-165℃の試験温度で、3本の試験を行い、得られた測定データの最低値をCTOD値として採用した。CTOD試験結果(CTOD値)については、0.3mm以上を「合格」と評価し、0.3mm未満を「不合格」と評価した。
 母材および溶接継手のアレスト性を、混成ESSO試験によって評価した。この混成ESSO試験は、圧力技術、第29巻6号p341のFig.3に記載の方法に準拠して行われた。なお、負荷応力は、392MPa、試験温度は、-165℃とした。この混成ESSO試験では、き裂突入距離が板厚の2倍以下である場合に「合格」と評価し、き裂突入距離が板厚の2倍超である場合に、「不合格」と評価した。図5に、混成ESSO試験後の試験部の亀裂面の一例の部分概略図を示す。亀裂面は、図5中の脆化板(助走板)1と、取付溶接部2と、亀裂突入部3とを合わせた領域であり、亀裂突入距離Lは、板厚tの方向に垂直な方向における亀裂突入部3(試験部(母材または溶接金属部)4中に突入した亀裂部分)の最大長さである。なお、説明を簡略にするために、図5では、脆化板1及び試験部4の一部のみを記載している。
 ここで、混成ESSO試験は、例えば、H.Miyakoshi,N.Ishikura,T.Suzuki and K.Tanaka:Proceedings for Transmission Conf.,Atlanta,1981,American Gas Association,T155-T166のFig.6の混成ESSO試験の概略図に示されるような試験方法である。
 なお、CTOD試験及び混成ESSO試験に使用した溶接継手は、SMAWにより作製した。このSMAWは、3.5~4.0kJ/cmの入熱量、100℃以下の予熱およびパス間温度の条件の立向き溶接であった。
 溶接継手の不安定延性破壊抑止特性を、上述の溶接継手の混成ESSO試験結果(破断面の変化)から評価した。すなわち、脆性き裂の伝播が停止したのち、再度不安定延性破壊によってき裂が進展した場合、この不安定延性破壊により亀裂が進展した距離(不安定延性破壊発生距離)を記録した。
 実施例1~26では、化学成分、Ni偏析比及び深冷後オーステナイトの量が適切であるため、母材及び溶接継手の耐破壊性能がすべて「合格」であった。
 比較例1~12、18、20では、化学成分が適量でないため、母材及び溶接継手の耐破壊性能の何れかが「不合格」であった。
 比較例13~16及び比較例25、26では、Ni偏析比が適切でないため、母材及び溶接継手の耐破壊性能の何れかが「不合格」であった。これらの比較例では、第一の熱加工処理の条件が適切でなかった。
 比較例17及び比較例21~23では、深冷後オーステナイトの量が適量でないため、母材及び溶接継手の耐破壊性能の何れかが「不合格」であった。比較例17、21及び22では、第二の熱加工処理の条件が適切でなかった。また、比較例22及び23では、第三の熱加工処理の条件が適切でなかった。
 比較例24では、深冷後オーステナイトの平均円相当径が適切でないため、母材及び溶接継手の耐破壊性能の何れかが「不合格」であった。この比較例24では、第四の熱加工処理の条件が適切でなかった。
 比較例19では、深冷後オーステナイトの平均円相当径が適切でないため、母材及び溶接継手の耐破壊性能の何れかが「不合格」であった。この比較例19では、第二の熱加工処理の条件が適切でなかった。
 なお、実施例6及び比較例6では、第2の熱加工処理における制御冷却、第3の熱加工処理及び第4の熱加工処理における冷却は、空冷である。同様に、実施例17及び比較例17では、第2の熱加工処理における制御冷却は、空冷である。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
 6%前後のNi含有量で-160℃程度での耐破壊性能に優れた鋼板およびその製造方法を提供することができる。

Claims (9)

