WO2011132539A1 - アルミニウム構造体の製造方法およびアルミニウム構造体 - Google Patents

アルミニウム構造体の製造方法およびアルミニウム構造体 Download PDF

Info

Publication number
WO2011132539A1
WO2011132539A1 PCT/JP2011/058782 JP2011058782W WO2011132539A1 WO 2011132539 A1 WO2011132539 A1 WO 2011132539A1 JP 2011058782 W JP2011058782 W JP 2011058782W WO 2011132539 A1 WO2011132539 A1 WO 2011132539A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
resin molded
molded body
conductive
plating
Prior art date
Application number
PCT/JP2011/058782
Other languages
English (en)
French (fr)
Inventor
細江 晃久
稲澤 信二
真嶋 正利
新田 耕司
将一郎 酒井
知之 粟津
奥野 一樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180004624.5A priority Critical patent/CN102666887B/zh
Priority to KR1020127012836A priority patent/KR20130079308A/ko
Priority to EP11771875.9A priority patent/EP2562278A4/en
Priority to CA2781170A priority patent/CA2781170A1/en
Priority to US13/237,218 priority patent/US20120067731A1/en
Publication of WO2011132539A1 publication Critical patent/WO2011132539A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method of forming an aluminum structure on a resin surface by aluminum plating, and particularly to an aluminum structure that can be suitably used as a porous metal body in applications such as various filters and battery electrodes, and a method for producing the same.
  • Metal porous bodies having a three-dimensional network structure are used in various fields such as various filters, catalyst carriers, and battery electrodes.
  • cermet made of nickel (manufactured by Sumitomo Electric Industries, Ltd .: registered trademark) is used as an electrode material for batteries such as nickel metal hydride batteries and nickel cadmium batteries.
  • Celmet is a metal porous body having continuous air holes, and has a feature that the porosity is higher (90% or more) than other porous bodies such as a metal nonwoven fabric. This can be obtained by forming a nickel layer on the surface of the porous resin skeleton having continuous air holes such as urethane foam, then heat-treating it to decompose the foamed resin molded product, and further reducing the nickel.
  • the formation of the nickel layer is performed by depositing nickel by electroplating after applying carbon powder or the like to the surface of the skeleton of the foamed resin molded body and conducting a conductive treatment.
  • Aluminum has excellent characteristics such as conductivity, corrosion resistance, and light weight.
  • a positive electrode of a lithium ion battery in which an active material such as lithium cobaltate is applied to the surface of an aluminum foil is used.
  • an active material such as lithium cobaltate
  • aluminum is made porous to increase the surface area and the aluminum is filled with an active material. This is because the active material can be used even if the electrode is thickened, and the active material utilization rate per unit area is improved.
  • Patent Document 1 discloses that a metal aluminum layer having a thickness of 2 to 20 ⁇ m is formed by subjecting a three-dimensional net-like plastic substrate having an internal communication space to aluminum vapor deposition by an arc ion plating method. A method is described.
  • Patent Document 2 a film made of a metal (such as copper) that forms a eutectic alloy below the melting point of aluminum is formed on the skeleton of a foamed resin molding having a three-dimensional network structure, and then an aluminum paste is applied.
  • a method is described in which a metal porous body is obtained by performing heat treatment at a temperature of 550 ° C. or higher and 750 ° C. or lower in a non-oxidizing atmosphere to eliminate organic components (foamed resin) and sinter aluminum powder.
  • Patent Document 3 uses a low melting point composition in which onium halide and aluminum halide are mixed and melted as a plating bath, and the water content in the bath is 2 wt% or less.
  • An aluminum electroplating method is disclosed, in which aluminum is deposited on the cathode while maintaining the same.
  • Patent Document 1 an aluminum porous body having a thickness of 2 to 20 ⁇ m is obtained, but since it is based on a gas phase method, it is difficult to produce a large area, and the thickness of the substrate and the pores Depending on the rate, it is difficult to form a uniform layer up to the inside. In addition, there are problems such as a slow formation rate of the aluminum layer and an increase in manufacturing cost due to expensive equipment. Furthermore, when a thick film is formed, there is a possibility that the film may crack or aluminum may fall off. According to the method of Patent Document 2, a layer that forms a eutectic alloy with aluminum is formed, and a high-purity aluminum layer cannot be formed.
  • the electroplating method of aluminum itself is known, it is only possible to plate on the metal surface, and electroplating on the resin surface, especially on the surface of the porous resin molded body having a three-dimensional network structure.
  • the method of electroplating has not been known. This is considered to be affected by problems such as dissolution of the porous resin in the plating bath.
  • the present invention enables high-purity aluminum structure by uniformly forming a thick film even if the resin molded body, particularly a porous resin molded body having a three-dimensional network structure, can be plated with aluminum. It aims at the method which can form a body, and the method which can obtain the aluminum porous body of a large area especially.
  • the inventors of the present application have come up with a method of electroplating aluminum on the surface of a resin molded body such as polyurethane or melamine. That is, the present invention provides an aluminum structure comprising a conductive step for forming a conductive layer made of aluminum on the surface of a resin molded body, and a plating step for plating aluminum in the molten salt bath on the conductive resin molded body. (The first invention of the present application). As described above, conventionally, although aluminum plating has been performed on a metal surface, electroplating on the surface of a resin molded body has not been considered.
  • anodic electrolysis process in which the electroconductive layer is used as an anode between the conductive process and the plating process (the second invention of the present application).
  • the oxide film on the surface of the conductive layer formed in the conductive step can be dissolved and removed, and aluminum plating in the molten salt can be performed satisfactorily.
  • the conductive resin molded body is transferred between processes without being exposed to an oxidizing atmosphere between the conductive process and the plating process (third invention of the present application). With such a process, the aluminum plating in the molten salt can be satisfactorily performed without oxidizing the conductive layer.
  • the conductive step may be a step of attaching aluminum to the surface of the resin molded body by a vapor phase method (fourth invention of the present application), or by immersing the resin molded body in a paint containing aluminum. It may be a step of attaching aluminum (the fifth invention of the present application).
  • Such a process makes it possible to form a uniformly thick aluminum layer on the surface of a complex skeleton structure, particularly a porous resin body having a three-dimensional network structure (the sixth invention of the present application).
  • Urethane or melamine capable of obtaining a resin porous body having a high porosity is preferable as the resin molded body (the seventh invention of the present application).
  • an aluminum structure having a resin molded body having a metal layer on its surface is obtained (the eleventh invention of the present application).
  • it may be used as a composite of resin and metal as it is, or when used as a metal structure without resin due to restrictions on the usage environment, the resin is removed. (8th invention of the present application).
  • the aluminum structure obtained by the above manufacturing method is an aluminum structure composed of an aluminum layer having a thickness of 1 ⁇ m to 100 ⁇ m as a metal layer, and the purity of the aluminum layer as a whole excluding the resin is 99.0% or more.
  • the carbon content is measured by the high frequency induction furnace combustion-infrared absorption method of JIS-G1211.
  • the purity of aluminum is measured by dissolving an aluminum structure in aqua regia and using an ICP (inductively coupled plasma) emission spectrometer.
  • the skeleton portion of the network structure has a triangular shape as a whole.
  • the triangle is not a strict meaning and refers to a shape having approximately three apexes and having three curves as sides. Therefore, the shape of the aluminum structure formed by plating also has a structure in which the skeleton has a substantially triangular shape.
  • aluminum is deposited by a vapor phase method as a conductive method. In the vapor phase method, a conductive layer having a relatively uniform thickness can be formed, and the conductivity is the same at all positions of the triangle.
  • the surface of a resin molded body can be plated with aluminum, and has a substantially uniform thick film with high purity and a large area.
  • a method capable of forming an aluminum structure and an aluminum structure can be provided.
  • FIG. 1 is a flow diagram showing a manufacturing process of an aluminum structure according to the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a manufacturing process of an aluminum structure according to the present invention.
