WO2011145399A1 - 回転子積層鉄心の製造方法 - Google Patents

回転子積層鉄心の製造方法 Download PDF

Info

Publication number
WO2011145399A1
WO2011145399A1 PCT/JP2011/058452 JP2011058452W WO2011145399A1 WO 2011145399 A1 WO2011145399 A1 WO 2011145399A1 JP 2011058452 W JP2011058452 W JP 2011058452W WO 2011145399 A1 WO2011145399 A1 WO 2011145399A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
dummy plate
magnet insertion
manufacturing
divided dummy
Prior art date
Application number
PCT/JP2011/058452
Other languages
English (en)
French (fr)
Inventor
亮 長井
萌 荒添
剛 加藤
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to JP2012515789A priority Critical patent/JP5734963B2/ja
Priority to CN201180004268.7A priority patent/CN102598490B/zh
Priority to US13/509,190 priority patent/US8578592B2/en
Publication of WO2011145399A1 publication Critical patent/WO2011145399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to a method for manufacturing a rotor laminated core in which permanent magnets inserted into a plurality of magnet insertion portions are fixed with resin.
  • a magnet mold method as a method of fixing a permanent magnet (magnet) to an iron core body of a rotor laminated iron core (rotor core) used in a motor.
  • the iron core body in which the permanent magnets are arranged in the magnet insertion part (magnet insertion hole) is heated, and after this reaches a certain temperature, the mold resin is injected into the magnet insertion part, and this is heated and cured. In this way, the permanent magnet is fixed to the core body.
  • the resin cured after the injection remains fixed on the surface of the core body, and therefore a process for removing the residual resin is necessary, which is a factor that hinders the reduction of the lead time.
  • a metal dummy plate (plate) 91 is arranged on the surface side (resin injection side) of the core body 90, and a gate (resin injection hole formed in the dummy plate 91 (see, for example, Patent Document 1).
  • resin mold resin
  • the resin 93 cured after the injection remains on the surface of the dummy plate 91 instead of the surface of the core body 90, the residual resin is also removed by removing the dummy plate 91 from the surface of the core body 90.
  • the lead time can be significantly shortened compared to the conventional case.
  • Reference numeral 94 is a permanent magnet
  • reference numeral 95 is a magnet insertion portion
  • reference numerals 96 and 97 are upper and lower molds sandwiching the core body 90
  • reference numeral 98 is a resin reservoir pot
  • reference numeral 99 is a resin in the resin reservoir pot 98.
  • 93 is a plunger for injecting 93 into the magnet insertion portion 95.
  • the dummy plate is manufactured as an integral body larger in diameter than the core body so as to cover the entire surface excluding the shaft hole of the core body, when the core body is set in a mold (resin sealing device), The dummy plate cannot fully absorb the undulations (undulations) on the surface of the core body (it cannot follow). For this reason, a minute gap is generated between the iron core body and the dummy plate, and resin leakage may occur from the gap.
  • the size of the dummy plate is large, it is necessary to manage its warpage.
  • the iron core body and the dummy plate are connected by the resin that remains in the gate, but when removing the dummy plate from the iron core body, several places out of multiple mold points (magnet insertion part)
  • the resin turned over in the depth direction, and the surface of the permanent magnet was sometimes exposed to the outside. This is because the direction of the force applied when removing the dummy plate is the same in all mold locations.
  • the present invention has been made in view of such circumstances, and provides a method for manufacturing a rotor laminated iron core that can be manufactured economically with good workability while eliminating the residual resin removal step and suppressing resin leakage. Objective.
  • the method for manufacturing a rotor laminated iron core according to the present invention in accordance with the above object is formed by laminating a plurality of iron core pieces, and inserting a permanent magnet into each magnet insertion part of the iron core body formed with a plurality of magnet insertion parts.
  • a rotor laminated core that fixes the permanent magnet by filling the magnet insertion part with resin from a resin reservoir provided in one of the upper mold and the lower mold that sandwich the core body
  • a manufacturing method of A first step of disposing a divided dummy plate between the iron core body and the mold and individually covering one or more of the plurality of magnet insertion portions and having a resin injection hole communicating with the magnet insertion portion; , A second step of injecting resin from the resin reservoir portion of the mold into the corresponding magnet insertion portion through the resin injection hole of the divided dummy plate; And a third step of removing the divided dummy plate together with the surplus resin after the resin filled in the magnet insertion portion is cured.
  • the resin from the resin reservoir is formed on a resin flow path formed on a contact surface of the mold with the divided dummy plate or on the divided dummy plate.
  • the corresponding magnet insertion portion can be filled through the formed resin flow path and the resin injection hole following the resin flow path.
  • the resin reservoir part and the magnet insertion part partially wrap in a plan view, and the resin from the resin reservoir part passes through the resin injection hole formed in the divided dummy plate.
  • the corresponding magnet insertion part can be directly filled.
  • a dummy plate storage portion that stores the divided dummy plate is provided in the mold provided with the resin reservoir portion, and the divided dummy plate is the corresponding magnet.
  • a part of the insertion part can be covered, and the other part of the magnet insertion part can be covered with the mold.
  • the divided dummy plate may cover all of the corresponding magnet insertion portions.
  • the divided dummy plate has a protruding portion that protrudes from the core body, and the protruding portion is provided with a retaining hole that is used when the divided dummy plate is removed. It is preferable that In the method for manufacturing a rotor laminated core according to the present invention, it is preferable that a taper portion that opens from the core body toward the mold is formed in the resin injection hole of the divided dummy plate. Furthermore, in the method for manufacturing a rotor laminated core according to the present invention, the resin injection hole provided in the divided dummy plate is inserted into the magnet so as to inject resin through the divided dummy plate in plan view. It is good to form in the radial direction inner side of a part.
  • the divided dummy plate can be a circular plate.
  • the divided dummy plate may be a non-circular plate that is widened radially outward.
  • the divided dummy plate is formed of a material different from the core piece constituting the core body, and the peelability is improved on one side or both sides of the divided dummy plate. It is preferable that the coating material to be coated is coated.
  • a split dummy plate that individually covers one or more of the plurality of magnet insertion portions is disposed between the core body and the mold.
  • the installation area of the divided dummy plate can be narrowed.
  • the influence of the warp of the divided dummy plate received by the surface of the iron core body can be reduced and the influence of the undulation of the surface of the iron core body received by each divided dummy plate can be reduced as compared with an integrated object covering all the magnet insertion portions. Therefore, generation
  • the mold clamping pressure can be set low. Conventionally, the deterioration of the flatness of the core body caused by the mold clamping pressure and the resin due to the springback of each core piece after molding Cracks can be suppressed, and generation of gaps between adjacent iron core pieces in the stacking direction can be prevented. Further, when the divided dummy plate is used repeatedly, only the divided dummy plate whose resin injection hole and its vicinity are worn out may be replaced individually.
  • the hardness can be increased by heat treatment, so that the wear rate of the resin injection hole can be slowed, the life of the divided dummy plate can be extended, and the replacement cycle can be slowed.
  • the thickness of the divided dummy plate can be reduced, and the amount of resin remaining in the resin injection hole can be reduced.
  • a split dummy plate when removing the split dummy plate from the core body, force is applied in any direction for each split dummy plate, so that the core body does not turn over in the depth direction The split dummy plate can be removed. From the above, the rotor laminated iron core can be manufactured economically with good workability while eliminating the residual resin removal step and suppressing resin leakage.
  • the resin from the resin reservoir is passed through the resin flow path formed on the contact surface to the divided dummy plate of the mold, or the resin flow path formed in the divided dummy plate and the resin injection hole subsequent thereto.
  • the degree of freedom in the formation position of the resin reservoir part is increased.
  • segmentation dummy plate covers a part of corresponding magnet insertion part, further compactization of a division
  • each magnet insertion part can be block
  • the mold when providing a dummy plate storage part for storing a split dummy plate that covers the entire magnet insertion part in a mold provided with a resin reservoir, the mold abuts on the surface of the core body, and the surface of the core body Can be pressed with equal force.
  • the divided dummy plate has a protruding portion, and the latching hole is provided in the protruding portion, it is easy to remove the divided dummy plate from the iron core body. And when the taper part is formed in the resin injection hole of a division
  • the split dummy plate is formed of a material different from the core pieces constituting the core body, for example, a high-strength metal material
  • the split dummy plate is removed by removing the resin remaining on the surface of the split dummy plate. It can be used repeatedly, saving resources.
  • the divided dummy plate is formed of an inexpensive metal material or a metal material that reuses scrap, it is possible to save resources and reduce manufacturing costs.
  • segmentation dummy board is formed with a resin material, a heat resistant plastic material, etc., it can manufacture cheaply and can also shape-process easily.
  • the split dummy plate on the side in contact with the core body is coated with a coating material that improves peelability
  • the split dummy plate can be easily peeled off from the core body.
  • the surface of the divided dummy plate on which the resin is injected is coated with a coating material that improves the peelability, the resin adhering to the surface of the divided dummy plate can be easily removed, and the divided dummy plate can be easily removed. Useful for repeated use of the board.
  • FIG. 1 It is a perspective view of the rotor lamination
  • (A) is a top view of the iron core main body after resin injection
  • (B) is a partial side view.
  • (A) is a partial plan view of the core body after the resin is injected, and (B) to (D) are explanatory views showing a method for removing the divided dummy plate from the core body.
  • (A), (B) is explanatory drawing which shows the removal method of a division
  • (A) is a top view of the iron core main body after resin injection
  • (B) is a partial side view.
  • (A), (B) is the top view of a division
  • (A), (B) is the top view of a division