  1.  質量%で、
    C:0.03%以上かつ0.10%以下、
    Si:0.02%以上かつ0.40%以下、
    Mn:0.3%以上かつ1.2%以下、
    Ni:5.0%以上かつ7.5%以下、
    Cr:0.4%以上かつ1.5%以下、
    Mo:0.02%以上かつ0.4%以下、
    Al:0.01%以上かつ0.08%以下、
    T・O:0.0001%以上かつ0.0050%以下
    を含有し、
    P:0.0100%以下、
    S:0.0035%以下、
    N:0.0070%以下
    に制限し、
     残部がFe及び不可避的不純物からなり、
     板面から深さ方向に板厚の1/4の距離離れた部位のNi偏析比が1.3以下であり、深冷後オーステナイトの量が2%以上であり、深冷後オーステナイト不均一指数が5.0以下であり、深冷後オーステナイトの平均円相当径が1μm以下である
    ことを特徴とするNi添加鋼板。
  2.  さらに質量%で、
    Cu:1.0%以下、
    Nb:0.05%以下、
    Ti:0.05%以下、
    V:0.05%以下、
    B:0.05%以下、
    Ca:0.0040%以下、
    Mg:0.0040%以下、
    REM:0.0040%以下
    のいずれか1種以上を含有することを特徴とする請求項1に記載のNi添加鋼板。
  3.  Ni量が、5.3~7.3%であることを特徴とする請求項1または2に記載のNi添加鋼板。
  4.  板厚が、4.5~80mmであることを特徴とする請求項1または2に記載のNi添加鋼板。
  5.  質量%で、
    C:0.03%以上かつ0.10%以下、
    Si:0.02%以上かつ0.40%以下、
    Mn:0.3%以上かつ1.2%以下、
    Ni:5.0%以上かつ7.5%以下、
    Cr:0.4%以上かつ1.5%以下、
    Mo:0.02%以上かつ0.4%以下、
    Al:0.01%以上かつ0.08%以下、
    T・O:0.0001%以上かつ0.0050%以下
    を含有し、
    P:0.0100%以下、
    S:0.0035%以下、
    N:0.0070%以下
    に制限し、残部がFe及び不可避的不純物からなる鋼片を、1250℃以上かつ1380℃以下の加熱温度で8時間以上かつ50時間以下保持した後300℃以下まで空冷する第1の熱加工処理を行い;
     前記鋼片を900℃以上かつ1270℃以下に加熱し、最終1パス前の温度を660℃以上かつ900℃以下に制御して2.0以上かつ40以下の圧下比で熱間圧延を行い、速やかに冷却を開始する第2の熱加工処理を行い;
     前記鋼片を600℃以上かつ750℃以下に加熱した後冷却する第3の熱加工処理を行い;
     前記鋼片を500℃以上かつ650℃以下に加熱した後冷却する第4の熱加工処理を行う;
    ことを特徴とするNi添加鋼板の製造方法。
  6.  前記鋼片は、さらに質量%で、
    Cu:1.0%以下、
    Nb:0.05%以下、
    Ti:0.05%以下、
    V:0.05%以下、
    B:0.05%以下、
    Ca:0.0040%以下、
    Mg:0.0040%以下、
    REM:0.0040%以下
    のいずれか1種以上を含有することを特徴とする請求項5に記載のNi添加鋼板の製造方法。
  7.  前記第1の熱加工処理では、前記空冷の前に、最終1パス前の温度を800℃以上かつ1200℃以下に制御して1.2以上かつ40以下の圧下比で熱間圧延を行うことを特徴とする請求項5または6に記載のNi添加鋼板の製造方法。
  8.  前記第2の熱加工処理では、前記熱間圧延の直後に冷却し、780℃以上かつ900℃以下で再加熱を行うことを特徴とする請求項5または6に記載のNi添加鋼板の製造方法。
  9.  前記第1の熱加工処理では、前記空冷の前に、最終1パス前の温度を800℃以上かつ1200℃以下に制御して1.2以上かつ40以下の圧下比で熱間圧延を行い、前記第2の熱加工処理では、前記熱間圧延の直後に冷却し、780℃以上かつ900℃以下で再加熱を行うことを特徴とする請求項5または6に記載のNi添加鋼板の製造方法。
PCT/JP2011/065599 2010-07-09 2011-07-07 Ni添加鋼板およびその製造方法 WO2012005330A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/806,457 US8882942B2 (en) 2010-07-09 2011-07-07 Ni-added steel plate and method of manufacturing the same
JP2011547105A JP4975888B2 (ja) 2010-07-09 2011-07-07 Ni添加鋼板およびその製造方法
BR112013000436-3A BR112013000436B1 (pt) 2010-07-09 2011-07-07 Chapa de aço com ni adicionado e método de produção da mesma
CN201180033640.7A CN102985576B (zh) 2010-07-09 2011-07-07 Ni添加钢板及其制造方法
EP11803664.9A EP2592166B1 (en) 2010-07-09 2011-07-07 5-7.5 % Ni-CONTAINING STEEL SHEET
KR1020137000242A KR101312211B1 (ko) 2010-07-09 2011-07-07 Ni 첨가 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010156720 2010-07-09
JP2010-156720 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005330A1 true WO2012005330A1 (ja) 2012-01-12

