WO2011158551A1 - 燃料電池セル - Google Patents

燃料電池セル Download PDF

Info

Publication number
WO2011158551A1
WO2011158551A1 PCT/JP2011/059613 JP2011059613W WO2011158551A1 WO 2011158551 A1 WO2011158551 A1 WO 2011158551A1 JP 2011059613 W JP2011059613 W JP 2011059613W WO 2011158551 A1 WO2011158551 A1 WO 2011158551A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
fuel cell
separator
electrode structure
membrane electrode
Prior art date
Application number
PCT/JP2011/059613
Other languages
English (en)
French (fr)
Inventor
池添 圭吾
阿部 光高
屋 隆了
沼尾 康弘
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201180029588.8A priority Critical patent/CN102939678B/zh
Priority to JP2012520314A priority patent/JP5516917B2/ja
Priority to CA2802412A priority patent/CA2802412C/en
Priority to US13/697,486 priority patent/US8999597B2/en
Priority to EP11795459.4A priority patent/EP2584636B1/en
Publication of WO2011158551A1 publication Critical patent/WO2011158551A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell (single cell) used as a power generation element of a fuel cell, and more particularly to a fuel cell constituting a fuel cell stack by stacking a plurality of cells.
  • Patent Document 1 As this type of fuel cell, for example, there is one described in Patent Document 1.
  • the fuel cell described in Patent Document 1 includes a membrane electrode assembly (MEA) in which an electrolyte membrane is sandwiched between a fuel electrode and an air electrode, a resin frame that holds the periphery of the membrane electrode structure, and a membrane. Two separators sandwiching the electrode structure and the resin frame are provided.
  • the fuel electrode and the air electrode each have a gas diffusion layer on the outside.
  • MEA membrane electrode assembly
  • the fuel cell has a reaction gas manifold section and a rectifying section between the resin frame and both separators, and is in contact with each separator on both sides of the resin frame. Protrusions for maintaining the above are provided. Thereby, the fuel battery cell distributes the reaction gas (fuel gas and oxidant gas) to the membrane electrode structure.
  • the separator has a gas sealing function for the reaction gas, and is also used as a current collector and an external terminal.
  • the above fuel cell units are stacked to constitute a fuel cell stack.
  • the fuel cell stack is pressurized in the stacking direction in order to maintain good assembly accuracy, gas sealability, conductivity, and the like.
  • the conventional fuel cell as described above has a structure in which each separator is in contact with both the membrane electrode structure and the resin frame. Since the contact portion between the protrusion and each separator is also subjected to pressure, so-called surface pressure loss occurs, and sufficient contact surface pressure between the membrane electrode structure and each separator cannot be secured, resulting in increased contact resistance. There has been a problem that the battery performance is degraded.
  • the present invention has been made paying attention to the above-mentioned conventional problems, and in a fuel cell comprising a membrane electrode structure having a frame around it and two separators sandwiching the frame and the membrane electrode structure, A fuel cell that can maintain a good contact surface pressure between the membrane electrode structure and the separator and prevent an increase in contact resistance when a plurality of stacked fuel cell stacks are formed.
  • the purpose is to provide.
  • the fuel cell of the present invention includes a membrane electrode structure having a frame around it, and two separators sandwiching the frame and the membrane electrode structure, and a gas seal is provided between the frame and the edges of each separator.
  • It is a fuel battery cell which has each diffuser part which provides and distribute
  • a protrusion in contact with the mating side is provided on at least one of the opposing surfaces of the frame and the separator.
  • the fuel cell has a configuration in which the frame and the separator are spaced apart from each other in the diffuser portion on the other side, and the above configuration serves as a means for solving the conventional problems.
  • the fuel battery cell is characterized in that the projection is provided on the frame or the separator in the diffuser portion on the cathode side.
  • the frame can be displaced toward the one diffuser part without being completely restrained.
  • the pressure works effectively between the membrane electrode structure and the separator, and it is possible to maintain a good contact surface pressure between the membrane electrode structure and the separator and to prevent an increase in contact resistance. Battery performance can be obtained.
  • FIG. 3 is a sectional view based on the line AA in FIG.
  • FIG. 9 is a cross-sectional view based on the line AA in FIG. 2 showing another embodiment of the fuel battery cell.
  • FIG. 5 is a cross-sectional view based on the line AA in FIG. 2 showing still another embodiment of the fuel cell.
  • FIG. 5 is a cross-sectional view based on the line AA in FIG.
  • sectional drawing of the principal part which shows further another embodiment of a fuel cell. It is sectional drawing (A) of the principal part which shows further another embodiment of a fuel cell, and sectional drawing (B) of the decomposition
  • FIGS. 1 to 33 are diagrams for explaining an embodiment of a fuel battery cell of the present invention.
  • the fuel cell FC shown in FIGS. 1 to 33 includes a membrane electrode structure 2 having a frame 1 around it, and two separators 3 and 3 sandwiching the frame 1 and the membrane electrode structure 2.
  • the frame 1 has a thin plate shape with a substantially constant thickness, and most of the frame 1 except the edge is thinner than the thickness of the membrane electrode structure 2. And it has the distribution area (diffuser part mentioned below) which distributes the gas for reaction between frame 1 and both separators 3 and 3.
  • the frame 1 is resin and the separator 3 is metal, it is desirable.
  • the membrane electrode structure 2 is generally called MEA (Membrane Electrode Assembly). As shown in the enlarged view of FIG. 4, for example, an electrolyte layer 21 made of a solid polymer is used as a fuel electrode layer (anode) 22. And an air electrode layer (cathode) 23. Further, in the illustrated membrane electrode structure 2, gas diffusion layers 24 and 25 made of carbon paper or a porous material are laminated on the surfaces of the fuel electrode layer 22 and the air electrode layer 23, respectively.
  • MEA Membrane Electrode Assembly
  • the fuel gas (hydrogen) that is one reaction gas is supplied to the fuel electrode layer 22, and the oxidant gas (air) that is the other reaction gas is supplied to the air electrode layer 23. Is supplied to generate electricity through an electrochemical reaction.
  • the membrane electrode structure 2 includes a membrane electrode structure 2 that includes an electrolyte layer 21, a fuel electrode layer 22, and an air electrode layer 23 without a gas diffusion layer.
  • the frame 1 is integrated with the membrane electrode structure 2 by resin molding (for example, injection molding).
  • the frame 1 has a rectangular shape with the membrane electrode structure 2 in the center.
  • the frame 1 has three manifold holes H1 to H6 arranged at both ends, and a region from each manifold hole group to the membrane electrode structure 2 is a reaction gas flow region.
  • Each of the frame 1 and the separators 3 and 3 has a rectangular shape having substantially the same vertical and horizontal dimensions.
  • Each separator 3 is formed by press-molding a metal plate such as stainless steel.
  • Each separator 3 has a central portion corresponding to the membrane electrode structure 2 formed in a wave shape in a cross section in the short side direction. This wave shape is continuous in the long side direction as shown in FIG.
  • each separator 3 has a convex portion in contact with the membrane electrode structure 2 at the central portion corresponding to the membrane electrode structure 2 in the wave shape, and the concave portions in the wave shape are flow paths for the reaction gas. It becomes.
  • the membrane electrode structure 2 and the separators 3 and 3 are shown as being separated from each other. As described above, the membrane electrode structure 2 and each separator 3 are in contact with each other.
  • Each separator 3 has manifold holes H1 to H6 that are equivalent to the manifold holes H1 to H6 of the frame 1 at both ends, and the region from each manifold hole group to the corrugated section has a reaction gas flow. It becomes an area.
  • the fuel cell FC includes a power generation unit G that is a region of the membrane electrode structure 2 at the center. Further, on both sides of the power generation unit G, manifold units M and M that supply and discharge the reaction gas, and diffuser units D and D that are reaction gas flow regions from each manifold unit M to the power generation unit G are provided. It has become.
  • the diffuser portion D which is a reaction gas flow region, is not only between the cell ends in FIG. 2 but also between the frame 1 and the separators 3 and 3 on both sides, that is, the anode side (Da) and the cathode side ( Dc), respectively.
  • each of the manifold holes H1 to H3 is for supplying an oxidant gas (H1), for supplying a cooling fluid (H2), and for supplying a fuel gas (H3).
  • H1 oxidant gas
  • H2 cooling fluid
  • H3 fuel gas
  • each flow path is formed in the other manifold portion M shown on the right side of FIG. 2
  • the manifold holes H4 to H6 are for fuel gas discharge (H4), cooling fluid discharge (H5), and oxidant gas discharge (H6).
  • Each flow path is formed in the stacking direction. The supply and discharge may be partially or entirely reversed in positional relationship.
  • the fuel cell FC is provided with a gas seal Gs between the frame 1 and the separator 3 at the peripheral edge of the separator 3 and the peripheral edge of the manifold hole H1. Further, in the state where a plurality of fuel cells FC are stacked, a gas seal Gs is also provided between adjacent separators 3. In this embodiment, a cooling fluid is circulated between the adjacent separators 3 and 3. In addition, when the separator 3 has a function of a current collector or an external terminal, an insulator is interposed between the separators 3.
  • the above gas seal Gs hermetically separates the flow regions of the fuel gas, the oxidant gas, and the cooling fluid between the individual layers, and at the same time, manifold holes H1 to H6 so that a predetermined fluid flows between the layers.
  • An opening is provided at an appropriate location on the peripheral edge of the. That is, since the manifold hole H1 for supplying the oxidant gas is shown in FIG. 4, an opening of the gas seal Gs is provided on the cathode side (upper side), and the anode side (lower side) is closed with the gas seal Gs. is there.
  • a plurality of fuel cells FC having the above-described configuration are stacked to form a fuel cell stack FS as shown in FIG.
  • the fuel cell stack FS has an end plate 62A at one end (right end in FIG. 3) in the stacking direction of the fuel cells FC via a current collector plate 60A and a spacer 61. Is provided, and an end plate 62B is provided at the other end via a current collecting plate 60B. Further, the fuel cell stack FS is provided with fastening plates 63A and 63B on both surfaces (upper and lower surfaces in FIG. 3) on the long side of the fuel cell C, and reinforcing plates on both surfaces on the short side. 64A and 64B are provided.
  • the fastening plates 63A and 63B and the reinforcing plates 64A and 64B are connected to both end plates 62A and 62B by bolts 65.
  • the fuel cell stack FS has a case-integrated structure as shown in FIG. 3B.
  • Each fuel cell FC is constrained and pressurized in the stacking direction to make a predetermined contact with each fuel cell FC. Apply surface pressure to maintain good gas sealing and electrical conductivity.
  • the fuel cell FC has a protrusion 5 in contact with the mating side on at least one of the opposing surfaces of the frame 1 and the separator 3 in the diffuser portion on either the cathode side or the anode side. And in the diffuser part of the other side, the flame
