WO2017141490A1 - 燃料電池の単セル構造 - Google Patents

燃料電池の単セル構造 Download PDF

Info

Publication number
WO2017141490A1
WO2017141490A1 PCT/JP2016/080716 JP2016080716W WO2017141490A1 WO 2017141490 A1 WO2017141490 A1 WO 2017141490A1 JP 2016080716 W JP2016080716 W JP 2016080716W WO 2017141490 A1 WO2017141490 A1 WO 2017141490A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
fuel cell
separator
electrode assembly
manifold
Prior art date
Application number
PCT/JP2016/080716
Other languages
English (en)
French (fr)
Inventor
敬士 市原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP16890627.9A priority Critical patent/EP3419091B1/en
Priority to JP2017567948A priority patent/JP6656596B2/ja
Priority to CN201680080905.1A priority patent/CN108604692B/zh
Priority to CA3014553A priority patent/CA3014553C/en
Priority to KR1020187026353A priority patent/KR101951163B1/ko
Priority to US16/077,998 priority patent/US11018351B2/en
Publication of WO2017141490A1 publication Critical patent/WO2017141490A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a single cell structure of a fuel cell.
  • bridges provided between separators are provided with various seals made of ethylene propylene diene rubber, acrylonitrile butadiene rubber or the like integrated by baking or injection molding.
  • An object of the present invention is to provide a single cell structure of a fuel cell that can suppress an increase in pressure loss even when the separator interval of single cells is small.
  • the present inventor has intensively studied to achieve the above object. As a result, the present inventors have found that the above object can be achieved by providing a gas flow part formed by a convex part at a predetermined position of the frame, and have completed the present invention.
  • the single cell structure of the fuel cell according to the present invention includes a membrane electrode assembly with a frame, a pair of separators, a gas flow path portion, a manifold portion, a protruding portion, an extension portion of the frame, and a gas flow portion.
  • the membrane electrode assembly with a frame includes a membrane electrode assembly and a frame that supports the membrane electrode assembly from the outer periphery.
  • a pair of separator is arrange
  • the gas flow path portion is formed between the separator and the membrane electrode assembly, and gas is supplied.
  • the manifold portion has a hole penetrating in the stacking direction of the frame and the separator.
  • At least one separator of the pair of separators protrudes toward the membrane electrode assembly with the frame and supports the frame in the vicinity of the manifold part. Further, the extending portion of the frame extends to the manifold portion side from the protruding portion. Furthermore, the gas circulation part is formed in the extension part of the frame, and supplies gas from the manifold part to the gas flow path part. And the gas distribution part is formed from the convex-shaped part provided in the extension part of the flame
  • FIG. 1 is a perspective view illustrating a fuel cell stack according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating a fuel cell stack according to an embodiment of the present invention.
  • FIG. 3A is a perspective view for explaining a single fuel cell
  • FIG. 3B is a perspective view in an exploded state for explaining the single fuel cell.
  • FIG. 4 is a plan view for explaining a main part of the fuel cell single cell according to the first embodiment constituting the fuel cell module.
  • FIG. 5 is a cross-sectional view illustrating a main part of the fuel cell single cell according to the first embodiment.
  • FIG. 6 is another cross-sectional view illustrating the main part of the fuel cell single cell according to the first embodiment.
  • FIG. 7 is still another cross-sectional view for explaining the main part of the fuel cell single cell according to the first embodiment.
  • FIG. 8 is a plan view for explaining a main part of a fuel cell single cell according to the second embodiment constituting the fuel cell module.
  • FIG. 9 is a cross-sectional view for explaining a main part of a fuel cell single cell according to the second embodiment.
  • FIG. 10 is another cross-sectional view illustrating the main part of the fuel cell single cell according to the second embodiment.
  • FIG. 11 is still another cross-sectional view for explaining a main part of the fuel cell single cell according to the second embodiment.
  • FIG. 12 is a plan view for explaining a main part of a fuel cell single cell according to the third embodiment constituting the fuel cell module.
  • FIG. 13 is a cross-sectional view illustrating a main part of a fuel cell single cell according to the third embodiment.
  • FIG. 14 is another cross-sectional view for explaining a main part of a fuel cell single cell according to the third embodiment.
  • FIG. 15 is a plan view for explaining a main part of a fuel cell single cell according to the fourth embodiment constituting the fuel cell module.
  • FIG. 16 is a cross-sectional view illustrating a main part of a fuel cell single cell according to the fourth embodiment.
  • FIG. 17 is another cross-sectional view for explaining a main part of a fuel cell single cell according to the fourth embodiment.
  • FIG. 1 is a perspective view illustrating a fuel cell stack according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating a fuel cell stack according to an embodiment of the present invention.
  • FIG. 3A is a perspective view illustrating a single fuel cell
  • FIG. 3B is a perspective view of an exploded state illustrating the single fuel cell.
  • the fuel cell stack FS includes a plurality of fuel cell modules M in which a plurality of fuel cell single cells C are stacked and integrated, and a seal interposed between the fuel cell modules M.
  • Plate P The fuel cell single cell C and the seal plate P in the illustrated example both have a rectangular plate shape having substantially the same vertical and horizontal dimensions. In FIG. 2, two fuel cell modules M and one seal plate P are shown, but actually, more fuel cell modules M and seal plates P are stacked.
  • the fuel cell stack FS has end plates 56A and 56B disposed at both ends in the stacking direction of the fuel cell module M, respectively, and both surfaces on the long side of the single fuel cell C (in FIGS. 1 and 2).
  • Fastening plates 57A and 57B are provided on the upper and lower surfaces, and reinforcing plates 58A and 58B are provided on both surfaces on the short side.
  • the fastening plates 57A and 57B and the reinforcing plates 58A and 58B are connected to both end plates 56A and 56B by bolts (not shown).
  • the fuel cell stack FS has a case-integrated structure as shown in FIG. 1, and each fuel cell module M and the seal plate P are constrained and pressurized in the stacking direction so that each fuel cell single cell C is predetermined. In order to maintain good gas sealing performance and electrical conductivity.
  • the fuel cell single cell C includes a membrane electrode assembly 10 having a frame comprising a membrane electrode assembly 12 and a frame 20 that supports the membrane electrode assembly 12 from the outer periphery, and a membrane electrode assembly having a frame. 10, a pair of separators 30 and 30 disposed on both surfaces, and manifold portions H1 to H6 in which holes penetrating in the stacking direction of the frame 20 and the separator 30 are formed.
  • the fuel cell single cell C includes a gas flow path portion F formed between the separator 30 and the membrane electrode assembly 12 and supplied with gas.