Family

ID=45441307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065599 WO2012005330A1 (ja) 2010-07-09 2011-07-07 Ni添加鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US8882942B2 (ja)
EP (1) EP2592166B1 (ja)
JP (1) JP4975888B2 (ja)
KR (1) KR101312211B1 (ja)
CN (1) CN102985576B (ja)
BR (1) BR112013000436B1 (ja)
WO (1) WO2012005330A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142197A (ja) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
JP2013213273A (ja) * 2012-03-09 2013-10-17 Kobe Steel Ltd 極低温靭性に優れた厚鋼板
JP2013234381A (ja) * 2012-04-13 2013-11-21 Kobe Steel Ltd 極低温靱性に優れた厚鋼板
WO2014017057A1 (ja) * 2012-07-23 2014-01-30 Jfeスチール株式会社 Ni含有厚鋼板
JP2014034708A (ja) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal 極低温用厚鋼板とその製造方法
JP5561442B1 (ja) * 2013-06-19 2014-07-30 新日鐵住金株式会社 鋼板およびlngタンク
WO2014171368A1 (ja) * 2013-04-17 2014-10-23 株式会社神戸製鋼所 極低温靭性に優れた厚鋼板
JP2015074808A (ja) * 2013-10-09 2015-04-20 新日鐵住金株式会社 鋼材およびその製造方法
KR20150082611A (ko) * 2012-12-13 2015-07-15 가부시키가이샤 고베 세이코쇼 극저온 인성이 우수한 후강판
EP2889391A4 (en) * 2012-08-23 2016-05-18 Kobe Steel Ltd THICK-STEEL PLATE HAVING HIGH HARDNESS AT ULTRA-BASS TEMPERATURE
JP6394835B1 (ja) * 2017-10-31 2018-09-26 新日鐵住金株式会社 低温用ニッケル含有鋼板およびそれを用いた低温用タンク
KR20200140907A (ko) 2018-06-12 2020-12-16 제이에프이 스틸 가부시키가이샤 극저온용 고장력 후강판 및 그 제조 방법
WO2021045425A1 (ko) * 2019-09-03 2021-03-11 주식회사 포스코 극저온 횡팽창이 우수한 압력용기용 강판 및 그 제조 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764859B (zh) * 2011-09-28 2015-03-25 新日铁住金株式会社 Ni添加钢板及其制造方法
CN103386347A (zh) * 2013-07-31 2013-11-13 西安交通大学 一种低温球磨实验装置
CN103774055A (zh) * 2013-12-24 2014-05-07 六安市振华汽车变速箱有限公司 一种高强度高韧性合金钢材料及其制备方法
JP6196929B2 (ja) * 2014-04-08 2017-09-13 株式会社神戸製鋼所 極低温でのhaz靱性に優れた厚鋼板
JP2017115239A (ja) * 2015-12-18 2017-06-29 株式会社神戸製鋼所 極低温靭性に優れた厚鋼板
WO2018117683A1 (ko) 2016-12-23 2018-06-28 주식회사 포스코 가공성 및 표면특성이 우수한 오스테나이트계 스테인리스강 및 이의 제조방법
KR102030162B1 (ko) 2016-12-23 2019-11-08 주식회사 포스코 가공성 및 표면특성이 우수한 오스테나이트계 스테인리스강 및 이의 제조방법
KR101923922B1 (ko) 2016-12-23 2018-11-30 주식회사 포스코 표면특성이 우수한 오스테나이트계 스테인리스강 가공품 및 이의 제조 방법
CN114058790A (zh) * 2021-11-12 2022-02-18 哈尔滨工程大学 一种5~25mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN114250465B (zh) * 2021-12-15 2022-08-26 北京科技大学 一种提高激光熔覆刀刀刃硬度的热处理方法
CN114959452B (zh) * 2022-04-25 2023-07-21 中国科学院金属研究所 一种耐近海岸强盐雾海洋大气环境腐蚀的耐候钢及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156715A (en) 1980-05-07 1981-12-03 Nippon Kokan Kk <Nkk> Manufacture of ni-containing steel for low temperature excellent in crack tip opening displacement
JPS61133312A (ja) 1984-12-03 1986-06-20 Kawasaki Steel Corp 高じん性低温用鋼板の製造方法
JPS63130245A (ja) 1986-11-20 1988-06-02 Nippon Steel Corp 低温靭性の優れたNi含有鋼板の製造法
JPH0414179B2 (ja) 1985-10-18 1992-03-12 Nippon Steel Corp
JPH04107219A (ja) 1990-08-28 1992-04-08 Kawasaki Steel Corp 低降伏比を有する低温用鋼板の製造方法