  • the frame 1 in the diffuser portion Dc on the cathode side, the frame 1 is provided with a protrusion 5 in contact with the separator 3 on the counterpart side.
  • the frame 1 and the separator 3 facing the frame 1 are arranged apart from each other.
  • the protrusions 5 have a truncated cone shape and are integrally formed with the resin frame 1, and are arranged at predetermined intervals as shown in FIGS.
  • the protrusion 5 is not particularly limited in shape or the like, and may be any protrusion that does not hinder the flow of the reaction gas.
  • a projection 6 having a shape similar to the protrusion 5 is provided on the anode-side surface (lower surface in FIG. 4) of the frame 1.
  • the protrusion 6 is lower than the protrusion 5 and forms a gap between the separator 3 and is excessively large in contact with the separator 3 when the frame 1 and the separator 3 are displaced in the approaching direction. Prevent displacement.
  • the pressing force in the stacking direction is effective between the membrane electrode structure 2 and the separators 3 and 3. Will work.
  • the frame 1 and the separator 3 are separated from each other in the anode-side diffuser portion Da.
  • the pressing force in the stacking direction acts only between the membrane electrode structure 2 and the separator 3, and a sufficient contact surface pressure between the membrane electrode structure and the separator 3 can be secured.
  • the projection 5 of the frame 1 and the separator 3 are in contact with each other, but the frame 1 is not restrained on the anode side. Thereby, even if it presses in the lamination direction, since the frame 1 can be displaced to the anode side, the contact surface pressure between the membrane electrode structure and the separator 3 is not greatly reduced, and the contact surface pressure is reduced. An appropriate range can be maintained.
  • the fuel cell FC can be displaced to the one diffuser part (Da) side without the frame 1 being completely restrained from both sides, so that a plurality of the fuel cells FC are stacked to form the fuel cell stack FS. It is possible to maintain the contact surface pressure between the membrane electrode structure 2 and the separators 3 and 3 well. Thereby, an increase in contact resistance can be prevented and good battery performance can be obtained. Therefore, in the fuel cell stack FS that is a stack of fuel cells FC, an efficient power generation function can be obtained over a long period of time.
  • the projection 5 is provided on the frame 1, it is very effective in dealing with the variation in the flow rate of the reaction gas. It is.
  • the oxidant gas on the cathode side contains a larger amount of impurities other than oxygen, so that the volumetric flow rate required for power generation is large, and the electrochemical reaction (electrode reaction) in the membrane electrode structure 2 is large. This is because variation in the flow rate of the oxidant gas on the cathode side tends to occur.
  • the fuel cell FC is provided with a projection 5 in contact with the separator 3 on the frame 1 in the cathode-side diffuser portion Dc.
  • the frame 1 and the separator 3 are arranged apart from each other.
  • the fuel cell FC always maintains the height of the cathode-side diffuser portion Dc constant by the protrusions 5 even when the flow rate of the oxidant gas in the cathode-side diffuser portion Dc varies. Can be suppressed.
  • the contact surface pressure between the membrane electrode structure 2 and the separators 3 and 3 is satisfactorily maintained to prevent the contact resistance from increasing, and the reaction gas It is possible to achieve both a function for dealing with variations in flow rate.
  • the function of dealing with the variation in the flow rate of the reaction gas is to increase the gas pressure in the diffuser section in which the frame 1 and the separator 3 are spaced apart, as will be described later in the operation method of the fuel cell system. It will be even more effective.
  • 5 to 7 are diagrams for explaining three other embodiments of the fuel battery cell of the present invention.
  • the same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a protrusion 15 that contacts the frame 1 is provided on the separator 3 in the cathode-side diffuser portion Dc, and the frame 1 and the separator 3 are spaced apart from each other in the anode-side diffuser portion Da. is doing.
  • the illustrated separator 3 on the anode side has a protrusion 16 that is lower than the protrusion. Similar to the one described in the previous embodiment, the convex portion 16 forms a gap between the separator 3 and abuts against the separator 3 when the frame 1 and the separator 3 are displaced in the approaching direction. Prevent excessive displacement.
  • the fuel cell FC shown in FIG. 6 has a basic configuration equivalent to that of the embodiment shown in FIG. 4, and in the diffuser portion Da on the anode side, the frame 1 is a flat surface having no convex portion (6). have. Further, the fuel cell FC shown in FIG. 7 has a basic configuration equivalent to that of the embodiment shown in FIG. 5, and the separator 3 does not have a convex portion (16) in the diffuser portion Da on the anode side. It has a flat surface.
  • FIG. 8 is a diagram for explaining a fuel cell system including the fuel cell stack FS.
  • the fuel cell stack FS is assembled such that fuel cells FC as shown in FIGS. 4 to 7 are stacked in multiple stages and pressurized, and the state is maintained.
  • the illustrated fuel cell system includes an oxidant gas supply path 31 and a discharge path 32, a fuel gas supply path 33 and a discharge path 34, and a cooling fluid circulation path 35 with respect to the fuel cell stack FS. .
  • the oxidant gas supply path 31 is provided with an air supply means 36 such as a compressor, and a humidifier 37 for humidifying the supply air from the air supply means 36. Further, the oxidant gas discharge path 32 supplies water vapor contained in the discharged air to the humidifier 37, and is opened to the atmosphere by a back pressure adjusting valve 38 downstream thereof.
  • an air supply means 36 such as a compressor
  • a humidifier 37 for humidifying the supply air from the air supply means 36.
  • the oxidant gas discharge path 32 supplies water vapor contained in the discharged air to the humidifier 37, and is opened to the atmosphere by a back pressure adjusting valve 38 downstream thereof.
  • the fuel gas supply path 33 extends from the hydrogen tank 39 to the fuel cell stack FS, and a hydrogen regulating valve 40 is provided in the middle.
  • the fuel gas discharge path 34 reaches the water separator tank 41.
  • the water separator tank 41 includes a level sensor 42 for detecting the amount of water, and also includes a water discard valve 43 for discharging water to the outside and a nitrogen purge valve 44 for releasing nitrogen gas to the atmosphere.
  • the illustrated fuel cell system includes a fuel gas circulation pipe 50 that connects the fuel gas supply path 33 and the water separator tank 41.
  • the fuel gas circulation pipe 50 includes a circulation pump 51 in the middle thereof, and is connected to the fuel gas supply path 33 through an ejector 52 in the middle.
  • this fuel cell system is a fuel circulation system that reuses hydrogen contained in the fuel gas (off-gas) discharged from the fuel cell stack FS, and is discharged without being used for power generation in the fuel cell stack FS.
  • the excess hydrogen is forcibly returned to the fuel gas supply path 33 by the fuel gas circulation pipe 50, the circulation pump 51 and the ejector 52.
  • the cooling fluid circulation path 35 circulates the cooling fluid (cooling water) cooled by the radiator 45, and includes a cooling water circulation pump 46, a bypass path 47 that bypasses the radiator 45, and the circulation path 35 and the bypass path 47. Is provided.
  • the gas pressure in the diffuser part in which the frame and the separator are arranged apart from each other is higher than the gas pressure in the diffuser part where the frame and the separator are in contact with each other by the protrusion.
  • the operation is carried out by adjusting the supply pressure of the reaction gas.
  • the diffuser portion Da on the anode side that the frame 1 and the separator 3 are spaced apart. Further, it is the diffuser portion Dc on the cathode side that the frame 1 and the separator 3 are in contact with each other by the protrusion 5 (15).
  • the reaction gas is supplied so that the gas pressure in the anode side diffuser part Da is higher than the gas pressure in the cathode side diffuser part Dc. Operate by adjusting supply pressure.
  • the frame 1 in each fuel cell FC of the fuel cell stack FS, the frame 1 is held by the cathode-side protrusions 5 and 15 and the anode-side gas pressure, and the frame 1 is bent (ten). Prevention). Therefore, even if the flow rate of the reaction gas (especially oxidant gas) varies as described above, it is possible to prevent a situation in which the frame 1 is bent or the pressure loss in the low-pressure side gas flow path is increased. It will be possible.
  • the contact surface pressure between the membrane electrode structure 2 and the separators 3 and 3 is well maintained in each fuel cell FC.
  • the function of preventing an increase in contact resistance through maintenance and the function of dealing with variations in the flow rate of the reaction gas can be achieved.
  • the fuel gas (hydrogen) is originally stored under pressure in the hydrogen tank 39, so that pressure control is easy. There is also an advantage of being.
  • FIG. 1 Another example of the fuel cell system is shown in FIG.
  • the illustrated fuel cell system does not include the fuel gas circulation pipe (50), the circulation pump (51), and the ejector (52) in the system shown in FIG.
  • the exhaust fuel gas containing hydrogen is not circulated and used, but the flow of the fuel gas is unidirectional from the supply side to the discharge side.
  • Such a system is called an anodized end system.
  • Even in this fuel cell system it is possible to obtain the same operation and effect as those of the fuel circulation system fuel cell system described above.
  • both the upper limit pressure and the lower limit pressure of the anode side diffuser portion Da are The operation is performed by adjusting the supply pressure of the reaction gas so as to be higher than the gas pressure of the diffuser portion Dc on the side.
  • FIG. 12 and 13 are diagrams for explaining two other embodiments of the fuel battery cell of the present invention. Note that the same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 13 is a cross-sectional view of the fuel gas supply manifold hole H3.
  • the protrusions 5 and 15 are provided on both the frame 1 and the separator 3 facing each other, and the protrusions 5 and 15 are brought into contact with each other.
  • the opposed frame 1 and separator 3 are arranged apart from each other.
  • the protrusions (5, 15) can be provided on both the frame 1 and the separator 3.
  • the protrusions 5 of the frame 1 and the protrusions 15 of the separator 3 are alternately arranged so that the protrusions 5 of the frame 1 become the separator 3 and the separator 3.
  • the projection 15 may be in contact with the frame 1.
  • the projections 5 and 15 are provided on the cathode-side diffuser portion Dc in each of the previous embodiments, whereas in the anode-side diffuser portion Da, the frame 1 is attached to the separator 3.
  • the protrusion 5 which contacts is provided.
  • the frame 1 and the separator 3 are spaced apart.
  • the protrusion can be provided on at least one of the frame 1 and the separator 3 as in the previous embodiments.
  • the gas pressure in the cathode side diffuser portion Dc is higher than the gas pressure in the anode side diffuser portion Da.
  • the operation can be performed by adjusting the supply pressure of the reaction gas.
  • each component has dimensional tolerances and manufacturing variations, and there is also a slight difference in the thickness displacement of the membrane electrode structure 2 and the like. .
  • the gas pressure on the anode side pulsates as in the anode dead-end system previously shown in FIGS. 10 and 11, a gas differential pressure is generated between the cathode side and the anode side, and the differential pressure causes a flame. Bending stress tends to concentrate on the joint between 1 and the membrane electrode structure 2.