  • FIG. 3 is an enlarged surface photograph showing the structure of a urethane foam resin as an example of a porous resin molded body.
  • FIG. 4 is a schematic diagram illustrating a skeleton cross section of an aluminum porous body.
  • FIG. 5 is a diagram for explaining an example of an aluminum continuous plating process by molten salt plating.
  • FIG. 6 is a schematic cross-sectional view showing a structural example in which an aluminum porous body is applied to a molten salt battery.
  • FIG. 7 is a schematic cross-sectional view showing a structural example in which an aluminum porous body is applied to an electric double layer capacitor.
  • FIG. 8 is a cross-sectional SEM photograph of the porous aluminum body.
  • FIG. 1 is a flow diagram showing a manufacturing process of an aluminum structure according to the present invention.
  • FIG. 2 schematically shows a state in which an aluminum structure is formed using a resin molded body as a core material corresponding to the flowchart. The flow of the entire manufacturing process will be described with reference to both drawings.
  • preparation 101 of the base resin molded body is performed.
  • Part (a) of FIG. 2 is an enlarged schematic view showing a part of the cross section of the resin as an enlarged view of the surface of the foamed resin molded body having continuous air holes as an example of the base resin molded body. The pores are formed with the foamed resin molded body 1 as a skeleton.
  • the surface 102 of the resin molded body is made conductive.
  • a thin conductive layer 2 made of aluminum is formed on the surface of the resin molded body 1 as shown in part (b) of FIG.
  • aluminum plating 103 in molten salt is performed to form an aluminum plating layer 3 on the surface of the resin molded body on which the conductive layer is formed (part (c) in FIG. 2).
  • an aluminum structure in which the aluminum plating layer 3 is formed on the surface using the base resin molded body as a base material is obtained.
  • the removal 104 of the base resin molded body may be performed.
  • An aluminum structure (porous body) in which only the metal layer remains can be obtained by disassembling and disappearing the foamed resin molded body 1 (part (d) in FIG. 2).
  • each step will be described in order.
  • a porous resin molded body having a three-dimensional network structure and continuous air holes is prepared.
  • Arbitrary resin can be selected as a raw material of a porous resin molding.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • a resin molded article having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes). For example, what has a shape like a nonwoven fabric entangled with a fibrous resin can be used instead of the foamed resin molded article.
  • the foamed resin molded article preferably has a porosity of 80% to 98% and a pore diameter of 50 ⁇ m to 500 ⁇ m.
  • Foamed urethane and foamed melamine can be preferably used as a foamed resin molded article because they have high porosity, have pore connectivity and are excellent in thermal decomposability.
  • Foamed urethane is preferable in terms of uniformity of pores and availability, and urethane foam is preferable in that a product having a small pore diameter is obtained.
  • the porous resin molded body often has residues such as foaming agents and unreacted monomers in the foam production process, and it is preferable to perform a washing treatment for the subsequent steps.
  • FIG. 3 shows one obtained by washing urethane foam as a pretreatment.
  • the resin molded body forms a three-dimensional network as a skeleton, thereby forming continuous pores as a whole.
  • the skeleton of the urethane foam has a substantially triangular shape in a cross section perpendicular to the extending direction.
  • the porosity is defined by the following equation.
  • a conductive layer made of aluminum is formed on the surface of the foamed resin molded body.
  • the conductive layer can be formed by an arbitrary method such as vapor deposition, sputtering, gas phase method such as plasma CVD, or application of aluminum paint.
  • a vapor deposition method is preferable because a thin film can be formed uniformly.
  • the thickness of the conductive layer is 0.05 ⁇ m to 1 ⁇ m, preferably 0.1 ⁇ m to 0.5 ⁇ m. When the thickness of the conductive layer is smaller than 0.01 ⁇ m, the electroconductivity is insufficient and the electroplating cannot be performed satisfactorily in the next step. On the other hand, when the thickness exceeds 1 ⁇ m, the cost of the conductive step increases.
  • the conductive treatment may be performed by immersing the foamed resin molded body in a paint containing aluminum.
  • a paint containing aluminum for example, a liquid in which aluminum fine particles having a particle diameter of 10 nm to 1 ⁇ m are dispersed in water or an organic solvent can be used.
  • the conductive layer can be formed by immersing the foamed resin in the paint and then heating to evaporate the solvent.
  • Platinum pretreatment anode electrolysis
  • aluminum is plated by molten salt plating to form an aluminum plating layer.
  • an oxide film is present on the surface of the conductive layer, the adhesion of aluminum deteriorates in the next plating step, and aluminum may adhere in an island shape or the thickness of the aluminum plating layer may vary. Therefore, it is preferable to perform anodic electrolysis before the plating step to dissolve and remove the oxide film (aluminum oxide layer) formed on the surface of the conductive layer (aluminum layer).
  • a conductive resin molded body and a counter electrode such as an aluminum plate are immersed in molten salt, and a DC current is applied with the conductive resin molded body (conductive layer) on the anode side and the counter electrode as the cathode.
  • the molten salt may be the same as the molten salt plating in the next step, or may be a different one.
  • plating pretreatment non-oxidizing atmosphere
  • Another method for preventing oxidation of the conductive layer is the next step without exposing the resin molded body with a conductive layer (conductive resin molded body) to an oxidizing atmosphere after forming the conductive layer. It is conceivable to move to the plating process. For example, a vapor deposition device and a molten salt plating device are placed in an argon atmosphere, and after conducting a conductive step by vapor deposition in an argon atmosphere, the sample is transferred to the next step in the argon atmosphere and molten salt plating is performed. Can do. By such a technique, plating can be performed without oxidizing the surface of the conductive layer formed in the conductive step.
  • Formation of aluminum layer molten salt plating
  • electrolytic plating is performed in a molten salt to form an aluminum plating layer 3 on the surface of the resin molded body.
  • a direct current is applied in a molten salt using a resin molded body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode.
  • the thickness of the aluminum plating layer is 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • a direct current is applied in the molten salt using the conductive resin molded body as a cathode and the counter electrode as an anode.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • aluminum chloride, 1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) based molten salt It is most preferably used because it is highly stable and hardly decomposes.
  • plating is preferably performed in an inert gas atmosphere such as nitrogen or argon and in a sealed environment.
  • an inert gas atmosphere such as nitrogen or argon
  • the temperature of the plating bath is 10 ° C. to 60 ° C., preferably 25 ° C. to 45 ° C.
  • FIG. 5 is a diagram schematically showing a configuration of an apparatus for continuously performing metal plating treatment on the belt-shaped resin.
  • a configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure.
  • the first plating tank 21 a includes a cylindrical electrode 24, a positive electrode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 through the plating bath 23 along the cylindrical electrode 24, a uniform current can easily flow through the entire resin, and uniform plating can be obtained.
  • the plating tank 21b is a tank for applying a thick and uniform plating, and is configured to be repeatedly plated in a plurality of tanks.
  • Plating is performed by passing the belt-like resin 22 having a thin metal tank on the surface through a plating bath 28 while sequentially feeding it by an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an aluminum structure (aluminum porous body) having a resin molded body as a skeleton core is obtained.
  • the resin and metal composite may be used as they are.
  • the resin may be removed when it is used as a metal structure without resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with an organic solvent, molten salt, or supercritical water, and thermal decomposition.
  • methods such as thermal decomposition at high temperature are simple, but involve oxidation of aluminum. Aluminum, unlike nickel or the like, is difficult to reduce once oxidized.
  • a method of removing the resin by thermal decomposition in a molten salt described below is preferably used so that oxidation of aluminum does not occur.
  • Thermal decomposition in the molten salt is performed by the following method.
  • a foamed resin molded body with an aluminum plating layer having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the foamed resin molded body.
  • a negative potential is applied while immersed in the molten salt, the oxidation reaction of aluminum can be prevented.
  • the foamed resin molded body can be decomposed without oxidizing aluminum.
  • heating temperature can be suitably selected according to the kind of foaming resin molding, in order not to melt aluminum, it is necessary to process at the temperature below melting
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • molten salt used for the thermal decomposition of the resin a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • LiCl lithium chloride
  • KCl potassium chloride
  • NaCl sodium chloride
  • AlCl 3 aluminum chloride
  • FIG. 4 is a schematic view showing an A-A ′ cross section of a portion (d) of FIG.
  • the aluminum layer composed of the conductive layer 2 and the aluminum plating layer 3 has a cylindrical skeleton structure, and the cavity 4 in the skeleton structure has a substantially triangular cross-sectional shape.
  • the thickness (t1) of the aluminum layer at the apex portion of the triangle is thicker than the thickness (t2) of the aluminum layer at the center portion of the triangular side.
  • the skeleton structure has a substantially triangular cross-sectional shape, and the thickness of the aluminum layer at the apex portion of the triangle is thicker than the thickness of the aluminum layer at the central portion of the triangle. An aluminum structure is obtained.
  • LiNiO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium nickelate
  • the active material is used in combination with a conductive additive and a binder.
  • Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased.
  • the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in a mixture with a conductive additive.
  • the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced.
  • a lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte. Since such a lithium ion battery can improve capacity even with a small electrode area, the energy density of the battery can be made higher than that of a conventional lithium ion battery.
  • the aluminum porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating cations of a molten salt serving as an electrolyte such as sodium chromite (NaCrO 2 ) and titanium disulfide (TiS 2 ) as an active material Is used.
  • the active material is used in combination with a conductive additive and a binder.
  • a conductive auxiliary agent acetylene black or the like can be used.
  • the binder polytetrafluoroethylene (PTFE) or the like can be used.
  • PTFE polytetrafluoroethylene
  • the aluminum porous body can also be used as a negative electrode material for a molten salt battery.
  • an aluminum porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • the melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle.
  • Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping.
  • a metal alloy (such as Si) to be alloyed with sodium is attached to the aluminum porous body by a method such as plating, and then charged in a molten salt battery to form a sodium alloy.
  • FIG. 6 is a schematic cross-sectional view showing an example of a molten salt battery using the above-described battery electrode material.
  • the molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte.
  • a separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed.
  • the current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the operating temperature of the battery can be made 90 ° C. or lower.
  • the molten salt is used by impregnating the separator.
  • a separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, porous resin, etc. can be used for it.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
  • the aluminum porous body can also be used as an electrode material for an electric double layer capacitor.
  • activated carbon or the like is used as an electrode active material.
  • Activated carbon is used in combination with a conductive additive and a binder.
  • a conductive aid graphite, carbon nanotubes, and the like can be used.
  • the binder polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
  • FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor.
  • an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141.
  • the electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
  • the present invention is not limited to the foamed resin molded body, and an aluminum structure having an arbitrary shape can be obtained by using the resin molded body having an arbitrary shape. Can be obtained.
  • Example Production of porous aluminum body: formation of aluminum layer by vapor deposition
  • a production example of the aluminum porous body will be specifically described.
  • a foamed resin molded body a urethane foam having a thickness of 1 mm, a porosity of 95%, and a pore number of about 20 per 1 cm was prepared and cut into 10 mm ⁇ 30 m square.
  • Aluminum was deposited on the surface of the urethane foam to form a conductive layer having a thickness of about 0.3 ⁇ m.
  • the urethane foam having a conductive layer formed on the surface was set in a jig having a power feeding function, and then immersed in a molten salt aluminum plating bath (67 mol% AlCl 3 -33 mol% EMIC) at a temperature of 40 ° C.
  • a jig on which urethane foam was set was connected to the anode side of the rectifier, and an aluminum plate (purity 99.99%) of the counter electrode was connected to the cathode side.
  • a direct current having a current density of 1 A / dm 2 was applied for 1 minute to perform anodic electrolysis. In the calculation of current density, the apparent area of the aluminum porous body is used.
  • the aluminum purity was 99.1% by mass.
  • the carbon content was measured by JIS-G1211 high frequency induction furnace combustion-infrared absorption method and found to be 0.8% by mass. Furthermore, as a result of EDX analysis of the surface at an acceleration voltage of 15 kV, almost no oxygen peak was observed, and it was confirmed that the oxygen content of the aluminum porous body was below the EDX detection limit (3.1 mass%). .
  • a paste was prepared. The paste is filled in a porous aluminum body having a three-dimensional network structure and having a porosity of about 95%, and then vacuum-dried at 150 ° C., and further roll-pressed until the thickness reaches 70% of the initial thickness. (Positive electrode) was produced. This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding. The positive electrode filling capacity was 2.4 mAh.
  • LiCoO 2 , carbon black, and PVdF mixed paste were applied onto an aluminum foil having a thickness of 20 ⁇ m, and dried and roll-pressed in the same manner as described above to produce a battery electrode material (positive electrode).
  • This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding.
  • the positive electrode filling capacity was 0.24 mAh.
  • a polypropylene porous membrane having a thickness of 25 ⁇ m was used as a separator, and an EC / DEC (volume ratio 1: 1) solution in which 1M concentration of LiPF 6 was dissolved was added dropwise at 0.1 ml / cm 2 to the separator, and vacuum was applied. Impregnated.
  • a lithium aluminum foil having a thickness of 20 ⁇ m and 11 mm ⁇ was used as the negative electrode, and was bonded and fixed to the upper cover of the coin battery container.
  • the battery electrode material (positive electrode), separator, and negative electrode were laminated in this order, and a Viton O-ring was sandwiched between the upper lid and the lower lid to produce a battery.
  • the upper limit voltage during heavy discharge was 4.2 V
  • the lower limit voltage was 3.0 V
  • after charging to the positive electrode charging capacity, discharging was performed at each discharge rate.
  • the lithium secondary battery using the aluminum porous body as the positive electrode material had a capacity of about 5 times at a rate of 0.2 C compared with a conventional lithium foil battery electrode material.
  • a conductive step of forming a conductive layer made of aluminum on the surface of the resin molded body, a plating step of plating aluminum in the first molten salt bath on the conductive resin molded body, and an aluminum plated layer are formed.
  • the aluminum molded body is decomposed by heating the resin molded body to a temperature equal to or lower than the melting point of aluminum while applying a negative potential to the aluminum plating layer while the resin molded body is immersed in the second molten salt.
  • Method Appendix 2 The method for producing a porous aluminum body according to appendix 1, wherein the resin molded body is a foamed resin molded body having continuous pores.
  • (Appendix 3) An electrode material in which an active material is supported on the aluminum surface of an aluminum structure obtained by the present invention.
  • (Appendix 4) A battery using the electrode material according to attachment 3 for one or both of a positive electrode and a negative electrode.
  • (Appendix 5) An electric double layer capacitor using the electrode material according to attachment 3 as an electrode.
  • (Appendix 6) The filtration filter which consists of an aluminum structure obtained by this invention.
  • (Appendix 7) A catalyst carrier having a catalyst supported on the surface of an aluminum structure obtained by the present invention.
  • the present invention it is possible to obtain a structure in which the surface of a resin molded body is plated with aluminum, and an aluminum structure from which the resin molded body is removed.
  • the present invention can be widely applied to the case where the characteristics of aluminum are utilized in electric materials, filters for various types of filtration, catalyst carriers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

三次元網目構造を有する多孔質樹脂成形体であっても、樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えることにより、その表面へのアルミニウムのめっきを可能とし、厚膜が均一な純度の高いアルミニウム構造体を形成するアルミニウム構造体の製造方法、および大面積のアルミニウム多孔体を提供する。

Description

アルミニウム構造体の製造方法およびアルミニウム構造体
 本発明は、アルミニウムめっきにより樹脂表面にアルミニウム構造体を形成する方法に関し、特に各種フィルタや電池用電極などの用途で金属多孔体として好適に用いることができるアルミニウム構造体とその製造方法に関する。
 三次元網目構造を有する金属多孔体は、各種フィルタ、触媒担体、電池用電極など多方面に用いられている。例えばニッケルからなるセルメット(住友電気工業(株)製:登録商標)がニッケル水素電池やニッケルカドミウム電池等の電池の電極材料として使用されている。セルメットは、連通気孔を有する金属多孔体であり、金属不織布など他の多孔体に比べて気孔率が高い(90%以上)という特徴がある。これは、発泡ウレタン等の連通気孔を有する多孔体樹脂の骨格表面にニッケル層を形成した後、熱処理して発泡樹脂成形体を分解し、さらにニッケルを還元処理することで得られる。ニッケル層の形成は、発泡樹脂成形体の骨格表面にカーボン粉末等を塗布して導電化処理した後、電気めっきによってニッケルを析出させることで行われる。
 アルミニウムは、導電性、耐腐食性、軽量などの優れた特徴がある。電池用途では、例えば、リチウムイオン電池の正極として、アルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものが使用されている。正極の容量を向上するためには、アルミニウムを多孔体にして表面積を大きくし、アルミニウム内部にも活物質を充填することが考えられる。そうすると電極を厚くしても活物質を利用でき、単位面積当たりの活物質利用率が向上するからである。
 アルミニウム多孔体の製造方法として、特許文献1には、内部連通空間を有する三次元網状のプラスチック基体にアークイオンプレーティング法によりアルミニウムの蒸着処理を施して、2~20μmの金属アルミニウム層を形成する方法が記載されている。また、特許文献2には、三次元網目状構造を有する発泡樹脂成形体の骨格にアルミニウムの融点以下で共晶合金を形成する金属(銅等)による皮膜を形成した後、アルミニウムペーストを塗布し、非酸化性雰囲気下で550℃以上750℃以下の温度で熱処理をすることで有機成分(発泡樹脂)の消失及びアルミニウム粉末の焼結を行い、金属多孔体を得る方法が記載されている。
 一方、アルミニウムのめっきは、アルミニウムの酸素に対する親和力が大きく、電位が水素より低いために水溶液系のめっき浴で電気めっきを行うことが困難である。従来よりアルミニウムの電気めっきは、非水溶液系のめっき浴、特に有機溶媒系のめっき浴で検討が行われている。例えば、金属の表面にアルミニウムをめっきする技術として、特許文献3には、オニウムハロゲン化物とアルミニウムハロゲン化物とを混合溶融した低融点組成物をめっき浴として用い、浴中の水分量を2wt%以下に維持しながら陰極にアルミニウムを析出させることを特徴とする電気アルミニウムめっき方法が開示されている。
特許第3413662号公報 特開平8-170126号公報 特許第3202072号公報
 上記特許文献1の方法によれば、2~20μmの厚さのアルミニウム多孔体が得られるとされているが、気相法によるため大面積での製造は、困難であり、基体の厚さや気孔率によっては、内部まで均一な層の形成が難しい。またアルミニウム層の形成速度が遅い、設備が高価などにより製造コストが増大するなどの問題点がある。さらに、厚膜を形成する場合には、膜に亀裂が生じたり、アルミニウムの脱落が生じるおそれがある。特許文献2の方法によればアルミニウムと共晶合金を形成する層が出来てしまい、純度の高いアルミニウム層が形成できない。一方、アルミニウムの電気めっき方法自体は、知られているものの、金属表面へのめっきが可能であるのみで、樹脂表面への電気めっき、とりわけ三次元網目構造を有する多孔質樹脂成形体の表面に電気めっきする方法は、知られていなかった。これには、めっき浴中における多孔質樹脂の溶解などの問題が影響していると考えられる。
 そこで本発明は、樹脂成形体とりわけ三次元網目構造を有する多孔質樹脂成形体であっても、その表面へのアルミニウムのめっきを可能とし、厚膜を均一に形成することで純度の高いアルミニウム構造体を形成することが可能な方法、および特に大面積のアルミニウム多孔体を得ることが可能な方法を目的とする。
 上記課題解決のため、本願発明者らは、ポリウレタンやメラミンなどの樹脂成形体の表面にアルミニウムを電気めっきする方法に想到した。すなわち本発明は、樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法である(本願第1の発明)。前述のとおり従来は、アルミニウムめっきは、金属表面に対しては行われていたものの、樹脂成形体表面への電気めっきは、考えられていなかった。樹脂成形体表面を導電化することで、溶融塩浴中でもアルミニウムのめっきが可能なことを見いだしたことに特徴がある。またアルミニウムからなる導電層を形成して導電化することで、アルミニウム以外の金属を実質的に含まないアルミニウム構造体を得ることができる。
 アルミニウムは、酸素と反応しやすいため、アルミニウムからなる導電層の表面には、薄い酸化皮膜が生成しやすい。酸化皮膜があるとめっきの密着性が悪く、良好にめっきが行えない。そこで前記導電化工程と前記めっき工程との間に、該導電層を陽極として電解処理する陽極電解工程を備えると好ましい(本願第2の発明)。陽極電解処理により、導電化工程で形成された導電層の表面の酸化膜を溶解除去することができ、溶融塩中でのアルミニウムめっきを良好に行うことができる。
 前記導電化工程と前記めっき工程との間で、前記導電化された樹脂成形体を酸化雰囲気中に曝すことなく工程間移送すると好ましい(本願第3の発明)。このような工程とすれば導電層を酸化させることなく、溶融塩中でのアルミニウムめっきが良好に行える。
 前記導電化工程は、気相法により前記樹脂成形体表面にアルミニウムを付着する工程であっても良いし(本願第4の発明)、前記樹脂成形体を、アルミニウムを含む塗料に浸漬することでアルミニウムを付着する工程であっても良い(本願第5の発明)。いずれの方法によっても、アルミニウム以外の金属を混入することなく、金属として実質的にアルミニウムからなる構造体を製造することが可能となる。
 このような工程により、特に三次元網目構造を有する樹脂多孔体のように複雑な骨格構造の表面に均一に厚いアルミニウム層を形成することが可能となる(本願第6の発明)。気孔率が高い樹脂多孔体を得ることができるウレタンまたはメラミンが、樹脂成形体として好ましい(本願第7の発明)。
 以上の工程により、金属層を表面に備えた樹脂成形体を有するアルミニウム構造体が得られる(本願第11の発明)。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良いし、また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い(本願第8の発明)。
 上記の製造方法により得られるアルミニウム構造体は、金属層として1μm~100μmの厚さを有するアルミニウム層からなるアルミニウム構造体であって、樹脂を除いた金属層全体としてアルミニウム純度が99.0%以上、カーボン含有量1.0%以下で、残部が不可避不純物からなるアルミニウム構造体である(本願第10の発明)。なおカーボン含有量は、JIS-G1211の高周波誘導加熱炉燃焼-赤外線吸収法で測定する。またアルミニウムの純度は、アルミニウム構造体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定する。
 また、樹脂として三次元網目構造を有する多孔質樹脂を用いることにより、アルミニウム層が筒状の骨格構造をなし、全体として連続した気孔を有する多孔体を形成してなる当該アルミニウム構造体が得られる(本願第12の発明)。
 また、当該骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが該三角の辺の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体を得ることができる(本願第13の発明)。
 多孔質樹脂成形体として三次元網目構造を有する発泡ウレタンや発泡メラミンを用いた場合、網目構造の骨格部分は、全体として断面三角形状をなしている。ここで三角は、厳密な意味ではなく、およそ3つの頂部を有し、3つの曲線を辺とする形状を呼ぶ。したがって、めっきにより形成されたアルミニウム構造体の形状もその骨格が略三角形状をなす構造となる。ここで、導電化方法として気相法によりアルミニウムを付着させる場合を考える。気相法では、比較的厚みが均一な導電層を形成することができ、導電度は、三角の全ての位置で同様となる。このような状態でアルミニウムをめっきすると、角部(三角の頂点部分)に電界が集中し、三角形の辺の中央部分よりも、頂上部分の厚みが厚くなる。このことから上述の形状を実現することが可能となる。かかる形状により筒状の骨格構造の強度が向上し、また電池電極などの用途では、活物質の保持性に優れるという利点がある。
 本発明によれば、樹脂成形体表面、特に三次元網目構造を有する多孔質樹脂成形体に対して表面へのアルミニウムのめっきが可能となり、ほぼ均一な厚膜で純度の高い、また大面積のアルミニウム構造体を形成することが可能な方法、およびアルミニウム構造体を提供することができる。
図1は、本発明によるアルミニウム構造体の製造工程を示すフロー図である。 図2は、本発明によるアルミニウム構造体の製造工程を説明する断面模式図である。 図3は、多孔質樹脂成形体の一例としての発泡ウレタン樹脂の構造を示す表面拡大写真である。 図4は、アルミニウム多孔体の骨格断面を説明する模式図である。 図5は、溶融塩めっきによるアルミニウム連続めっき工程の一例を説明する図である。 図6は、アルミニウム多孔体を溶融塩電池に適用した構造例を示す断面模式図である。 図7は、アルミニウム多孔体を電気二重層コンデンサに適用した構造例を示す断面模式図である。 図8は、アルミニウム多孔体の断面SEM写真である。
 以下、本発明の実施の形態を、アルミニウム多孔体を製造するプロセスを代表例として説明する。以下で参照する図面で同じ番号が付されている部分は、同一またはそれに相当する部分である。図面の寸法比率は、説明のものと必ずしも一致していない。なお、本発明は、これに限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(アルミニウム構造体の製造工程)
 図1は、本発明によるアルミニウム構造体の製造工程を示すフロー図である。また図2は、フロー図に対応して樹脂成形体を芯材としてアルミニウム構造体を形成する様子を模式的に示したものである。両図を参照して製造工程全体の流れを説明する。まず基体樹脂成形体の準備101を行う。図2の(a)部分は、基体樹脂成形体の例として、連通気孔を有する発泡樹脂成形体の表面を拡大視した樹脂の断面の一部を示す拡大模式図である。発泡樹脂成形体1を骨格として気孔が形成されている。次に樹脂成形体表面の導電化102を行う。この工程により、図2の(b)部分に示すように樹脂成形体1の表面には、薄くアルミニウムからなる導電層2が形成される。続いて溶融塩中でのアルミニウムめっき103を行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層3を形成する(図2の(c)部分)。これで、基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去104を行っても良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる(図2の(d)部分)。 以下各工程について順を追って説明する。
(多孔質樹脂成形体の準備)
 三次元網目構造を有し連通気孔を有する多孔質樹脂成形体を準備する。多孔質樹脂成形体の素材は、任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。発泡樹脂成形体と表記したが、連続した気孔(連通気孔)を有するものであれば任意の形状の樹脂成形体を選択できる。例えば繊維状の樹脂を絡めて不織布のような形状を有するものも発泡樹脂成形体に代えて使用可能である。発泡樹脂成形体の気孔率は、80%~98%、気孔径は、50μm~500μmとするのが好ましい。発泡ウレタン及び発泡メラミンは、気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため発泡樹脂成形体として好ましく使用できる。
発泡ウレタンは、気孔の均一性や入手の容易さ等の点で好ましく、発泡ウレタンは、気孔径の小さなものが得られる点で好ましい。
 多孔質樹脂成形体には、発泡体製造過程での製泡剤や未反応モノマーなどの残留物があることが多く、洗浄処理を行うことが後の工程のために好ましい。多孔質樹脂成形体の例として、発泡ウレタンを前処理として洗浄処理したものを図3に示す。樹脂成形体が骨格として三次元的に網目を構成することで、全体として連続した気孔を構成している。発泡ウレタンの骨格は、その延在方向に垂直な断面において略三角形状をなしている。ここで気孔率は、次式で定義される。
 気孔率=(1-(多孔質材の重量[g]/(多孔質材の体積[cm]×素材密度)))×100[%]
 また、気孔径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりのセル数を計数して、平均孔径=25.4mm/セル数として平均的な値を求める。
(樹脂成形体表面の導電化:気相法)
 まず発泡樹脂成形体の表面にアルミニウムからなる導電層を形成する。導電層の形成は、蒸着、スパッタ、プラズマCVD等の気相法、アルミニウム塗料の塗布等任意の方法で行うことができる。薄い膜を均一に形成できるため、蒸着法が好ましい。導電層の厚みは、0.05μm~1μm、好ましくは0.1μm~0.5μmとすることが好ましい。導電層の厚みが0.01μmよりも薄い場合は、導電化が不十分であり、次の工程で良好に電解めっきを行うことができない。また厚みが1μmを超えると導電化工程のコストが高くなる。
(樹脂成形体表面の導電化:塗料)
 導電化処理は、発泡樹脂成形体を、アルミニウムを含む塗料に浸漬して行っても良い。塗料に含まれているアルミニウム成分が発泡樹脂成形体の表面に付着してアルミニウムからなる導電層が形成されることで、溶融塩中でめっき可能な導電状態となる。アルミニウムを含む塗料としては、例えば粒径10nm~1μmのアルミニウム微粒子を水または有機溶剤中に分散させた液を使用できる。発泡樹脂を塗料に浸漬した後加熱して溶剤を蒸発させることで導電層を形成できる。
(めっき前処理:アノード電解)
 上記工程で形成された導電層の上に、溶融塩めっきによりアルミニウムをめっきしてアルミニウムめっき層を形成する。このとき導電層の表面に酸化膜が存在すると、次のめっき工程においてアルミニウムの付着性が悪くなり、島状にアルミニウムが付着したり、アルミニウムめっき層の厚みにばらつきが生じる可能性がある。従ってめっき工程の前に陽極電解処理を行い、導電層(アルミニウム層)の表面に生成した酸化皮膜(酸化アルミニウム層)を溶解して除去することが好ましい。具体的には、導電化された樹脂成形体とアルミ板等の対極を溶融塩中に浸漬し、導電化された樹脂成形体(導電層)を陽極側に、対極を陰極として直流電流を印加する。溶融塩は、次の工程の溶融塩めっきと同じ物を使用しても良いし、別の物であっても良い。
(めっき前処理:非酸化雰囲気)
 導電層(アルミニウム層)の酸化を防ぐ別の手法として、導電層を形成した後、導電層つき樹脂成形体(導電化された樹脂成形体)を酸化雰囲気中に曝すことなく次の工程であるめっき工程に移動することが考えられる。例えばアルゴン雰囲気中に蒸着装置と溶融塩めっき装置を入れておき、アルゴン雰囲気中で蒸着による導電化工程を行った後、アルゴン雰囲気中でサンプルを次の工程に移送し、溶融塩めっきを行うことができる。このような手法により導電化工程で形成された導電層の表面を酸化させることなくめっきを行うことができる。
(アルミニウム層の形成:溶融塩めっき)
 次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層3を形成する。表面が導電化された樹脂成形体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。アルミニウムめっき層の厚みは、1μm~100μm、好ましくは5μm~20μmである。陽極電解処理とは逆に、導電化された樹脂成形体を陰極、対極を陽極として溶融塩中で直流電流を印加する。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としては、イミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム、1-エチル-3-メチルイミダゾリウムクロライド(AlCl-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは、窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。有機溶融塩浴としてEMIC浴を用いた場合、めっき浴の温度は、10℃から60℃、好ましくは25℃から45℃である。
 図5は、帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は、円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属槽が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には、樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。ここで、高温での加熱分解等の方法は、簡便であるが、アルミニウムの酸化を伴う。アルミニウムは、ニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、酸化により導電性が失われることから用いることが出来ない。
このため、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。
(樹脂の除去:溶融塩中熱分解)
 溶融塩中での熱分解は、以下の方法で行う。表面にアルミニウムめっき層を形成した、アルミニウムめっき層付き発泡樹脂成形体を溶融塩に浸漬し、該アルミニウム層に負電位を印加しながら加熱して発泡樹脂成形体を分解する。溶融塩に浸漬した状態で負電位を印加するとアルミニウムの酸化反応を防止できる。このような状態で加熱することでアルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。加熱温度は、発泡樹脂成形体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためには、アルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は、500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
 樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩が使用できる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むと好ましい。このような方法で樹脂を除去することで、表面の酸化層を薄く(酸素量を少なく)できると共にカーボン含有量の少ないアルミニウム多孔体を得ることができる。
 図4は、図2の(d)部分のA-A’断面を示す模式図である。導電層2及びアルミニウムめっき層3からなるアルミニウム層は、筒状の骨格構造をしており、骨格構造の内部にある空洞4は、略三角断面形状をなしている。該三角の頂点の部分のアルミニウム層の厚さ(t1)は、該三角の辺の中央部分のアルミニウム層の厚さ(t2)よりも厚い形状となっている。めっきによりアルミニウム層を形成する際に角部(三角の頂点部分)に電界が集中するため、このような形状となると推測される。すなわち、本発明の製造方法により、前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが、該三角の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体が得られる。
(リチウムイオン電池)
 次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためには、アルミニウム箔と活物質とが電気的に接触している必要があるので活物質は、導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は、気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には黒鉛、電解質には有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。
(溶融塩電池)
 アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質として亜クロム酸ナトリウム(NaCrO)、二硫化チタン(TiS)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。導電助剤としては、アセチレンブラック等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)等を使用できる。活物質としてクロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEは、この両者をより強固に固着することができ好ましい。
 アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は、約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは、扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
 図6は、上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)は、それぞれ、正極端子128、負極端子129に、リード線130で接続されている。
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばKFSAとNaFSAとを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
 溶融塩は、セパレータに含浸させて使用する。セパレータは、正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。
(電気二重層コンデンサ)
 アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は、導電助剤やバインダーと組み合わせて使用する。導電助剤としては、黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
 図7は、上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141は、リード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。
 以上、樹脂成形体として発泡樹脂成形体を使用する場合について説明したが、本発明は、発泡樹脂成形体に限定されず、任意の形状の樹脂成形体を用いることで任意の形状のアルミニウム構造体を得ることができる。
(実施例:アルミニウム多孔体の製造:蒸着法によるアルミニウム層の形成)
 以下、アルミニウム多孔体の製造例を具体的に説明する。発泡樹脂成形体として、厚み1mm、気孔率95%、1cm当たりの気孔数約20個のウレタン発泡体を準備し、10mm×30m角に切断した。ウレタン発泡体の表面にアルミニウムを蒸着し、厚み約0.3μmの導電層を形成した。
(陽極電解)
 表面に導電層を形成したウレタン発泡体を、給電機能を有する治具にセットした後、温度40℃の溶融塩アルミめっき浴(67mol%AlCl-33mol%EMIC)に浸漬した。ウレタン発泡体をセットした治具を整流器の陽極側に接続し、対極のアルミニウム板(純度99.99%)は、陰極側に接続した。電流密度1A/dmの直流電流を1分間印加し、陽極電解を行った。なお電流密度の計算では、アルミニウム多孔体の見かけの面積を使用している。
(溶融塩めっき)
 表面に導電層を形成したウレタン発泡体を溶融塩アルミめっき浴に浸漬した状態で、整流器の陽極と陰極とを繋ぎ換えた後、温度を40℃とし、電流密度3.6A/dmの直流電流を90分間印加してアルミニウムをめっきした。
(アルミニウム多孔体の製造:発泡樹脂成形体の分解)
 アルミニウムめっき層を形成した発泡樹脂を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を30分間印加した。溶融塩中に気泡が発生し、ポリウレタンの分解反応が起こっていると推定された。その後大気中で室温まで冷却した後、水洗して溶融塩を除去しアルミニウム多孔体を得た。アルミニウムの付着量は150g/mであった。得られたアルミニウム多孔体のSEM写真を図8に示す。
 得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定したところ、アルミニウム純度は、99.1質量%であった。またカーボン含有量をJIS-G1211の高周波誘導加熱炉燃焼-赤外線吸収法で測定したところ、0.8質量%であった。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークは、ほとんど観測されず、アルミニウム多孔体の酸素量は、EDXの検出限界(3.1質量%)以下であることが確認された。
(アルミニウム多孔体の電池としての評価)
 アルミニウム多孔体の実用上の評価例として電池用電極に用いた場合を、アルミニウム箔を電極とした従来構造との比較で説明する。
 正極活物質として平均粒径7μmのLiCoO、導電助剤としてカーボンブラック、バインダー樹脂としてPVdFを10:1:1(質量比)で混合し、さらに溶媒としてN-メチル-2-ピロリドンを混合してペーストを作製した。このペーストを、三次元網目構造を有する気孔率約95%のアルミニウム多孔体に充填した後150℃で真空乾燥し、さらに厚みが初期厚みの70%となるまでロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、2.4mAhであった。
 比較のため、厚み20μmのアルミニウム箔上に上記のLiCoO、カーボンブラック、PVdF混合ペーストを塗布し、上記と同様に乾燥及びロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、0.24mAhであった。
 
 厚さ25μmのポリプロピレン製の多孔膜をセパレータとして使用し、1M濃度のLiPFを溶解したEC/DEC(体積比1:1)溶液をセパレータに対して0.1ml/cmで滴下し、真空含浸した。負極として、厚さ20μm、11mmφのリチウムアルミニウム箔を用い、コイン電池容器上蓋に接合して固定した。上記の電池用電極材料(正極)、セパレータ、負極をこの順で積層し、バイトンOリングを上蓋と下蓋との間に挟んでかしめ電池を作製した。重放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、各放電レートで放電させた。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、レート0.2Cにおいて約5倍の容量であった。
 以上の説明は、以下の特徴を含む。
(付記1)
 樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを第1の溶融塩浴中でめっきするめっき工程と、アルミニウムめっき層が形成された樹脂成形体を第2の溶融塩に浸漬した状態で、該アルミニウムめっき層に負電位を印加しながらアルミニウムの融点以下の温度に加熱して前記樹脂成形体を分解する、アルミニウム構造体の製造方法。
(付記2)
 前記樹脂成形体は、連続した気孔を有する発泡樹脂成形体である、付記1に記載のアルミニウム多孔体の製造方法。
(付記3)
 本発明により得られるアルミニウム構造体のアルミニウム表面に活物質が担持された電極材料。
(付記4)
 付記3に記載の電極材料を、正極、負極の一方又は両方に用いた電池。
(付記5)
 付記3に記載の電極材料を電極として用いた電気二重層コンデンサ。
(付記6)
 本発明により得られるアルミニウム構造体からなる濾過フィルタ。
(付記7)
 本発明により得られるアルミニウム構造体の表面に触媒が担持された触媒担体。
 以上の如く本発明によれば、樹脂成形体表面にアルミニウムをめっきした構造体、またそこから樹脂成形体を除去したアルミニウム構造体を得ることができるので、例えばアルミニウム多孔体として電池用電極等の電気材料や、各種濾過用のフィルタ、触媒担体などにおいて、アルミニウムの特性が活かされる場合に広く適用することができる。
1 発泡樹脂、2 導電層、3 アルミニウムめっき層、4 空洞
21a,21b めっき槽、22 帯状樹脂、23,28 めっき浴、24 円筒状電極25,27 正電極、26 電極ローラ
121 正極、122負極、123セパレータ、124押え板
125 バネ、126 押圧部材、127 ケース、128 正極端子
129 負極端子、130 リード線
141 分極性電極、142 セパレータ、143 有機電解液
144 リード線、145 ケース

Claims (13)

  1.  樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法。
  2.  前記導電化工程と前記めっき工程との間に、該導電層を陽極として電解処理する陽極電解工程を備える、請求項1に記載のアルミニウム構造体の製造方法。
  3.  前記導電化工程と前記めっき工程との間で、前記導電化された樹脂を酸化雰囲気中に曝すことなく工程間移送する、請求項1に記載のアルミニウム構造体の製造方法。
  4.  前記導電化工程は、気相法により前記樹脂成形体表面にアルミニウムを付着する工程である請求項1~3のいずれか1項に記載のアルミニウム構造体の製造方法。
  5.  前記導電化工程は、前記樹脂成形体を、アルミニウムを含む塗料に浸漬することで前記樹脂表面にアルミニウムを付着する工程である請求項1~3のいずれか1項に記載のアルミニウム構造体の製造方法。
  6.  前記樹脂成形体は、三次元網目構造を有する樹脂多孔体である、請求項1~5のいずれか1項に記載のアルミニウム構造体の製造方法。
  7.  前記樹脂成形体は、ウレタンまたはメラミンである、請求項1~6のいずれか1項に記載のアルミニウム構造体の製造方法。
  8.  前記めっき工程の後に、さらに前記樹脂成形体を除去する工程を有する、請求項1~7のいずれか1項に記載のアルミニウム構造体の製造方法。
  9.  請求項1~8のいずれか1項に記載の製造方法により製造されたアルミニウム構造体。
  10.  金属層として1μm~100μmの厚さのアルミニウム層からなるアルミニウム構造体であって、該金属層は、アルミニウムの純度が99.0%以上、カーボン含有量が1.0%以下、残部不可避不純物からなるアルミニウム構造体。
  11.  さらに前記金属層を表面に備えた樹脂成形体を有する、請求項10に記載のアルミニウム構造体。
  12.  前記アルミニウム層が筒状の骨格構造をなし、全体として連続した気孔を有する多孔体を形成してなる、請求項10または11に記載のアルミニウム構造体。
  13.  前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが該三角の辺の中央部分のアルミニウム層の厚さよりも厚い形状である、請求項12に記載のアルミニウム構造体。
PCT/JP2011/058782 2010-04-22 2011-04-07 アルミニウム構造体の製造方法およびアルミニウム構造体 WO2011132539A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180004624.5A CN102666887B (zh) 2010-04-22 2011-04-07 用于制造铝结构体的方法和铝结构体
KR1020127012836A KR20130079308A (ko) 2010-04-22 2011-04-07 알루미늄 구조체의 제조 방법 및 알루미늄 구조체
EP11771875.9A EP2562278A4 (en) 2010-04-22 2011-04-07 METHOD FOR PRODUCING AN ALUMINUM STRUCTURE AND ALUMINUM STRUCTURE
CA2781170A CA2781170A1 (en) 2010-04-22 2011-04-07 Method for producing aluminum structural body and aluminum structural body
US13/237,218 US20120067731A1 (en) 2010-04-22 2011-09-20 Manufacturing method of aluminum structure and aluminum structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-098335 2010-04-22
JP2010098335A JP5663938B2 (ja) 2010-04-22 2010-04-22 アルミニウム構造体の製造方法およびアルミニウム構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/237,218 Continuation US20120067731A1 (en) 2010-04-22 2011-09-20 Manufacturing method of aluminum structure and aluminum structure