  • the membrane electrode assembly 12 is generally called MEA (Membrane Electrode Assembly), and detailed illustration is omitted.
  • MEA Membrane Electrode Assembly
  • An electrolyte membrane made of a solid polymer is sandwiched between a pair of electrode layers (anode and cathode). It has a structure.
  • This membrane electrode assembly 12 has a resin frame 20 around it and is integrated.
  • Each separator 30 is a metal plate member having an inverted shape, for example, stainless steel, and can be formed into an appropriate shape by press working.
  • Each separator 30 has at least a portion corresponding to the membrane electrode assembly 12 having an uneven cross-sectional shape. Furthermore, each separator 30 makes a convex part contact the membrane electrode assembly 12 and forms a gas flow path part F between the concave part and the membrane electrode assembly 12.
  • the fuel cell single cell C has three manifold portions H1 to H3 and H4 to H6 arranged on both sides of the short side. These manifold portions H1 to H6 are formed at the same positions of the frame 20 of the membrane electrode assembly 12 and the separators 30 as the frame manifold portions FH1 to FH6 and the separator manifold portions SH1 to SH6, respectively. When the cells C are configured, they communicate with each other.
  • the manifold portions H1 to H3 shown on the left side of FIG. 3 are for discharging the cathode gas (H1), for supplying the coolant (H2), and for supplying the anode gas (H3) from the upper side, and communicate with each other in the stacking direction. Each flow path is formed. Further, the manifold portions H4 to H6 shown on the right side of FIG. 3 are for the anode gas discharge (H4), the coolant discharge (H5), and the cathode gas supply (H6) from the upper side, and communicate with each other in the stacking direction. Thus, the respective flow paths are formed. The positional relationship between supply and discharge of the manifold portions H1 to H6 may be partially or entirely reversed.
  • the fuel cell unit cell C is formed by stacking a predetermined number of the fuel cell modules M. At this time, a flow path of coolant (for example, water) is formed between adjacent fuel cell single cells C, and a flow path of coolant is also formed between adjacent fuel cell modules M. Therefore, the seal plate P is disposed between the fuel cell modules M, that is, in the flow path of the coolant.
  • the seal plate P is formed separately from the above-described single fuel cell C, and the same manifold portions H1 to H6 as the single fuel cell C are formed.
  • FIG. 4 is a plan view for explaining a main part of the fuel cell single cell according to the first embodiment constituting the fuel cell module. That is, FIG. 4 is a plan view of the portion surrounded by the Z line of the single fuel cell shown in FIG. However, the description of the upper separator is omitted. The lower separator is indicated by a broken line.
  • FIG. 5 is a cross-sectional view illustrating a main part of the fuel cell single cell according to the first embodiment. That is, FIG. 5 is a cross-sectional view taken along the line VV of the fuel cell single cell shown in FIG. However, a state where two fuel cell single cells are stacked is shown. Further, FIG.
  • FIG. 6 is another cross-sectional view for explaining a main part of the fuel cell single cell according to the first embodiment. That is, FIG. 6 is a cross-sectional view taken along line VI-VI of the fuel cell single cell shown in FIG.
  • FIG. 7 is still another cross-sectional view for explaining the main part of the fuel cell single cell according to the first embodiment shown in FIG. That is, FIG. 7 is a cross-sectional view taken along line VII-VII of the single fuel cell shown in FIG.
  • symbol same as them is attached
  • the pair of separators 30 and 30 includes a protruding portion 31 that protrudes toward the membrane electrode assembly 10 with frame and supports the frame 20 in the vicinity of the manifold portion H3.
  • the frame 20 includes an extending portion 21 that extends to the manifold portion H3 side from the protruding portion 31.
  • the fuel cell single cell C includes a gas circulation part G that supplies gas from the manifold part H3 to the gas flow path part.
  • the gas distribution part G is formed from the convex-shaped part 22 provided in the extension part 21.
  • the convex portion 22 protrudes on one side of the pair of separators 30 and 30.
  • the convex shape part 22 shown in figure has a substantially circular planar shape.
  • Such a convex-shaped part 22 can be formed by embossing, for example.
  • the convex portion 22 has a shape recessed on the other side of the pair of separators 30 and 30.
  • the convex portion 22 is in contact with one separator of the pair of separators 30 and 30.
  • the convex portion 22 is provided on a straight line along the gas flow direction with respect to the protruding portion 31.
  • the opening end surface 20a of the frame manifold portion FH3 (H3) is provided so as to protrude from the opening end surface 30a of the separator manifold portion SH3 (H3) toward the separator manifold portion SH3 (H3).
  • an arrow Y in the figure indicates the gas flow direction, and the separator 30 and the frame 20 are partially sealed by the seal member 40. Further, the anode gas supplied from the manifold portion H3 flows through the gas flow portion G formed between the convex portions 22 as shown in FIG. 7, and further, as shown in FIG. The gas flow path formed between the separator 30 on the side is circulated.
  • the gas circulation part is formed from a convex part provided in the extension part. Therefore, even when the frame is deformed, the gas flow path can be secured. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the convex portion is in contact with one separator of the pair of separators. Therefore, the deformation of the frame can be suppressed as compared with the case where the convex portion is not in contact with any of the pair of separators. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the frame manifold opening end face is provided so as to protrude from the separator manifold opening end face toward the separator manifold section.
  • the planar shape of the convex portion is substantially circular. Therefore, there is an advantage that it is easy to secure the gas flow path even when the alignment is slightly shifted during the assembly of the single fuel cell. Moreover, since it has a bending part in the position close
  • FIG. 8 is a plan view for explaining a main part of a fuel cell single cell according to the second embodiment constituting the fuel cell module. That is, FIG. 8 is a plan view of the same portion as the portion surrounded by the Z line shown in FIG. 3 of the single fuel cell. However, the description of the upper separator is omitted. The lower separator is indicated by a broken line.
  • FIG. 9 is sectional drawing explaining the principal part of the fuel cell single cell which concerns on 2nd Embodiment. That is, FIG. 9 is a cross-sectional view along the line IX-IX of the single fuel cell shown in FIG. However, a state where two fuel cell single cells are stacked is shown. Furthermore, FIG.
  • FIG. 10 is another cross-sectional view for explaining a main part of the fuel cell single cell according to the second embodiment. That is, FIG. 10 is a cross-sectional view along the line XX of the fuel cell single cell shown in FIG.