  • the fuel cell FC is disposed on at least one of the opposing surfaces of the frame 1 and the separator 3 on the other side.
  • the mating side and the tip of the projection 5 are bonded (reference numeral Q).
  • frame 1 and the separator 3 are spaced apart and arrange
  • the frame 1 in the diffuser portion Dc on the cathode side (upper side in the figure), the frame 1 is provided with a projection 5 in contact with the separator 3, and the separator 3 and the tip of the projection 5 are bonded (reference numeral Q).
  • the frame 1 and the separator 3 are arranged apart from each other. The positions of the cathode and anode may be upside down.
  • a well-known adhesive effective for these materials can be used in consideration of both materials (metal and resin). It is also possible to adopt the adhesive means.
  • the projections 5 of this embodiment are frustoconical, are integrally formed with the resin frame 1 and are arranged at predetermined intervals as shown in FIG.
  • the protrusion 5 is not particularly limited in shape or the like, and may be any protrusion that does not hinder the flow of the reaction gas.
  • a projection 6 having a shape similar to the protrusion 5 is provided on the anode-side surface (the lower surface in FIG. 14) of the frame 1.
  • the convex portion 6 is lower than the projection 5 on the cathode side and forms a gap between the separator 3 and abuts against the separator 3 when the frame 1 and the separator 3 are displaced in the approaching direction. Prevent excessive displacement.
  • the pressure in the stacking direction is mainly a membrane. It acts between the electrode structure 2 and the separator 3, and a sufficient contact surface pressure between the membrane electrode structure 2 and the separator 3 can be secured.
  • the fuel cell FC can absorb the displacement in the thickness direction by the gap between the frame 1 and the separator 3 in the diffuser portion Da on the anode side. That is, the fuel cell FC can absorb the dimensional tolerances and manufacturing variations of each component, and the aging displacement in the thickness direction of the membrane electrode structure 2 through the gap. Thereby, when the fuel cell stack FS is configured, the fuel cell FC can suppress variations in performance such as contact surface pressure and gas flow rate in individual cells.
  • the durability of the membrane electrode structure 2 having the frame 1 is improved by bonding the tip of the protrusion 5 of the frame 1 and the separator 3 in the diffuser portion Dc on the cathode side. That is, the fuel cell FC has a structure in which, for example, in the anode dead end system, even if the gas pressure on the anode side pulsates and a gas pressure difference occurs between the cathode side and the anode side, Since 1 is held by the separator 3, the displacement of the frame 1 can be suppressed even when the pressure on either the cathode side or the anode side becomes high. As a result, the fuel cell FC can prevent the bending stress from concentrating on the joint between the frame 1 and the membrane electrode structure 2.
  • the fuel cell FC can absorb the displacement in the thickness direction by the gap provided between the frame 1 and the separator 3, and at the same time, holds the frame 1 by the protrusion 5 bonded to the separator 3. Therefore, it is possible to achieve both the optimization of the performance of each cell when the fuel cell stack FS is configured and the improvement of the durability of the joint portion between the frame 1 and the membrane electrode structure 2.
  • FIG. 15 is a diagram illustrating still another embodiment of the fuel battery cell of the present invention.
  • the separator 3 in the diffuser portion Dc on the cathode side (upper side), the separator 3 is provided with a projection 15 in contact with the frame 1 on the other side, and the frame 1 and the tip of the projection 15 are bonded (Q). is doing.
  • the protrusions 15 are arranged at a predetermined interval so as not to disturb the flow of the reaction gas, like the protrusions of the previous embodiment.
  • the frame 1 and the separator 3 are spaced apart.
  • the displacement in the thickness direction can be absorbed by the gap provided between the frame 1 and the separator 3 as well as in the previous embodiment, and at the same time, provided in the separator 3. Since the frame 1 is held by the protrusion 15, both the optimization of the performance of each cell when the fuel cell stack FS is configured and the improvement of the durability of the joint between the frame 1 and the membrane electrode structure 2 are achieved. Can do.
  • FIG. 16 is a diagram for explaining still another embodiment of the fuel battery cell of the present invention.
  • the fuel cell FC shown in FIG. 16A in the cathode-side diffuser portion Dc, at least one of the opposing surfaces of the frame 1 and the separator 3 is provided with a protrusion 5A in contact with the mating side.
  • the protrusion 5A is formed of an adhesive interposed between the frame 1 and the separator 3. Even in the projection 5A, they are arranged at a predetermined interval so as not to disturb the flow of the reaction gas.
  • the frame 1 and the separator 3 are spaced apart.
  • the adhesive that forms the protrusion 5A can be selected from materials specialized in adhesive strength, and for example, an epoxy-based material can be used.
  • the protrusion (adhesive material) 5A can be molded in a predetermined shape in advance, but more preferably, as shown in FIG. Apply to. And since the protrusion (adhesive material) 5A is bonded to both by joining the frame 1 and the separator 3, it is equivalent to bonding the opposite separator 3 and the tip. Contrary to the illustrated example, it is naturally possible to provide (apply) the protrusions 5 ⁇ / b> A on the separator 3.
  • the protrusion 5A is formed of an adhesive, so that the protrusion of the frame 1 and the separator 3 is eliminated. Since the protrusion 5A can be formed together with the step of providing the gas seal Gs (see FIG. 1), it is possible to contribute to improvement in production efficiency and reduction in manufacturing cost. In the case where the gas seal Gs and the protrusion 5A are formed in the same process, it is desirable to use a material suitable for both applications, for example, an adhesive such as silicone rubber, fluorine rubber, and polyolefin rubber.
  • FIG. 17 is a diagram for explaining still another embodiment of the fuel battery cell of the present invention.
  • the fuel cell FC shown in FIG. 17A has a protrusion in contact with the mating side on at least one of the opposing surfaces of the frame 1 and the separator 3 in the diffuser portion D on either the cathode side or the anode side. 5, and in the diffuser portion D on the other side, an elastic body 7 in contact with both is interposed between the frame 1 and the separator 3.
  • the elastic bodies 7 are arranged at predetermined intervals so as not to disturb the flow of the reaction gas, like the protrusions of the previous embodiment.
  • the fuel cell FC is provided with a protrusion 5 in contact with the separator 3 on the frame 1 in the cathode-side diffuser portion Dc, and between the frame 1 and the separator 3 in the anode-side diffuser portion Da.
  • An elastic body 7 in contact with both is interposed.
  • the elastic body 7 can be provided on the separator 3 as shown in FIG. 17B or on the frame 1 as shown in FIG.
  • the elastic body 7 can be formed in a predetermined shape in advance, but more preferably, it is formed of an adhesive that is applied in a molten state and has elasticity after being cured.
  • the adhesive forming the elastic body 7 for example, a material such as silicone rubber, fluorine rubber, or polyolefin rubber can be used. Even in this elastic body (adhesive material) 7, it is applied to the frame 1 or the separator 3 in the same manner as the protrusion (5A in FIG. 16) formed by the previous adhesive material, and after curing, the frame 1 and the separator 3 are attached. By joining, it will contact the other party.
  • the fuel cell C described above absorbs displacement in the thickness direction through the gap between the separator 3 on the anode side and the frame 1, whereas the elastic body 7 on the anode side. To absorb the displacement in the thickness direction.
  • the fuel cell C holds the frame 1 by the protrusion 5 and the elastic body 7 of the frame 1.
  • the fuel cell FC is formed of the elastic body 7 with an adhesive having elasticity after being cured, the elastic body 7 can be formed together with the step of providing the gas seal Gs (see FIG. 1). Yes, it can contribute to improving production efficiency and reducing manufacturing costs. Further, since the fuel cell FC described above can obtain a displacement absorbing function and a holding function of the frame 1 simply by bringing the protrusion 5 and the elastic body 7 into contact with the mating side, even if the adhesive material has a low adhesive strength. Good. Therefore, the surface treatment of the adhesive surface can be simplified or eliminated, and an inexpensive adhesive can be employed, thereby further reducing the manufacturing cost.
  • FIG. 18 is a diagram illustrating still another embodiment of the fuel battery cell of the present invention.
  • a fuel cell FC shown in FIG. 18A is provided with a protrusion 5 in contact with the separator 3 on the frame 1 in the cathode-side diffuser portion Dc, and between the frame 1 and the separator 3 in the anode-side diffuser portion Da.
  • an elastic body 7 in contact with both is interposed.
  • the anode-side separator 3 has a plurality of protrusions 6 lower than the protrusions 5 as in the embodiments shown in FIGS.
  • an elastic body 7 that covers the two convex portions 6 is provided.
  • the elastic body 7 can be formed into a predetermined shape in advance, but can be formed of an adhesive that is applied in a molten state and has elasticity after curing.
  • an adhesive is applied so as to cover the plurality of convex portions 6, and this is cured and formed. As a result, a wide bonding area is ensured, and the elastic body 7 bites against the convex portion 6, so that sufficient adhesive strength can be obtained.
  • the elastic body 7 can be formed with respect to one convex portion 6 or two or more convex portions 6, but the size and shape thereof do not hinder the flow of the reaction gas. It is desirable to select.
  • the fuel cell FC shown in FIGS. 14 to 18 increases the contact resistance by maintaining good contact surface pressure between the membrane electrode structure 2 and the separators 3 and 3, as in the previous embodiments.
  • the function to prevent the occurrence of the reaction and the function to cope with the variation in the flow rate of the reaction gas are made compatible.
  • optimization of the performance of each cell at the time of comprising fuel cell stack FS and the improvement of durability of the joined part of frame 1 and membrane electrode structure 2 can also be made compatible.
  • the power generation performance and durability performance of each fuel cell C can be made uniform, and stable power generation can be performed over a long period of time. it can.
  • the configuration of the fuel cell of the present invention is not limited to the above-described embodiments, and the configuration details such as the shape, number, and material of each component are appropriately changed without departing from the gist of the present invention. Is possible. For example, in each of the embodiments shown in FIGS. 14 to 18, an example in which the positions of the protrusions and the elastic body coincide with each other on the cathode side and the anode side is illustrated, but these may be shifted in the planar direction. . It is also possible to combine the configurations of the above embodiments.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 周囲にフレームを有する膜電極構造体と、これを挟持する二枚のセパレータを備えた燃料電池セルでは、膜電極構造体及びフレームの両方にセパレータを接触させると、膜電極構造体とセパレータとの接触面圧が減少して接触抵抗が増大する。 フレーム1を有する膜電極構造体2と、これを挟持する二枚のセパレータ3,3を備えると共に、フレーム1と各セパレータ3の縁部同士の間にガスシールGsを設け、フレーム1と各セパレータ3との間に反応用ガスを流通させるディフューザ部Da,Dcを有する燃料電池セルFCであって、カソード側のディフューザ部Dcにおいて、フレーム1にセパレータ3と接する突起5を設けると共に、アノード側のディフューザ部Daにおいて、フレーム1とセパレータ3とを離間して配置したことにより、膜電極構造体2とセパレータ3との接触面圧を良好に維持し、接触抵抗の増大を防止した。

