WO2011135690A1 - 蓄電装置の制御装置およびそれを搭載する車両 - Google Patents

蓄電装置の制御装置およびそれを搭載する車両 Download PDF

Info

Publication number
WO2011135690A1
WO2011135690A1 PCT/JP2010/057552 JP2010057552W WO2011135690A1 WO 2011135690 A1 WO2011135690 A1 WO 2011135690A1 JP 2010057552 W JP2010057552 W JP 2010057552W WO 2011135690 A1 WO2011135690 A1 WO 2011135690A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
power storage
limit value
value
Prior art date
Application number
PCT/JP2010/057552
Other languages
English (en)
French (fr)
Inventor
広規 田代
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/057552 priority Critical patent/WO2011135690A1/ja
Priority to JP2012512587A priority patent/JP5459394B2/ja
Priority to DE201011005527 priority patent/DE112010005527T5/de
Priority to CN201080066260.9A priority patent/CN102844956B/zh
Priority to US13/634,149 priority patent/US9007028B2/en
Publication of WO2011135690A1 publication Critical patent/WO2011135690A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a control device for a power storage device and a vehicle equipped with the same, and more specifically to charge / discharge control of the power storage device.
  • a vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels by using a driving force generated from electric power stored in the power storage device as an environment-friendly vehicle.
  • a power storage device for example, a secondary battery or a capacitor
  • Examples of the vehicle include an electric vehicle, a hybrid vehicle, and a fuel cell vehicle.
  • the charging power and discharging power of the power storage device are appropriately controlled in order to prevent the failure and deterioration of the power storage device due to the overcharge or overdischarge of the mounted power storage device. It is necessary to do.
  • Patent Document 1 defines a charging power upper limit value and a discharging power upper limit value of a secondary battery according to the temperature of the secondary battery, and does not exceed these upper limit values. Disclosed is a technique capable of appropriately managing charge / discharge according to the use environment of the battery and the state of the battery by setting the charge / discharge command value of the secondary battery.
  • JP 2003-219510 A Japanese Patent Laid-Open No. 10-268946 JP 2007-252072 A
  • the present invention has been made to solve such a problem, and its purpose is to control charge / discharge power in consideration of actual charge power in a control device for controlling charge / discharge of a power storage device. It is to manage appropriately.
  • a control device for a power storage device includes a limit value setting unit, a target setting unit, a correction unit, and a command setting unit, and controls charging / discharging of the power storage device for supplying power to the load device.
  • the limit value setting unit sets a limit value of charging power to the power storage device based on the state of the power storage device.
  • the target setting unit sets a target value for the charging power of the power storage device based on the state of the load device and the limit value.
  • the correction unit corrects the limit value based on the target value and the actual power input / output to / from the power storage device.
  • the command setting unit sets a command value for charging power of the power storage device based on the state of the load device and the corrected limit value.
  • the power storage device has a characteristic that the chargeable power decreases when the temperature of the power storage device is outside a predetermined range.
  • the limit value setting unit sets a limit value based on the temperature of the power storage device.
  • the correction unit sets a corrected power for correcting the limit value based on a difference between the target value and the actual power.
  • the correction unit corrects the limit value so that the corrected power can be further charged when the magnitude of the charged power of the actual power is lower than the target value, and the magnitude of the charged power of the actual power is the target power. If the value exceeds the limit, the limit value is not corrected.
  • the correction unit sets the correction power based on the threshold value instead of the difference.
  • the correction unit sets an effective coefficient that determines a ratio of the corrected power to the difference based on the state of the power storage device, and determines the corrected power by multiplying the difference by the effective coefficient.
  • the effective coefficient is set larger as the temperature of the power storage device is lower when the state of charge of the power storage device is smaller than the reference value.
  • the correction unit averages the difference in the time axis direction and sets the corrected power based on the averaged difference.
  • the correction unit sets the corrected power based on the first threshold when the rate of change in the increasing direction of the difference per unit time exceeds a predetermined first threshold, and the unit time When the rate of change in the decreasing direction of the hit difference exceeds a predetermined second threshold value, the corrected power is set based on the second threshold value.
  • a vehicle includes a chargeable power storage device, a load device, and a control device for controlling charging / discharging of the power storage device.
  • the load device includes a drive device configured to generate a drive force for traveling the vehicle using electric power from the power storage device.
  • the control device includes a limit value setting unit, a target setting unit, a correction unit, and a command setting unit.
  • the limit value setting unit sets a limit value of charging power to the power storage device based on the state of the power storage device.
  • the target setting unit sets a target value for the charging power of the power storage device based on the state of the drive device and the limit value.
  • the correction unit corrects the limit value based on the target value and the actual power input / output to / from the power storage device.
  • the command setting unit sets a command value for charging power of the power storage device based on the state of the load device and the corrected limit value.
  • a control device for controlling charging / discharging of a power storage device it is possible to appropriately manage charging / discharging power in consideration of actual charging power.
  • FIG. 1 is an overall block diagram of a vehicle equipped with a control device for a power storage device according to the present embodiment. It is a figure which shows an example of an internal structure of PCU of FIG. It is a figure which shows an example of the relationship between the charging power upper limit of an electrical storage apparatus, and temperature. It is a figure for demonstrating the comparison with the command electric power and actual electric power in the comparative example in case the correction control of the charging electric power upper limit of this Embodiment is not applied. It is a figure for demonstrating the comparison with the command electric power at the time of applying the correction control of the charging power upper limit value of this Embodiment, and real power. It is a figure which shows an example of the map of the effective coefficient in this Embodiment.
  • FIG. 1 is an overall block diagram of a vehicle 100 equipped with a control device for a power storage device according to the present embodiment.
  • vehicle 100 includes a load device 20, a power storage device 110, a system main relay (hereinafter also referred to as SMR (System Main Relay)) 115, and a control device (hereinafter referred to as ECU (Electronic Control Unit)). ) And 300).
  • the load device 20 includes a DC / DC converter 160, an air conditioner 170, an auxiliary battery 180, and an auxiliary load 190 as a configuration of the drive device 30 and a low voltage system (auxiliary system).
  • the drive device 30 includes a PCU (Power Control Unit) 120, a motor generator 130, a rotation angle sensor 135, a power transmission gear 140, and drive wheels 150.
  • PCU Power Control Unit
  • the power storage device 110 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 110 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a power storage element such as an electric double layer capacitor.
  • the power storage device 110 is connected to the PCU 120 for driving the motor generator 130 via the SMR 115. Then, power storage device 110 supplies power for generating driving force of vehicle 100 to PCU 120. The power storage device 110 stores the electric power generated by the motor generator 130.
  • the output of power storage device 110 is, for example, 200V.
  • the one end of the relay included in SMR 115 is connected to the positive terminal and the negative terminal of power storage device 110, respectively.