  • (A) is a fragmentary sectional side view which shows the state which has arrange
  • (B) is the same of the division
  • a rotor laminated core (hereinafter also simply referred to as a rotor core) 10 manufactured by the method for manufacturing a rotor laminated core according to the first embodiment of the present invention will be described with reference to FIGS. .
  • a rotor core (rotor) 10 is formed by laminating a plurality of core pieces 11, and a core body 14 in which a plurality of magnet insertion holes (an example of a magnet insertion portion) 13 is formed around a central shaft hole 12.
  • a permanent magnet 15 is inserted into the magnet insertion hole 13.
  • the iron core piece 11 constituting the iron core body 14 is formed by punching an electromagnetic steel plate having a thickness of, for example, about 0.5 mm or less (specifically, 0.15 to 0.5 mm) in an annular shape.
  • the core body may be manufactured by winding a plurality of continuous arc-shaped segment core pieces in a spiral manner while being bent at the connecting portion, and a plurality of segment cores separated one by one. You may manufacture by laminating
  • any one or two or more of caulking, welding, and adhesion can be used in combination, but they may be simply stacked.
  • the shaft hole 12 is a mounting hole for a shaft (shaft) (not shown), and a detent (projection) 16 for the rotor core 10 is provided on the inner side.
  • the arrangement position (number) and shape of the are not limited to this, and may be, for example, a conventionally known arrangement position (number) or shape.
  • a permanent magnet 15 is inserted into the magnet insertion hole 13. After the permanent magnet 15 is inserted, the permanent magnet 15 is filled with a resin 17 and solidified.
  • the resin for example, a thermosetting resin or a thermoplastic resin such as an epoxy resin conventionally used for manufacturing a semiconductor device can be used.
  • a plurality of light-weight holes 18 for reducing the weight of the core body 14 are provided between the shaft holes 12 formed in the core body 14 and the magnet insertion holes 13 (in the radial inner region of the core body 14). Then, 8) are formed.
  • the shape of the lightweight hole 18 has a circular cross section, but is not limited thereto, and may be, for example, a polygonal cross section or an elliptical cross section. Further, the number of lightweight holes is not limited to the above number. In addition, a lightweight hole does not need to be formed.
  • the rotor core 10 shown above is used for a motor.
  • an electromagnetic steel sheet (not shown) having a thickness of, for example, about 0.5 mm or less is punched in an annular shape, and a plurality of punched iron core pieces 11 are sequentially laminated to form an iron core.
  • a main body 14 is formed.
  • a shaft hole 12 is formed in the center of the iron core body 14, and a plurality of magnet insertion holes 13 penetrating in the vertical direction are formed around the shaft hole 12.
  • a non-excited permanent magnet 15 having a smaller cross section than the magnet insertion hole 13 is inserted into each magnet insertion hole 13. It should be noted that an excited permanent magnet may be inserted into each magnet insertion hole 13.
  • a plurality are provided on the surface (injection side of the resin 17) of the iron core body 14 in contact with the upper mold 20 having a resin reservoir pot (an example of a resin reservoir portion) 19.
  • the divided dummy plates 21 are arranged.
  • Each of the divided dummy plates 21 is manufactured (manufactured) between the upper mold 20 and the lower mold 22 (the upper mold 20 and the lower mold 22 are collectively referred to as a mold) after the core body 14 is manufactured. It is placed on the surface of the core piece 11 and is disposed between the core body 14 and the upper mold 20.
  • Each of the divided dummy plates 21 is a circular plate, and as shown in FIGS. 2 and 3A, one of the two magnet insertion holes 13 corresponding to each other in plan view among the plurality of magnet insertion holes 13.
  • the portions here, the portions excluding both ends of the pair of magnet insertion holes 13
  • the thickness of the divided dummy plate 21 is, for example, about 0.5 to 10 times the thickness of the iron core piece 11.
  • the divided dummy plate 21 does not cover the lightweight hole 18, but may be covered. By arranging in this way, the resin reservoir can be freely formed without being affected by the lightweight hole. Can do.
  • This divided dummy plate may individually cover one of the plurality of magnet insertion holes 13, and a plurality of the plurality of magnet insertion holes depending on the number and formation positions of the magnet insertion holes. (For example, three or four or more) may be individually covered.
  • the divided dummy plate is not limited to a circular plate, and may be, for example, a polygonal plate such as a triangular plate (inverted triangular plate) or a quadrangular plate, or an elliptical plate.
  • the divided dummy plate 21 has a lower surface 24 of the divided dummy plate 21 and a lower surface of the upper die 20 in a dummy plate housing portion 23 formed in the upper die 20 provided with the resin reservoir pot 19. 25 are stored (accommodated) so as to be at the same height level.
  • the dummy plate storage portion 23 is a plurality of recesses formed at equal pitches in the circumferential direction on the outer side in the radial direction of the upper mold 20, and the shape thereof is slightly larger than the divided dummy plate 21. .
  • peripheral side surface 26 of the divided dummy plate 21 and the inner side surface 27 of the dummy plate storage portion 23 have a gap in a range in which leakage of the resin 17 can be suppressed (for example, about 40 ⁇ m or less).
  • the portion (other portion) of the magnet insertion hole 13 that is not covered with the divided dummy plate 21 is covered with the lower surface 25 of the upper mold 20.
  • a resin injection hole (small hole) 28 that communicates with the magnet insertion hole 13 is formed in the divided dummy plate 21.
  • the resin injection hole 28 is smaller than the plane cross-sectional area of the magnet insertion hole 13 into which the resin 17 is to be injected, and is formed radially inward in a region overlapping the magnet insertion hole 13 in plan view.
  • the permanent magnet 15 is disposed radially outside or in the center in the region overlapping with the magnet insertion hole 13. You can also.
  • the resin injection hole 28 overlaps the magnet insertion hole 13 in plan view in order to stably fill the resin 17 while maintaining the fluidity of the resin 17.
  • the permanent magnet 15 is inserted into the magnet insertion hole 13 of the iron core body 14 when the rotor core 10 is manufactured.
  • a split dummy plate 21 having a resin injection hole 28 formed thereon is disposed on the uppermost portion of the core body 14, or the end surface side opposite to the split dummy plate 21 (the lower die 22 of the core body 14 is contacted).
  • the permanent magnet 15 may be inserted into the magnet insertion hole 13 from the side in contact.
  • the permanent magnet 15 may be inserted into the magnet insertion hole 13 through the resin injection hole by making the resin injection hole have the same shape as the magnet insertion hole 13 formed in the iron core body 14 in plan view. it can.
  • the divided dummy plate 21 has a protruding portion 29 protruding in the radial direction of the iron core main body 14 in plan view, and this protruding portion 29 is used when the divided dummy plate 21 is removed from the iron core main body 14.
  • a retaining hole 30 having a rectangular cross section is provided.
  • the maximum protrusion margin in the radial direction of the protrusion 29 is, for example, about 3 to 10 mm.
  • the shape of the retaining hole is not limited to this, and may be, for example, a polygonal shape such as a triangular shape or an elliptical shape.
  • the divided dummy plate 21 may be made of the same metal material as the iron core piece 11 or may be made of a metal material different from the iron core piece 11. Note that the metal material is preferably a heat-treatable material.
  • the divided dummy plate is made of a metal material different from the iron core piece, for example, stainless steel, steel, or aluminum alloy
  • a coating material that improves releasability.
  • the coating material in addition to fluorine-based or polytetrafluoroethylene-based (Teflon (registered trademark)), Cr (chromium) plating, Ni (nickel) plating, or the like can be used. In consideration of repeated use of this divided dummy plate, inexpensive Ni plating is preferable.
  • strength can also be improved by making the thickness of a division
  • the divided dummy plate can be made of a resin material such as an epoxy resin, a heat-resistant plastic material, or the like. In this case, the divided dummy plate can be manufactured at a low cost and can be easily processed.
  • the iron core body 14 is preheated in a state of being sandwiched between the upper mold 20 and the lower mold 22 of the resin sealing device 31, and from the resin reservoir pot 19 provided in the upper mold 20, Each magnet insertion hole 13 is filled with a liquid resin 17 and cured, and the permanent magnet 15 is fixed in the magnet insertion hole 13.
  • the iron core body 14 is preferably preheated in advance by a preheating device before being sandwiched between the upper mold 20 and the lower mold 22 of the resin sealing device 31.
  • a resin reservoir pot 19 that heats the raw material (pellet shape) of the resin 17 to be liquid is extended to the end of the upper mold 20 that contacts the divided dummy plate 21. It exists in the state (namely, the state which penetrated the upper mold
  • the resin sealing device 31 is provided with a plunger 32 that can be moved up and down in the resin reservoir pot 19.
  • the molten resin 17 pushed out of the resin reservoir pot 19 by the plunger 32 communicates with the downstream end of the resin reservoir pot 19 and is formed on the contact surface with the divided dummy plate 21 of the upper mold 20. It passes through the resin flow path 33 and is injected toward the inside in the radial direction of the permanent magnet 15 in the magnet insertion hole 13 through the resin injection hole 28 and finally filled into the magnet insertion hole 13.
  • An epoxy resin which is an example of a thermosetting resin is used as the resin 17, but other thermosetting resins and thermoplastic resins can also be used.
  • the iron core main body 14 is about 170 degreeC by preheating or with a metal mold, or high temperature or low in the range of +/- 20 degreeC from this. Heat to temperature.
  • the iron core body 14 is further heated by a mold to cure the resin 17, and the permanent magnet inserted into the magnet insertion hole 13. 15 can be fixed with resin 17.
  • the resin reservoir pot 19 is arranged at a position where it does not overlap with the resin injection hole 28 provided in the divided dummy plate 21 in contact with the upper mold 20 in plan view. Also good. In this case, it is not necessary to provide a resin flow path in the upper mold.
  • the resin can be injected by using a resin sealing device in which a resin reservoir pot is formed in which a resin raw material (pellet shape) is heated to form a liquid in the lower mold.
  • a resin sealing device in which a resin reservoir pot is formed in which a resin raw material (pellet shape) is heated to form a liquid in the lower mold.
  • the divided dummy plate 21 in which the resin injection hole 28 is formed is disposed on the lower end surface side of the core body 14, and thus comes into contact with the lower mold.
  • the magnet insertion hole 13 formed in the iron core main body 14 opens upward, the magnet insertion hole 13 is permanently attached to the magnet insertion hole 13 from the iron core piece 11 side located on the end surface side opposite to the divided dummy plate 21.