Description

燃料電池セル
 本発明は、燃料電池の発電要素として用いられる燃料電池セル(単セル)に関し、とくに、複数枚積層して燃料電池スタックを構成する燃料電池セルに関するものである。
 この種の燃料電池セルとしては、例えば、特許文献1に記載されているものがある。特許文献1に記載の燃料電池セルは、電解質膜を燃料極と空気極とで挟持した膜電極構造体(MEA:Membrane Electrode Assembly)と、膜電極構造体の周囲を保持する樹脂フレームと、膜電極構造体及び樹脂フレームを挟む二枚のセパレータを備えている。燃料極及び空気極は、夫々の外側にガス拡散層を有している。
 そして、燃料電池セルは、樹脂フレームと両セパレータとの間に、反応用ガスのマニホールド部及び整流部が夫々設けてあると共に、樹脂フレームの両面に、各セパレータに接触してガス流路高さを維持する突起が設けてある。これにより、燃料電池セルは、膜電極構造体に対して反応用ガス(燃料ガス及び酸化剤ガス)を流通させる。セパレータは、反応用ガスのガスシール機能を有するほか、集電体や外部端子としても用いられる。
 上記の燃料電池セルは、複数枚を積層して燃料電池スタックを構成する。この燃料電池スタックを構成する際には、組み付け精度、ガスシール性及び導電性などを良好に維持するために積層方向に加圧した状態にする。
特開2003-077499号公報
 しかしながら、上記したような従来の燃料電池セルは、膜電極構造体及び樹脂フレームの両方に対して各セパレータが夫々接触している構造であったため、これを積層して加圧すると、樹脂フレームの突起と各セパレータとの接触部分でも加圧力を受けるので、いわゆる面圧抜けが生じて膜電極構造体と各セパレータとの接触面圧を充分に確保することができず、接触抵抗が増大して電池性能が低下してしまうという問題点があった。
 何故ならば、燃料電池セルにおいては、電極を構成するガス拡散層の厚さや接触面圧に対する潰れの特性に製造上のばらつきがある。そのため、このような燃料電池セルの積層体である燃料電池スタックにおいては、樹脂フレームの突起と両側のセパレータとを接触させたうえで膜電極構造体と各セパレータとの接触面圧を全ての燃料電池セルで適正化することが困難になっている。
 本発明は、上記従来の課題に着目して成されたもので、周囲にフレームを有する膜電極構造体と、フレーム及び膜電極構造体を挟持する二枚のセパレータを備えた燃料電池セルにおいて、複数枚積層して燃料電池スタックを構成した際に、膜電極構造体とセパレータとの接触面圧を良好に維持することが可能であって、接触抵抗の増大を防止することができる燃料電池セルを提供することを目的としている。
 本発明の燃料電池セルは、周囲にフレームを有する膜電極構造体と、フレーム及び膜電極構造体を挟持する二枚のセパレータを備えると共に、フレームと各セパレータの縁部同士の間にガスシールを設け、フレームと各セパレータとの間に反応用ガスを流通させる夫々のディフューザ部を有する燃料電池セルである。そして、燃料電池セルは、カソード側及びアノード側のいずれか一方側のディフューザ部において、フレーム及びセパレータの相対向面の少なくとも一方の面に、相手側と接する突起を設ける。さらに、燃料電池セルは、他方側のディフューザ部において、フレームとセパレータとを離間して配置した構成とし、上記構成をもって従来の課題を解決するための手段としている。
 また、燃料電池セルは、より望ましい実施形態として、カソード側のディフューザ部において、前記突起がフレーム又はセパレータに設けてあることを特徴としている。
 本発明の燃料電池セルによれば、フレームが、完全に拘束されることなく片方のディフューザ部側へ変位可能となるので、複数枚積層して燃料電池スタックを構成した際に、積層方向の加圧力が膜電極構造体とセパレータとの間に有効に働くこととなり、膜電極構造体とセパレータとの接触面圧を良好に維持することが可能であると共に、接触抵抗の増大を防止して良好な電池性能を得ることができる。
本発明の燃料電池セルの一実施形態において、燃料電池セルを分解状態にして説明する平面図である。 燃料電池セルの平面図である。 図1に示す燃料電池セルを積層して成る燃料電池スタックを説明する分解斜視図(A)及び組立後の斜視図(B)である。 燃料電池セルの一実施形態を示す図2中A-A線に基づく断面図である。 燃料電池セルの他の実施形態を示す図2中A-A線に基づく断面図である。 燃料電池セルのさらに他の実施形態を示す図2中A-A線に基づく断面図である。 燃料電池セルのさらに他の実施形態を示す図2中A-A線に基づく断面図である。 燃料電池システムの一例を示す説明図である。 燃料電池システムの運転方法の一実施形態において、ガス圧と負荷との関係を示すグラフである。 燃料電池システムの他の例を示す説明図である。 燃料電池システムの運転方法の他の実施形態において、ガス圧力と時間との関係を示すグラフ(A)及びガス圧と負荷との関係を示すグラフ(B)である。 本発明の燃料電池セルのさらに他の実施形態を説明する断面図である。 本発明の燃料電池セルのさらに他の実施形態を説明する断面図である。 燃料電池セルのさらに他の実施形態を示す要部の断面図である。 燃料電池セルのさらに他の実施形態を示す要部の断面図である。 燃料電池セルのさらに他の実施形態を示す要部の断面図(A)及び突起の形成を説明する要部の分解状態の断面図(B)である。 燃料電池セルのさらに他の実施形態を示す要部の断面図(A)、セパレータに弾性体を設けた例を示す要部の分解状態の断面図(B)、及びフレームに弾性体を設けた例を示す要部の分解状態の断面図(C)である。 燃料電池セルのさらに他の実施形態を示す要部の断面図(A)、及びアノード側セパレータの平面図(B)である。
 図1~図4は、本発明の燃料電池セルの一実施形態を説明する図である。
 図1~図33に示す燃料電池セルFCは、周囲にフレーム1を有する膜電極構造体2と、フレーム1及び膜電極構造体2を挟持する二枚のセパレータ3,3を備えている。フレーム1は、ほぼ一定の厚さの薄板状を成しており、その縁部を除く大部分が膜電極構造体2の厚さよりも薄いものである。そして、フレーム1と両セパレータ3,3との間に反応用ガスを流通させる流通領域(後記するディフューザ部)を有している。なお、フレーム1は樹脂であり、セパレータ3は金属であることが、製造しやすいために望ましい。
 膜電極構造体2は、一般に、MEA(Membrane Electrode Assembly)と呼ばれるものであって、図4中の拡大図に示すように、例えば固体高分子から成る電解質層21を燃料極層(アノード)22と空気極層(カソード)23とで挟持した構造を有している。さらに、図示の膜電極構造体2は、燃料極層22と空気極層23の表面に、カーボンペーパや多孔質体等から成るガス拡散層24,25が夫々積層してある。
 そして、膜電極構造体2は、燃料極層22に一方の反応用ガスである燃料ガス(水素)が供給されると共に、空気極層23に他方の反応用ガスである酸化剤ガス(空気)が供給されて、電気化学反応により発電をする。なお、膜電極構造体2としては、ガス拡散層を省いて、電解質層21と燃料極層22と空気極層23で構成されるものも含まれる。
 フレーム1は、樹脂成形(例えば射出成形)により膜電極構造体2と一体化してあり、この実施形態では、膜電極構造体2を中央にして長方形状を成している。また、フレーム1は、両端部に、各々三個ずつのマニホールド穴H1~H6が配列してあり、各マニホールド穴群から膜電極構造体2に至る領域が反応用ガスの流通領域となる。このフレーム1及び両セパレータ3,3は、いずれもほぼ同等の縦横寸法を有する長方形状である。
 各セパレータ3は、夫々ステンレス等の金属板をプレス成形したものである。各セパレータ3は、膜電極構造体2に対応する中央部分が、短辺方向の断面において波形状に形成してある。この波形状は図1に示す如く長辺方向に連続している。これにより、各セパレータ3は、波形状における膜電極構造体2に対応する中央部分では、各凸部分が膜電極構造体2に接触すると共に、波形状における各凹部分が反応用ガスの流路となる。
 なお、図4は、セパレータ3の波形状における凹部分(ガス流路)での断面であるため、膜電極構造体2と両セパレータ3,3とが離間したように示しているが、上記のとおり膜電極構造体2及び各セパレータ3は互いに接触している。
 また、各セパレータ3は、両端部に、フレーム1の各マニホールド穴H1~H6同等のマニホールド穴H1~H6を有し、各マニホールド穴群から断面波形状の部分に至る領域が反応用ガスの流通領域となる。
 上記のフレーム1及び膜電極構造体2と両セパレータ3,3は、重ね合わせて燃料電池セルFCを構成する。このとき、燃料電池セルFCは、とくに図2に示すように、中央に、膜電極構造体2の領域である発電部Gを備えている。そして、発電部Gの両側に、反応用ガスの供給及び排出を行うマニホールド部M,Mと、各マニホールド部Mから発電部Gに至る反応用ガスの流通領域であるディフューザ部D,Dを備えたものとなっている。
 ここで、反応用ガスの流通領域であるディフューザ部Dは、図2中のセル両端側だけでなく、フレーム1と両側のセパレータ3,3との間、つまりアノード側(Da)及びカソード側(Dc)に夫々形成されている。
 図2の左側に示す一方のマニホールド部Mにおいて、各マニホールド穴H1~H3は、酸化剤ガス供給用(H1)、冷却流体供給用(H2)及び燃料ガス供給用(H3)であり、積層方向に夫々の流路を形成する。また、図2の右側に示す他方のマニホールド部Mにおいて、各マニホールド穴H4~H6は、燃料ガス排出用(H4)、冷却流体排出用(H5)及び酸化剤ガス排出用(H6)であり、積層方向に夫々の流路を形成する。なお、供給用と排出用は、一部または全部が逆の位置関係でも良い。
 さらに、燃料電池セルFCは、図4に示すように、フレーム1とセパレータ3との間において、セパレータ3の周縁部やマニホールド穴H1の周縁部にガスシールGsが設けてある。また、燃料電池セルFCを複数枚を積層した状態では、隣接するセパレータ3同士の間にもガスシールGsを設ける。この実施形態では、隣接するセパレータ3,3間に冷却流体を流通させる構造である。なお、セパレータ3が集電体や外部端子の機能を有する場合には、セパレータ3同士の間に絶縁体を介装する。
 上記のガスシールGsは、個々の層間において、燃料ガス、酸化剤ガス及び冷却流体の夫々の流通域を気密的に分離すると共に、その層間に所定の流体が流れるように、マニホールド穴H1~H6の周縁部の適当な箇所に開口を設ける。つまり、図4では、酸化剤ガス供給用のマニホールド穴H1を示しているので、カソード側(上側)にガスシールGsの開口が設けてあり、アノード側(下側)はガスシールGsで閉じてある。
 上記構成を備えた燃料電池セルFCは、複数枚を積層して、図3に示すような燃料電池スタックFSを構成する。
 燃料電池スタックFSは、図3(A)に示すように、燃料電池セルFCの積層方向の一端部(図3中で右側端部)に、集電板60A及びスペーサ61を介してエンドプレート62Aが設けてあると共に、他端部に、集電板60Bを介してエンドプレート62Bが設けてある。また、燃料電池スタックFSは、燃料電池セルCの長辺側となる両面(図3中で上下面)に、締結板63A,63Bが設けてあると共に、短辺側となる両面に、補強板64A,64Bが設けてある。
 そして、燃料電池スタックFSは、各締結板63A,63B及び補強板64A,64Bをボルト65により両エンドプレート62A,62Bに連結する。このようにして、燃料電池スタックFSは、図3(B)に示すようなケース一体型構造となり、各燃料電池セルFCを積層方向に拘束・加圧して個々の燃料電池セルFCに所定の接触面圧を加え、ガスシール性や導電性等を良好に維持する。
 そこで、燃料電池セルFCは、カソード側及びアノード側のいずれか一方側のディフューザ部において、フレーム1及びセパレータ3の相対向面の少なくとも一方の面に、相手側と接する突起5を設けている。そして、他方側のディフューザ部において、フレーム1とセパレータ3とを離間して配置したものとなっている。
 この実施形態の燃料電池セルFCでは、図4に示すように、カソード側のディフューザ部Dcにおいて、フレーム1に、その相手側であるセパレータ3に接する突起5が設けてある。そして、アノード側のディフューザ部Daにおいて、フレーム1とこれに対向するセパレータ3とを離間して配置している。