  • the other end of the relay included in SMR 115 is connected to power line PL1 and ground line NL1 connected to PCU 120, respectively.
  • SMR 115 switches between power supply and cutoff between power storage device 110 and PCU 120 based on control signal SE ⁇ b> 1 from ECU 300.
  • FIG. 2 is a diagram illustrating an example of the internal configuration of the PCU 120.
  • PCU 120 includes a converter 121, an inverter 122, and capacitors C1 and C2.
  • Converter 121 performs power conversion between power line PL1 and ground line NL1, power line HPL and ground line NL1, based on control signal PWC from ECU 300.
  • the inverter 122 is connected to the power line HPL and the ground line NL1. Inverter 122 converts DC power supplied from converter 121 into AC power based on control signal PWI from ECU 300 and drives motor generator 130.
  • a configuration in which one motor generator and inverter pair is provided is shown as an example, but a configuration in which a plurality of motor generator and inverter pairs are provided may be employed.
  • Capacitor C1 is provided between power line PL1 and ground line NL1, and reduces voltage fluctuation between power line PL1 and ground line NL1.
  • Capacitor C2 is provided between power line HPL and ground line NL1, and reduces voltage fluctuation between power line HPL and ground line NL1.
  • motor generator 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which permanent magnets are embedded.
  • the output torque of the motor generator 130 is transmitted to the drive wheels 150 via a power transmission gear 140 constituted by a speed reducer and a power split mechanism, thereby causing the vehicle 100 to travel.
  • the motor generator 130 can generate electric power by the rotational force of the drive wheels 150 during the regenerative braking operation of the vehicle 100. Then, the generated power is converted into charging power for power storage device 110 by PCU 120.
  • a necessary vehicle driving force is generated by operating the engine and the motor generator 130 in a coordinated manner.
  • vehicle 100 in the present embodiment represents a vehicle equipped with an electric motor for generating vehicle driving force, and is a hybrid vehicle that generates vehicle driving force by an engine and an electric motor, and an electric vehicle not equipped with an engine. And fuel cell vehicles.
  • the rotation angle sensor (resolver) 135 detects the rotation angle ⁇ of the motor generator 130 and sends the detected rotation angle ⁇ to the ECU 300.
  • ECU 300 can calculate rotational speed MRN and angular speed ⁇ (rad / s) of motor generator 130 based on rotational angle ⁇ . Note that the rotation angle sensor 135 may be omitted by directly calculating the rotation angle ⁇ from the motor voltage or current in the ECU 300.
  • DC / DC converter 160 is connected to power line PL1 and ground line NL1.
  • DC / DC converter 160 steps down the DC voltage supplied from power storage device 110 based on control signal PWD from ECU 300.
  • DC / DC converter 160 supplies power to the low voltage system of the entire vehicle such as auxiliary battery 180, auxiliary load 190, and ECU 300 via power line PL2.
  • the auxiliary battery 180 is typically constituted by a lead storage battery.
  • the output voltage of auxiliary battery 180 is lower than the output voltage of power storage device 110, for example, about 12V.
  • the auxiliary machine load 190 includes, for example, lamps, wipers, heaters, audio, a navigation system, and the like.
  • the air conditioner 170 is connected to the power line PL1 and the ground line NL1 in parallel with the DC / DC converter 160, and air-conditions the interior of the vehicle 100.
  • ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer, and inputs signals from each sensor and outputs control signals to each device. 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • ECU 300 outputs control signals for controlling PCU 120, DC / DC converter 160, SMR 115, and the like.
  • ECU 300 receives from rotation angle sensor 135 rotation angle ⁇ of motor generator 130 and torque command value TR of motor generator 130 transmitted from a host ECU (not shown). ECU 300 generates control signals PWC and PWI for converter 121 and inverter 122 in PCU 120 in order to drive motor generator 130 based on this information and the state of power storage device 110.
  • ECU 300 receives detected values of voltage VB, current IB, and temperature TB from a sensor (not shown) included in power storage device 110. ECU 300 calculates a state of charge (SOC) of power storage device 110 based on these pieces of information. Further, ECU 300 controls charging / discharging power of power storage device 110 based on this state of charge SOC and the driving state of vehicle 100.
  • SOC state of charge
  • the upper limit value of the charge / discharge power is determined by the state of the power storage device, for example, the SOC and temperature of the power storage device.
  • FIG. 3 is a diagram illustrating an example of the relationship between the upper limit value Win of the charging power of the power storage device and the temperature TB of the power storage device.
  • the discharge power output from the power storage device is represented by a positive value
  • the charge power for charging the power storage device is represented by a negative value.
  • the magnitude of the upper limit value Win of charging power that is, the upper limit value Win
  • the upper limit value Win at low and high temperatures. (Absolute value) is set small.
  • FIG. 4 is a diagram for explaining a comparison between the command power PB * and the actual power PB in a comparative example in a case where correction control of the charging power upper limit value according to the present embodiment to be described later is not applied.
  • time is shown on the horizontal axis
  • command power PB * and actual power PB are shown on the vertical axis.
  • an upper limit value (Win, Wout) of charge / discharge power actually required for protecting the power storage device at a temperature of a certain power storage device and charge / discharge power command value PB *
  • this charging power target value PBR is often set mainly based on the driving state of the power storage device and the motor generator, and predictions such as power consumed in the auxiliary system and loss in the PCU 120 and the like are often made. Difficult power may not be considered. In this case, there is a possibility that a difference occurs between the charging power target value PBR and the actual power PB.
  • the upper limit value Win of the charging power is limited to be smaller than that of a nickel metal hydride battery or the like, so that the charging power as described above can be reduced. Prone to financial failure. Further, the same problem may occur when the capacity of the power storage device originally mounted is small, such as a compact car, or when the capacity of the power storage device is reduced for cost reduction.
  • the upper limit value Winf is corrected in consideration of the difference between the charging power target value PBR and the actual power PB, and the charging power command value PB * is set so as not to exceed the corrected upper limit value Winf. Correction control of the charging power upper limit value to be set is performed. By doing in this way, the influence by the power consumption etc. of the auxiliary machine system which was not considered until now is reduced, and the breakdown of the balance of charging power is suppressed.
  • FIG. 5 is a diagram showing an overview of the charging power upper limit correction control in the present embodiment.
  • time is shown on the horizontal axis
  • command power PB * (and target power PBR) and actual power PB are shown on the vertical axis.
  • the difference between the charged power target value PBR and the actual power PB as described above is particularly problematic when the SOC of the power storage device 110 is lowered and charging is required, and / or This is a case where the temperature TB decreases and the charging power upper limit Win is limited. Conversely, when the SOC of power storage device 110 is large or when temperature TB of power storage device 110 has not decreased, the correction of charge power upper limit value Winf described with reference to FIG. May cause overcharge.
  • an effective coefficient ⁇ that determines how much the difference Pbd between the actual power PB and the target charging power value PBR is reflected in the correction of the charging power upper limit Winf is introduced, depending on the SOC of the power storage device 110 and the temperature TB of the power storage device 110. It is more preferable to change.
  • FIG. 6 is a diagram showing an example of a map of the effective coefficient ⁇ in correcting the charging power upper limit value Winf.