  • a magnet 15 can be inserted.
  • the resin reservoir pot 19 provided in the upper mold 20 can be filled with the resin 17 from one resin reservoir pot 19 into two magnet insertion holes 13. A plurality are provided at equal intervals in the circumferential direction. As a result, the resin reservoir pot 19 is connected to the magnet insertion hole 13 via the resin flow path 33 provided at the bottom of the upper mold 20 in communication with the resin reservoir pot 19 and the resin injection hole 28 of the divided dummy plate 21. The resin 17 can be supplied.
  • the divided dummy plate 21 is replaced with an excess resin (residual cured resin). 34 and removed.
  • the surplus resin 34 remains in the resin reservoir pot 19, the resin injection hole 28, and the resin flow path 33 and is cured.
  • the divided dummy plate 21 may be peeled off using a machine, but it may be peeled off only by an operator's manual work without requiring a special process and equipment.
  • a stripping jig 35 bent in an L shape is used, and its tip is hooked into the latching hole 30 of the divided dummy plate 21, and the stripping jig 35 is attached. Then, the iron core body 14 is pulled in the horizontal direction outward in the radial direction. Further, as shown in FIG. 4C, the corner portion of the peeling jig 35 is pressed against the lower surface of the protruding portion 29 of the divided dummy plate 21, and the divided dummy plate 21 is pushed up from the surface of the core body 14. Then, as shown in FIG. 4D, the tip of the stripping jig 35 is hooked on the latching hole 30 of the split dummy plate 21, and the split dummy plate 21 is pulled while twisting in the circumferential direction of the core body 14. .
  • a stripping jig 36 having both end portions bent at right angles is used, and the both end portions are hooked to the divided dummy plate 21 which is opposed to the shaft hole 12 as a center.
  • Each of the divided dummy plates 21 is pulled while being twisted in the circumferential direction of the core body 14 by being hooked in each of the holes 30 and rotating the stripping jig 36 around the central portion thereof.
  • a stripping jig 39 provided with hooking portions 38 at right angles on both sides of the bar 37 is used, and the hooking portions 38 are opposed to each other around the shaft hole 12.
  • Each of the split dummy plates 21 is hooked into the retaining holes 30 and the stripping jig 39 is pulled in the horizontal direction from one side in the diameter direction of the iron core body 14 to the other side.
  • each divided dummy plate 21 removed from the core body 14 may be discarded as it is after the third step described above is completed, but it is preferably used repeatedly.
  • the divided dummy plate 21 in which the resin 17 remains in the resin injection hole 28 is turned upside down, and a pressing member (not shown) is lowered with respect to the divided dummy plate 21 and inserted into the resin injection hole 28.
  • the resin 17 in each resin injection hole 28 is extruded.
  • the surplus resin 34 attached to each divided dummy plate 21 is removed, so that this divided dummy plate 21 can be used repeatedly.
  • positioning the divided dummy plate by providing a convex portion or a concave portion around the circular divided dummy plate in a plan view and providing a concave portion or a convex portion to be engaged with the mold on which the divided dummy plate is mounted. Can be easily performed (the same applies to the following embodiments).
  • a divided dummy plate 50 can be used to remove the excess resin 34.
  • a plurality of divided dummy plates 50 are used to cover all the magnet insertion holes 13 formed in the iron core body 14, but only one is shown in FIGS. 6, 7A, and 7B. Only the divided dummy plate 50 is shown and the others are omitted (the same applies to the following embodiments).
  • the divided dummy plate 50 is a non-circular plate that is wide outward in the radial direction and individually covers all of the two corresponding magnet insertion holes 13 in plan view among the plurality of magnet insertion holes 13. . More specifically, a protrusion 51 (a protrusion 29 and a protrusion 29 is formed so as to cover all of the two magnet insertion holes 13 without blocking the lightweight hole 18 and protrudes radially outward of the iron core body 14 in plan view). Having the same function and effect).
  • the upper surface 52 of the divided dummy plate 50 is in contact with the lower surface 54 of the upper die 53 (substantially similar to the upper die 20) provided with the resin reservoir pot 19, but the upper die provided with the resin reservoir pot.
  • a dummy plate storage portion for storing the divided dummy plate 50 may be provided (see FIG. 2).
  • the lower surface of the divided dummy plate and the lower surface of the upper mold are stored (accommodated) so as to have the same height level.
  • all the magnet insertion holes 13 are covered with the plurality of divided dummy plates 50, and the lower surface of the upper mold is in contact with the upper surface of the iron core body 14, so that the force applied from the mold to the iron core body 14 can be made uniform.
  • a divided dummy plate 60 can be used to remove the excess resin 34.
  • the divided dummy plate 60 has a circular arc shape (fan shape) obtained by dividing the iron core piece 11 in the circumferential direction, and covers all of the core body 14 from the inner end to the outer end in the radial direction in plan view. .
  • Each divided dummy plate 60 individually covers the entire corresponding two magnet insertion holes 13 in plan view.
  • the number of divided dummy plates 60 is half of the number of all magnet insertion holes 13, all the magnet insertion holes 13 are covered with a plurality of divided dummy plates 60.
  • segmentation dummy board 60 adjacent to the circumferential direction of the iron core main body 14 will be in contact state, you may have a slight clearance gap (for example, about 2 mm or less).
  • Each divided dummy plate 60 has two (or a plurality of) protruding portions 61 that protrude outward in the radial direction of the iron core body 14 in plan view.
  • a circular retaining hole 62 to be used is provided.
  • the two protrusions 61 are provided at intervals in the circumferential direction of the core body 14.
  • each divided dummy plate 60 is disposed so as to block all the lightweight holes 18, the degree of freedom of the arrangement position of the resin reservoir pot 19 with respect to the surface of the core body 14 is increased, and the magnet insertion hole 13 is efficiently resinized. 17 can be injected.
  • each of the above-described divided dummy plates 60 is installed on the surface of the core body 14, a positioning pin can be inserted into the retaining hole 62. Further, when removing each divided dummy plate 60 from the iron core main body 14, each divided dummy plate 60 is pulled horizontally toward the outside in the radial direction of the iron core main body 14 using the retaining holes 62.
  • a divided dummy plate 70 can be used to remove the excess resin 34.
  • the divided dummy plate 70 differs from the above-described divided dummy plate 60 only in the shape of the protruding portion.
  • the divided dummy plate 70 has an arc shape obtained by dividing the iron core piece 11 in the circumferential direction, covers all of the core body 14 from the inner end to the outer end in the radial direction, and on both sides in the circumferential direction, A projecting portion 71 projecting upward from the iron core body 14 is provided.
  • the protrusion 71 has a protrusion height from the surface of the core body 14 of, for example, about 1 to 10 mm. Further, the projecting portion 71 is provided from the inner end (shaft hole 12) to the outer end (outer peripheral position) along the radial direction of the iron core main body 14, and is provided at a plurality of positions with intervals in the radial direction. It may be provided. Furthermore, a latching hole can be provided in the protrusion.
  • a concave portion larger than the projecting portion 71 is located at the contact position with the upper mold projecting portion 71. It is good to form.
  • the lower surface of the upper mold can be brought into contact with the upper surface of the divided dummy plate 70.
  • the divisional dummy plate 70 can be removed from the core body 14 by holding the protrusion 71 and pulling it up.
  • the protrusion 71 may be rotated in the circumferential direction of the core body 14.
  • a split dummy plate 80 can be used to facilitate the removal of the excess resin 34.
  • the resin injection hole 81 of the divided dummy plate 80 is formed with a taper portion that opens (expands in diameter) from the iron core body 14 toward the upper mold, and the resin injection hole 81 with respect to the magnet insertion hole 13 in plan view. A part of (for example, about half) overlaps. Since the notch is given to the cured resin 17 by the tip (lower end) of the taper portion, the subsequent excess resin 34 can be easily removed.
  • This overlap amount is determined in consideration of the fluidity and curing time of the injected resin.
  • the taper part is formed in the whole resin injection hole 81, a part may be sufficient as it. Thereby, cutting of resin can be performed easily, it can suppress that the resin protrudes on the surface of the iron core main body 14, and can eliminate further.
  • each divided dummy plate 83 has a resin from a resin reservoir pot 19 provided in an upper mold (an example of a mold) 84.
  • a resin flow path 85 and a resin injection hole 86 for guiding 17 to the magnet insertion hole 13 of the iron core body 14 are provided. Accordingly, the resin flow path is not formed in the upper mold 84, and therefore the resin can be injected by changing the divided dummy plate for a plurality of types of core bodies.
  • a guide member that determines the installation position of the divided dummy plate 83 may be disposed between the upper mold 84 and the core body 14.
  • Reference numeral 87 denotes a lower mold.
  • the manufacturing method of the rotor laminated core which concerns on the 7th Example of this invention is demonstrated, referring FIG.
  • the resin reservoir pot 19 provided in the upper die 89 is overlapped with the position of the magnet insertion hole 13 in plan view. Accordingly, the resin reservoir pot 19 is directly above the divided dummy plate 90 and the magnet insertion hole 13 is directly below the divided dummy plate 90, and these are connected by the resin injection hole 91, and the resin reservoir pot 19 is connected to the magnet insertion hole 13 by resin.
  • the resin 17 is directly filled through the injection hole 91.
  • the resin injection hole 91 has a cross-sectional area smaller than that of the resin reservoir pot 19 and smaller than that of the magnet insertion hole 13.
  • Reference numeral 92 denotes a lower mold.
  • the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included. For example, a case where a method for manufacturing a rotor laminated core according to the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.
  • the divided dummy plate is disposed on the surface of the core body has been described. However, the divided dummy plate is provided on the upper die (or the lower die) via the lifting means (not shown), The mold (or the lower mold) can be moved up and down and used repeatedly.
  • the method for producing a rotor laminated core according to the present invention is applied to, for example, the production of a rotor used for a motor used in automobiles and home appliances, and the resin sealing of the permanent magnet to the rotor is reliable and easy. In addition, it becomes easy to peel off the adhered resin after the resin sealing, and it is possible to manufacture the rotor laminated iron core economically with good workability while suppressing resin leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