 上記の突起5は、円錐台形状であって、樹脂製のフレーム1に一体成形してあり、図1及び図2に示すように所定間隔で配置してある。この突起5は、形状等がとくに限定されるものではなく、反応用ガスの流通を妨げないものであれば良い。
 また、この実施形態では、フレーム1のアノード側の面(図4で下側の面)に、突起5と類似形状の凸部6が設けてある。この凸部6は、前記突起5よりも低くて、セパレータ3との間に隙間を形成しており、フレーム1とセパレータ3が接近する方向に変位した際に、セパレータ3に当接して過大な変位を阻止する。
 上記構成を備えた燃料電池セルFCは、複数枚積層して燃料電池スタックFSを構成した際に、積層方向の加圧力が、膜電極構造体2と各セパレータ3,3との間に有効に働くこととなる。
 つまり、燃料電池セルFCは、アノード側のディフューザ部Daにおいては、フレーム1とセパレータ3とが離間している。これにより、積層方向の加圧力が膜電極構造体2とセパレータ3との間のみに作用することとなり、膜電極構造体とセパレータ3との接触面圧を充分に確保することができる。
 また、燃料電池セルFCは、カソード側のディフューザ部Dcにおいては、フレーム1の突起5とセパレータ3とが接触しているものの、フレーム1がアノード側で拘束されていない。これにより、積層方向に加圧されても、フレーム1がアノード側へ変位可能であるため、膜電極構造体とセパレータ3との接触面圧が大幅に減少することがなく、同接触面圧を適正範囲に保つことができる。
 このように、燃料電池セルFCは、フレーム1が、両面側から完全に拘束されることがなく、片方のディフューザ部(Da)側へ変位可能であるから、複数枚積層して燃料電池スタックFSを構成した際に、膜電極構造体2と各セパレータ3,3との接触面圧を良好に維持することが可能である。これにより、接触抵抗の増大を防止して良好な電池性能を得ることができる。したがって、燃料電池セルFCの積層体である燃料電池スタックFSでは、長期にわたって効率の良い発電機能を得ることができる。
 さらに、上記実施形態の燃料電池セルFCのように、カソード側のディフューザ部Dcにおいて、フレーム1に突起5を設けた構成にすれば、反応用ガスの流量のばらつきに対処するうえで非常に有効である。
 何故ならば、燃料電池セルFCでは、カソード側における酸化剤ガスの方が、酸素以外の不純物を多く含むため、発電に必要な体積流量が大きく、膜電極構造体2における電気化学反応(電極反応)を安定させる際に、カソード側における酸化剤ガスの流量にばらつきが生じやすいからである。
 そこで、燃料電池セルFCは、図4に示すように、カソード側のディフューザ部Dcにおいて、フレーム1にセパレータ3に接する突起5を設け、逆に、比較的燃料ガスの流量のばらつきが起きにくいアノード側のディフューザ部Daにおいて、フレーム1とセパレータ3とを離間した配置にしている。
 これにより、燃料電池セルFCは、カソード側のディフューザ部Dcにおける酸化剤ガスの流量にばらつきが生じても、突起5によりカソード側のディフューザ部Dcの高さを常に一定に維持し、圧力損失を抑制することができる。
 このように、上記実施形態の燃料電池セルFCでは、膜電極構造体2と両セパレータ3,3との接触面圧を良好に維持して接触抵抗の増大を防止する機能と、反応用ガスの流量のばらつきに対処する機能とを両立させることができる。なお、反応用ガスの流量のばらつきに対処する機能は、後記する燃料電池システムの運転方法で説明するように、フレーム1とセパレータ3とを離間させて配置したディフューザ部のガス圧力を高くすることで、より一層効果的なものとなる。
 図5~図7は、本発明の燃料電池セルの他の三つの実施形態を説明する図である。先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。
 図5に示す燃料電池セルFCは、カソード側のディフューザ部Dcにおいて、セパレータ3にフレーム1に接する突起15が設けてあり、アノード側のディフューザ部Daにおいて、フレーム1とセパレータ3を離間して配置している。なお、図示のアノード側のセパレータ3は、突起よりも低い凸部16を有している。この凸部16は、先の実施形態で説明したものと同様に、セパレータ3との間に隙間を形成し、フレーム1とセパレータ3が接近する方向に変位した際に、セパレータ3に当接して過大な変位を阻止する。
 図6に示す燃料電池セルFCは、図4に示す実施形態のものと同等の基本的構成を備えており、アノード側のディフューザ部Daにおいて、フレーム1が、凸部(6)の無い平坦面を有している。また、図7に示す燃料電池セルFCは、図5に示す実施形態のものと同等の基本的構成を備えており、アノード側のディフューザ部Daにおいて、セパレータ3が、凸部(16)の無い平坦面を有している。
 上記の各燃料電池セルFCにあっても、先の実施形態と同様の作用及び効果を得ることができると共に、複数枚積層して燃料電池スタックFSを構成する。また、図6及び図7に示す燃料電池セルFCのように、フレーム1やセパレータ3を平坦面とすれば、アノード側のディフューザ部Daにおける圧力損失を軽減し得ると共に、フレーム1やセパレータ3の加工コストの低減にも貢献することが可能である。
 図8は、燃料電池スタックFSを備えた燃料電池システムを説明する図である。燃料電池スタックFSは、図4~図7に示すような燃料電池セルFCを多段に積層して加圧し、その状態を維持するように組立てたものである。
 図示の燃料電池システムは、燃料電池スタックFSに対して、酸化剤ガスの供給路31及び排出路32と、燃料ガスの供給路33及び排出路34と、冷却流体の循環路35を備えている。
 酸化剤ガスの供給路31には、コンプレッサ等の空気供給手段36と、空気供給手段36からの給気を加湿する加湿器37が設けてある。また、酸化剤ガスの排出路32は、排出空気中に含まれる水蒸気を加湿器37に供給し、その下流において、背圧調整弁38により大気に開放される。
 燃料ガスの供給路33は、水素タンク39から燃料電池スタックFSに至るもので、途中に水素調整弁40が設けてある。また、燃料ガスの排出路34は、水セパレータタンク41に至るものである。水セパレータタンク41は、水量検出用のレベルセンサ42を備えると共に、水を外部に排出するための水捨て弁43と、窒素ガスを大気に開放する窒素パージ弁44を備えている。
 さらに、図示の燃料電池システムは、燃料ガスの供給路33と水セパレータタンク41とを繋ぐ燃料ガス循環配管50を備えている。燃料ガス循環配管50は、その途中に循環ポンプ51を備えると共に、燃料ガスの供給路33の途中にエゼクタ52を介して接続してある。
 すなわち、この燃料電池システムは、燃料電池スタックFSからの排出燃料ガス(オフガス)に含まれる水素を再利用する燃料循環方式のシステムであり、燃料電池スタックFSでの発電に使用されずに排出された余剰の水素を、燃料ガス循環配管50、循環ポンプ51及びエゼクタ52により、強制的に燃料ガスの供給路33へ戻すようになっている。
 このような燃料循環方式の燃料電池システムでは、図示例の如く循環ポンプ51とエゼクタ52とを併用することで、例えばエゼクタ52が機能しない圧力領域を循環ポンプ51の作動で賄うことができる。また、循環ポンプ52を設けずにエゼクタ52のみを設けた構成にし、このエゼクタ52の作用で燃料電池スタックFSから排出された余剰の水素を強制的に燃料ガス供給路33へと戻すこともできる。
 冷却流体の循環路35は、ラジエーター45で冷却した冷却流体(冷却水)を循環させるものであって、冷却水循環ポンプ46と、ラジエーター45をバイパスするバイパス路47と、循環路35とバイパス路47を接続する三方弁48を備えている。
 上記の燃料電池システムを運転するに際し、本発明の運転方法では、フレームとセパレータとを離間して配置したディフューザ部のガス圧力が、フレームとセパレータとが突起により接するディフューザ部のガス圧力よりも高くなるように反応用ガスの供給圧力を調整して運転する。
 図4~図7に示す燃料電池セルFCにおいて、フレーム1とセパレータ3とを離間して配置したのは、アノード側のディフューザ部Daである。また、フレーム1とセパレータ3とが突起5(15)により接するのは、カソード側のディフューザ部Dcである。
 よって、本発明の燃料電池システムの運転方法では、図9に示すように、アノード側のディフューザ部Daのガス圧力が、カソード側のディフューザ部Dcのガス圧力よりも高くなるように反応用ガスの供給圧力を調整して運転する。
 上記の運転方法によれば、燃料電池スタックFSの各燃料電池セルFCにおいて、フレーム1がカソード側の突起5,15とアノード側のガス圧力とにより保持されることとなり、フレーム1の撓み(テンティング)を防止する。したがって、先述の如く反応用ガス(とくに酸化剤ガス)の流量にばらつきが生じたとしても、フレーム1に撓みが生じたり低圧側のガス流路の圧力損失が増大したりする事態を未然に阻止し得ることとなる。
 そして、上記の燃料電池システムの運転方法によれば、個々の燃料電池セルFCにおいて膜電極構造体2と両セパレータ3,3との接触面圧を良好に維持しているので、接触面圧の維持により接触抵抗の増大を防止する機能と、反応用ガスの流量のばらつきに対処する機能とを両立させることができる。また、上記実施形態のように、アノード側のディフューザ部Daのガス圧力を高くする方法にすれば、元々燃料ガス(水素)が水素タンク39に加圧貯蔵されているので、圧力制御が容易であるという利点もある。
 ここで、燃料電池システムの他の例としては、図10に示すものが挙げられる。図示の燃料電池システムは、先述の図8に示すシステム中の燃料ガス循環配管(50)、循環ポンプ(51)及びエゼクタ(52)が無い構成である。この燃料電池システムは、水素を含む排出燃料ガスを循環させて使用するのではなく、燃料ガスの流通が供給側から排出側へ一方向になっている。このようなシステムは、アノードデッドエンドシステムと呼ばれている。この燃料電池システムにあっても、先述の燃料循環方式の燃料電池システムと同等の作用及び効果を得ることができる。
 上記のアノードデッドエンドシステムでは、発電開始後、水素調圧弁40により燃料ガス(水素)の供給を一旦停止し、発電を継続することにより燃料ガスの供給路33の圧力を低下させる。そして、供給路33が所定の圧力になったところで水素調圧弁40により燃料ガスの供給を再開し、燃料ガスの供給を開始したときのガス流により燃料電池セルFC内の生成水を水セパレータタンク41に排出するようにしている。つまり、アノード側のガス圧力は、図11(A)に示すように、運転中に脈動することになる。
 そこで、本発明の燃料電池システムの運転方法では、アノード側のガス圧力が脈動する場合、図11(B)に示すように、アノード側のディフューザ部Daの上限圧力及び下限圧力の両方が、カソード側のディフューザ部Dcのガス圧力よりも高くなるように反応用ガスの供給圧力を調整して運転する。これにより、先の実施形態と同等の作用及び効果を得ることができる。
 図12及び図13は、本発明の燃料電池セルのさらに他の二つの実施形態を説明する図である。なお、先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。また、図13は、燃料ガス供給用のマニホールド穴H3の位置での断面図である。
 図12に示す燃料電池セルFCは、カソード側のディフューザ部Dcにおいて、相対向するフレーム1とセパレータ3の両方に、突起5,15を設けると共に、互いの突起5,15当接させている。アノード側のディフューザ部Daにおいては、相対向するフレーム1とセパレータ3とを離間した配置にしている。
 このように、突起(5,15)は、フレーム1及びセパレータ3の両方に設けることができる。この場合、図示例の如く突起5,15同士を当接させる構成のほか、フレーム1の突起5とセパレータ3の突起15を交互に配置して、フレーム1の突起5をセパレータ3に、セパレータ3の突起15をフレーム1に当接させる構成でも良い。この実施形態の燃料電池セルFCにおいても、先の実施形態と同等の作用及び効果が得られる。
 図13に示す燃料電池セルFCは、先の各実施形態ではカソード側のディフューザ部Dcに突起5,15を設けていたのに対して、アノード側のディフューザ部Daにおいて、フレーム1にセパレータ3に接する突起5を設けている。そして、カソード側のディフューザ部Dcにおいて、フレーム1とセパレータ3とを離間して配置している。この場合、突起は、先の各実施形態と同様に、フレーム1及びセパレータ3のうちの少なくとも一方に設けることができる。