JPH04371520A (ja) 1991-06-19 1992-12-24 Nippon Steel Corp 母材および溶接熱影響部のCTOD特性の優れた厚肉9%Ni鋼の製造法
JPH06179909A (ja) 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd 極低温用鋼材の製造方法
JPH07278734A (ja) 1994-04-08 1995-10-24 Kobe Steel Ltd 靱性の優れた含Ni低温用鋼
JPH07316654A (ja) 1994-05-27 1995-12-05 Kawasaki Steel Corp 低温じん性に優れた高強度Ni鋼厚鋼板の製造方法
JPH0920922A (ja) 1995-06-30 1997-01-21 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH0941088A (ja) 1995-07-31 1997-02-10 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH0941036A (ja) 1995-07-31 1997-02-10 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH09143557A (ja) 1995-11-22 1997-06-03 Kawasaki Steel Corp 低温靱性に優れた高強度含Ni厚鋼板の製造方法
JP2000129351A (ja) 1998-10-20 2000-05-09 Nkk Corp 厚肉高張力鋼板の製造方法
JP2002129280A (ja) 2001-09-13 2002-05-09 Sumitomo Metal Ind Ltd 低温用Ni含有鋼とその製造方法
JP2006057136A (ja) * 2004-08-19 2006-03-02 Daido Steel Co Ltd 無段変速機ベルトの金属帯リング用薄鋼帯板
JP2006212671A (ja) * 2005-02-04 2006-08-17 Nippon Steel Corp Ni含有鋼の圧延表面疵防止方法
WO2007116913A1 (ja) * 2006-04-04 2007-10-18 Nippon Steel Corporation 硬質極薄鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230713A (ja) * 1988-03-08 1989-09-14 Nippon Steel Corp 耐応力腐食割れ性の優れた高強度高靭性鋼の製造法
TW459052B (en) 1997-12-19 2001-10-11 Exxon Production Research Co Ultra-high strength steels with excellent cryogenic temperature toughness
KR100957929B1 (ko) * 2002-12-18 2010-05-13 주식회사 포스코 저온인성이 우수한 고장력 강판의 제조방법
KR100984413B1 (ko) * 2005-09-21 2010-09-29 수미도모 메탈 인더스트리즈, 리미티드 저온용 강재 및 그 제조 방법
JP4957556B2 (ja) 2006-01-13 2012-06-20 住友金属工業株式会社 極低温用鋼
JP4775708B2 (ja) 2006-04-04 2011-09-21 独立行政法人日本原子力研究開発機構 水素ガス検知材とその被膜方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156715A (en) 1980-05-07 1981-12-03 Nippon Kokan Kk <Nkk> Manufacture of ni-containing steel for low temperature excellent in crack tip opening displacement
JPS61133312A (ja) 1984-12-03 1986-06-20 Kawasaki Steel Corp 高じん性低温用鋼板の製造方法
JPH0414179B2 (ja) 1985-10-18 1992-03-12 Nippon Steel Corp
JPS63130245A (ja) 1986-11-20 1988-06-02 Nippon Steel Corp 低温靭性の優れたNi含有鋼板の製造法
JPH04107219A (ja) 1990-08-28 1992-04-08 Kawasaki Steel Corp 低降伏比を有する低温用鋼板の製造方法
JPH04371520A (ja) 1991-06-19 1992-12-24 Nippon Steel Corp 母材および溶接熱影響部のCTOD特性の優れた厚肉9%Ni鋼の製造法
JPH06179909A (ja) 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd 極低温用鋼材の製造方法
JPH07278734A (ja) 1994-04-08 1995-10-24 Kobe Steel Ltd 靱性の優れた含Ni低温用鋼
JPH07316654A (ja) 1994-05-27 1995-12-05 Kawasaki Steel Corp 低温じん性に優れた高強度Ni鋼厚鋼板の製造方法
JPH0920922A (ja) 1995-06-30 1997-01-21 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH0941088A (ja) 1995-07-31 1997-02-10 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH0941036A (ja) 1995-07-31 1997-02-10 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH09143557A (ja) 1995-11-22 1997-06-03 Kawasaki Steel Corp 低温靱性に優れた高強度含Ni厚鋼板の製造方法
JP2000129351A (ja) 1998-10-20 2000-05-09 Nkk Corp 厚肉高張力鋼板の製造方法