  • FIG. 11 is still another cross-sectional view for explaining the main part of the fuel cell single cell according to the second embodiment shown in FIG. That is, FIG. 11 is a cross-sectional view along the line XI-XI of the fuel cell single cell shown in FIG.
  • symbol same as them is attached
  • the convex portion 22 has a linear shape along the gas flow direction Y, unlike the first embodiment. Yes.
  • the illustrated convex-shaped portion 22 is a substantially rectangular shape having a planar shape with long sides in the gas flow direction and an end portion reaching the opening end surface.
  • Such a convex-shaped part 22 can also be formed by embossing, for example.
  • the convex portion 22 has a shape recessed on the other side of the pair of separators 30 and 30.
  • the gas circulation part is formed from a convex part provided in the extension part. Therefore, even when the frame is deformed, the gas flow path can be secured. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the convex portion is in contact with one separator of the pair of separators. Therefore, the deformation of the frame can be suppressed as compared with the case where the convex portion is not in contact with any of the pair of separators. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the frame manifold opening end face is provided so as to protrude from the separator manifold opening end face toward the separator manifold section.
  • the convex portion has a linear shape along the gas flow direction.
  • the planar shape of the convex shape portion is a substantially rectangular shape having long sides in the gas flow direction and the end portion reaching the opening end surface. Therefore, there is an advantage that the frame is not easily deformed and the gas flow path is easily secured. Furthermore, there is an advantage that the gas flow can be easily rectified. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • FIG. 12 is a plan view for explaining a main part of a fuel cell single cell according to the third embodiment constituting the fuel cell module. That is, FIG. 12 is a plan view of the same portion as the portion surrounded by the Z line shown in FIG. 3 of the single fuel cell. However, the description of the upper separator is omitted. The lower separator is indicated by a broken line.
  • FIG. 13 is sectional drawing explaining the principal part of the fuel cell single cell which concerns on 3rd Embodiment. That is, FIG. 13 is a cross-sectional view taken along line XIII-XIII of the single fuel cell shown in FIG. However, a state where two fuel cell single cells are stacked is shown. Furthermore, FIG.
  • FIG. 14 is another cross-sectional view for explaining a main part of the fuel cell single cell according to the third embodiment. That is, FIG. 14 is a cross-sectional view taken along line XVI-XVI of the fuel cell single cell shown in FIG. The cross-sectional view along the line VV of the fuel cell shown in FIG. 12 is the same as FIG. In addition, about the thing equivalent to what was demonstrated in said embodiment, the code
  • the convex portion 22 is in contact with both the pair of separators 30 and 30, which is different from the first embodiment.
  • the gas circulation part is formed from a convex part provided in the extension part. Therefore, even when the frame is deformed, the gas flow path can be secured. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the convex portion is in contact with both separators of the pair of separators. Therefore, the deformation of the frame can be suppressed as compared with the case where the convex portion is in contact with one of the pair of separators. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the frame manifold opening end face is provided so as to protrude from the separator manifold opening end face toward the separator manifold section.
  • the planar shape of the convex portion is substantially circular. Therefore, there is an advantage that it is easy to secure the gas flow path even when the alignment is slightly shifted during the assembly of the single fuel cell. Moreover, since it has a bending part in the position close
  • FIG. 15 is a plan view for explaining a main part of a fuel cell single cell according to the fourth embodiment constituting the fuel cell module. That is, FIG. 15 is a plan view of the same portion as the portion surrounded by the Z line shown in FIG. 3 of the single fuel cell. However, the description of the upper separator is omitted. The lower separator is indicated by a broken line.
  • FIG. 16 is a cross-sectional view for explaining a main part of a fuel cell single cell according to the fourth embodiment. That is, FIG. 16 is a cross-sectional view taken along line XVI-XVI of the fuel cell single cell shown in FIG. However, a state where two fuel cell single cells are stacked is shown. Further, FIG.
  • FIG. 17 is another cross-sectional view for explaining a main part of the fuel cell single cell according to the fourth embodiment. That is, FIG. 17 is a cross-sectional view taken along the line XVII-XVII of the single fuel cell shown in FIG. Note that the cross-sectional view along the line IX-IX of the fuel cell shown in FIG. 17 is the same as FIG. In addition, about the thing equivalent to what was demonstrated in said embodiment, the code
  • the convex portion 22 is in contact with both the pair of separators 30 and 30, which is different from the second embodiment.
  • the gas circulation part is formed from a convex part provided in the extension part. Therefore, even when the frame is deformed, the gas flow path can be secured. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the convex portion is in contact with both separators of the pair of separators. Therefore, the deformation of the frame can be suppressed as compared with the case where the convex portion is in contact with one of the pair of separators. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the frame manifold opening end face is provided so as to protrude from the separator manifold opening end face toward the separator manifold section.
  • the convex portion has a linear shape along the gas flow direction.
  • the planar shape of the convex shape portion is a substantially rectangular shape having long sides in the gas flow direction and the end portion reaching the opening end surface. Therefore, there is an advantage that the frame is not easily deformed and the gas flow path is easily secured. Furthermore, there is an advantage that the gas flow can be easily rectified. As a result, an increase in pressure loss can be suppressed regardless of whether the frame is deformed or not, even when the separator spacing between single cells is small.
  • the position where the anode gas is supplied is described as an example of the position where the gas circulation portion formed by the convex portion is provided at a predetermined position of the frame. It is not limited to. That is, the present invention can be applied to a portion where the cathode gas is supplied instead of or in addition to the portion where the anode gas is supplied. Further, in addition to these, it is also possible to apply to a portion where the anode gas is discharged and a portion where the cathode gas is discharged.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池の単セル構造は、フレーム付き膜電極接合体、フレーム付き膜電極接合体の両面に配置される一対のセパレータ、セパレータと膜電極接合体との間に形成され、ガスが供給されるガス流路部、フレーム付き膜電極接合体のフレームとセパレータの積層方向に貫通する穴が形成されたマニホールド部、一対のセパレータの少なくとも一方のセパレータがフレーム付き膜電極接合体側に突出し、マニホールド部近傍でフレームを支持する突出部、突出部よりもマニホールド部側に延出するフレームの延出部、及びフレームの延出部に形成され、マニホールド部からガス流路部にガスを供給するガス流通部を備える。ガス流通部は、フレームの延出部に設けられた凸形状部から形成されている。