 上記の燃料電池セルFCにおいても、先の各実施形態と同等の作用及び効果を得ることが可能である。また、このような燃料電池セルFCの積層体である燃料電池スタックFSを備えた燃料電池システムにおいては、カソード側のディフューザ部Dcのガス圧力が、アノード側のディフューザ部Daのガス圧力よりも高くなるように反応用ガスの供給圧力を調整して運転することができる。
 ここで、上記の燃料電池セルFCでは、先述したように、各構成部品に寸法公差や製造上のばらつきがあると共に、膜電極構造体2の厚さの経年変位などにも僅かな差がある。また、先に図10及び図11に示したアノードデッドエンドシステムのように、アノード側のガス圧力が脈動する場合、カソード側とアノード側とでガスの差圧が発生し、その差圧によりフレーム1と膜電極構造体2との接合部に曲げ応力が集中しやすい。
 そこで、燃料電池セルFCは、図14に示すように、カソード側及びアノード側のいずれか一方側のディフューザ部Dにおいて、フレーム1及びセパレータ3の相対向面の少なくとも一方の面に、相手側と接する突起5を設けると共に、相手側と突起5の先端とを接着(符号Q)している。そして、他方側のディフューザ部Dにおいて、フレーム1とセパレータ3とを離間して配置したものとなっている。
 図示例の燃料電池セルFCでは、カソード側(図中上側)のディフューザ部Dcにおいて、フレーム1に、セパレータ3に接する突起5を設けると共に、セパレータ3と突起5の先端とを接着(符号Q)し、アノード側(図中下側)のディフューザ部Daにおいて、フレーム1とセパレータ3とを離間して配置している。なお、カソード及びアノードの位置は上下逆でも構わない。
 セパレータ3と突起5との接着には、双方の材料(金属と樹脂)を考慮したうえで、これらの接着に有効な周知の接着剤を用いることができ、このほか、超音波溶着などの適宜の接着手段を採用することもできる。
 この実施形態の突起5は、円錐台形状であって、樹脂製のフレーム1に一体成形してあり、図1に示すように所定間隔で配置してある。この突起5は、形状等がとくに限定されるものではなく、反応用ガスの流通を妨げないものであれば良い。
 また、この実施形態では、フレーム1のアノード側の面(図14で下側の面)に、突起5と類似形状の凸部6が設けてある。この凸部6は、カソード側の突起5よりも低くて、セパレータ3との間に隙間を形成しており、フレーム1とセパレータ3が接近する方向に変位した際に、セパレータ3に当接して過大な変位を阻止する。
 上記構成を備えた燃料電池セルFCは、アノード側のディフューザ部Daにおいてフレーム1とセパレータ3とが離間しているので、燃料電池スタックFSを構成した際に、積層方向の加圧力が主に膜電極構造体2とセパレータ3との間に作用し、膜電極構造体2とセパレータ3との接触面圧を充分に確保することができる。
 また、燃料電池セルFCは、アノード側のディフューザ部Daにおけるフレーム1とセパレータ3との隙間により、厚さ方向の変位吸収が可能である。すなわち、燃料電池セルFCは、各構成部品の寸法公差や製造上のばらつき、膜電極構造体2の厚さ方向の経年変位があっても、上記隙間によりそれらを吸収することができる。これにより、燃料電池セルFCは、燃料電池スタックFSを構成した際に、個々のセルにおける接触面圧やガス流量等の性能のばらつきを抑制し得るものとなる。
 さらに、燃料電池セルFCは、カソード側のディフューザ部Dcにおいて、フレーム1の突起5の先端とセパレータ3とを接着したことにより、フレーム1を有する膜電極構造体2の耐久性が向上する。すなわち、燃料電池セルFCは、例えば、アノードデッドエンドシステムにおいてアノード側のガス圧力が脈動し、カソード側とアノード側とでガスの差圧が生じても、セパレータ3に接着した上記突起5によりフレーム1が同セパレータ3に保持されているので、カソード側及びアノード側のいずれの圧力が高くなった場合でも、フレーム1の変位を抑制することができる。これにより、燃料電池セルFCは、フレーム1と膜電極構造体2との接合部に曲げ応力が集中するのを阻止し得るものとなる。
 このようにして、燃料電池セルFCは、フレーム1とセパレータ3との間に設けた隙間により厚さ方向の変位吸収が可能であると同時に、セパレータ3に接着した突起5によりフレーム1を保持することから、燃料電池スタックFSを構成した際の各セルの性能の適正化と、フレーム1と膜電極構造体2との接合部の耐久性の向上を両立させることができる。
 図15は、本発明の燃料電池セルのさらに他の実施形態を説明する図である。
 図示の燃料電池セルFCは、カソード側(上側)のディフューザ部Dcにおいて、セパレータ3に、相手側であるフレーム1に接する突起15を設けると共に、フレーム1と突起15の先端とを接着(Q)している。突起15は、先の実施形態の突起と同様に、反応用ガスの流通を妨げないように所定間隔で配置してある。そして、アノード側のディフューザ部Daにおいて、フレーム1とセパレータ3とを離間して配置している。
 上記の燃料電池セルFCにあっても、先の実施形態と同様に、フレーム1とセパレータ3との間に設けた隙間により厚さ方向の変位吸収が可能であると同時に、セパレータ3に設けた突起15によりフレーム1を保持することから、燃料電池スタックFSを構成した際の各セルの性能の適正化と、フレーム1と膜電極構造体2との接合部の耐久性の向上を両立させることができる。
 図16は、本発明の燃料電池セルのさらに他の実施形態を説明する図である。図16(A)に示す燃料電池セルFCは、カソード側のディフューザ部Dcにおいて、フレーム1及びセパレータ3の相対向面の少なくとも一方の面に、相手側に接する突起5Aを設けたものであるが、その突起5Aが、フレーム1とセパレータ3との間に介装した接着材で形成してある。この突起5Aにあっても、反応用ガスの流通を妨げないように所定間隔で配置してある。また、アノード側のディフューザ部Daにおいては、フレーム1とセパレータ3とを離間して配置している。
 突起5Aを形成する接着材は、接着力に特化した材料から選択することができ、例えばエポキシ系の材料を使用することができる。突起(接着材)5Aは、予め所定形状に成形しておくことも可能であるが、より望ましくは、図16(B)に示すように、接着材供給装置のノズルNから吐出させてフレーム1に塗布する。そして、突起(接着材)5Aは、フレーム1とセパレータ3を接合することで双方に接着されるので、相手側であるセパレータ3と先端とを接着するのと同等である。なお、図示例とは逆に、セパレータ3に突起5Aを設ける(塗布する)ことも当然可能である。
 上記の燃料電池セルFCにあっても、先の実施形態と同様の効果を得ることができるうえに、突起5Aを接着材で形成したことから、フレーム1やセパレータ3の突起を廃止して形状を簡素化することができ、また、ガスシールGs(図1参照)を設ける工程とともに突起5Aを形成することが可能なので、生産効率の向上や製造コストの低減などにも貢献することができる。なお、ガスシールGsと突起5Aとを同工程で形成する場合には、両方の用途に適した材料、例えばシリコーンゴム、フッ素ゴム、及びポリオレフィンゴムなどの接着剤を用いることが望ましい。
 図17は、本発明の燃料電池セルのさらに他の実施形態を説明する図である。図17(A)に示す燃料電池セルFCは、カソード側及びアノード側のいずれか一方側のディフューザ部Dにおいて、フレーム1及びセパレータ3の相対向面の少なくとも一方の面に、相手側に接する突起5を設けると共に、他方側のディフューザ部Dにおいて、フレーム1とセパレータ3の間に、双方に接する弾性体7を介装している。この弾性体7は、先の実施形態の突起と同様に、反応用ガスの流通を妨げないように所定間隔で配置してある。
 具体的には、燃料電池セルFCは、カソード側のディフューザ部Dcにおいて、フレーム1に、セパレータ3に接する突起5を設けると共に、アノード側のディフューザ部Daにおいて、フレーム1とセパレータ3の間に、双方に接する弾性体7を介装している。弾性体7は、図17(B)に示す如くセパレータ3に設けたり、図17(C)に示す如くフレーム1に設けることができる。
 また、弾性体7は、予め所定形状に成形しておくことも可能であるが、より望ましくは、溶融状態で塗布されて硬化後に弾力性を有する接着材で形成する。弾性体7を形成する接着材は、例えばシリコーンゴム、フッ素ゴム、あるいはポリオレフィンゴムなどの材料を使用することができる。この弾性体(接着材)7にあっても、先の接着材で形成した突起(図16の符号5A)と同様に、フレーム1又はセパレータ3に塗布され、硬化後、フレーム1とセパレータ3を接合することで相手側に接することとなる。
 上記の燃料電池セルCは、図14~図16に示す実施形態では、アノード側のセパレータ3とフレーム1との隙間により厚さ方向の変位吸収を行うのに対して、アノード側の弾性体7により厚さ方向の変位吸収を行う。そして、燃料電池セルCは、フレーム1の突起5及び弾性体7によりフレーム1を保持する。これにより、先の実施形態と同様に、燃料電池スタックFSを構成した際の各セルの性能の適正化と、フレーム1と膜電極構造体2との接合部の耐久性の向上を両立させることができる。
 また、上記の燃料電池セルFCは、硬化後に弾力性を有する接着材で弾性体7を形成したことから、ガスシールGs(図1参照)を設ける工程とともに弾性体7を形成することが可能であり、生産効率の向上や製造コストの低減などにも貢献することができる。さらに、上記の燃料電池セルFCは、突起5や弾性体7を相手側に接触させるだけで、変位吸収機能やフレーム1の保持機能を得ることができるので、接着材は接着強度の低いものでもよい。そのため、接着面の表面処理を簡素にし又は廃止し得ると共に、安価な接着材を採用することができ、製造コストのさらなる低減を図ることができる。
 図18は、本発明の燃料電池セルのさらに他の実施形態を説明する図である。図18(A)に示す燃料電池セルFCは、カソード側のディフューザ部Dcにおいて、フレーム1に、セパレータ3に接する突起5を設けると共に、アノード側のディフューザ部Daにおいて、フレーム1とセパレータ3の間に、双方に接する弾性体7を介装している。
 そして、この実施形態では、図18(B)にも示すように、アノード側のセパレータ3が、図14~図16に示す実施形態と同様に、突起5よりも低い凸部6を複数有しており、図示例の場合は、2個の凸部6を被う弾性体7が設けてある。
 上記の弾性体7は、先述したように、予め所定形状に成形しておくことも可能であるが、溶融状態で塗布されて硬化後に弾力性を有する接着材で形成することができる。この弾性体7は、とくに接着材で形成する場合には、複数の凸部6を被うように接着剤を塗布し、これを硬化形成させる。これにより、接着面積が広く確保されると共に、凸部6に対する弾性体7の食い付きが良好になり、充分な接着強度を得ることができる。
 なお、上記の弾性体7は、1個の凸部6若しくは2個以上の凸部6に対して形成することが可能であるが、反応用ガスの流通を妨げないように、その大きさや形状を選択することが望ましい。
 上記の図14~図18に示す燃料電池セルFCは、先の各実施形態と同様に、膜電極構造体2と両セパレータ3,3との接触面圧を良好に維持して接触抵抗の増大を防止する機能と、反応用ガスの流量のばらつきに対処する機能とを両立させる。そして、燃料電池スタックFSを構成した際の各セルの性能の適正化と、フレーム1と膜電極構造体2との接合部の耐久性の向上を両立させることもできる。
 したがって、上記の燃料電池セルCを複数枚積層して成る燃料電池スタックFSにあっては、個々の燃料電池セルCの発電性能や耐久性能が均一化され、長期にわたって安定した発電を行うことができる。
 本発明の燃料電池セルは、その構成が上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各構成部位の形状や個数、材料などの構成の細部を適宜変更することが可能である。例えば、図14~図18に示す各実施形態では、カソード側及びアノード側において、突起と弾性体との位置が互いに一致している例を図示したが、これらは平面方向にずれていても良い。また、上記各実施形態の構成同士を組み合わせることも可能である。
 1     フレーム
 2     膜電極構造体
 3     セパレータ
 5 15  突起
 5A    突起(接着材から成る突起)
 7     弾性体
 Da    アノード側のディフューザ部
 Dc    カソード側のディフューザ部
 FC    燃料電池セル
 FS    燃料電池スタック