  • This effective coefficient ⁇ is a coefficient having a value from 0 to 1.0.
  • execution coefficient ⁇ is set to almost zero when SOC of power storage device 110 is larger than S2, for example, as shown by curve W1 in FIG. 6, and SOC of power storage device 110 is S2 It is set so as to increase gradually as it gets smaller.
  • SOC of power storage device 110 is smaller than S1 (S1 ⁇ S2), the effective coefficient ⁇ when the SOC of power storage device 110 is S1 is set.
  • Effective coefficient ⁇ is set such that its value increases as temperature TB of power storage device 110 decreases, and as temperature TB of power storage device 110 increases, as shown by curves W2, W3, and W4 in FIG. , The value is set to be small.
  • the use of the effective coefficient ⁇ is not essential, and a configuration without using the effective coefficient ⁇ may be employed.
  • the SOC threshold value S2 in FIG. 6 can be made variable according to the temperature TB, or each curve can have a different shape.
  • FIG. 7 is a functional block diagram for explaining correction control of the charging power upper limit value executed by ECU 300 in the present embodiment.
  • Each functional block described in the functional block diagram illustrated in FIG. 7 is realized by hardware or software processing by ECU 300.
  • ECU 300 includes an actual power calculation unit 310, an SOC calculation unit 320, a limit value setting unit 330, a target setting unit 335, a correction unit 340, a command generation unit 350, Drive controller 360.
  • Real power calculation unit 310 receives detection values of voltage VB and current IB of power storage device 110 from power storage device 110. Based on voltage VB and current IB, actual power calculation unit 310 calculates actual power PB actually input / output to / from the power storage device, and outputs the calculated result to correction unit 340.
  • SOC calculation unit 320 receives detected values of voltage VB, current IB, and temperature TB of power storage device 110. Based on these pieces of information, the SOC calculation unit calculates the SOC of power storage device 110 and outputs the calculated value to limit value setting unit 330.
  • Limit value setting unit 330 receives the detected value of temperature TB of power storage device 110 and the SOC of power storage device 110 from SOC calculation unit 320. Then, limit value setting unit 330 sets upper limit value Win of charging power, for example, by using a predetermined map. Further, the limit value setting unit 330 calculates the effective coefficient ⁇ using the map described with reference to FIG. 6 based on the SOC and the temperature TB. Then, limit value setting unit 330 outputs set upper limit value Win to target setting unit 335 and outputs upper limit value Win and effective coefficient ⁇ to correction unit 340.
  • the target setting unit 335 receives the upper limit value Win from the limit value setting unit 330.
  • Target setting unit 335 receives torque command value TR of motor generator 130 determined based on the accelerator opening, SOC, and the like, and rotational speed MRN calculated based on rotational angle ⁇ from rotational angle sensor 135. Based on these pieces of information, target setting unit 335 sets charge / discharge power target value PBR so as not to exceed upper limit value Win. Then, target setting unit 335 outputs this charge / discharge power target value PBR to correction unit 340.
  • Modification unit 340 receives upper limit value Win and effective coefficient ⁇ set by limit value setting unit 330, detected value of temperature TB of power storage device 110, and actual power PB calculated by actual power calculation unit 310.
  • Correction unit 340 receives charging power target value PBR from target setting unit 335.
  • the correction unit 340 calculates the difference Pbd between the actual power PB and the charging power target value PBR, and calculates the correction value of the upper limit value Win by multiplying the difference Pbd by the effective coefficient ⁇ . At this time, various limit processes are also performed in order to prevent a sudden change in the correction value and an excessive increase in the correction value. Then, the correction unit 340 calculates the corrected upper limit value Winf by subtracting the correction value from the upper limit value Win from the limit value setting unit 330, and outputs the calculated upper limit value Winf to the command generation unit 350.
  • the command generation unit 350 receives the corrected charging power upper limit value Winf from the correction unit 340. In addition, command generation unit 350 receives rotation speed MRN calculated based on torque command value TR of motor generator 130 and rotation angle ⁇ from rotation angle sensor 135. Based on these pieces of information, command generation unit 350 generates charge / discharge power command value PB * so as not to exceed the corrected upper limit value Winf. Then, command generation unit 350 outputs charge / discharge power command value PB * to drive control unit 360.
  • Drive control unit 360 generates control signals PWC and PWI for converter 121 and inverter 122 shown in FIG. 2 based on charge / discharge power command value PB * from command generation unit 350 and the drive state of motor generator 130. Thus, converter 121 and inverter 122 are controlled.
  • FIG. 8 is a flowchart for explaining details of the charging power upper limit correction control process executed by ECU 300 in the present embodiment.
  • processing is realized by a program stored in advance in ECU 300 being called from the main routine and executed in a predetermined cycle.
  • ECU 300 calculates a difference Pbd between actual power PB and charge power target value PBR at step (hereinafter, step is abbreviated as S) 100.
  • step is abbreviated as S
  • the charging power is expressed as a negative value as described above, the absolute value increases in the negative direction as the charging power increases.
  • the ECU 300 performs an annealing process for averaging the calculated difference Pbd in the time axis direction.
  • this annealing process with respect to the actual power PB and the charging power target value PBR that change from moment to moment, fluctuations in the transient state of the calculated value of the difference Pbd due to the effects of sensor detection error, control delay, external noise, etc. on the signal Done to smooth out.
  • a known processing method such as a linear delay function having a certain time constant or a moving average of a plurality of calculated values during a predetermined period can be employed.
  • ECU 300 performs a limit process of the rate of change of difference Pbd in S120.
  • This process is such that the absolute value of the difference ⁇ Pbd between the value of the difference Pbd in the previous calculation cycle and the value of the difference Pbd in the current calculation cycle is equal to or less than the threshold value ⁇ . That is, when the absolute value of the difference ⁇ Pbd exceeds the threshold value ⁇ , the difference Pbd in the current calculation cycle is set so that the absolute value of the difference ⁇ Pbd becomes the threshold value ⁇ . This prevents excessive correction when the difference Pbd between the actual power PB and the charging power command value PB * fluctuates greatly in a transient manner.
  • the ECU 300 performs upper and lower limit processing of difference Pbd in S130.
  • the difference Pbd is set to be in the range of 0 ⁇ Pbd ⁇ ⁇ . That is, when the difference Pbd is negative, it is replaced with zero, and when the difference Pbd exceeds the threshold value ⁇ , it is replaced with ⁇ . This is because only when the difference Pbd is positive, that is, when the magnitude of the actual charging power PB is smaller than the charging power command value PB * due to the discharging power of the auxiliary machine, etc. This is to prevent overcharging due to excessive correction.
  • ECU 300 multiplies difference Pbd by execution coefficient ⁇ determined based on SOC and temperature TB of power storage device 110 described in FIG. 6, and calculates correction value Pbd #.
  • ECU 300 then subtracts this correction value Pbd # from charging power upper limit value Win to calculate upper limit value Winf for generating charging power command value PB *.
  • the upper limit value Winf is set so that the charging power is further increased.
  • the processing is returned to the main routine, the charging power command value PB * is calculated using the corrected upper limit value Winf, and the converter 121 and the inverter 122 in the PCU 120 are controlled based on the calculated charging power command value PB *.
  • the charging power upper limit value is corrected based on the “difference” between the charging power target value and the actual power
  • the “ratio of the charging power target value and the actual power” The correction amount may be set based on “