Publications (1)

Publication Number Publication Date
WO2011132539A1 true WO2011132539A1 (ja) 2011-10-27

Family

ID=44834070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058782 WO2011132539A1 (ja) 2010-04-22 2011-04-07 アルミニウム構造体の製造方法およびアルミニウム構造体

Country Status (8)

Country Link
US (1) US20120067731A1 (ja)
EP (1) EP2562278A4 (ja)
JP (1) JP5663938B2 (ja)
KR (1) KR20130079308A (ja)
CN (1) CN102666887B (ja)
CA (1) CA2781170A1 (ja)
TW (1) TW201207162A (ja)
WO (1) WO2011132539A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696648B2 (ja) * 2011-11-21 2015-04-08 住友電気工業株式会社 溶融塩電池の製造方法
JP2013114795A (ja) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd アルミニウム多孔体を集電体として用いた電極及びその製造方法
US9040144B2 (en) 2012-09-04 2015-05-26 National Tsing Hua University Filtering film structure
JP5582371B1 (ja) * 2013-02-26 2014-09-03 住友電気工業株式会社 アルミニウム多孔体、伝熱材料及び熱交換装置
JP2014237606A (ja) * 2013-06-07 2014-12-18 住友電気工業株式会社 溶融塩の製造方法、溶融塩及びアルミニウムの製造方法
JP2014237873A (ja) * 2013-06-07 2014-12-18 住友電気工業株式会社 溶融塩の製造方法、溶融塩及びアルミニウムの製造方法
CN105406229B (zh) * 2015-12-24 2018-07-03 贵州航天计量测试技术研究所 一种复合泡沫金属接触件
WO2019163256A1 (ja) * 2018-02-22 2019-08-29 住友電気工業株式会社 金属多孔体
CN108520833B (zh) * 2018-03-16 2019-09-17 江苏中天科技股份有限公司 多孔铝宏观体及其制造系统与方法
US20210062299A1 (en) 2018-08-24 2021-03-04 Sumitomo Electric Toyama Co., Ltd. Metal porous material and method of producing metal porous material
WO2020044776A1 (ja) 2018-08-29 2020-03-05 富山住友電工株式会社 金属多孔体および金属多孔体の製造方法
EP3789317A4 (en) 2019-06-12 2022-04-13 Sumitomo Electric Toyama Co., Ltd. PACKAGING BODY AND METHOD OF MAKING A PACKING BODY
US20210262062A1 (en) 2019-09-12 2021-08-26 Sumitomo Electric Toyama Co., Ltd. Metal porous body and method for manufacturing metal porous body
WO2021192698A1 (ja) 2020-03-27 2021-09-30 富山住友電工株式会社 金属多孔体および金属多孔体の製造方法
EP4215258A4 (en) 2020-09-17 2024-03-20 Sumitomo Electric Toyama Co POROUS METAL BODY, METHOD FOR PRODUCING A POROUS METAL BODY AND FILTER

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253157A (ja) * 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd 非水系二次電池
JPH042795A (ja) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd 金属多孔体の連続製造方法
JPH04341594A (ja) * 1991-05-17 1992-11-27 Eagle Ind Co Ltd 電鋳法
JPH05271986A (ja) * 1992-03-24 1993-10-19 Mitsubishi Petrochem Co Ltd アルミニウム・有機高分子積層体
JPH06122994A (ja) * 1992-10-12 1994-05-06 Nisshinbo Ind Inc 金属多孔体の製造方法
JPH08170126A (ja) 1994-12-15 1996-07-02 Sumitomo Electric Ind Ltd 金属多孔体、その製造方法及びそれを用いた電池用極板
JP3202072B2 (ja) 1992-09-21 2001-08-27 三菱化学株式会社 電気アルミニウムめっき方法
JP3413662B2 (ja) 1992-01-13 2003-06-03 上村工業株式会社 アルミニウム多孔体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169770A (en) * 1978-02-21 1979-10-02 Alcan Research And Development Limited Electroplating aluminum articles
FR2558485B1 (fr) * 1984-01-25 1990-07-13 Rech Applic Electrochimique Structure metallique poreuse, son procede de fabrication et applications
US4966660A (en) * 1987-07-13 1990-10-30 Nisshin Steel Co., Ltd. Process for electrodeposition of aluminum on metal sheet
US5478780A (en) * 1990-03-30 1995-12-26 Siemens Aktiengesellschaft Method and apparatus for producing conductive layers or structures for VLSI circuits
JP2005285629A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 非水電解質電池
US8110076B2 (en) * 2006-04-20 2012-02-07 Inco Limited Apparatus and foam electroplating process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253157A (ja) * 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd 非水系二次電池
JPH042795A (ja) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd 金属多孔体の連続製造方法
JPH04341594A (ja) * 1991-05-17 1992-11-27 Eagle Ind Co Ltd 電鋳法
JP3413662B2 (ja) 1992-01-13 2003-06-03 上村工業株式会社 アルミニウム多孔体の製造方法
JPH05271986A (ja) * 1992-03-24 1993-10-19 Mitsubishi Petrochem Co Ltd アルミニウム・有機高分子積層体
JP3202072B2 (ja) 1992-09-21 2001-08-27 三菱化学株式会社 電気アルミニウムめっき方法
JPH06122994A (ja) * 1992-10-12 1994-05-06 Nisshinbo Ind Inc 金属多孔体の製造方法
JPH08170126A (ja) 1994-12-15 1996-07-02 Sumitomo Electric Ind Ltd 金属多孔体、その製造方法及びそれを用いた電池用極板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2562278A4

Also Published As

Publication number Publication date
JP5663938B2 (ja) 2015-02-04
CN102666887B (zh) 2015-04-22
JP2011225950A (ja) 2011-11-10
EP2562278A1 (en) 2013-02-27
EP2562278A4 (en) 2015-12-16
KR20130079308A (ko) 2013-07-10
CN102666887A (zh) 2012-09-12
CA2781170A1 (en) 2011-10-27
TW201207162A (en) 2012-02-16
US20120067731A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5663938B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2011132538A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2012111615A1 (ja) 空気電池および電極
WO2011142338A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2012096220A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2012186142A (ja) 電気化学デバイス用電極およびその製造方法
WO2012165213A1 (ja) 金属多孔体及びそれを用いた電極材料、電池
JP2012186160A (ja) 電池
JP5648588B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
US9184448B2 (en) Method of producing aluminum structure and aluminum structure
JP2011246779A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5692233B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5488994B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2013194308A (ja) 金属多孔体及びそれを用いた電極材料、電池
JP5488996B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2011236476A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2013077245A1 (ja) アルミニウム多孔体を集電体として用いた電極及びその製造方法
JP2015083716A (ja) アルミニウム構造体を含む電極材料、それを用いた電池および電気二重層コンデンサ、ならびにアルミニウム構造体を用いた濾過フィルタおよび触媒担体
JP2012219372A (ja) アルミニウム多孔体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2781170

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127012836

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5385/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011771875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011771875

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201002356

Country of ref document: TH