Claims (13)

  1.  周囲にフレームを有する膜電極構造体と、フレーム及び膜電極構造体を挟持する二枚のセパレータを備えると共に、フレームと各セパレータの縁部同士の間にガスシールを設け、フレームと各セパレータとの間に反応用ガスを流通させる夫々のディフューザ部を有する燃料電池セルであって、
     カソード側及びアノード側のいずれか一方側のディフューザ部において、フレーム及びセパレータの相対向面の少なくとも一方の面に、相手側と接する突起を設けると共に、
     他方側のディフューザ部において、フレームとセパレータとを離間して配置したことを特徴とする燃料電池セル。
  2.  カソード側及びアノード側のいずれか一方側のディフューザ部において、フレーム及びセパレータの相対向面の少なくとも一方の面に、相手側と接する突起を設けると共に、相手側と突起の先端とを接着したことを特徴とする請求項1に記載の燃料電池セル。
  3.  突起が、フレームとセパレータとの間に介装した接着材で形成してあることを特徴とする請求項2に記載の燃料電池セル。
  4.  周囲にフレームを有する膜電極構造体と、フレーム及び膜電極構造体を挟持する二枚のセパレータを備えると共に、フレームと各セパレータの縁部同士の間にガスシールを設け、フレームと各セパレータとの間に反応用ガスを流通させる夫々のディフューザ部を有する燃料電池セルであって、
     カソード側及びアノード側のいずれか一方側のディフューザ部において、フレーム及びセパレータの相対向面の少なくとも一方の面に、相手側に接する突起を設けると共に、
     他方側のディフューザ部において、フレームとセパレータの間に、双方に接する弾性体を介装したことを特徴とする燃料電池セル。
  5.  弾性体が、硬化後に弾力性を有する接着材で形成してあることを特徴とする請求項6に記載の燃料電池セル。 
  6.  カソード側のディフューザ部において、前記突起がフレームに設けてあることを特徴とする請求項1~5のいずれか1項に記載の燃料電池セル。
  7.  カソード側のディフューザ部において、前記突起がセパレータに設けてあることを特徴とする請求項1~5のいずれか1項に記載の燃料電池セル。
  8.  請求項1~3のいずれか1項に記載の燃料電池セルを複数枚積層して成ることを特徴とする燃料電池スタック。
  9.  請求項6又は7に記載の燃料電池セルを複数枚積層して成ることを特徴とする燃料電池スタック。
  10.  請求項8に記載の燃料電池スタックを備えたことを特徴とする燃料電池システム。
  11.  請求項9に記載の燃料電池スタックを備えたことを特徴とする燃料電池システム。
  12.  請求項10に記載の燃料電池システムを運転するに際し、フレームとセパレータとを離間して配置したディフューザ部のガス圧力が、フレームとセパレータとが突起により接するディフューザ部のガス圧力よりも高くなるように反応用ガスの供給圧力を調整して運転することを特徴とする燃料電池システムの運転方法。
  13.  請求項11に記載の燃料電池システムを運転するに際し、アノード側のディフューザ部のガス圧力が、カソード側のディフューザ部のガス圧力よりも高くなるように反応用ガスの供給圧力を調整して運転することを特徴とする燃料電池システムの運転方法。
PCT/JP2011/059613 2010-06-15 2011-04-19 燃料電池セル WO2011158551A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180029588.8A CN102939678B (zh) 2010-06-15 2011-04-19 燃料电池单元
JP2012520314A JP5516917B2 (ja) 2010-06-15 2011-04-19 燃料電池セル
CA2802412A CA2802412C (en) 2010-06-15 2011-04-19 Fuel cell with improved contact surface pressure
US13/697,486 US8999597B2 (en) 2010-06-15 2011-04-19 Fuel cell
EP11795459.4A EP2584636B1 (en) 2010-06-15 2011-04-19 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010136228 2010-06-15
JP2010-136228 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011158551A1 true WO2011158551A1 (ja) 2011-12-22

Family

ID=45347963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059613 WO2011158551A1 (ja) 2010-06-15 2011-04-19 燃料電池セル

Country Status (6)

Country Link
US (1) US8999597B2 (ja)
EP (1) EP2584636B1 (ja)
JP (1) JP5516917B2 (ja)
CN (1) CN102939678B (ja)
CA (1) CA2802412C (ja)
WO (1) WO2011158551A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191491A (ja) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd 燃料電池
US20130252131A1 (en) * 2012-03-26 2013-09-26 Honda Motor Co., Ltd. Fuel cell
JP2014137937A (ja) * 2013-01-17 2014-07-28 Honda Motor Co Ltd 燃料電池スタック
JP2014186858A (ja) * 2013-03-22 2014-10-02 Honda Motor Co Ltd 燃料電池及びその運転方法
JP2014222610A (ja) * 2013-05-14 2014-11-27 タイガースポリマー株式会社 固体高分子型燃料電池用の膜電極接合体の製造方法
JP2015088293A (ja) * 2013-10-30 2015-05-07 トヨタ自動車株式会社 燃料電池セルと燃料電池
JP2015207451A (ja) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 燃料電池
WO2017077634A1 (ja) * 2015-11-06 2017-05-11 日産自動車株式会社 燃料電池の単セル構造、及び該燃料電池単セルを積層した燃料電池のスタック構造
WO2017141490A1 (ja) * 2016-02-15 2017-08-24 日産自動車株式会社 燃料電池の単セル構造
JP2017525098A (ja) * 2014-07-10 2017-08-31 ダイムラー・アクチェンゲゼルシャフトDaimler AG 反応物の流れを改善する燃料電池組立体
JP2018018582A (ja) * 2016-07-25 2018-02-01 トヨタ自動車株式会社 燃料電池単セルおよびその製造方法
JP2018181533A (ja) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 燃料電池スタックおよび燃料電池スタックの製造方法
JP2019032929A (ja) * 2017-08-04 2019-02-28 本田技研工業株式会社 発電セル
JP2019040751A (ja) * 2017-08-25 2019-03-14 本田技研工業株式会社 発電セル