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 制御装置(300)は、負荷装置(20)へ電力を供給するための蓄電装置(110)の充放電を制御する。制御装置(300)は、制限値設定部(330)と、目標設定部(335)と、修正部(340)と、指令設定部(350)とを含む。制限値設定部(330)は、蓄電装置(110)の状態に基づいて、蓄電装置(110)への充電電力の制限値を設定する。目標設定部(335)は、負荷装置(20)の状態および制限値に基づいて、蓄電装置(110)の充電電力の目標値を設定する。修正部(340)は、目標値と蓄電装置(110)に入出力される実電力との差に基づいて制限値を修正する。指令設定部(350)は、負荷装置(20)の状態および修正された制限値に基づいて、蓄電装置(110)の充電電力の指令値を設定する。これによって、蓄電装置(110)の充放電を制御するための制御装置(300)において、実際の充電電力を考慮して充放電電力を適切に管理することができる。

Description

蓄電装置の制御装置およびそれを搭載する車両
 本発明は、蓄電装置の制御装置およびそれを搭載する車両に関し、より特定的には、蓄電装置の充放電制御に関する。
 近年、環境に配慮した車両として、蓄電装置(たとえば二次電池やキャパシタなど)を搭載し、蓄電装置に蓄えられた電力から生じる駆動力を用いて走行する車両が注目されている。この車両には、たとえば電気自動車、ハイブリッド自動車、燃料電池車などが含まれる。
 このような車両においては、搭載された蓄電装置が過充電となったり過放電となったりすることによる蓄電装置の故障や劣化を防止するために、蓄電装置の充電電力および放電電力を適切に制御することが必要とされる。
 特開2003-219510号公報(特許文献1)は、二次電池の温度に応じて、二次電池の充電電力上限値および放電電力上限値を定めるとともに、これらの上限値を超えないように二次電池の充放電指令値を設定することによって、電池の使用環境や電池の状態に応じて適切に充放電の管理を行なうことができる技術を開示する。
特開2003-219510号公報 特開平10-268946号公報 特開2007-252072号公報
 蓄電装置の充放電の制御においては、上述のように、蓄電装置の故障や劣化を防止するために蓄電装置の充電電力および放電電力を適切に管理することが必要である。
 しかしながら、充放電電力の指令値と実際の充放電電力との乖離が大きい場合には、充電電力と放電電力の収支が破綻してしまうことが考えられる。
 本発明は、このような課題を解決するためになされたものであって、その目的は、蓄電装置の充放電を制御するための制御装置において、実際の充電電力を考慮して充放電電力を適切に管理することである。
 本発明による蓄電装置の制御装置は、制限値設定部と、目標設定部と、修正部と、指令設定部とを備え、負荷装置へ電力を供給するための蓄電装置の充放電を制御する。制限値設定部は、蓄電装置の状態に基づいて、蓄電装置への充電電力の制限値を設定する。目標設定部は、負荷装置の状態および制限値に基づいて、蓄電装置の充電電力の目標値を設定する。修正部は、目標値と蓄電装置に入出力される実電力とに基づいて、制限値を修正する。指令設定部は、負荷装置の状態および修正された制限値に基づいて、蓄電装置の充電電力の指令値を設定する。
 好ましくは、蓄電装置は、蓄電装置の温度が予め定められた範囲外になると、充電可能電力が低下する特性を有する。そして、制限値設定部は、蓄電装置の温度に基づいて制限値を設定する。
 好ましくは、修正部は、目標値と実電力の差に基づいて前記制限値を修正するための修正電力を設定する。
 好ましくは、修正部は、実電力の充電電力の大きさが目標値の大きさを下回る場合は、修正電力をさらに充電できるように制限値を修正し、実電力の充電電力の大きさが目標値の大きさを上回る場合は、制限値の修正を行なわない。
 好ましくは、修正部は、差が予め定められたしきい値を超える場合には、差に代えてしきい値に基づいて修正電力を設定する。
 好ましくは、修正部は、蓄電装置の状態に基づいて、差に対する修正電力の比率を定める実効係数を設定し、差に実効係数を乗算することによって修正電力を決定する。
 好ましくは、実効係数は、蓄電装置の充電状態が基準値より小さい場合に、蓄電装置の温度が低いほど大きく設定される。
 好ましくは、修正部は、差を時間軸方向に平均化し、平均化された差に基づいて修正電力を設定する。
 好ましくは、修正部は、単位時間当たりの差の増加方向の変化率が予め定められた第1のしきい値を超える場合は第1のしきい値に基づいて修正電力を設定し、単位時間当たりの差の減少方向の変化率が予め定められた第2のしきい値を超える場合は第2のしきい値に基づいて修正電力を設定する。
 本発明による車両は、充電が可能な蓄電装置と、負荷装置と、蓄電装置の充放電を制御するための制御装置とを備える。負荷装置は、蓄電装置からの電力を用いて車両を走行するための駆動力を発生するように構成された駆動装置を含む。制御装置は、制限値設定部と、目標設定部と、修正部と、指令設定部とを含む。制限値設定部は、蓄電装置の状態に基づいて、蓄電装置への充電電力の制限値を設定する。目標設定部は、駆動装置の状態および制限値に基づいて、蓄電装置の充電電力の目標値を設定する。修正部は、目標値と蓄電装置に入出力される実電力とに基づいて制限値を修正する。指令設定部は、負荷装置の状態および修正された制限値に基づいて、蓄電装置の充電電力の指令値を設定する。
 本発明によれば、蓄電装置の充放電を制御するための制御装置において、実際の充電電力を考慮して充放電電力を適切に管理することができる。
本実施の形態に従う蓄電装置の制御装置を搭載した車両の全体ブロック図である。 図1のPCUの内部構成の一例を示す図である。 蓄電装置の充電電力上限値と温度との関係の一例を示す図である。 本実施の形態の充電電力上限値の修正制御を適用しない場合の比較例における指令電力と実電力との比較を説明するための図である。 本実施の形態の充電電力上限値の修正制御を適用した場合の指令電力と実電力との比較を説明するための図である。 本実施の形態における実効係数のマップの一例を示す図である。 本実施の形態におけるECUで実行される充電電力上限値の修正制御を説明するための機能ブロック図である。 本実施の形態におけるECUで実行される充電電力上限値の修正制御処理の詳細を説明するための機能フローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 図1は、本実施の形態に従う蓄電装置の制御装置を搭載した車両100の全体ブロック図である。
 図1を参照して、車両100は、負荷装置20と、蓄電装置110と、システムメインリレー(以下、SMR(System Main Relay)とも称する。)115と、制御装置(以下、ECU(Electronic Control Unit)とも称する。)300とを備える。負荷装置20は、駆動装置30と、低電圧系(補機系)の構成として、DC/DCコンバータ160と、空調機170と、補機バッテリ180と、補機負荷190とを含む。また、駆動装置30は、PCU(Power Control Unit)120と、モータジェネレータ130と、回転角センサ135と、動力伝達ギア140と、駆動輪150とを含む。
 蓄電装置110は、充放電可能に構成された電力貯蔵要素である。蓄電装置110は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置110は、SMR115を介してモータジェネレータ130を駆動するためのPCU120に接続される。そして、蓄電装置110は、車両100の駆動力を発生させるための電力をPCU120に供給する。また、蓄電装置110は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置110の出力は、たとえば200Vである。
 SMR115に含まれるリレーの一方端は、蓄電装置110の正極端子および負極端子にそれぞれ接続される。SMR115に含まれるリレーの他方端は、PCU120に接続された電力線PL1および接地線NL1にそれぞれ接続される。そして、SMR115は、ECU300からの制御信号SE1に基づいて、蓄電装置110とPCU120との間での電力の供給と遮断とを切替える。
 図2は、PCU120の内部構成の一例を示す図である。
 図2を参照して、PCU120は、コンバータ121と、インバータ122と、コンデンサC1,C2とを含む。
 コンバータ121は、ECU300からの制御信号PWCに基づいて、電力線PL1および接地線NL1と電力線HPLおよび接地線NL1との間で電力変換を行なう。
 インバータ122は、電力線HPLおよび接地線NL1に接続される。インバータ122は、ECU300からの制御信号PWIに基づいて、コンバータ121から供給される直流電力を交流電力に変換し、モータジェネレータ130を駆動する。なお、本実施の形態においては、モータジェネレータおよびインバータの対が1つ設けられる構成を一例として示すが、モータジェネレータおよびインバータの対を複数備える構成としてもよい。
 コンデンサC1は、電力線PL1および接地線NL1の間に設けられ、電力線PL1および接地線NL1間の電圧変動を減少させる。また、コンデンサC2は、電力線HPLおよび接地線NL1の間に設けられ、電力線HPLおよび接地線NL1間の電圧変動を減少させる。
 再び図1を参照して、モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
 モータジェネレータ130の出力トルクは、減速機や動力分割機構によって構成される動力伝達ギア140を介して駆動輪150に伝達されて、車両100を走行させる。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置110の充電電力に変換される。
 また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、このエンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置110を充電することも可能である。
 すなわち、本実施の形態における車両100は、車両駆動力を発生するための電動機を搭載する車両を示すものであり、エンジンおよび電動機により車両駆動力を発生するハイブリッド自動車、ならびにエンジンを搭載しない電気自動車および燃料電池自動車などを含む。
 回転角センサ(レゾルバ)135は、モータジェネレータ130の回転角θを検出し、その検出した回転角θをECU300へ送出する。ECU300では、回転角θに基づきモータジェネレータ130の回転速度MRNおよび角速度ω(rad/s)を算出できる。なお、回転角センサ135については、ECU300にてモータ電圧や電流から回転角θを直接演算することによって配置を省略してもよい。
 DC/DCコンバータ160は、電力線PL1および接地線NL1に接続される。そして、DC/DCコンバータ160は、ECU300からの制御信号PWDに基づいて、蓄電装置110から供給される直流電圧を降圧する。そして、DC/DCコンバータ160は、電力線PL2を介して補機バッテリ180、補機負荷190およびECU300などの車両全体の低電圧系に電力を供給する。
 補機バッテリ180は、代表的には鉛蓄電池によって構成される。補機バッテリ180の出力電圧は、蓄電装置110の出力電圧よりも低く、たとえば12V程度である。
 補機負荷190には、たとえばランプ類、ワイパー、ヒータ、オーディオ、ナビゲーションシステムなどが含まれる。
 空調機170は、DC/DCコンバータ160と並列に電力線PL1および接地線NL1に接続され、車両100の室内を空調する。
 ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力および各機器への制御信号の出力を行なうとともに、車両100および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 ECU300は、PCU120、DC/DCコンバータ160、およびSMR115などを制御するための制御信号を出力する。
 ECU300は、回転角センサ135から、モータジェネレータ130の回転角θと、図示しない上位ECUから伝達されるモータジェネレータ130のトルク指令値TRを受ける。ECU300は、これらの情報および蓄電装置110の状態に基づいて、モータジェネレータ130を駆動するために、PCU120内のコンバータ121およびインバータ122の制御信号PWC,PWIを生成する。
 また、ECU300は、蓄電装置110に含まれるセンサ(図示せず)からの電圧VB,電流IBおよび温度TBの検出値を受ける。ECU300は、これらの情報に基づいて、蓄電装置110の充電状態SOC(State of Charge)を演算する。さらに、ECU300は、この充電状態SOCおよび車両100の駆動状態に基づいて、蓄電装置110の充放電電力を制御する。
 このような車両における蓄電装置の充放電制御においては、過充電や過放電の状態となることによる蓄電装置の劣化および故障を防止するために、一般的に充電電力および放電電力の上限値が設定され、各瞬間における充放電電力がこの上限値を超えないように制御が行なわれる。
 この充放電電力の上限値は、蓄電装置の状態、たとえば蓄電装置のSOCや温度によって定められる。図3は、蓄電装置の充電電力の上限値Winと蓄電装置の温度TBとの関係の一例を示す図である。図3および以降の説明においては、蓄電装置から出力される放電電力を正値で表わし、蓄電装置を充電する充電電力を負値で表わすものとする。図3からわかるように、蓄電装置の温度が所定の範囲(図3中の領域RG1)外となる、低温時および高温時においては、充電電力の上限値Winの大きさ(すなわち、上限値Winの絶対値)が小さく設定される。
 これは、低温時の場合は、蓄電装置110の内部抵抗が大きくなるため、これによって蓄電装置110の出力電圧が上昇することを防止するためである。また、高温時の場合は、蓄電装置110の内部を流れる電流による発熱のために、蓄電装置110の温度がさらに上昇することを防止するためである。
 図4は、後述する本実施の形態の充電電力上限値の修正制御を適用しない場合の比較例における指令電力PB*と実電力PBとの比較を説明するための図である。図4においては、横軸に時間が示され、縦軸に指令電力PB*および実電力PBがそれぞれ示される。
 図4を参照して、この比較例では、ある蓄電装置の温度において実際に蓄電装置の保護のために必要となる充放電電力の上限値(Win,Wout)と、充放電電力指令値PB*を生成する際に用いられる上限値(Winf,Woutf)は同じ値である。そのため、充電電力上限値Winに基づいて定められる充電電力目標値PBRと、上限値Winfに基づいて設定される充電電力指令値PB*は同じ値(PBR=PB*)となる。そして、ECUは上限値Winfを超えないように充電電力指令値PB*が設定される。
 しかしながら、この充電電力目標値PBRは、主に蓄電装置とモータジェネレータの駆動状態に基づいて設定される場合が多く、補機系で消費される電力やPCU120等での損失分などの、予測が困難な電力については考慮されない場合がある。そうすると、充電電力目標値PBRと実電力PBに乖離が生ずるおそれがある。
 そのため、図3で説明したような、上限値Winの大きさが制限される状況においては、乖離分の電力によっては、図4のように蓄電装置を充電するような指令を出力しているにもかかわらず、実際には蓄電装置から電力が出力(放電)されてしまう状態となる可能性がある。そうすると、充放電電力の収支が破綻してしまい、蓄電装置が過放電となるおそれがある。
 特に、蓄電装置としてリチウムイオン電池が採用される場合、その特性から、ニッケル水素電池などと比較して充電電力の上限値Winの大きさがより小さく制限されるので、上述のような充電電力の収支の破綻が発生しやすい。また、コンパクトカーのようにもともと搭載される蓄電装置の容量が小さい場合や、コスト削減のために蓄電装置の容量が低減されるような場合においても、同様の問題が生じる可能性がある。
 そこで、本実施の形態においては、充電電力目標値PBRと実電力PBとの差を考慮して上限値Winfを修正し、修正後の上限値Winfを超えないように充電電力指令値PB*を設定する充電電力上限値の修正制御を行なう。このようにすることによって、これまで考慮されていなかった補機系の消費電力等による影響を低減し、充電電力の収支の破綻を抑制する。
 図5は、本実施の形態における充電電力上限値の修正制御の概要を示す図である。図5においては、図4と同様に、横軸には時間が示され、縦軸には指令電力PB*(および目標電力PBR)ならびに実電力PBが示される。
 図1および図5を参照して、本実施の形態の充電電力上限値の修正制御では、ECU300において、蓄電装置110の電圧VBおよび電流IBに基づいて、実電力PB(=VB×IB)を演算する。次に、この実電力PBと上限値Winから定まる充電電力目標値PBRとの差Pbdが算出される。そして、充電電力指令値PB*を生成する際に用いる上限値Winfは、上述で算出した差Pbd分だけ、より多く充電が可能となるように設定される。すなわち、上限値Winfの絶対値がより大きくなるように設定される。
 ECU300は、このように修正されたWinfに基づいて充電電力指令値PB*を設定する。そうすると、図5中の破線の曲線W11に示す修正前の上限値(すなわちWin)に基づいて設定された充電電力指令値(=PBR)が、実線の曲線W12に示す充電電力指令値PB*のように上限値Winで制限されていた部分が拡大されたものとなる。その結果、実電力は、破線の曲線W21から実線の曲線W22のようになるので、蓄電装置110における実際の充電電力の上限値Winに基づいた充電電力目標値PBRに近づいたものとなる。これによって、充放電電力の収支の破綻が防止できる。
 ここで、上述ような充電電力目標値PBRと実電力PBとの乖離が特に問題となるのは、蓄電装置110のSOCが低下して充電が必要である場合、および/または、蓄電装置110の温度TBが低下して充電電力上限値Winが制限される場合である。逆に、蓄電装置110のSOCが大きい場合や蓄電装置110の温度TBが低下していない場合に、図5で説明した充電電力上限値Winfの修正を実行すると、蓄電装置110の充電電力の増加によってかえって過充電の原因となるおそれがある。
 そのため、実電力PBと充電電力目標値PBRとの差Pbdを充電電力上限値Winfの修正にどの程度反映させるか定める実効係数ηを導入し、蓄電装置110のSOCおよび蓄電装置110の温度TBによって変更することがより好ましい。
 図6は、充電電力上限値Winfの修正における実効係数ηのマップの例を示す図である。この実効係数ηは、0から1.0までの値を有する係数である。実効係数ηは、実電力PBと充電電力目標値PBRとの差Pbdに乗算され、その演算結果である修正値Pbd#(=Pbd×η)を用いて、充電電力上限値Winfを修正する。
 図6を参照して、実行係数ηは、たとえば、図6中の曲線W1のように、蓄電装置110のSOCがS2より大きい場合には、ほぼゼロと設定され、蓄電装置110のSOCがS2より小さくなるにつれて徐々に大きくなるように設定される。そして、蓄電装置110のSOCがS1(S1<S2)よりも小さくなると、蓄電装置110のSOCがS1であるときの実効係数ηが保持されるように設定される。
 また、実効係数ηは、蓄電装置110の温度TBが低くなるほどその値が大きくなるように設定され、蓄電装置110の温度TBが高くなるにつれて、図6中の曲線W2,W3,W4のように、その値が小さくなるように設定される。
 このように、充電電力上限値Winfの修正において、実効係数ηを導入することによって、車両100における蓄電装置110や負荷装置20の特性に応じた詳細な調整を行なうことが可能となる。
 なお、本実施の形態において、この実効係数ηの使用については必須ではなく、実効係数ηを用いない構成としてもよい。また、実効係数ηのマップについても、たとえば、図6のSOCのしきい値S2を温度TBによって可変としたり、各曲線を異なる形状としたりすることも可能である。
 図7は、本実施の形態において、ECU300で実行される充電電力上限値の修正制御を説明するための機能ブロック図である。図7で説明される機能ブロック図に記載された各機能ブロックは、ECU300によるハードウェア的あるいはソフトウェア的な処理によって実現される。
 図1および図7を参照して、ECU300は、実電力演算部310と、SOC演算部320と、制限値設定部330と、目標設定部335と、修正部340と、指令生成部350と、駆動制御部360とを含む。
 実電力演算部310は、蓄電装置110から、蓄電装置110の電圧VBおよび電流IBの検出値を受ける。そして、実電力演算部310は、この電圧VBおよび電流IBに基づいて、実際に蓄電装置に入出力されている実電力PBを演算し、修正部340へ出力する。
 SOC演算部320は、蓄電装置110の電圧VB、電流IBおよび温度TBの検出値を受ける。そして、SOC演算部はこれらの情報に基づいて、蓄電装置110のSOCを演算し、制限値設定部330へ出力する。
 制限値設定部330は、蓄電装置110の温度TBの検出値と、SOC演算部320からの蓄電装置110のSOCとを受ける。そして、制限値設定部330は、たとえば予め定められたマップを用いることによって、充電電力の上限値Winを設定する。また、制限値設定部330は、SOCと温度TBに基づいて、図6で説明したようなマップを用いて実効係数ηを演算する。そして、制限値設定部330は、設定した上限値Winを目標設定部335へ出力するとともに、上限値Winおよび実効係数ηを修正部340へ出力する。
 目標設定部335は、制限値設定部330からの上限値Winを受ける。また、目標設定部335は、アクセル開度やSOCなどに基づいて定められるモータジェネレータ130のトルク指令値TR、および回転角センサ135からの回転角θに基づいて算出された回転速度MRNを受ける。目標設定部335は、これらの情報に基づいて、上限値Winを超えないように充放電電力目標値PBRを設定する。そして、目標設定部335は、この充放電電力目標値PBRを修正部340へ出力する。
 修正部340は、制限値設定部330によって設定された上限値Winおよび実効係数η、蓄電装置110の温度TBの検出値および実電力演算部310によって演算された実電力PBを受ける。また、修正部340は、目標設定部335から充電電力目標値PBRを受ける。
 修正部340は、実電力PBと充電電力目標値PBRとの差Pbdを算出するとともに、差Pbdに実効係数ηを乗算して上限値Winの修正値を演算する。また、このとき、修正値の急激な変動や、修正値が過大となることを防止するために、各種のリミット処理が併せて行なわれる。そして、修正部340は、制限値設定部330からの上限値Winからこの修正値を差し引くことによって、修正後の上限値Winfを演算し、指令生成部350へ出力する。
 指令生成部350は、修正部340から修正後の充電電力の上限値Winfを受ける。また、指令生成部350は、モータジェネレータ130のトルク指令値TRおよび回転角センサ135からの回転角θに基づいて算出された回転速度MRNを受ける。指令生成部350は、これらの情報に基づいて、修正後の上限値Winfを超えないように充放電電力指令値PB*を生成する。そして、指令生成部350は、この充放電電力指令値PB*を駆動制御部360へ出力する。
 駆動制御部360は、指令生成部350からの充放電電力指令値PB*と、モータジェネレータ130の駆動状態に基づいて、図2で示したコンバータ121およびインバータ122に対する制御信号PWC,PWIを生成して、コンバータ121およびインバータ122を制御する。
 図8は、本実施の形態において、ECU300で実行される充電電力上限値の修正制御処理の詳細を説明するためのフローチャートである。図8に示されるフローチャートは、ECU300に予め格納されたプログラムがメインルーチンから呼び出されて、所定周期で実行されることによって処理が実現される。また、その一部または全部のステップについて、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図1および図8を参照して、ECU300は、ステップ(以下、ステップをSと略す。)100にて、実電力PBと充電電力目標値PBRとの差Pbdを算出する。なお、本実施の形態においては、上述のように充電電力を負値として表わしているので、充電電力が大きいほど、負の方向にその絶対値が大きな値となる。
 次に、ECU300は、算出した差Pbdを時間軸方向に平均化するなまし処理を行なう。このなまし処理は、時々刻々と変化する実電力PBおよび充電電力目標値PBRについて、センサの検出誤差や制御遅れ、あるいは信号に対する外部ノイズなどの影響による、差Pbdの算出値の過渡状態における変動を滑らかにするために行われる。なまし処理としては、たとえば、ある時定数を有する一次遅れ関数や、所定期間中における複数の算出値の移動平均などの既知の処理方法が採用可能である。
 ECU300は、S120にて、差Pbdの変化率のリミット処理を行なう。この処理は、前回の演算周期における差Pbdの値と、今回の演算周期における差Pbdの値との差ΔPbdの絶対値が、しきい値α以下となるようにするものである。すなわち、差ΔPbdの絶対値がしきい値αを超える場合には、差ΔPbdの絶対値がしきい値αとなるように今回の演算周期における差Pbdが設定される。これによって、実電力PBと充電電力指令値PB*との差Pbdが過渡的に大きく変動した場合に、過剰な修正が行なわれることを防止する。
 ECU300は、S130にて、差Pbdの上下限リミット処理を行なう。具体的には、差Pbdが0≦Pbd≦βの範囲となるように設定される。すなわち、差Pbdが負の場合にはゼロに置き換えられ、差Pbdがしきい値βを超過する場合にはβに置き換えられる。これは、この制御における充電電力上限値の修正が、差Pbdが正の場合、すなわち補機等による放電電力によって充電電力指令値PB*よりも実際の充電電力PBの大きさが小さくなる場合のみに行なわれるようにするとともに、過剰な修正によって過充電となってしまうことを防止するためである。
 そして、ECU300は、S140にて、図6で説明した、蓄電装置110のSOCおよび温度TBに基づいて定められる実行係数ηを差Pbdに乗算し、修正値Pbd#を演算する。
 そして、ECU300は、充電電力上限値Winからこの修正値Pbd#を差し引き、充電電力指令値PB*を生成するための上限値Winfを演算する。これによって、図5で説明したように、より充電電力が増加する方向へ拡大されるように上限値Winfが設定される。
 その後、メインルーチンに処理が戻され、修正された上限値Winfを用いて充電電力指令値PB*が演算されるとともに、それに基づいてPCU120内のコンバータ121およびインバータ122が制御される。
 このような処理に従って制御を行なうことによって、補機等によって消費される電力を含む実際の充電電力を考慮して、充電電力の指令値を設定することができる。その結果、蓄電装置を充電する指令であるにもかかわらず実際には放電が行なわれるという状態となることが防止できるので、充放電電力の収支の破綻が抑制され、充放電電力を適切に管理することが可能となる。
 なお、上述の実施の形態においては、充電電力上限値を、充電電力目標値と実電力との「差」に基づいて修正する場合について説明したが、充電電力目標値と実電力との「比率」に基づいて修正量を設定するようにしてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 20 負荷装置、30 駆動装置、100 車両、110 蓄電装置、115 SMR、120 PCU、121 コンバータ、122 インバータ、130 モータジェネレータ、135 回転角センサ、140 動力伝達ギア、150 駆動輪、160 DC/DCコンバータ、170 空調機、180 補機バッテリ、190 補機負荷、300 ECU、310 実電力演算部、320 SOC演算部、330 制限値設定部、340 修正部、350 指令生成部、360 駆動制御部、C1,C2 コンデンサ、HPL,PL1,PL2 電力線、NL1 接地線。

Claims (10)

  1.  負荷装置(20)へ電力を供給するための蓄電装置(110)の充放電を制御するための制御装置であって、
     前記蓄電装置(110)の状態に基づいて、前記蓄電装置(110)への充電電力の制限値を設定する制限値設定部(330)と、
     前記負荷装置(20)の状態および前記制限値に基づいて、前記蓄電装置(110)の充電電力の目標値を設定する目標設定部(335)と、
     前記目標値と前記蓄電装置(110)に入出力される実電力とに基づいて、前記制限値を修正する修正部(340)と、
     前記負荷装置(20)の状態および修正された制限値に基づいて、前記蓄電装置(110)の充電電力の指令値を設定する指令設定部(350)とを備える、蓄電装置の制御装置。
  2.  前記蓄電装置(110)は、前記蓄電装置(110)の温度が予め定められた範囲外になると、充電可能電力が低下する特性を有し、
     前記制限値設定部(330)は、前記蓄電装置(110)の温度に基づいて前記制限値を設定する、請求の範囲第1項に記載の蓄電装置の制御装置。
  3.  前記修正部(340)は、前記目標値と前記実電力の差に基づいて、前記制限値を修正するための修正電力を設定する、請求の範囲第2項に記載の蓄電装置の制御装置。
  4.  前記修正部(340)は、前記実電力の充電電力の大きさが前記目標値の大きさを下回る場合は、前記修正電力をさらに充電できるように前記制限値を修正し、前記実電力の充電電力の大きさが前記目標値の大きさを上回る場合は、前記制限値の修正を行なわない、請求の範囲第3項に記載の蓄電装置の制御装置。
  5.  前記修正部(340)は、前記差が予め定められたしきい値を超える場合には、前記差に代えて前記しきい値に基づいて前記修正電力を設定する、請求の範囲第4項に記載の蓄電装置の制御装置。
  6.  前記修正部(340)は、前記蓄電装置(110)の状態に基づいて、前記差に対する前記修正電力の比率を定める実効係数を設定し、前記差に前記実効係数を乗算することによって前記修正電力を決定する、請求の範囲第3項に記載の蓄電装置の制御装置。
  7.  前記実効係数は、前記蓄電装置(110)の充電状態が基準値より小さい場合に、前記蓄電装置(110)の温度が低いほど大きく設定される、請求の範囲第6項に記載の蓄電装置の制御装置。
  8.  前記修正部(340)は、前記差を時間軸方向に平均化し、平均化された差に基づいて前記修正電力を設定する、請求の範囲第3項に記載の蓄電装置の制御装置。
  9.  前記修正部(340)は、単位時間当たりの前記差の増加方向の変化率が予め定められた第1のしきい値を超える場合は、前記第1のしきい値に基づいて前記修正電力を設定し、単位時間当たりの前記差の減少方向の変化率が予め定められた第2のしきい値を超える場合は、前記第2のしきい値に基づいて前記修正電力を設定する、請求の範囲第3項に記載の蓄電装置の制御装置。
  10.  車両であって、
     充電が可能な蓄電装置(110)と、
     前記蓄電装置(110)からの電力を用いて前記車両(100)を走行するための駆動力を発生するように構成された駆動装置(30)を含む負荷装置(20)と、
     前記蓄電装置(110)の充放電を制御するための制御装置(300)とを備え、
     前記制御装置(300)は、
     前記蓄電装置(110)の状態に基づいて、前記蓄電装置(110)への充電電力の制限値を設定する制限値設定部(330)と、
     前記駆動装置(20)の状態および前記制限値に基づいて、前記蓄電装置(110)の充電電力の目標値を設定する目標設定部(335)と、
     前記目標値と前記蓄電装置(110)に入出力される実電力とに基づいて、前記制限値を修正する修正部(340)と、
     前記負荷装置(20)の状態および修正された制限値に基づいて、前記蓄電装置(110)の充電電力の指令値を設定する指令設定部(350)とを含む、車両。
PCT/JP2010/057552 2010-04-28 2010-04-28 蓄電装置の制御装置およびそれを搭載する車両 WO2011135690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/057552 WO2011135690A1 (ja) 2010-04-28 2010-04-28 蓄電装置の制御装置およびそれを搭載する車両
JP2012512587A JP5459394B2 (ja) 2010-04-28 2010-04-28 蓄電装置の制御装置およびそれを搭載する車両
DE201011005527 DE112010005527T5 (de) 2010-04-28 2010-04-28 Steuervorrichtung für elektrische Energiespeichervorrichtung und mit dieser ausgestattetes Fahrzeug
CN201080066260.9A CN102844956B (zh) 2010-04-28 2010-04-28 蓄电装置的控制装置以及搭载该蓄电装置的控制装置的车辆
US13/634,149 US9007028B2 (en) 2010-04-28 2010-04-28 Control device for electric power storage device and vehicle equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057552 WO2011135690A1 (ja) 2010-04-28 2010-04-28 蓄電装置の制御装置およびそれを搭載する車両

Publications (1)

Publication Number Publication Date
WO2011135690A1 true WO2011135690A1 (ja) 2011-11-03

Family

ID=44861034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057552 WO2011135690A1 (ja) 2010-04-28 2010-04-28 蓄電装置の制御装置およびそれを搭載する車両

Country Status (5)

Country Link
US (1) US9007028B2 (ja)
JP (1) JP5459394B2 (ja)
CN (1) CN102844956B (ja)
DE (1) DE112010005527T5 (ja)
WO (1) WO2011135690A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489772A (ja) * 1990-07-31 1992-03-23 Fujitsu Ltd 循環式シート収納箱及び収納方法
JP2013153602A (ja) * 2012-01-25 2013-08-08 Toyota Industries Corp 充電システム
CN105391108A (zh) * 2014-09-02 2016-03-09 Ls产电株式会社 一种蓄电池组和包含该蓄电池组的混合动力车辆
JP2016127770A (ja) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 電源装置
CN105794076A (zh) * 2013-11-29 2016-07-20 三洋电机株式会社 蓄电装置的充放电控制系统
WO2019188166A1 (ja) * 2018-03-29 2019-10-03 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
JP2021013221A (ja) * 2019-07-04 2021-02-04 日野自動車株式会社 制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917908B (zh) * 2010-05-25 2016-06-08 三菱电机株式会社 电力信息管理装置和电力信息管理系统及电力信息管理方法
US9246345B2 (en) * 2010-07-28 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Power supply system, controller of power supply system, method of operating power supply system, and method of controlling power supply system
KR20150125976A (ko) * 2013-04-01 2015-11-10 도요타지도샤가부시키가이샤 충전 제어 장치, 차량 제어 장치, 차량, 충전 제어 방법, 및 차량 제어 방법
CN105814766B (zh) * 2013-11-13 2019-06-18 沃尔沃拉斯特瓦格纳公司 充放电系统
JP6227003B2 (ja) * 2013-11-13 2017-11-08 ボルボ ラストバグナー アクチエボラグ 充放電システム
JP6301240B2 (ja) * 2014-02-07 2018-03-28 本田技研工業株式会社 車両用バッテリ充電装置
DE102014209249A1 (de) * 2014-05-15 2015-11-19 Ford Global Technologies, Llc Elektrisches Ladeverfahren für ein Fahrzeug und elektrische Fahrzeugladevorrichtung
EP3048450B1 (en) * 2015-01-22 2021-03-10 Volvo Car Corporation System and method for determining battery usage limits
DE102015001069A1 (de) 2015-01-29 2016-08-04 Man Truck & Bus Ag Verfahren und Vorrichtung zur temperaturabhängigen Strombegrenzung eines Energiespeichers für elektrische Energie
JP6471599B2 (ja) 2015-04-22 2019-02-20 スズキ株式会社 車両の発電制御装置
JP7231370B2 (ja) * 2018-10-02 2023-03-01 株式会社Subaru 車両の電力制御装置および電力制御方法
JP7398902B2 (ja) * 2019-08-23 2023-12-15 川崎重工業株式会社 電力制御システム及び電源システム
CN110696627A (zh) * 2019-10-11 2020-01-17 广州小鹏汽车科技有限公司 一种车辆可达范围的反馈方法及装置、汽车、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182112A (ja) * 1994-12-22 1996-07-12 Toyota Motor Corp ハイブリッド電気自動車用発電制御装置
JPH11187577A (ja) * 1997-10-13 1999-07-09 Toyota Motor Corp 二次電池の充放電制御装置
JP2006320069A (ja) * 2005-05-11 2006-11-24 Toyota Motor Corp 二次電池の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099769B2 (ja) 1997-03-24 2000-10-16 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP3929387B2 (ja) 1997-10-13 2007-06-13 トヨタ自動車株式会社 二次電池の充放電制御装置
KR100460881B1 (ko) * 2002-06-28 2004-12-09 현대자동차주식회사 연료전지 하이브리드 전기자동차의 동력분배 제어시스템및 제어방법
US7196493B2 (en) 2004-07-30 2007-03-27 Ford Global Technologies, Llc Closed loop control of battery power limits based on voltage
JP4196966B2 (ja) 2004-08-25 2008-12-17 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4349467B2 (ja) 2004-08-25 2009-10-21 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4055771B2 (ja) 2004-12-14 2008-03-05 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2007252072A (ja) 2006-03-15 2007-09-27 Toyota Motor Corp 電源制御装置および電源装置の制御方法
JP2008061487A (ja) * 2006-07-31 2008-03-13 Toyota Motor Corp 電源システムおよびそれを備えた車両、蓄電装置の昇温制御方法、ならびに蓄電装置の昇温制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US8022674B2 (en) * 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
JP4375458B2 (ja) * 2007-08-01 2009-12-02 株式会社デンソー 2次電池の充電状態推定装置及び充電制御システム
JP4363478B2 (ja) 2007-10-29 2009-11-11 トヨタ自動車株式会社 燃料電池の出力制御装置
US8405355B2 (en) * 2010-09-23 2013-03-26 GM Global Technology Operations LLC Energy storage system energy capacity and capability monitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182112A (ja) * 1994-12-22 1996-07-12 Toyota Motor Corp ハイブリッド電気自動車用発電制御装置
JPH11187577A (ja) * 1997-10-13 1999-07-09 Toyota Motor Corp 二次電池の充放電制御装置
JP2006320069A (ja) * 2005-05-11 2006-11-24 Toyota Motor Corp 二次電池の制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489772A (ja) * 1990-07-31 1992-03-23 Fujitsu Ltd 循環式シート収納箱及び収納方法
JP2013153602A (ja) * 2012-01-25 2013-08-08 Toyota Industries Corp 充電システム
CN105794076A (zh) * 2013-11-29 2016-07-20 三洋电机株式会社 蓄电装置的充放电控制系统
CN105794076B (zh) * 2013-11-29 2018-12-25 三洋电机株式会社 蓄电装置的充放电控制系统
CN105391108A (zh) * 2014-09-02 2016-03-09 Ls产电株式会社 一种蓄电池组和包含该蓄电池组的混合动力车辆
JP2016054635A (ja) * 2014-09-02 2016-04-14 エルエス産電株式会社Lsis Co., Ltd. バッテリパックと、前記バッテリパックを含むハイブリッド車両
JP2016127770A (ja) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 電源装置
WO2019188166A1 (ja) * 2018-03-29 2019-10-03 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
JP2019176651A (ja) * 2018-03-29 2019-10-10 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
JP2021013221A (ja) * 2019-07-04 2021-02-04 日野自動車株式会社 制御装置
JP7328033B2 (ja) 2019-07-04 2023-08-16 日野自動車株式会社 制御装置

Also Published As

Publication number Publication date
DE112010005527T5 (de) 2013-01-31
US9007028B2 (en) 2015-04-14
JPWO2011135690A1 (ja) 2013-07-18
CN102844956B (zh) 2015-05-13
JP5459394B2 (ja) 2014-04-02
CN102844956A (zh) 2012-12-26
US20130043844A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5459394B2 (ja) 蓄電装置の制御装置およびそれを搭載する車両
US8639413B2 (en) Vehicle power supply system and method for controlling the same
JP4600390B2 (ja) 電源システムおよびそれを備える車両、ならびにその制御方法
JP5029793B2 (ja) 車両
JP5605436B2 (ja) 電動車両およびその制御方法
JP6003943B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP5310959B2 (ja) 車両の充電装置
JP5716694B2 (ja) 電動車両
JP5515897B2 (ja) 車両の制御装置およびそれを搭載する車両
JP4569696B2 (ja) 電動車両およびその制御方法
JP5407752B2 (ja) 車両の電源システムおよびそれを搭載する車両
WO2012101735A1 (ja) ハイブリッド車両
WO2012131864A1 (ja) 電動車両およびその制御方法
JP5131175B2 (ja) 電動車両およびその制御方法
US20110068740A1 (en) Power supply system for vehicle, electric vehicle having the same, and method of controlling power supply system for vehicle
JP5477304B2 (ja) 電源システムおよびそれを搭載する車両、ならびに電源システムの制御方法
JP2019054673A (ja) 電源装置
JP2015057009A (ja) 車両
JP5447170B2 (ja) 蓄電装置の制御装置およびそれを搭載する車両
JP5115444B2 (ja) 電動車両およびその制御方法
JP2012222930A (ja) 車両の制御装置
JP2016144366A (ja) 電動車両
JP6665582B2 (ja) ハイブリッド車両
JP2019087423A (ja) 電池システム
JP7028036B2 (ja) 電動車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066260.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012512587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100055270

Country of ref document: DE

Ref document number: 112010005527

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850708

Country of ref document: EP

Kind code of ref document: A1