JP2002129280A (ja) 2001-09-13 2002-05-09 Sumitomo Metal Ind Ltd 低温用Ni含有鋼とその製造方法
JP2006057136A (ja) * 2004-08-19 2006-03-02 Daido Steel Co Ltd 無段変速機ベルトの金属帯リング用薄鋼帯板
JP2006212671A (ja) * 2005-02-04 2006-08-17 Nippon Steel Corp Ni含有鋼の圧延表面疵防止方法
WO2007116913A1 (ja) * 2006-04-04 2007-10-18 Nippon Steel Corporation 硬質極薄鋼板およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. MIYAKOSHI; N. ISHIKURA; T. SUZUKI; K. TANAKA: "Proceedings for Transmission Conf.", 1981, AMERICAN GAS ASSOCIATION, pages: T155 - T166
PRESSURE TECHNOLOGIES, vol. 29, no. 6, pages 341
See also references of EP2592166A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142197A (ja) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
JP2013213273A (ja) * 2012-03-09 2013-10-17 Kobe Steel Ltd 極低温靭性に優れた厚鋼板
JP2013234381A (ja) * 2012-04-13 2013-11-21 Kobe Steel Ltd 極低温靱性に優れた厚鋼板
CN104487602A (zh) * 2012-07-23 2015-04-01 杰富意钢铁株式会社 含Ni 厚钢板
WO2014017057A1 (ja) * 2012-07-23 2014-01-30 Jfeスチール株式会社 Ni含有厚鋼板
JP2014019936A (ja) * 2012-07-23 2014-02-03 Jfe Steel Corp 低温靱性に優れたNi含有厚鋼板
EP2876179A4 (en) * 2012-07-23 2016-02-17 Jfe Steel Corp THICK STEEL SHEET CONTAINING NICKEL
KR101702480B1 (ko) 2012-07-23 2017-02-03 제이에프이 스틸 가부시키가이샤 Ni 함유 후강판
KR20150023724A (ko) * 2012-07-23 2015-03-05 제이에프이 스틸 가부시키가이샤 Ni 함유 후강판
JP2014034708A (ja) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal 極低温用厚鋼板とその製造方法
EP2889391A4 (en) * 2012-08-23 2016-05-18 Kobe Steel Ltd THICK-STEEL PLATE HAVING HIGH HARDNESS AT ULTRA-BASS TEMPERATURE
KR101711774B1 (ko) 2012-12-13 2017-03-02 가부시키가이샤 고베 세이코쇼 극저온 인성이 우수한 후강판
EP3190201A1 (en) * 2012-12-13 2017-07-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel plate having excellent cryogenic toughness
KR20150082611A (ko) * 2012-12-13 2015-07-15 가부시키가이샤 고베 세이코쇼 극저온 인성이 우수한 후강판
EP2933347A4 (en) * 2012-12-13 2016-07-27 Kobe Steel Ltd THICK STEEL PLATE WITH OUTSTANDING KRYOGENIC TOUGHNESS
JP2014210948A (ja) * 2013-04-17 2014-11-13 株式会社神戸製鋼所 極低温靭性に優れた厚鋼板
WO2014171368A1 (ja) * 2013-04-17 2014-10-23 株式会社神戸製鋼所 極低温靭性に優れた厚鋼板
EP2987885A4 (en) * 2013-04-17 2016-09-28 Kobe Steel Ltd THICK STEEL PLATE WITH EXCELLENT RESISTANCE AT VERY LOW TEMPERATURE
JP5561442B1 (ja) * 2013-06-19 2014-07-30 新日鐵住金株式会社 鋼板およびlngタンク
WO2014203347A1 (ja) 2013-06-19 2014-12-24 新日鐵住金株式会社 鋼材およびその製造方法並びにlngタンク
JP2015074808A (ja) * 2013-10-09 2015-04-20 新日鐵住金株式会社 鋼材およびその製造方法
JP6394835B1 (ja) * 2017-10-31 2018-09-26 新日鐵住金株式会社 低温用ニッケル含有鋼板およびそれを用いた低温用タンク
WO2019087318A1 (ja) * 2017-10-31 2019-05-09 新日鐵住金株式会社 低温用ニッケル含有鋼板およびそれを用いた低温用タンク
US11203804B2 (en) 2017-10-31 2021-12-21 Nippon Steel Corporation Nickel-containing steel plate for use at low temperature and tank for use at low temperature using the same
KR20200140907A (ko) 2018-06-12 2020-12-16 제이에프이 스틸 가부시키가이샤 극저온용 고장력 후강판 및 그 제조 방법
WO2021045425A1 (ko) * 2019-09-03 2021-03-11 주식회사 포스코 극저온 횡팽창이 우수한 압력용기용 강판 및 그 제조 방법

Also Published As

Publication number Publication date
EP2592166A4 (en) 2014-03-12
JPWO2012005330A1 (ja) 2013-09-05
BR112013000436A2 (pt) 2016-05-17
KR101312211B1 (ko) 2013-09-27
BR112013000436B1 (pt) 2018-07-03
US20130098514A1 (en) 2013-04-25
EP2592166A1 (en) 2013-05-15
US8882942B2 (en) 2014-11-11
KR20130014069A (ko) 2013-02-06
JP4975888B2 (ja) 2012-07-11
BR112013000436A8 (pt) 2017-10-17
EP2592166B1 (en) 2015-10-14
CN102985576A (zh) 2013-03-20
CN102985576B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4975888B2 (ja) Ni添加鋼板およびその製造方法
JP5059244B1 (ja) Ni添加鋼板およびその製造方法
JP5098256B2 (ja) 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
JP5509923B2 (ja) レーザ溶接用またはレーザ・アークハイブリッド溶接用の引張強さが1100MPa以上の高張力鋼板の製造方法
JP5439973B2 (ja) 優れた生産性と溶接性を兼ね備えた、pwht後の落重特性に優れた高強度厚鋼板およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
JP6048436B2 (ja) 調質高張力厚鋼板及びその製造方法
JP6883107B2 (ja) 低温での破壊開始及び伝播抵抗性に優れた高強度鋼材及びその製造方法
JP5521712B2 (ja) 強度および低温靭性と脆性亀裂伝播停止特性に優れた低温用Ni含有鋼およびその製造方法
JP5630322B2 (ja) 靭性に優れる高張力鋼板とその製造方法
JP6492862B2 (ja) 低温用厚鋼板及びその製造方法
JP2019214752A (ja) 低降伏比厚鋼板
JP4538095B2 (ja) 母材および溶接熱影響部の低温靭性に優れかつ強度異方性の小さい鋼板およびその製造方法
JP5432548B2 (ja) 脆性亀裂伝播停止特性に優れた厚鋼板
JP2012172242A (ja) 靭性に優れる高張力鋼板とその製造方法
JP5200600B2 (ja) 高強度低降伏比鋼材の製造方法
JP6582590B2 (ja) Lpg貯蔵タンク用鋼板およびその製造方法
JP5565050B2 (ja) 強度および低温靭性と脆性亀裂伝播停止特性に優れた9Ni鋼
JP6398576B2 (ja) 靭性に優れた鋼板およびその製造方法
JP2023506833A (ja) 硫化物応力腐食割れ抵抗性に優れた鋼材及びその製造方法
JP2016079424A (ja) 靭性に優れた鋼板およびその製造方法
JP2023130322A (ja) 厚鋼板およびその製造方法
JP2004003012A (ja) 溶接熱影響部靭性に優れた高強度鋼板及びその製造方法
JP2016079427A (ja) 高温強度および靭性に優れた鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033640.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011547105

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011803664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806457

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137000242

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000436

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000436

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130107