Description

燃料電池の単セル構造
 本発明は、燃料電池の単セル構造に関する。
 従来、簡単な構成で、所望のシール機能を確保しながら、ブリッジ部に適切な反応ガス連結流路を形成することが可能な燃料電池が提案されている(特許文献1参照。)。
 この燃料電池は、セパレータ間に設けられたブリッジ部に、焼き付けや射出成形などにより一体化されたエチレンプロピレンジエンゴムやアクリロニトリルブタジエンゴムなどからなる各種シールが設けられている。
日本国特開2013-98155号公報
 ところで、燃料電池の性能向上に対するさらなる要求に伴って、膜電極接合体や、ガス拡散層、フレームなどの部材が薄型化されてきており、単セルのセパレータ間隔もさらに小さくなっている。この場合、特許文献1に記載された燃料電池にあっては、セパレータ端部を各種シールで覆っているため、燃料電池のブリッジ部のガス流通部高さが低くなり、圧損増加が生じる可能性が高くなる。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明は、単セルのセパレータ間隔が小さい場合であっても、圧損増加の抑制を実現し得る燃料電池の単セル構造を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意検討を重ねた。そして、その結果、フレームの所定の位置に凸形状部で形成されるガス流通部を設けることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
 本発明の燃料電池の単セル構造は、フレーム付き膜電極接合体と、一対のセパレータと、ガス流路部と、マニホールド部と、突出部と、フレームの延出部と、ガス流通部とを備えるものである。ここで、フレーム付き膜電極接合体は、膜電極接合体と膜電極接合体を外周から支持するフレームとからなる。また、一対のセパレータは、フレーム付き膜電極接合体の両面に配置されている。さらに、ガス流路部は、セパレータと膜電極接合体との間に形成され、ガスが供給される。また、マニホールド部は、フレームとセパレータの積層方向に貫通する穴が形成されている。さらに、突出部は、一対のセパレータの少なくとも一方のセパレータがフレーム付き膜電極接合体側に突出し、マニホールド部近傍でフレームを支持している。また、フレームの延出部は、突出部よりもマニホールド部側に延出している。さらに、ガス流通部は、フレームの延出部に形成されており、マニホールド部からガス流路部にガスを供給する。そして、ガス流通部は、フレームの延出部に設けられた凸形状部から形成されている。
 本発明によれば、単セルのセパレータ間隔が小さい場合であっても、圧損増加の抑制を実現し得る燃料電池の単セル構造を提供することができる。
図1は、本発明の一実施形態に係る燃料電池スタックを説明する斜視図である。 図2は、本発明の一実施形態に係る燃料電池スタックを説明する分解状態の斜視図である。 図3Aは、燃料電池単セルを説明する斜視図であり、図3Bは、燃料電池単セルを説明する分解状態の斜視図である。 図4は、燃料電池モジュールを構成する第1の実施形態に係る燃料電池単セルの要部を説明する平面図である。 図5は、第1の実施形態に係る燃料電池単セルの要部を説明する断面図である。 図6は、第1の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。 図7は、第1の実施形態に係る燃料電池単セルの要部を説明するさらに他の断面図である。 図8は、燃料電池モジュールを構成する第2の実施形態に係る燃料電池単セルの要部を説明する平面図である。 図9は、第2の実施形態に係る燃料電池単セルの要部を説明する断面図である。 図10は、第2の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。 図11は、第2の実施形態に係る燃料電池単セルの要部を説明するさらに他の断面図である。 図12は、燃料電池モジュールを構成する第3の実施形態に係る燃料電池単セルの要部を説明する平面図である。 図13は、第3の実施形態に係る燃料電池単セルの要部を説明する断面図である。 図14は、第3の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。 図15は、燃料電池モジュールを構成する第4の実施形態に係る燃料電池単セルの要部を説明する平面図である。 図16は、第4の実施形態に係る燃料電池単セルの要部を説明する断面図である。 図17は、第4の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。
 以下、本発明の一実施形態に係る燃料電池の単セル構造について図面を参照しながら詳細に説明する。なお、以下の形態で引用する図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
(第1の実施形態)
 図1は、本発明の一実施形態に係る燃料電池スタックを説明する斜視図である。また、図2は、本発明の一実施形態に係る燃料電池スタックを説明する分解状態の斜視図である。さらに、図3Aは、燃料電池単セルを説明する斜視図であり、図3Bは、燃料電池単セルを説明する分解状態の斜視図である。
 図1~図3に示すように、燃料電池スタックFSは、燃料電池単セルCを複数積層して一体化した複数の燃料電池モジュールMと、燃料電池モジュールM同士の間に介装されるシールプレートPとを備えている。図示例の燃料電池単セルC及びシールプレートPは、いずれもほぼ同じ縦横寸法を有する矩形板状の形状を有している。なお、図2には、2つの燃料電池モジュールMと、1つのシールプレートPを示しているが、実際には、それ以上の数の燃料電池モジュールM及びシールプレートPを積層する。
 また、燃料電池スタックFSは、燃料電池モジュールMの積層方向の両端部に、エンドプレート56A,56Bをそれぞれ配置し、燃料電池単セルCの長辺側となる両面(図1及び図2中で上下面)に、締結板57A,57Bが設けてあるとともに、短辺側となる両面に、補強板58A,58Bが設けてある。各締結板57A,57B及び補強板58A,58Bは、図示しないボルトにより、両エンドプレート56A,56Bに連結する。
 このようにして、燃料電池スタックFSは、図1に示すようなケース一体型構造となり、各燃料電池モジュールM及びシールプレートPを積層方向に拘束・加圧して個々の燃料電池単セルCに所定の接触面圧を加え、ガスシール性や導電性等を良好に維持する。
 図3に示すように、燃料電池単セルCは、膜電極接合体12と膜電極接合体12を外周から支持するフレーム20とからなるフレーム付き膜電極接合体10と、フレーム付き膜電極接合体10の両面に配置された一対のセパレータ30,30と、フレーム20とセパレータ30の積層方向に貫通する穴が形成されたマニホールド部H1~H6とを備える。また、燃料電池単セルCは、セパレータ30と膜電極接合体12との間に形成された、ガスが供給されるガス流路部Fを備える。
 膜電極接合体12は、一般に、MEA(Membrane Electrode Assembly)と呼ばれるものであって、詳細な図示は省略するが、固体高分子からなる電解質膜を一対の電極層(アノード、カソード)で挟持した構造を有している。この膜電極接合体12は、その周囲に樹脂製のフレーム20を有し、一体化されている。
 各セパレータ30は、表裏反転形状を有する金属製の板部材であって、例えば、ステンレス製であり、プレス加工により適宜の形状に成形することができる。また、各セパレータ30は、少なくとも膜電極接合体12に対応する部分が断面凹凸形状に形成してある。さらに、各セパレータ30は、膜電極接合体12に凸部を接触させるとともに、凹部と膜電極接合体12との間にガス流路部Fを形成する。
 燃料電池単セルCは、図3に示すように、短辺両側に、各々三個ずつのマニホールド部H1~H3,H4~H6が配列してある。これらのマニホールド部H1~H6は、膜電極接合体12のフレーム20や各セパレータ30の同じ位置にそれぞれフレームマニホールド部FH1~FH6、セパレータマニホールド部SH1~SH6のように形成してあり、燃料電池単セルCを構成した際に互いに連通する。
 図3の左側に示す各マニホールド部H1~H3は、上側から、カソードガス排出用(H1)、冷却液供給用(H2)及びアノードガス供給用(H3)であり、積層方向に互いに連通してそれぞれの流路を形成する。また、図3の右側に示す各マニホールド部H4~H6は、上側から、アノードガス排出用(H4)、冷却液排出用(H5)及びカソードガス供給用(H6)であり、積層方向に互いに連通してそれぞれの流路を形成する。なお、各マニホールド部H1~H6の供給及び排出の位置関係は、一部又は全部が逆であってもよい。
 上記の燃料電池単セルCは、所定枚数を積層して燃料電池モジュールMを形成する。このとき、隣接する燃料電池単セルC同士の間には、冷却液(例えば水)の流路を形成し、隣接する燃料電池モジュールM同士の間にも冷却液の流路を形成する。したがって、シールプレートPは、燃料電池モジュールM同士の間、すなわち冷却液の流路内に配置されている。シールプレートPは、上記した燃料電池単セルCとは別体にして形成してあり、燃料電池単セルCと同様のマニホールド部H1~H6が形成してある。
 図4は、燃料電池モジュールを構成する第1の実施形態に係る燃料電池単セルの要部を説明する平面図である。つまり、図4は、図3に示した燃料電池単セルのZ線で囲んだ部分の平面図である。但し、上側のセパレータは記載を省略している。また、下側のセパレータは破線にて示している。また、図5は、第1の実施形態に係る燃料電池単セルの要部を説明する断面図である。つまり、図5は、図4に示した燃料電池単セルのV-V線に沿った断面図である。但し、燃料電池単セルが2枚積層された状態を示している。さらに、図6は、第1の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。つまり、図6は、図4に示した燃料電池単セルのVI-VI線に沿った断面図である。また、図7は、図4に示した第1の実施形態に係る燃料電池単セルの要部を説明するさらに他の断面図である。つまり、図7は、図4に示した燃料電池単セルのVII-VII線に沿った断面図である。なお、上記説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図4~図7に示すように、一対のセパレータ30,30は、フレーム付き膜電極接合体10の側に突出し、かつ、マニホールド部H3近傍でフレーム20を支持する突出部31を備える。また、フレーム20は、突出部31よりもマニホールド部H3側に延出する延出部21を備える。さらに、燃料電池単セルCは、マニホールド部H3からガス流路部にガスを供給するガス流通部Gを備える。そして、ガス流通部Gは、延出部21に設けられた凸形状部22から形成されている。
 本実施形態においては、凸形状部22は、一対のセパレータ30,30の一方の側に突出したものである。なお、図示した凸形状部22は、平面形状が略円形である。このような凸形状部22は、例えば、エンボス加工により形成することができる。この場合、凸形状部22は、一対のセパレータ30,30の他方の側に窪んだ形状を有する。また、凸形状部22は、一対のセパレータ30,30の一方のセパレータと接触している。さらに、凸形状部22は、突出部31に対して、ガス流れ方向に沿った直線上に設けられている。
 また、フレームマニホールド部FH3(H3)の開口端面20aは、セパレータマニホールド部SH3(H3)の開口端面30aよりセパレータマニホールド部SH3(H3)側に突出させて設けられている。
 なお、図中の矢印Yは、ガス流れ方向を示し、セパレータ30とフレーム20との間は、シール部材40により一部でシールされている。また、マニホールド部H3から供給されるアノードガスは、図7に示すように凸形状部22の間に形成されたガス流通部Gを流通し、さらに、図6に示すように、フレーム20と下側のセパレータ30との間に形成されたガス流路を流通する。
 本実施形態においては、ガス流通部が延出部に設けられた凸形状部から形成されている構成とした。そのため、フレームが変形した場合であっても、ガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 そして、本実施形態においては、凸形状部が突出部に対してガス流れ方向に沿った直線上に設けられている構成とした。そのため、凸形状部と突出部とが直線上に設けられていない場合と比較して、圧損が少ないガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。また、生成水の排出が容易になるという利点もある。
 また、本実施形態においては、凸形状部が一対のセパレータの一方のセパレータと接触している構成とした。そのため、凸形状部が一対のセパレータのいずれとも接触していない場合と比較してフレームの変形を抑制することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 さらに、本実施形態においては、フレームマニホールド開口端面がセパレータマニホールド開口端面よりセパレータマニホールド部側に突出させて設けられた構成とした。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、セパレータ間短絡を抑制することができる。
 また、本実施形態においては、凸形状部の平面形状が略円形である。そのため、燃料電池単セルの組立の際に位置合わせが多少ずれた場合であっても、ガス流路を確保し易いという利点がある。また、開口端面に近い位置に折れ曲がり部を有するため、フレームが変形し難く、ガス流路を確保し易いという利点もある。
(第2の実施形態)
 図8は、燃料電池モジュールを構成する第2の実施形態に係る燃料電池単セルの要部を説明する平面図である。つまり、図8は、燃料電池単セルの図3に示したZ線で囲んだ部分と同じ部分の平面図である。但し、上側のセパレータは記載を省略している。また、下側のセパレータは破線にて示している。また、図9は、第2の実施形態に係る燃料電池単セルの要部を説明する断面図である。つまり、図9は、図8に示した燃料電池単セルのIX-IX線に沿った断面図である。但し、燃料電池単セルが2枚積層された状態を示している。さらに、図10は、第2の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。つまり、図10は、図8に示した燃料電池単セルのX-X線に沿った断面図である。また、図11は、図8に示した第2の実施形態に係る燃料電池単セルの要部を説明するさらに他の断面図である。つまり、図11は、図8に示した燃料電池単セルのXI-XI線に沿った断面図である。なお、上記の実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図8~図11に示すように、本実施形態においては、凸形状部22がガスの流れ方向Yに沿って直線状の形状を有していることが、第1の実施形態と相違している。つまり、図示した凸形状部22は、平面形状がガス流れ方向に長辺を有し、その端部が開口端面に達した略矩形である。このような凸形状部22も、例えば、エンボス加工により形成することができる。この場合も、凸形状部22は、一対のセパレータ30,30の他方の側に窪んだ形状を有する。
 本実施形態においては、ガス流通部が延出部に設けられた凸形状部から形成されている構成とした。そのため、フレームが変形した場合であっても、ガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 そして、本実施形態においては、凸形状部が突出部に対してガス流れ方向に沿った直線上に設けられている構成とした。そのため、凸形状部と突出部とが直線上に設けられていない場合と比較して、圧損が少ないガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。また、生成水の排出が容易になるという利点もある。
 また、本実施形態においては、凸形状部が一対のセパレータの一方のセパレータと接触している構成とした。そのため、凸形状部が一対のセパレータのいずれとも接触していない場合と比較してフレームの変形を抑制することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 さらに、本実施形態においては、フレームマニホールド開口端面がセパレータマニホールド開口端面よりセパレータマニホールド部側に突出させて設けられた構成とした。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、セパレータ間短絡を抑制することができる。
 また、本実施形態においては、凸形状部がガスの流れ方向に沿って直線状の形状を有している。具体的には、凸形状部の平面形状がガス流れ方向に長辺を有し、その端部が開口端面に達した略矩形である。そのため、フレームが変形し難く、ガス流路を確保し易いという利点がある。さらに、ガス流れを整流にし易いという利点もある。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
(第3の実施形態)
 図12は、燃料電池モジュールを構成する第3の実施形態に係る燃料電池単セルの要部を説明する平面図である。つまり、図12は、燃料電池単セルの図3に示したZ線で囲んだ部分と同じ部分の平面図である。但し、上側のセパレータは記載を省略している。また、下側のセパレータは破線にて示している。また、図13は、第3の実施形態に係る燃料電池単セルの要部を説明する断面図である。つまり、図13は、図12に示した燃料電池単セルのXIII-XIII線に沿った断面図である。但し、燃料電池単セルが2枚積層された状態を示している。さらに、図14は、第3の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。つまり、図14は、図12に示した燃料電池単セルのXVI-XVI線に沿った断面図である。なお、図12に示した燃料電池のV-V線に沿った断面図は、図5と同一である。なお、上記の実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図12~図14に示すように、本実施形態においては、凸形状部22が一対のセパレータ30,30の双方と接触していることが、第1の実施形態と相違している。
 本実施形態においては、ガス流通部が延出部に設けられた凸形状部から形成されている構成とした。そのため、フレームが変形した場合であっても、ガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 そして、本実施形態においては、凸形状部が突出部に対してガス流れ方向に沿った直線上に設けられている構成とした。そのため、凸形状部と突出部とが直線上に設けられていない場合と比較して、圧損が少ないガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。また、生成水の排出が容易になるという利点もある。
 また、本実施形態においては、凸形状部が一対のセパレータの双方のセパレータと接触している構成とした。そのため、凸形状部が一対のセパレータの一方と接触している場合と比較してフレームの変形を抑制することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 さらに、本実施形態においては、フレームマニホールド開口端面がセパレータマニホールド開口端面よりセパレータマニホールド部側に突出させて設けられた構成とした。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、セパレータ間短絡を抑制することができる。
 また、本実施形態においては、凸形状部の平面形状が略円形である。そのため、燃料電池単セルの組立の際に位置合わせが多少ずれた場合であっても、ガス流路を確保し易いという利点がある。また、開口端面に近い位置に折れ曲がり部を有するため、フレームが変形し難く、ガス流路を確保し易いという利点もある。
(第4の実施形態)
 図15は、燃料電池モジュールを構成する第4の実施形態に係る燃料電池単セルの要部を説明する平面図である。つまり、図15は、燃料電池単セルの図3に示したZ線で囲んだ部分と同じ部分の平面図である。但し、上側のセパレータは記載を省略している。また、下側のセパレータは破線にて示している。また、図16は、第4の実施形態に係る燃料電池単セルの要部を説明する断面図である。つまり、図16は、図15に示した燃料電池単セルのXVI-XVI線に沿った断面図である。但し、燃料電池単セルが2枚積層された状態を示している。さらに、図17は、第4の実施形態に係る燃料電池単セルの要部を説明する他の断面図である。つまり、図17は、図15に示した燃料電池単セルのXVII-XVII線に沿った断面図である。なお、図17に示した燃料電池のIX-IX線に沿った断面図は、図9と同一である。なお、上記の実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図15~図17に示すように、本実施形態においては、凸形状部22が一対のセパレータ30,30の双方と接触していることが、第2の実施形態と相違している。
 本実施形態においては、ガス流通部が延出部に設けられた凸形状部から形成されている構成とした。そのため、フレームが変形した場合であっても、ガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 そして、本実施形態においては、凸形状部が突出部に対してガス流れ方向に沿った直線上に設けられている構成とした。そのため、凸形状部と突出部とが直線上に設けられていない場合と比較して、圧損が少ないガス流路を確保することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。また、生成水の排出が容易になるという利点もある。
 また、本実施形態においては、凸形状部が一対のセパレータの双方のセパレータと接触している構成とした。そのため、凸形状部が一対のセパレータの一方と接触している場合と比較してフレームの変形を抑制することができる。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 さらに、本実施形態においては、フレームマニホールド開口端面がセパレータマニホールド開口端面よりセパレータマニホールド部側に突出させて設けられた構成とした。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、セパレータ間短絡を抑制することができる。
 また、本実施形態においては、凸形状部がガスの流れ方向に沿って直線状の形状を有している。具体的には、凸形状部の平面形状がガス流れ方向に長辺を有し、その端部が開口端面に達した略矩形である。そのため、フレームが変形し難く、ガス流路を確保し易いという利点がある。さらに、ガス流れを整流にし易いという利点もある。その結果、フレームの変形の有無にかかわらず、単セルのセパレータ間隔が小さい場合であっても、圧損増加を抑制することができる。
 以上、本発明を若干の実施形態によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
 例えば、上述した実施形態においては、フレームの所定の位置に凸形状部で形成されるガス流通部を設ける位置として、アノードガスが供給される部位を例に挙げて説明したが、本発明はこれに限定されるものではない。つまり、アノードガスが供給される部位に替えて又は追加してカソードガスが供給される部位に適用することも可能である。また、これらに追加して、アノードガスが排出される部位やカソードガスが排出される部位に適用することも可能である。
 FS 燃料電池スタック
 C 燃料電池単セル
 M 燃料電池モジュール
 P シールプレート
 F ガス流路部
 G ガス流通部
 H1~H6 マニホールド部
 FH1~FH6 フレームマニホールド部
 SH1~SH6 セパレータマニホールド部
10 フレーム付き膜電極接合体
12 膜電極接合体
20 フレーム
20a 開口端面
21 延出部
22 凸形状部
30 セパレータ
30a 開口端面
31 突出部
40 シール部材
56A,56B エンドプレート
57A,57B 締結板
58A,58B 補強板

Claims (4)

  1.  膜電極接合体と前記膜電極接合体を外周から支持するフレームとからなるフレーム付き膜電極接合体と、
     前記フレーム付き膜電極接合体の両面に配置された一対のセパレータと、
     前記セパレータと前記膜電極接合体との間に形成された、ガスが供給されるガス流路部と、
     前記フレームと前記セパレータの積層方向に貫通する穴が形成されたマニホールド部と、
     前記一対のセパレータの少なくとも一方のセパレータが前記フレーム付き膜電極接合体側に突出し、前記マニホールド部近傍で前記フレームを支持する突出部と、
     前記突出部よりも前記マニホールド部側に延出する前記フレームの延出部と、
     前記延出部に形成された、前記マニホールド部から前記ガス流路部に前記ガスを供給するガス流通部と、を備え、
     前記ガス流通部が、前記延出部に設けられた凸形状部から形成されている
    ことを特徴とする燃料電池の単セル構造。
  2.  前記凸形状部が、前記ガスの流れ方向に沿って直線状の形状を有していることを特徴とする請求項1に記載の燃料電池の単セル構造。
  3.  前記凸形状部が、前記突出部に対して、前記ガスの流れ方向に沿った直線上に設けられていることを特徴とする請求項1又は2に記載の燃料電池の単セル構造。
  4.  前記凸形状部が、前記一対のセパレータの少なくとも一方のセパレータと接触していることを特徴とする請求項1~3のいずれか1つの項に記載の燃料電池の単セル構造。
PCT/JP2016/080716 2016-02-15 2016-10-17 燃料電池の単セル構造 WO2017141490A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16890627.9A EP3419091B1 (en) 2016-02-15 2016-10-17 Unit cell structure for fuel cell
JP2017567948A JP6656596B2 (ja) 2016-02-15 2016-10-17 燃料電池の単セル構造
CN201680080905.1A CN108604692B (zh) 2016-02-15 2016-10-17 燃料电池的单电池构造
CA3014553A CA3014553C (en) 2016-02-15 2016-10-17 Single cell structure for fuel cell
KR1020187026353A KR101951163B1 (ko) 2016-02-15 2016-10-17 연료 전지의 단셀 구조
US16/077,998 US11018351B2 (en) 2016-02-15 2016-10-17 Single cell structure for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-025874 2016-02-15
JP2016025874 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141490A1 true WO2017141490A1 (ja) 2017-08-24

Family

ID=59626009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080716 WO2017141490A1 (ja) 2016-02-15 2016-10-17 燃料電池の単セル構造

Country Status (7)

Country Link
US (1) US11018351B2 (ja)
EP (1) EP3419091B1 (ja)
JP (1) JP6656596B2 (ja)
KR (1) KR101951163B1 (ja)
CN (1) CN108604692B (ja)
CA (1) CA3014553C (ja)
WO (1) WO2017141490A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305325A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp 燃料電池
WO2011033745A1 (ja) * 2009-09-16 2011-03-24 パナソニック株式会社 固体高分子型燃料電池
WO2011158551A1 (ja) * 2010-06-15 2011-12-22 日産自動車株式会社 燃料電池セル
JP2012221619A (ja) * 2011-04-05 2012-11-12 Nissan Motor Co Ltd 燃料電池セル
JP2013098155A (ja) 2011-11-07 2013-05-20 Honda Motor Co Ltd 燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタック

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261710B1 (en) * 1998-11-25 2001-07-17 Institute Of Gas Technology Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
JP2005063724A (ja) * 2003-08-08 2005-03-10 Toyota Motor Corp 燃料電池システム
JP2008060044A (ja) * 2006-09-04 2008-03-13 Canon Inc 燃料電池システム
JP4412395B2 (ja) * 2007-11-27 2010-02-10 トヨタ自動車株式会社 燃料電池および燃料電池用ガスセパレータ
JP4903770B2 (ja) * 2008-11-26 2012-03-28 本田技研工業株式会社 燃料電池
WO2011114811A1 (ja) * 2010-03-17 2011-09-22 日産自動車株式会社 燃料電池セル
US8974980B2 (en) * 2010-06-01 2015-03-10 Nissan Motor Co., Ltd. Fuel cell
JP5422700B2 (ja) * 2011-06-16 2014-02-19 本田技研工業株式会社 燃料電池
CN104798233B (zh) * 2012-11-21 2017-11-03 日产自动车株式会社 燃料电池单电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305325A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp 燃料電池
WO2011033745A1 (ja) * 2009-09-16 2011-03-24 パナソニック株式会社 固体高分子型燃料電池
WO2011158551A1 (ja) * 2010-06-15 2011-12-22 日産自動車株式会社 燃料電池セル
JP2012221619A (ja) * 2011-04-05 2012-11-12 Nissan Motor Co Ltd 燃料電池セル
JP2013098155A (ja) 2011-11-07 2013-05-20 Honda Motor Co Ltd 燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタック

Also Published As

Publication number Publication date
US20200028186A1 (en) 2020-01-23
KR20180105250A (ko) 2018-09-27
US11018351B2 (en) 2021-05-25
EP3419091A1 (en) 2018-12-26
CA3014553A1 (en) 2017-08-24
KR101951163B1 (ko) 2019-02-21
CN108604692B (zh) 2019-11-08
EP3419091B1 (en) 2020-03-18
CA3014553C (en) 2019-02-19
JP6656596B2 (ja) 2020-03-04
CN108604692A (zh) 2018-09-28
JPWO2017141490A1 (ja) 2018-11-08
EP3419091A4 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6731008B2 (ja) 燃料電池及び燃料電池用金属セパレータ
CN109616681B (zh) 燃料电池用隔离部件和电芯
JP6500046B2 (ja) 燃料電池用金属セパレータ及びその製造方法並びに発電セル
US8974980B2 (en) Fuel cell
JP6085946B2 (ja) 燃料電池及び燃料電池スタック
EP2850683B1 (en) Arrangement for the alignment of a membrane-electrode-assemblies within a stack during assembly
JP2016081909A (ja) 燃料電池用セパレータ
US10340533B2 (en) Fuel cell stack
JP5839307B2 (ja) 燃料電池スタック
JP7061528B2 (ja) 燃料電池用セパレータ及び燃料電池スタック
WO2016042376A1 (en) Bipolar plate assembly with integrated seal for fuel cell
JP5773232B2 (ja) 燃料電池
WO2017141490A1 (ja) 燃料電池の単セル構造
KR20170130185A (ko) 전기화학 전지 스택
KR101859894B1 (ko) 연료 전지 스택
US10862149B2 (en) Fuel cell stack and manufacturing method therefor
JP2007157431A (ja) 燃料電池
KR101963998B1 (ko) 연료 전지 스택
CN113937316B (zh) 燃料电池用金属隔板以及发电单电池
WO2015133508A1 (ja) セパレータ及びこれを備えた燃料電池
JP7111661B2 (ja) 燃料電池用金属セパレータ、接合セパレータ及び発電セル
JP6520679B2 (ja) シール構造
JP6132819B2 (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567948

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3014553

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026353

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026353

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016890627

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016890627

Country of ref document: EP

Effective date: 20180917