複数の鉄心片11を積層して形成された鉄心本体14の各磁石挿入部13に永久磁石15を挿入した後、これを挟持する金型に設けられた樹脂溜め部19から、磁石挿入部13に樹脂17を充填して永久磁石15を固定する回転子積層鉄心10の製造方法であり、鉄心本体14と金型の間に、磁石挿入部13の1又は複数を個別に覆い、これに連通する樹脂注入孔28が形成された分割ダミー板21を配置する第1工程と、分割ダミー板21の樹脂注入孔28を介して、樹脂溜め部19から樹脂17を、対応する磁石挿入部13に注入する第2工程と、磁石挿入部13に充填した樹脂17が硬化した後、分割ダミー板21を余剰樹脂34と共に除去する第3工程とを有し、樹脂封止の作業性を高める。

Description

回転子積層鉄心の製造方法
本発明は、複数の磁石挿入部に挿入された永久磁石を樹脂固定する回転子積層鉄心の製造方法に関する。
従来、モータに使用する回転子積層鉄心(ロータコア)の鉄心本体に永久磁石(マグネット)を固定する方法として、マグネットモールド工法がある。この工法は、磁石挿入部(磁石挿入孔)内に永久磁石が配置された鉄心本体を加熱し、これが一定温度に達した後に、磁石挿入部にモールド樹脂を注入し、これを加熱し硬化させることで、永久磁石を鉄心本体に固定させる方法である。
しかし、この工法では、注入後に硬化した樹脂が、鉄心本体の表面に固着して残るため、この残留樹脂を除去する工程が必要となり、リードタイムの短縮を妨げる要因となっていた。
そこで、図13に示すように、鉄心本体90の表面側(樹脂注入側)に、例えば金属製のダミー板(プレート)91を配置し、このダミー板91に形成した樹脂注入孔であるゲート(注入用の小孔)92からモールド樹脂(以下、単に樹脂ともいう)93を注入する方法が提案されている(例えば、特許文献1参照)。この方法では、注入後に硬化した樹脂93が、鉄心本体90の表面ではなくダミー板91の表面に固着して残留するため、鉄心本体90の表面からダミー板91を取り外すことで残留樹脂も一緒に除去することができ、従来に比べて、リードタイムの大幅な短縮が可能となった。
なお、符号94は永久磁石、符号95は磁石挿入部、符号96、97は、鉄心本体90を挟持する上型と下型、符号98は樹脂溜めポット、符号99は樹脂溜めポット98内の樹脂93を磁石挿入部95に注入するためのプランジャである。
特許第4414417号公報
しかしながら、ダミー板を使用して回転子積層鉄心を製造する場合、以下の問題があった。
ダミー板は、鉄心本体の軸孔を除く表面全体を覆うように、鉄心本体より径大の一体物として作製されているため、鉄心本体をモールド型(樹脂封止装置)にセットした際に、ダミー板で鉄心本体の表面のうねり(起伏)を完全に吸収することができない(追従できない)。このため、鉄心本体とダミー板との間に微小な隙間を生じさせ、この隙間から樹脂漏れを起こすことがあった。なお、ダミー板のサイズが大きいため、その反り管理も必要であった。
また、鉄心本体とダミー板との間の隙間の発生を抑えるため、型締圧(締め付け力)を上げることも考えられるが、この場合、鉄心本体の平坦度が悪くなるだけでなく、モールド後に、鉄心本体を構成する各鉄心片のスプリングバック(元に戻ろうとする力)で樹脂が割れ、積層方向に隣り合う鉄心片間に隙間を発生させることがあった。
そして、ダミー板を繰り返し使用するとゲート付近が磨滅するため、例え全てのゲートが磨滅しなくてもダミー板を交換する必要があり、ダミー板の寿命や交換サイクルが短くなるといった問題もあった。このため、ダミー板を予め熱処理して、その硬度を上げておくことが考えられるが、この場合、ダミー板全体にうねりや反りが生じて樹脂漏れが発生する(特に、ダミー板のサイズが大きいほど顕著)。また、ダミー板の厚みを増して剛性を上げることも考えられるが、この場合、ゲート内に溜まる樹脂の量が増えて廃棄する樹脂量も増える。
なお、樹脂注入後、鉄心本体とダミー板とは、ゲート内に残存する樹脂で接続されているが、鉄心本体からダミー板を取り外す際に、複数のモールド箇所(磁石挿入部)のうち数箇所で樹脂が深さ方向にめくれ(えぐれ)、永久磁石の表面が外部へ露出してしまうこともあった。これは、ダミー板を取り外す際に加える力の方向が、全てのモールド箇所で同一方向であることによる。
本発明はかかる事情に鑑みてなされたもので、残留樹脂の除去工程を不要とし、樹脂漏れを抑制しながら、作業性よく経済的に製造可能な回転子積層鉄心の製造方法を提供することを目的とする。
前記目的に沿う本発明に係る回転子積層鉄心の製造方法は、複数の鉄心片を積層して形成され、複数の磁石挿入部が形成された鉄心本体の前記各磁石挿入部に永久磁石を挿入した後、該鉄心本体を挟持する上型及び下型のいずれか一方の金型に設けられた樹脂溜め部から、前記磁石挿入部に樹脂を充填して前記永久磁石を固定する回転子積層鉄心の製造方法であって、
前記鉄心本体と前記金型の間に、前記複数の磁石挿入部の1又は複数を個別に覆い、該磁石挿入部に連通する樹脂注入孔が形成された分割ダミー板を配置する第1工程と、
前記分割ダミー板の前記樹脂注入孔を介して、前記金型の前記樹脂溜め部から樹脂を、対応する前記磁石挿入部に注入する第2工程と、
前記磁石挿入部に充填した樹脂が硬化した後、前記分割ダミー板を余剰樹脂と共に除去する第3工程とを有する。
本発明に係る回転子積層鉄心の製造方法において、前記樹脂溜め部からの樹脂は、前記金型の前記分割ダミー板への当接面に形成された樹脂流路、又は前記分割ダミー板に形成された樹脂流路及び該樹脂流路に続く前記樹脂注入孔を介して、前記対応する磁石挿入部に充填することができる。また、場合によっては、平面視して、前記樹脂溜め部と前記磁石挿入部は一部ラップし、前記樹脂溜め部からの樹脂は、前記分割ダミー板に形成された前記樹脂注入孔を介して、前記対応する磁石挿入部に直接充填することもできる。
本発明に係る回転子積層鉄心の製造方法において、前記樹脂溜め部が設けられた前記金型に、前記分割ダミー板を収納するダミー板収納部が設けられ、該分割ダミー板は前記対応する磁石挿入部の一部を覆い、該磁石挿入部の他部は前記金型で覆うことができる。
また、本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板は、前記対応する磁石挿入部の全部を覆ってもよい。
ここで、前記樹脂溜め部が設けられた前記金型に、前記分割ダミー板を収納するダミー板収納部を設けるのがよい。
本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板は、前記鉄心本体から突出する突出部を有し、該突出部には該分割ダミー板の除去時に使用する掛止孔が設けられていることが好ましい。
また、本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板の前記樹脂注入孔には、前記鉄心本体から前記金型に向けて開くテーパー部が形成されているのがよい。
更に、本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板に設けられている前記樹脂注入孔は、平面視して該分割ダミー板を介して樹脂を注入しようとする前記磁石挿入部の半径方向内側に形成されているのがよい。
本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板は円形板にすることができる。
また、本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板は、半径方向外側に幅広となった非円形板にしてもよい。
本発明に係る回転子積層鉄心の製造方法において、前記分割ダミー板は、前記鉄心本体を構成する鉄心片とは異なる材料で形成され、しかも該分割ダミー板の片面又は両面に、剥離性を向上させるコーティング材が被覆されていることが好ましい。
本発明に係る回転子積層鉄心の製造方法は、鉄心本体と金型との間に、複数の磁石挿入部の1又は複数を個別に覆う分割ダミー板を配置するので、鉄心本体の表面に対する各分割ダミー板の設置領域を狭くできる。これにより、全磁石挿入部を覆う一体物に比べて、鉄心本体の表面が受ける分割ダミー板の反りの影響を少なくでき、また各分割ダミー板が受ける鉄心本体の表面のうねりの影響も小さくできるので、鉄心本体と分割ダミー板との間の隙間の発生を抑制でき、その結果、樹脂漏れも抑制できる。また、分割ダミー板のサイズを小さくできるので、反りの管理工数も低減できる。
そして、隙間の発生を抑制できるため、型締圧を低く設定でき、従来、型締圧が原因で発生していた鉄心本体の平坦度の悪化や、モールド後の各鉄心片のスプリングバックによる樹脂割れを抑制でき、積層方向に隣り合う鉄心片間の隙間の発生を防止できる。
更に、分割ダミー板を繰り返し使用するに際しても、樹脂注入孔付近が磨滅した分割ダミー板のみを個別に交換すればよい。なお、小型の分割ダミー板を使用することで、例えば、熱処理によってその硬度が上げられるため、樹脂注入孔の磨滅速度を遅くでき、分割ダミー板の寿命も伸びて、交換サイクルも遅くできる。また、反りを考慮して剛性を上げる必要もなくなるため、分割ダミー板の板厚を薄くすることができ、樹脂注入孔内に残存する樹脂量を削減できる。
そして、分割ダミー板を使用することで、鉄心本体から分割ダミー板を取り外す際に、分割ダミー板ごとに任意の方向に力がかけられるため、樹脂が深さ方向でめくれないように、鉄心本体から分割ダミー板を取り外すことができる。
以上のことから、残留樹脂の除去工程を不要とし、樹脂漏れを抑制しながら、作業性よく経済的に、回転子積層鉄心を製造できる。
また、樹脂溜め部からの樹脂を、金型の分割ダミー板への当接面に形成された樹脂流路を介して、又は分割ダミー板に形成された樹脂流路及びこれに続く樹脂注入孔を介して、対応する磁石挿入部に充填する場合、樹脂溜め部の形成位置の自由度が増す。
そして、分割ダミー板が、対応する磁石挿入部の一部を覆う場合、分割ダミー板の更なるコンパクト化が図れ、鉄心本体と分割ダミー板との間の隙間の発生を更に抑制できる。なお、磁石挿入部の一部を覆う分割ダミー板は、樹脂溜め部が設けられた金型のダミー板収納部に収納されるため、磁石挿入部の他部は金型で覆われ、樹脂漏れを抑制できる。
また、分割ダミー板が、対応する磁石挿入部の全部を覆う場合、各磁石挿入部を分割ダミー板のみで塞ぐことができ、各磁石挿入部からの樹脂漏れを抑制できる。
ここで、樹脂溜め部が設けられた金型に、磁石挿入部の全部を覆う分割ダミー板を収納するダミー板収納部を設ける場合、金型が鉄心本体の表面に当接し、鉄心本体の表面を均等な力で押圧できる。
また、分割ダミー板が突出部を有し、この突出部に掛止孔が設けられている場合、鉄心本体からの分割ダミー板の除去作業が容易になる。
そして、分割ダミー板の樹脂注入孔にテーパー部が形成されている場合、鉄心本体と分割ダミー板とを接続する樹脂の切断が容易になる。
更に、分割ダミー板を、鉄心本体を構成する鉄心片とは異なる材料、例えば、高強度の金属材料で形成した場合、分割ダミー板の表面に残存する樹脂を除去することで、分割ダミー板を繰り返し使用することができ、省資源化が図れる。また、分割ダミー板を、安価な金属材料又はスクラップを再利用した金属材料で形成した場合は、省資源化を図ることができると共に、製造コストの低減も図れる。そして、分割ダミー板を樹脂材料や耐熱性プラスチック材料等で形成した場合、安価に製造でき、しかも形状加工も容易にできる。
ここで、鉄心本体と接触する側の分割ダミー板の表面に、剥離性を向上させるコーティング材を被覆した場合、鉄心本体からの分割ダミー板の剥ぎ取りが容易になる。また、樹脂が注入される側の分割ダミー板の表面に、剥離性を向上させるコーティング材を被覆した場合には、分割ダミー板の表面に付着した樹脂を容易に除去することができ、分割ダミー板を繰り返し使用する際に役立つ。
本発明の第1の実施例に係る回転子積層鉄心の製造方法により製造した回転子積層鉄心の斜視図である。 同回転子積層鉄心の製造方法により樹脂の注入が行われている鉄心本体の一部切欠き側面図である。 (A)は同回転子積層鉄心の製造方法による樹脂注入後の鉄心本体の平面図、(B)は部分側面図である。 (A)は同樹脂注入後の鉄心本体の部分平面図、(B)~(D)はそれぞれ同鉄心本体からの分割ダミー板の取り外し方法を示す説明図である。 (A)、(B)はそれぞれ分割ダミー板の取り外し方法を示す説明図である。 本発明の第2の実施例に係る回転子積層鉄心の製造方法により樹脂の注入が行われている鉄心本体の一部切欠き側面図である。 (A)は同回転子積層鉄心の製造方法による樹脂注入後の鉄心本体の平面図、(B)は部分側面図である。 (A)、(B)はそれぞれ本発明の第3の実施例に係る回転子積層鉄心の製造方法に使用する分割ダミー板の平面図、及び部分側面図である。 (A)、(B)はそれぞれ本発明の第4の実施例に係る回転子積層鉄心の製造方法に使用する分割ダミー板の平面図、及び部分側面図である。 (A)は本発明の第5の実施例に係る回転子積層鉄心の製造方法に使用する分割ダミー板を鉄心本体に配置した状態を示す部分側断面図、(B)は同分割ダミー板の取り外し状況を示す説明図である。 本発明の第6の実施例に係る回転子積層鉄心の製造方法により樹脂の注入が行われている鉄心本体の一部切欠き断面図である。 本発明の第7の実施例に係る回転子積層鉄心の製造方法により樹脂の注入が行われている鉄心本体の一部切欠き断面図である。 従来例に係る回転子積層鉄心の製造方法により樹脂の注入が行われている鉄心本体の部分側断面図である。
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
まず、図1、図2を参照しながら、本発明の第1の実施例に係る回転子積層鉄心の製造方法により製造した回転子積層鉄心(以下、単に回転子鉄心ともいう)10について説明する。
回転子鉄心(ロータ)10は、複数の鉄心片11を積層して形成され、中央の軸孔12の周囲に複数の磁石挿入孔(磁石挿入部の一例)13が形成された鉄心本体14の磁石挿入孔13に、永久磁石15を挿入したものである。
鉄心本体14を構成する鉄心片11は、厚みが、例えば、0.5mm以下(具体的には0.15~0.5mm)程度の電磁鋼板を環状に打ち抜いたものである。なお、鉄心本体は、連続する複数の円弧状のセグメント鉄心片を、連結部で折り曲げながら螺旋状に巻回し積層して製造してもよく、また、1枚ごとに分離された複数のセグメント鉄心片を環状に積層して製造してもよい。
ここで、複数の鉄心片11の積層方法としては、かしめ、溶接、及び接着のいずれか1又は2以上を組み合わせて使用できるが、単に平積みするだけでもよい。
軸孔12は、図示しないシャフト(軸)の装着孔であり、その内側には、回転子鉄心10の回り止め(突起)16が設けられている。
磁石挿入孔13は、鉄心本体14の半径方向の外側領域に、上下方向に貫通して複数(ここでは、2×8=16個)形成されている。具体的には、平面視してハ字状となった断面長方形の一対の磁石挿入孔13が、軸孔12を中心として等間隔に8組(複数組)配置されているが、磁石挿入孔の配置位置(個数)及び形状は、これに限定されるものではなく、例えば、従来公知の配置位置(個数)又は形状でもよい。
この磁石挿入孔13には永久磁石15が挿入され、永久磁石15の挿入後、これに樹脂17を充填して固化させている。ここで、樹脂としては、例えば、従来半導体装置の製造に使用しているエポキシ樹脂のような熱硬化性樹脂又は熱可塑性樹脂を使用できる。
また、鉄心本体14に形成された軸孔12と磁石挿入孔13との間位置(鉄心本体14の半径方向内側領域)には、鉄心本体14の軽量化のための軽量孔18が複数(ここでは、8個)形成されている。この軽量孔18の形状は、断面円形となっているが、これに限定されるものではなく、例えば、断面多角形や断面楕円形等でもよい。また、軽量孔の個数も、上記した個数に限定されるものではない。
なお、軽量孔は形成しなくてもよい。
以上に示した回転子鉄心10をモータに使用する。
続いて、本発明の第1の実施例に係る回転子積層鉄心の製造方法について説明する。
まず、図1、図2に示すように、厚みが、例えば、0.5mm以下程度の電磁鋼板(図示しない)を環状に打ち抜き、この打ち抜かれた複数の鉄心片11を順次積層して、鉄心本体14を形成する。
これにより、鉄心本体14の中央に軸孔12が形成され、この軸孔12の周囲に、上下方向に貫通した磁石挿入孔13が複数形成される。そして、各磁石挿入孔13に、この磁石挿入孔13より断面が小さい無励磁の永久磁石15を挿入する。なお、各磁石挿入孔13には、励磁済みの永久磁石を挿入してもよい。
次に、第1工程について説明する。
図2、図3に示すように、樹脂溜めポット(樹脂溜め部の一例)19を有する上型20に当接する鉄心本体14の表面(樹脂17の注入側)に、複数(ここでは8個)の分割ダミー板21を配置する。この各分割ダミー板21は、鉄心本体14の製造後、上型20と下型22(上型20及び下型22を総称して金型という)とで挟持される(挟み込まれる)前に、鉄心片11の表面に載置して、鉄心本体14と上型20との間に配置されている。
各分割ダミー板21は、円形板であって、図2、図3(A)に示すように、複数の磁石挿入孔13のうち、それぞれ平面視して対応する2つの磁石挿入孔13の一部(ここでは、一対の磁石挿入孔13の両端部を除く部分)を個別に覆っている。この分割ダミー板21の厚みは、鉄心片11の厚みの例えば、0.5倍以上10倍以下程度である。
なお、分割ダミー板21は、軽量孔18を覆っていないが、覆うようにしてもよく、このように配置することで、軽量孔の影響を受けることなく、樹脂溜め部を自由に形成することができる。
この分割ダミー板は、複数の磁石挿入孔13のうちの1つを、それぞれ個別に覆ってもよく、また、磁石挿入孔の個数や形成位置に応じて、複数の磁石挿入孔のうちの複数(例えば、3つ又は4つ以上)を、それぞれ個別に覆ってもよい。そして、分割ダミー板は、円形板に限定されるものではなく、例えば、三角形板(逆三角形板)や四角形板等の多角形板、又は楕円形板にすることもできる。
この分割ダミー板21は、図2に示すように、樹脂溜めポット19が設けられた上型20に形成されたダミー板収納部23内に、分割ダミー板21の下面24と上型20の下面25とが、同一高さレベルとなるように、収納(収容)されている。このダミー板収納部23は、上型20の半径方向外側に、その周方向に等ピッチで複数形成された凹部であって、その形状は、分割ダミー板21よりも僅かに大きくした形状である。また、分割ダミー板21の周囲側面26と、ダミー板収納部23の内側面27とは、樹脂17の漏れ出しを抑制できる範囲(例えば、40μm以下程度)で、隙間を有している。
これにより、分割ダミー板21で覆われない磁石挿入孔13の部分(他部)は、上型20の下面25で覆われることになる。
また、分割ダミー板21には、図2に示すように、磁石挿入孔13に連通する樹脂注入孔(小孔)28が形成されている。
この樹脂注入孔28は、樹脂17を注入しようとする磁石挿入孔13の平断面の面積より小さく、平面視して磁石挿入孔13と重なる領域内の半径方向内側に形成されている。しかし、例えば、磁石挿入孔13に挿入する永久磁石15の配置位置、又は樹脂溜めポット19の位置に応じて、磁石挿入孔13と重なる領域内の半径方向外側又は場合によっては中央に配置することもできる。
そして、樹脂注入孔28は、樹脂17の流動性を保ちつつ充填を安定に行うため、磁石挿入孔13と平面視して重なる。
ここで、樹脂注入孔28の大きさは、永久磁石15の断面積より小さく設定されているので、回転子鉄心10の製造に際しては、鉄心本体14の磁石挿入孔13に永久磁石15を挿入した後、この鉄心本体14の最上部に、樹脂注入孔28が形成された分割ダミー板21を配置したり、また、分割ダミー板21とは反対の端面側(鉄心本体14の下型22に当接する側)から、磁石挿入孔13に永久磁石15を挿入してもよい。なお、樹脂注入孔を、鉄心本体14に形成される磁石挿入孔13と平面視して同一形状とすることで、この樹脂注入孔を介して磁石挿入孔13に永久磁石15を挿入することもできる。
また、分割ダミー板21は、平面視して鉄心本体14の半径方向外側に突出する突出部29を有し、この突出部29には、鉄心本体14からの分割ダミー板21の除去時に使用する断面長方形の掛止孔30が設けられている。ここで、突出部29の半径方向の最大突出代は、例えば、3~10mm程度である。なお、掛止孔の形状は、これに限定されるものではなく、例えば、例えば、三角形状等の多角形状、又は楕円状にすることもできる。
分割ダミー板21は、鉄心片11と同じ金属材料で構成してもよく、また鉄心片11と異なる金属材料で構成してもよい。なお、金属材料は、熱処理可能な材料が好ましい。
ここで、分割ダミー板を鉄心片と異なる金属材料、例えば、ステンレス材、鋼材、又はアルミニウム合金で構成する場合、分割ダミー板の片面又は両面に、剥離性を向上させるコーティング材を被覆する。なお、コーティング材としては、フッ素系やポリテトラフルオロエチレン系(テフロン(登録商標)系)のほか、Cr(クロム)めっきやNi(ニッケル)めっき等を使用できる。この分割ダミー板の繰り返し使用を考えた場合は、安価なNiめっきが好ましい。また、分割ダミー板の厚みを鉄心片の厚みよりも厚く(例えば、鉄心片の1.2倍以上10倍以下程度)することで、その強度を向上させることもできる。
更に、分割ダミー板を、エポキシ樹脂等の樹脂材料や耐熱性プラスチック材料等で構成することもでき、この場合、分割ダミー板を安価に製造でき、形状加工も容易にできる。
続いて、第2工程について説明する。
ここでは、鉄心本体14を、図2に示すように、樹脂封止装置31の上型20と下型22で挟んだ状態で予熱して、上型20に設けられた樹脂溜めポット19から、各磁石挿入孔13に液状の樹脂17を充填して硬化させ、磁石挿入孔13内に永久磁石15を固定する。なお、鉄心本体14は、樹脂封止装置31の上型20と下型22で挟む前に、予め予熱装置で予熱するのがよい。
使用する樹脂封止装置31の上型20には、樹脂17の原料(ペレット状)を加熱して液状にする樹脂溜めポット19が、分割ダミー板21に当接する上型20の端部まで延在した状態(即ち、上型20を上下に貫通した状態)で設けられている。
また、樹脂封止装置31には、樹脂溜めポット19内を上下方向に昇降可能なプランジャ32が設けられている。このプランジャ32により、樹脂溜めポット19から押し出された溶融状態の樹脂17は、樹脂溜めポット19の下流側端部に連通し、上型20の分割ダミー板21との当接面に形成された樹脂流路33を通り、樹脂注入孔28を介して磁石挿入孔13内の永久磁石15の半径方向内側に向けて注入され、最終的に磁石挿入孔13に充填される。この樹脂17には、熱硬化性樹脂の一例であるエポキシ樹脂を使用しているが、他の熱硬化性樹脂や熱可塑性樹脂も使用できる。なお、エポキシ樹脂を使用する場合は、溶融温度が170℃程度であるため、鉄心本体14を、予熱により、又は金型により、170℃程度、又はこれより±20℃の範囲で高い温度又は低い温度に加熱しておく。
そして、全ての磁石挿入孔13内に、樹脂17を注入した後は、金型により、鉄心本体14を更に加熱することで、樹脂17を硬化させ、磁石挿入孔13内に挿入された永久磁石15を樹脂17で固定できる。
ここで、樹脂溜めポット19は、平面視して、上型20に当接する分割ダミー板21に設けられた樹脂注入孔28とは重ならない位置に配置しているが、重なる位置に配置してもよい。この場合、上型に樹脂流路を設ける必要はない。
なお、樹脂の注入は、下型に樹脂の原料(ペレット状)を加熱して液状にする樹脂溜めポットが形成された樹脂封止装置を使用して行うこともできる。
この場合、樹脂注入孔28が形成された分割ダミー板21は、鉄心本体14の下端面側に配置されるため、下型と当接することになる。これにより、鉄心本体14に形成される磁石挿入孔13は、上方へ向けて開口するため、分割ダミー板21とは反対の端面側に位置する鉄心片11側から、各磁石挿入孔13に永久磁石15を挿入できる。そして、プランジャにより、樹脂溜めポットから押し出された液状の樹脂が、樹脂溜めポットの下流側端部に連通し、下型の分割ダミー板との当接面に形成された樹脂流路を通り、樹脂注入孔28を介して最終的に各磁石挿入孔13に充填される。
図2、図3(A)に示すように、上型20に設けた樹脂溜めポット19は、1個の樹脂溜めポット19から2個の磁石挿入孔13に、樹脂17を充填できるように、周方向に等間隔に複数設けられている。
これにより、樹脂溜めポット19から磁石挿入孔13に、樹脂溜めポット19に連通して上型20の底部に設けられた樹脂流路33と分割ダミー板21の樹脂注入孔28を介して、液状の樹脂17を供給できる。
最後に、第3工程について説明する。
図3(A)、(B)、図4(A)、(B)に示すように、磁石挿入孔13に充填した樹脂17が硬化した後、分割ダミー板21を余剰樹脂(残留硬化樹脂)34と共に除去する。ここで、余剰樹脂34とは、樹脂溜めポット19、樹脂注入孔28、及び樹脂流路33内に残留して硬化したものである。
分割ダミー板21の除去に際しては、機械を使用して剥がしてもよいが、特別な工程と設備を要することなく、作業者の手作業のみで剥ぎ取ってもよい。
例えば、図4(B)に示すように、L字状に曲がった剥ぎ取り治具35を使用し、その先部を、分割ダミー板21の掛止孔30に引っ掛け、剥ぎ取り治具35を、鉄心本体14の半径方向外側へ向けて水平方向に引っ張る。
また、図4(C)に示すように、剥ぎ取り治具35の角部を、分割ダミー板21の突出部29の下面に押し当て、分割ダミー板21を、鉄心本体14の表面から押し上げる。
そして、図4(D)に示すように、剥ぎ取り治具35の先部を、分割ダミー板21の掛止孔30に引っ掛け、分割ダミー板21を、鉄心本体14の周方向へねじりながら引っ張る。
また、図5(A)に示すように、両端部を直角に曲げた剥ぎ取り治具36を使用し、その両端部を、軸孔12を中心として対向配置された分割ダミー板21の掛止孔30にそれぞれ引っ掛け、剥ぎ取り治具36を、その中央部を中心として回動させることで、各分割ダミー板21を、鉄心本体14の周方向へねじりながら引っ張る。
更に、図5(B)に示すように、棒材37の両側に直角状態で引っ掛け部38を設けた剥ぎ取り治具39を使用し、その引っ掛け部38を、軸孔12を中心として対向配置された分割ダミー板21の掛止孔30にそれぞれ引っ掛け、剥ぎ取り治具39を、鉄心本体14の直径方向の一方側から他方側へ向けて水平方向に引っ張る。
以上の方法により、磁石挿入孔13に充填した樹脂17と、各分割ダミー板21の樹脂注入孔28内の樹脂17とが切断される。
なお、鉄心本体14から除去した各分割ダミー板21は、上記した第3工程が終了した後、そのまま廃棄してもよいが、繰り返し使用することが好ましい。この場合、樹脂注入孔28内に樹脂17が残存した分割ダミー板21を上下反転させ、この分割ダミー板21に対して押圧部材(図示しない)を下降させて樹脂注入孔28内に挿入し、各樹脂注入孔28内の樹脂17を押出す。これにより、各分割ダミー板21に付着した余剰樹脂34が除去されるため、この分割ダミー板21を繰り返し使用できる。
以上に示したように、分割ダミー板21を使用することで、鉄心本体14から分割ダミー板21を取り外す際に、分割ダミー板21ごとに任意の方向に力がかけられる。これにより、各分割ダミー板21の表面に付着し残存した余剰樹脂34(例えば、ランナーとカル)を、磁石挿入孔13内の樹脂17が深さ方向でめくれないように、分割ダミー板21と共に鉄心本体14から除去できる。
従って、本発明の第1の実施例に係る回転子積層鉄心の製造方法を使用することで、良好な品質の回転子積層鉄心を、製造時間の短縮を図りながら経済的に製造できる。なお、平面視して円形の分割ダミー板の周囲に凸部又は凹部を設け、この分割ダミー板を装着する金型にこれらに係合する凹部又は凸部を設けることによって、分割ダミー板の位置決めが容易に行える(以下の実施例においても同様)。
続いて、本発明の第2の実施例に係る回転子積層鉄心の製造方法について、以上に記載した製造方法との相違点について説明する(以下の実施例の説明も同様)。
図6、図7(A)、(B)に示すように、余剰樹脂34の除去には、分割ダミー板50を使用することもできる。ここでも、複数の分割ダミー板50を使用して、鉄心本体14に形成された全ての磁石挿入孔13を覆っているが、図6、図7(A)、(B)については、1つの分割ダミー板50のみを示し、他は省略している(以下の実施例についても同様)。
この分割ダミー板50は、半径方向外側に幅広となっており、複数の磁石挿入孔13のうち、それぞれ平面視して対応する2つの磁石挿入孔13の全部を個別に覆う非円形板である。詳細には、軽量孔18を塞ぐことなく、2つの磁石挿入孔13の全部を覆うように形成され、しかも平面視して鉄心本体14の半径方向外側に突出する突出部51(突出部29と同様の作用効果を備えるもの)を有している。
この分割ダミー板50は、その上面52が、樹脂溜めポット19が設けられた上型53(上型20と略同様)の下面54に当接しているが、樹脂溜めポットが設けられた上型に、分割ダミー板50を収納するダミー板収納部を設けてもよい(図2参照)。この場合、分割ダミー板の下面と上型の下面とが、同一高さレベルとなるように収納(収容)する。これにより、全ての磁石挿入孔13は複数の分割ダミー板50で覆われ、鉄心本体14の上面には上型の下面が当接するため、金型から鉄心本体14にかかる力を均一にできる。
図8を参照しながら、本発明の第3の実施例に係る回転子積層鉄心の製造方法について説明する。
図8(A)、(B)に示すように、余剰樹脂34の除去に、分割ダミー板60を使用することもできる。
この分割ダミー板60は、鉄心片11を周方向に複数分割した円弧状(扇状)のものであり、平面視して鉄心本体14の半径方向の内側端から外側端までの全てを覆っている。なお、各分割ダミー板60は、平面視して対応する2つの磁石挿入孔13の全体を、個別に覆っている。ここで、分割ダミー板60の設置個数は、全磁石挿入孔13の個数の半分であるため、全ての磁石挿入孔13が複数の分割ダミー板60で覆われている。
なお、鉄心本体14の周方向に隣り合う分割ダミー板60は当接状態となるが、僅少の隙間(例えば、2mm以下程度)を有してもよい。
各分割ダミー板60は、平面視して鉄心本体14の半径方向外側に突出する2つ(複数でもよい)の突出部61を有し、各突出部61には、分割ダミー板60の除去時に使用する円形の掛止孔62が設けられている。なお、2つの突出部61は、鉄心本体14の周方向に、間隔を有して設けられている。
また、各分割ダミー板60は、全ての軽量孔18を塞ぐように配備されるため、鉄心本体14の表面に対する樹脂溜めポット19の配置位置の自由度が高まり、磁石挿入孔13に効率よく樹脂17を注入することが可能になる。
上記した各分割ダミー板60を、鉄心本体14の表面に設置するに際しては、掛止孔62に位置決めピンを挿入して行うことができる。
また、鉄心本体14から各分割ダミー板60を除去するに際しては、掛止孔62を用いて、各分割ダミー板60を、鉄心本体14の半径方向外側へ向けて水平方向に引っ張る。
図9を参照しながら、本発明の第4の実施例に係る回転子積層鉄心の製造方法について説明する。
図9(A)、(B)に示すように、余剰樹脂34の除去に、分割ダミー板70を使用することもできる。なお、分割ダミー板70は、上記した分割ダミー板60とは、突出部の形状が異なるのみである。
分割ダミー板70は、鉄心片11を周方向に複数分割した円弧状のものであり、鉄心本体14の半径方向の内側端から外側端までの全てを覆っており、その周方向両側には、鉄心本体14の上方へ突出する突出部71が設けられている。
突出部71は、鉄心本体14の表面からの突出高さが、例えば、1~10mm程度である。
また、突出部71は、鉄心本体14の半径方向に沿って、内側端(軸孔12)から外側端(外周位置)に渡って設けられているが、半径方向に間隔を有して複数箇所設けてもよい。更に、突出部に掛止孔を設けることもできる。なお、突出部71が設けられた分割ダミー板70を介して、鉄心本体14を上型と下型で挟み込むに際しては、上型の突出部71との接触位置に、突出部71よりも大きな凹部を形成するのがよい。これにより、上型の下面を分割ダミー板70の上面に当接させることができる。
この場合、鉄心本体14からの分割ダミー板70の除去は、突出部71を挟持して引き上げることにより実施できるが、例えば、突出部71を鉄心本体14の周方向に回動させてもよい。
図10を参照しながら、本発明の第5の実施例に係る回転子積層鉄心の製造方法について説明する。
図10(A)、(B)に示すように、余剰樹脂34の除去を容易にするため、分割ダミー板80を使用することもできる。
この分割ダミー板80の樹脂注入孔81には、鉄心本体14から上型に向けて開く(拡径する)テーパー部が形成され、平面視して、磁石挿入孔13に対し、樹脂注入孔81の一部(例えば半分程度)がオーバーラップ(重複)している。テーパー部の先(下端)によって、硬化した樹脂17にノッチを与えるので、後の余剰樹脂34の除去が容易となる。このオーバーラップ量は、注入する樹脂の流動性や硬化時間を考慮して決定される。なお、テーパー部は、樹脂注入孔81の全部に形成しているが、一部でもよい。
これにより、樹脂の切断を容易に行うことができ、鉄心本体14の表面に、樹脂が突出することを抑制、更にはなくすことができる。
図11を参照しながら、本発明の第6の実施例に係る回転子積層鉄心の製造方法について説明する。
図11に示すように、この実施例に係る回転子積層鉄心の製造方法においては、各分割ダミー板83には、上型(金型の一例)84に設けられた樹脂溜めポット19からの樹脂17を鉄心本体14の磁石挿入孔13に導く樹脂流路85と樹脂注入孔86が設けられている。これによって、上型84に樹脂流路を形成することがなく、従って、複数種類の鉄心本体に対して分割ダミー板を変えて、樹脂を注入できる。ここで、分割ダミー板83に対してその設置位置を決めるガイド部材を上型84と鉄心本体14との間に配置することもできる。なお、87は下型を示す。
続いて、図12を参照しながら、本発明の第7の実施例に係る回転子積層鉄心の製造方法について説明する。
図12に示すように、この実施例に係る回転子積層鉄心の製造方法においては、上型89に設けられている樹脂溜めポット19は、平面視して磁石挿入孔13の位置とラップする。従って、分割ダミー板90の直上に樹脂溜めポット19が、分割ダミー板90の直下に磁石挿入孔13があり、これらは樹脂注入孔91によって連結され、樹脂溜めポット19から磁石挿入孔13に樹脂注入孔91を介して、樹脂17を直接充填している。これによって、上型89及び分割ダミー板90のいずれにも樹脂流路を形成する必要がなく、樹脂の使用量を最小限にすることができる。樹脂注入孔91は樹脂溜めポット19の断面積より小さく、かつ磁石挿入孔13の断面積より小さい断面積を有する。なお、92は下型である。
以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、前記したそれぞれの実施例や変形例の一部又は全部を組合せて本発明の回転子積層鉄心の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施例においては、分割ダミー板を、鉄心本体の表面に配置した場合について説明したが、分割ダミー板を昇降手段(図示しない)を介して上型(又は下型)に設け、上型(又は下型)に対して昇降可能にして、繰り返し使用することもできる。
本発明に係る回転子積層鉄心の製造方法は、例えば、自動車や家電製品に使用するモータに用いる回転子の製造に適用され、回転子への永久磁石の樹脂封止が確実、容易となる他、樹脂封止後の付着樹脂の剥離が容易となり、樹脂漏れを抑制しながら、作業性よく経済的に回転子積層鉄心の製造が可能となる。
10:回転子積層鉄心、11:鉄心片、12:軸孔、13:磁石挿入孔(磁石挿入部)、14:鉄心本体、15:永久磁石、16:回り止め、17:樹脂、18:軽量孔、19:樹脂溜めポット(樹脂溜め部)、20:上型、21:分割ダミー板、22:下型、23:ダミー板収納部、24、25:下面、26:周囲側面、27:内側面、28:樹脂注入孔、29:突出部、30:掛止孔、31:樹脂封止装置、32:プランジャ、33:樹脂流路、34:余剰樹脂、35、36:剥ぎ取り治具、37:棒材、38:引っ掛け部、39:剥ぎ取り治具、50:分割ダミー板、51:突出部、52:上面、53:上型、54:下面、60:分割ダミー板、61:突出部、62:掛止孔、70:分割ダミー板、71:突出部、80:分割ダミー板、81:樹脂注入孔、83:分割ダミー板、84:上型、85:樹脂流路、86:樹脂注入孔、87:下型、89:上型、90:分割ダミー板、91:樹脂注入孔、92:下型

Claims (12)

  1. 複数の鉄心片を積層して形成され、複数の磁石挿入部が形成された鉄心本体の前記各磁石挿入部に永久磁石を挿入した後、該鉄心本体を挟持する上型及び下型のいずれか一方の金型に設けられた樹脂溜め部から、前記磁石挿入部に樹脂を充填して前記永久磁石を固定する回転子積層鉄心の製造方法であって、
    前記鉄心本体と前記金型の間に、前記複数の磁石挿入部の1又は複数を個別に覆い、該磁石挿入部に連通する樹脂注入孔が形成された分割ダミー板を配置する第1工程と、
    前記分割ダミー板の前記樹脂注入孔を介して、前記金型の前記樹脂溜め部から樹脂を、対応する前記磁石挿入部に注入する第2工程と、
    前記磁石挿入部に充填した樹脂が硬化した後、前記分割ダミー板を余剰樹脂と共に除去する第3工程とを有することを特徴とする回転子積層鉄心の製造方法。
  2. 請求項1記載の回転子積層鉄心の製造方法において、前記樹脂溜め部からの樹脂は、前記金型の前記分割ダミー板への当接面に形成された樹脂流路を介して、前記対応する磁石挿入部に充填されることを特徴とする回転子積層鉄心の製造方法。
  3. 請求項1記載の回転子積層鉄心の製造方法において、前記樹脂溜め部からの樹脂は、前記分割ダミー板に形成された樹脂流路及び該樹脂流路に続く前記樹脂注入孔を介して、前記対応する磁石挿入部に充填されることを特徴とする回転子積層鉄心の製造方法。
  4. 請求項1記載の回転子積層鉄心の製造方法において、平面視して、前記樹脂溜め部と前記磁石挿入部は一部ラップし、前記樹脂溜め部からの樹脂は、前記分割ダミー板に形成された前記樹脂注入孔を介して、前記対応する磁石挿入部に直接充填されることを特徴とする回転子積層鉄心の製造方法。
  5. 請求項1~4のいずれか1項に記載の回転子積層鉄心の製造方法において、前記樹脂溜め部が設けられた前記金型に、前記分割ダミー板を収納するダミー板収納部が設けられ、該分割ダミー板は前記対応する磁石挿入部の一部を覆い、該磁石挿入部の他部は前記金型で覆うことを特徴とする回転子積層鉄心の製造方法。
  6. 請求項1~4のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板は、前記対応する磁石挿入部の全部を覆うことを特徴とする回転子積層鉄心の製造方法。
  7. 請求項1~6のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板は、前記鉄心本体から突出する突出部を有し、該突出部には該分割ダミー板の除去時に使用する掛止孔が設けられていることを特徴とする回転子積層鉄心の製造方法。
  8. 請求項1~7のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板の前記樹脂注入孔には、前記鉄心本体から前記金型に向けて開くテーパー部が形成されていることを特徴とする回転子積層鉄心の製造方法。
  9. 請求項1~8のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板に設けられている前記樹脂注入孔は、平面視して該分割ダミー板を介して樹脂を注入しようとする前記磁石挿入部の半径方向内側に形成されていることを特徴とする回転子積層鉄心の製造方法。
  10. 請求項1~9のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板は円形板であることを特徴とする回転子積層鉄心の製造方法。
  11. 請求項1~9のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板は、半径方向外側に幅広となった非円形板であることを特徴とする回転子積層鉄心の製造方法。
  12. 請求項1~11のいずれか1項に記載の回転子積層鉄心の製造方法において、前記分割ダミー板は、前記鉄心本体を構成する鉄心片とは異なる材料で形成され、しかも該分割ダミー板の片面又は両面に、剥離性を向上させるコーティング材が被覆されていることを特徴とする回転子積層鉄心の製造方法。
PCT/JP2011/058452 2010-05-18 2011-04-01 回転子積層鉄心の製造方法 WO2011145399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012515789A JP5734963B2 (ja) 2010-05-18 2011-04-01 回転子積層鉄心の製造方法
CN201180004268.7A CN102598490B (zh) 2010-05-18 2011-04-01 转子层叠铁心的制造方法
US13/509,190 US8578592B2 (en) 2010-05-18 2011-04-01 Method of manufacturing laminated rotor core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114552 2010-05-18
JP2010114552 2010-05-18

Publications (1)

Publication Number Publication Date
WO2011145399A1 true WO2011145399A1 (ja) 2011-11-24

Family

ID=44991515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058452 WO2011145399A1 (ja) 2010-05-18 2011-04-01 回転子積層鉄心の製造方法

Country Status (4)

Country Link
US (1) US8578592B2 (ja)
JP (1) JP5734963B2 (ja)
CN (1) CN102598490B (ja)
WO (1) WO2011145399A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009453A (ja) * 2011-06-22 2013-01-10 Nissan Motor Co Ltd ロータの製造方法
JP2013153592A (ja) * 2012-01-25 2013-08-08 Mitsui High Tec Inc 積層鉄心の製造方法
JP2013240202A (ja) * 2012-05-15 2013-11-28 Mitsui High Tec Inc 積層鉄心の製造方法
JP2013243863A (ja) * 2012-05-21 2013-12-05 Mitsui High Tec Inc 回転子積層鉄心の樹脂封止方法及び回転子積層鉄心の製造装置
JP2014007899A (ja) * 2012-06-26 2014-01-16 Mitsui High Tec Inc 回転子積層鉄心の製造に用いるカルプレートの除去方法及びその装置
US20140103574A1 (en) * 2012-10-12 2014-04-17 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
JP2016127651A (ja) * 2014-12-26 2016-07-11 株式会社三井ハイテック 積層鉄心及びこの積層鉄心の製造方法並びに製造装置
US9455612B2 (en) 2010-12-07 2016-09-27 Mitsui High-Tec, Inc. Method of manufacturing laminated core
JP2016220544A (ja) * 2016-09-29 2016-12-22 株式会社三井ハイテック 積層鉄心の製造方法
US9564790B2 (en) 2012-11-06 2017-02-07 Mitsui High-Tec, Inc. Method for manufacturing laminated core
US9947464B2 (en) 2010-12-14 2018-04-17 Mitsui High-Tec, Inc. Method of manufacturing laminated core
JP2018078785A (ja) * 2016-10-31 2018-05-17 株式会社三井ハイテック 樹脂注入装置及び鉄心製品の製造方法
JP2021058065A (ja) * 2019-10-02 2021-04-08 トヨタ紡織株式会社 回転電機ロータの製造方法及び回転電機ロータの製造装置
KR102377641B1 (ko) * 2021-07-21 2022-03-24 대원강업주식회사 적층코어의 제조방법
KR20230097490A (ko) * 2021-12-24 2023-07-03 대원강업주식회사 적층코어의 제조방법

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560031B2 (ja) * 2009-12-09 2014-07-23 株式会社三井ハイテック 回転子の製造方法及び製造装置
JP5536151B2 (ja) * 2011-08-25 2014-07-02 ファナック株式会社 リニアモータ用磁石板の製造方法
JP5974672B2 (ja) * 2012-06-27 2016-08-23 トヨタ紡織株式会社 ロータコアの製造方法
JP6449530B2 (ja) * 2013-01-15 2019-01-09 株式会社三井ハイテック 回転子積層鉄心の製造方法
DE102013201199A1 (de) * 2013-01-25 2014-07-31 Magna Powertrain Ag & Co. Kg Elektrische Maschine und Verfahren zur Herstellung eines Elektroblechs
US10396641B2 (en) * 2013-02-28 2019-08-27 Mitsubishi Electric Corporation Resin injection method into laminated core, and rotating electric machine using the resin injection method
JP5958439B2 (ja) * 2013-08-29 2016-08-02 株式会社デンソー 回転子、および、これを用いた回転電機
CN104753265B (zh) * 2013-12-25 2018-07-20 安川电机(沈阳)有限公司 磁铁粘贴的支架装置、定位夹具以及粘贴方法
US9985500B2 (en) * 2014-03-27 2018-05-29 Prippell Technologies, Llc Induction motor with transverse liquid cooled rotor and stator
EP2928047A1 (de) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Reluktanzrotor mit mechanischer Stabilisierung
JP6162656B2 (ja) * 2014-07-09 2017-07-12 株式会社三井ハイテック 回転子積層鉄心及びその製造方法
EP3001541A1 (en) * 2014-09-26 2016-03-30 ALSTOM Renewable Technologies Manufacturing a permanent magnet module
CN104625620A (zh) * 2014-12-16 2015-05-20 苏州赫里翁电子科技有限公司 一种动铁单元用轭铁的加工方法
US9847704B2 (en) * 2015-02-19 2017-12-19 GM Global Technology Operations LLC Rotor assembly and method of manufacture for electric machines having multiple magnet lengths
JP6683459B2 (ja) * 2015-11-05 2020-04-22 株式会社三井ハイテック 積層鉄心の製造方法
CN105576917B (zh) * 2016-03-08 2018-06-05 合肥巨一动力系统有限公司 电机转子铁芯磁钢灌胶装置
JP6410776B2 (ja) * 2016-10-06 2018-10-24 本田技研工業株式会社 ロータ製造方法
CN107070023B (zh) * 2016-12-09 2023-08-15 浙江零跑科技股份有限公司 轻量化电机及其转子片和转子
JP6827799B2 (ja) * 2016-12-22 2021-02-10 株式会社三井ハイテック 電機子の製造方法
CN106981950A (zh) * 2017-05-17 2017-07-25 襄阳华博士新能源科技有限公司 一种基于热管的新型风冷电机
US11190066B2 (en) * 2019-01-29 2021-11-30 Ford Global Technologies, Llc Rotor lamination with key
CN110011497A (zh) * 2019-04-08 2019-07-12 苏州均华精密机械有限公司 一种电机转子铁芯磁钢槽灌胶装置
KR102664501B1 (ko) * 2022-03-17 2024-05-09 대원강업주식회사 적층코어의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247784A (ja) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp 磁石埋込型回転子
JP2007068356A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ロータの製造方法
JP2009303485A (ja) * 2009-10-01 2009-12-24 Mitsui High Tec Inc 回転子積層鉄心の樹脂封止方法
JP4414417B2 (ja) * 2006-08-22 2010-02-10 株式会社三井ハイテック 回転子積層鉄心の樹脂封止方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356711B (zh) * 2006-01-11 2011-04-27 株式会社三井高科技 将永磁体树脂密封到叠片转子铁芯中的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247784A (ja) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp 磁石埋込型回転子
JP2007068356A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ロータの製造方法
JP4414417B2 (ja) * 2006-08-22 2010-02-10 株式会社三井ハイテック 回転子積層鉄心の樹脂封止方法
JP2009303485A (ja) * 2009-10-01 2009-12-24 Mitsui High Tec Inc 回転子積層鉄心の樹脂封止方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177636B2 (en) 2010-12-07 2019-01-08 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US9455612B2 (en) 2010-12-07 2016-09-27 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US9947464B2 (en) 2010-12-14 2018-04-17 Mitsui High-Tec, Inc. Method of manufacturing laminated core
US10283264B2 (en) 2010-12-14 2019-05-07 Mistui High-Tec, Inc. Method of manufacturing laminated core
JP2013009453A (ja) * 2011-06-22 2013-01-10 Nissan Motor Co Ltd ロータの製造方法
JP2013153592A (ja) * 2012-01-25 2013-08-08 Mitsui High Tec Inc 積層鉄心の製造方法
JP2013240202A (ja) * 2012-05-15 2013-11-28 Mitsui High Tec Inc 積層鉄心の製造方法
JP2013243863A (ja) * 2012-05-21 2013-12-05 Mitsui High Tec Inc 回転子積層鉄心の樹脂封止方法及び回転子積層鉄心の製造装置
JP2014007899A (ja) * 2012-06-26 2014-01-16 Mitsui High Tec Inc 回転子積層鉄心の製造に用いるカルプレートの除去方法及びその装置
US20140103574A1 (en) * 2012-10-12 2014-04-17 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
JP2014082807A (ja) * 2012-10-12 2014-05-08 Mitsui High Tec Inc 積層鉄心の樹脂封止方法
US9705369B2 (en) * 2012-10-12 2017-07-11 Mitsui High-Tec, Inc. Method of resin-sealing laminated core
CN108809012A (zh) * 2012-10-12 2018-11-13 株式会社三井高科技 叠层铁心的树脂密封方法
US9564790B2 (en) 2012-11-06 2017-02-07 Mitsui High-Tec, Inc. Method for manufacturing laminated core
JP2016127651A (ja) * 2014-12-26 2016-07-11 株式会社三井ハイテック 積層鉄心及びこの積層鉄心の製造方法並びに製造装置
JP2016220544A (ja) * 2016-09-29 2016-12-22 株式会社三井ハイテック 積層鉄心の製造方法
JP2018078785A (ja) * 2016-10-31 2018-05-17 株式会社三井ハイテック 樹脂注入装置及び鉄心製品の製造方法
JP2021058065A (ja) * 2019-10-02 2021-04-08 トヨタ紡織株式会社 回転電機ロータの製造方法及び回転電機ロータの製造装置
JP7302418B2 (ja) 2019-10-02 2023-07-04 トヨタ紡織株式会社 回転電機ロータの製造方法及び回転電機ロータの製造装置
KR102377641B1 (ko) * 2021-07-21 2022-03-24 대원강업주식회사 적층코어의 제조방법
WO2023003182A1 (ko) * 2021-07-21 2023-01-26 대원강업주식회사 적층코어의 제조방법
KR20230097490A (ko) * 2021-12-24 2023-07-03 대원강업주식회사 적층코어의 제조방법
KR102573840B1 (ko) * 2021-12-24 2023-09-01 대원강업주식회사 적층코어의 제조방법

Also Published As

Publication number Publication date
CN102598490B (zh) 2014-06-18
JP5734963B2 (ja) 2015-06-17
US20120222289A1 (en) 2012-09-06
CN102598490A (zh) 2012-07-18
JPWO2011145399A1 (ja) 2013-07-22
US8578592B2 (en) 2013-11-12

Similar Documents

Publication Publication Date Title
JP5734963B2 (ja) 回転子積層鉄心の製造方法
JP5748465B2 (ja) 積層鉄心の製造方法
US10283264B2 (en) Method of manufacturing laminated core
JP4414417B2 (ja) 回転子積層鉄心の樹脂封止方法
JP4991900B2 (ja) 回転子積層鉄心の樹脂封止方法
JP2011055687A (ja) 回転子積層鉄心の製造方法
JP4404145B2 (ja) 分割固定子製造方法
JP4688950B2 (ja) 回転子積層鉄心の樹脂封止方法
JP4726602B2 (ja) 積層鉄心及びその製造方法
JP4948040B2 (ja) 回転子積層鉄心の樹脂封止方法
WO2012108341A1 (ja) 電動機用ロータの製造方法
JP2016093006A (ja) 回転子の製造方法
JP5904282B2 (ja) コイル、回転電機、及びコイルの製造方法
JP2012223024A (ja) 積層鉄心の製造方法
JP2014096942A (ja) 積層鉄心の製造方法
JP6070603B2 (ja) ステータの製造方法
JP2009303485A5 (ja)
JP5714122B2 (ja) ステータコアの製造方法及びステータコア
JP6814568B2 (ja) 積層鉄心
JP6410776B2 (ja) ロータ製造方法
JP5291680B2 (ja) 回転子積層鉄心の樹脂封止方法
JP5794848B2 (ja) 積層鉄心の製造方法
JP2013009453A (ja) ロータの製造方法
JP5996934B2 (ja) 回転子積層鉄心の樹脂封止方法及び回転子積層鉄心の製造装置
JP2013102654A (ja) ロータおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004268.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515789

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13509190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783336

Country of ref document: EP

Kind code of ref document: A1