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790083B2 (ja) * 2011-03-31 2015-10-07 日産自動車株式会社 燃料電池セル
JP5786419B2 (ja) 2011-04-05 2015-09-30 日産自動車株式会社 燃料電池セル
JP6408493B2 (ja) * 2013-02-28 2018-10-17 ヌヴェラ・フュエル・セルズ,エルエルシー 段階的に並べたシール配置を有する電気化学セルおよび水素の再生
KR20160040607A (ko) 2013-07-29 2016-04-14 누베라 퓨엘 셀스, 인크. 전기화학 전지용 밀봉 구성
KR101655509B1 (ko) * 2013-12-24 2016-09-07 현대자동차주식회사 연료전지용 분리판 조립체 및 이의 제조방법
AU2015306640A1 (en) 2014-08-28 2017-03-16 Nuvera Fuel Cells, LLC Seal designs for multicomponent bipolar plates of an electrochemical cell
KR20170005241A (ko) * 2015-07-01 2017-01-12 현대자동차주식회사 연료전지용 채널 프레임
CN108368622B (zh) * 2015-09-28 2020-09-11 水吉能公司 高压或差压电解池
CN109478659B (zh) 2016-07-14 2020-03-24 日产自动车株式会社 燃料电池堆
DE102017215504A1 (de) * 2017-09-05 2019-03-07 Volkswagen Ag Baugruppe, Brennstoffzellenstapel und Verfahren zur Herstellung der Baugruppe
JP6892465B2 (ja) * 2019-02-22 2021-06-23 本田技研工業株式会社 燃料電池
FR3099852B1 (fr) * 2019-08-05 2023-07-28 Faurecia Systemes Dechappement Pile à combustible et procédé de fabrication correspondant
CN111293325B (zh) * 2020-04-28 2020-08-14 北京朔景新能源科技有限公司 燃料电池、以及用于燃料电池的双极板和双极板组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081589A (ja) * 1999-07-14 2001-03-27 Mitsubishi Heavy Ind Ltd セパレータ及びそれを用いた電解セル構造
JP2003077499A (ja) * 2001-06-18 2003-03-14 Toyota Motor Corp 燃料電池
JP2007157578A (ja) * 2005-12-07 2007-06-21 Nissan Motor Co Ltd 燃料電池
JP2008047295A (ja) * 2006-08-10 2008-02-28 Nissan Motor Co Ltd 燃料電池およびその製造方法
JP2009009912A (ja) * 2007-06-29 2009-01-15 Nissan Motor Co Ltd 燃料電池の組立装置および組立方法,この組立方法によって組み立てた燃料電池
JP2009076294A (ja) * 2007-09-20 2009-04-09 Nissan Motor Co Ltd 燃料電池用セパレータ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3571687B2 (ja) * 2000-12-07 2004-09-29 本田技研工業株式会社 シール一体型セパレータの製造方法
JP3571696B2 (ja) 2001-01-30 2004-09-29 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP5011627B2 (ja) * 2003-05-16 2012-08-29 トヨタ自動車株式会社 燃料電池
JP3799038B2 (ja) * 2003-11-11 2006-07-19 ニッタ株式会社 固体高分子型燃料電池用セパレータ
US7629064B2 (en) * 2004-05-18 2009-12-08 Gm Global Technology Operations, Inc. Manifold sealing and corrosion preventive interface plate for a fuel cell stack
US7597983B2 (en) * 2004-08-25 2009-10-06 Gm Global Technology Operations, Inc. Edge stress relief in diffusion media
US8084165B2 (en) * 2005-04-01 2011-12-27 Panasonic Corporation MEA, MEA manufacturing method, and polymer electrolyte fuel cell
JP2006331783A (ja) * 2005-05-25 2006-12-07 Nissan Motor Co Ltd 燃料電池用単セル
JP2007035296A (ja) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd 電解質膜/電極積層体および燃料電池セル
WO2007072671A1 (ja) * 2005-12-22 2007-06-28 Nissan Motor Co., Ltd. 燃料電池のシール構造
JP2007250353A (ja) * 2006-03-16 2007-09-27 Toyota Motor Corp 燃料電池
WO2007129642A1 (ja) * 2006-05-01 2007-11-15 Honda Motor Co., Ltd. 燃料電池
JP2007328969A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp 燃料電池
US7709123B2 (en) 2006-06-16 2010-05-04 Panasonic Corporation Film electrode assembly for fuel cell, polymer electrolytic cell for fuel cell and method for manufacturing polymer electrolytic fuel cell and film electrode assembly
JP2008047313A (ja) * 2006-08-11 2008-02-28 Nok Corp 燃料電池
CN101542799B (zh) * 2007-03-30 2012-10-24 松下电器产业株式会社 高分子电解质型燃料电池和电极-膜-框接合体的制造方法
US8137741B2 (en) * 2007-05-10 2012-03-20 Fuelcell Energy, Inc. System for fabricating a fuel cell component for use with or as part of a fuel cell in a fuel cell stack
US20110027683A1 (en) * 2007-08-08 2011-02-03 Marcos German Ortiz Solid Oxide Fuel Cell Devices With Serpentine Seal Geometry
JP5306615B2 (ja) 2007-08-09 2013-10-02 本田技研工業株式会社 燃料電池
JP5438918B2 (ja) * 2008-05-22 2014-03-12 本田技研工業株式会社 燃料電池用電解質・電極構造体及び燃料電池
CN102224550B (zh) * 2008-11-25 2013-01-16 日产自动车株式会社 导电构件及使用其的固体高分子型燃料电池
JP5343532B2 (ja) * 2008-11-27 2013-11-13 日産自動車株式会社 燃料電池及び燃料電池スタック製造方法
JP5159589B2 (ja) 2008-12-08 2013-03-06 キヤノン株式会社 撮像装置
US8623569B2 (en) * 2008-12-09 2014-01-07 Bloom Energy Corporation Fuel cell seals
JP5643146B2 (ja) * 2011-04-07 2014-12-17 本田技研工業株式会社 燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081589A (ja) * 1999-07-14 2001-03-27 Mitsubishi Heavy Ind Ltd セパレータ及びそれを用いた電解セル構造
JP2003077499A (ja) * 2001-06-18 2003-03-14 Toyota Motor Corp 燃料電池
JP2007157578A (ja) * 2005-12-07 2007-06-21 Nissan Motor Co Ltd 燃料電池
JP2008047295A (ja) * 2006-08-10 2008-02-28 Nissan Motor Co Ltd 燃料電池およびその製造方法
JP2009009912A (ja) * 2007-06-29 2009-01-15 Nissan Motor Co Ltd 燃料電池の組立装置および組立方法,この組立方法によって組み立てた燃料電池
JP2009076294A (ja) * 2007-09-20 2009-04-09 Nissan Motor Co Ltd 燃料電池用セパレータ

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191491A (ja) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd 燃料電池
US20130252131A1 (en) * 2012-03-26 2013-09-26 Honda Motor Co., Ltd. Fuel cell
US9065089B2 (en) * 2012-03-26 2015-06-23 Honda Motor Co., Ltd. Fuel cell
JP2014137937A (ja) * 2013-01-17 2014-07-28 Honda Motor Co Ltd 燃料電池スタック
JP2014186858A (ja) * 2013-03-22 2014-10-02 Honda Motor Co Ltd 燃料電池及びその運転方法
JP2014222610A (ja) * 2013-05-14 2014-11-27 タイガースポリマー株式会社 固体高分子型燃料電池用の膜電極接合体の製造方法
JP2015088293A (ja) * 2013-10-30 2015-05-07 トヨタ自動車株式会社 燃料電池セルと燃料電池
JP2015207451A (ja) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 燃料電池
JP2017525098A (ja) * 2014-07-10 2017-08-31 ダイムラー・アクチェンゲゼルシャフトDaimler AG 反応物の流れを改善する燃料電池組立体
WO2017077634A1 (ja) * 2015-11-06 2017-05-11 日産自動車株式会社 燃料電池の単セル構造、及び該燃料電池単セルを積層した燃料電池のスタック構造
JPWO2017077634A1 (ja) * 2015-11-06 2018-08-30 日産自動車株式会社 燃料電池の単セル構造、及び該燃料電池単セルを積層した燃料電池のスタック構造
US10411273B2 (en) 2015-11-06 2019-09-10 Nissan Motor Co., Ltd. Single cell structure for fuel cells, and fuel cell stack structure wherein said fuel cell single cells are stacked
WO2017141490A1 (ja) * 2016-02-15 2017-08-24 日産自動車株式会社 燃料電池の単セル構造
JPWO2017141490A1 (ja) * 2016-02-15 2018-11-08 日産自動車株式会社 燃料電池の単セル構造
US11018351B2 (en) 2016-02-15 2021-05-25 Nissan Motor Co., Ltd. Single cell structure for fuel cell
JP2018018582A (ja) * 2016-07-25 2018-02-01 トヨタ自動車株式会社 燃料電池単セルおよびその製造方法
US10637086B2 (en) 2016-07-25 2020-04-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell and manufacturing method therefor
US10811715B2 (en) 2016-07-25 2020-10-20 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell and manufacturing method therefor
JP2018181533A (ja) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 燃料電池スタックおよび燃料電池スタックの製造方法
JP2019032929A (ja) * 2017-08-04 2019-02-28 本田技研工業株式会社 発電セル
JP2019040751A (ja) * 2017-08-25 2019-03-14 本田技研工業株式会社 発電セル

Also Published As

Publication number Publication date
US8999597B2 (en) 2015-04-07
EP2584636A4 (en) 2015-11-04
US20130071769A1 (en) 2013-03-21
CN102939678B (zh) 2015-04-15
CA2802412A1 (en) 2011-12-22
CN102939678A (zh) 2013-02-20
JPWO2011158551A1 (ja) 2013-08-19
EP2584636B1 (en) 2018-08-22
JP5516917B2 (ja) 2014-06-11
CA2802412C (en) 2015-04-07
EP2584636A1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5516917B2 (ja) 燃料電池セル
US8524416B2 (en) Electrolyte electrode assembly and fuel cell
US10033058B2 (en) Fuel cell
JP5790083B2 (ja) 燃料電池セル
US9799898B2 (en) Fuel cell
US9225032B2 (en) Fuel cell
US9099693B2 (en) Fuel cell and fuel cell separator
US9490497B2 (en) Solid polymer electrolyte type fuel cell, and electrolyte membrane-electrode-frame assembly
US20130157175A1 (en) Method for manufacturing resin-framed membrane electrode assembly for fuel cell
US9318753B2 (en) Fuel cell
JP5790088B2 (ja) 燃料電池セル
CN109950571B (zh) 燃料电池
US7824817B2 (en) Fuel cell
US8101314B2 (en) Separator and fuel cell
JP6395121B2 (ja) 燃料電池スタック
KR20170075917A (ko) 연료전지 스택
JP5050434B2 (ja) 燃料電池
JP2013026009A (ja) 固体高分子電解質型燃料電池
JP2006269264A (ja) 固体高分子電解質形燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029588.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520314

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011795459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13697486

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2802412

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE