JP5663938B2 - アルミニウム構造体の製造方法およびアルミニウム構造体 - Google Patents

アルミニウム構造体の製造方法およびアルミニウム構造体 Download PDF

Info

Publication number
JP5663938B2
JP5663938B2 JP2010098335A JP2010098335A JP5663938B2 JP 5663938 B2 JP5663938 B2 JP 5663938B2 JP 2010098335 A JP2010098335 A JP 2010098335A JP 2010098335 A JP2010098335 A JP 2010098335A JP 5663938 B2 JP5663938 B2 JP 5663938B2
Authority
JP
Japan
Prior art keywords
aluminum
plating
molded body
resin molded
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010098335A
Other languages
English (en)
Other versions
JP2011225950A (ja
Inventor
細江 晃久
晃久 細江
稲澤 信二
信二 稲澤
真嶋 正利
正利 真嶋
新田 耕司
耕司 新田
将一郎 酒井
将一郎 酒井
知之 粟津
知之 粟津
奥野 一樹
一樹 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010098335A priority Critical patent/JP5663938B2/ja
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to KR1020127012836A priority patent/KR20130079308A/ko
Priority to CN201180004624.5A priority patent/CN102666887B/zh
Priority to CA2781170A priority patent/CA2781170A1/en
Priority to PCT/JP2011/058782 priority patent/WO2011132539A1/ja
Priority to EP11771875.9A priority patent/EP2562278A4/en
Priority to TW100112606A priority patent/TW201207162A/zh
Priority to US13/237,218 priority patent/US20120067731A1/en
Publication of JP2011225950A publication Critical patent/JP2011225950A/ja
Application granted granted Critical
Publication of JP5663938B2 publication Critical patent/JP5663938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、アルミニウムめっきにより樹脂表面にアルミニウム構造体を形成する方法に関し、特に各種フィルタや電池用電極などの用途で金属多孔体として好適に用いることができるアルミニウム構造体とその製造方法に関する。
三次元網目構造を有する金属多孔体は、各種フィルタ、触媒担体、電池用電極など多方面に用いられている。例えばニッケルからなるセルメット(住友電気工業(株)製:登録商標)がニッケル水素電池やニッケルカドミウム電池等の電池の電極材料として使用されている。セルメットは連通気孔を有する金属多孔体であり、金属不織布など他の多孔体に比べて気孔率が高い(90%以上)という特徴がある。これは発泡ウレタン等の連通気孔を有する多孔体樹脂の骨格表面にニッケル層を形成した後、熱処理して発泡樹脂成形体を分解し、さらにニッケルを還元処理することで得られる。ニッケル層の形成は、発泡樹脂成形体の骨格表面にカーボン粉末等を塗布して導電化処理した後、電気めっきによってニッケルを析出させることで行われる。
アルミニウムは導電性、耐腐食性、軽量などの優れた特徴がある。電池用途では例えば、リチウムイオン電池の正極として、アルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものが使用されている。正極の容量を向上するためには、アルミニウムを多孔体にして表面積を大きくし、アルミニウム内部にも活物質を充填することが考えられる。そうすると電極を厚くしても活物質を利用でき、単位面積当たりの活物質利用率が向上するからである。
アルミニウム多孔体の製造方法として、特許文献1には、内部連通空間を有する三次元網状のプラスチック基体にアークイオンプレーティング法によりアルミニウムの蒸着処理を施して、2〜20μmの金属アルミニウム層を形成する方法が記載されている。また、特許文献2には、三次元網目状構造を有する発泡樹脂成形体の骨格にアルミニウムの融点以下で共晶合金を形成する金属(銅等)による皮膜を形成した後、アルミニウムペーストを塗布し、非酸化性雰囲気下で550℃以上750℃以下の温度で熱処理をすることで有機成分(発泡樹脂)の消失及びアルミニウム粉末の焼結を行い、金属多孔体を得る方法が記載されている。
一方、アルミニウムのめっきは、アルミニウムの酸素に対する親和力が大きく、電位が水素より低いために水溶液系のめっき浴で電気めっきを行うことが困難である。従来よりアルミニウムの電気めっきは非水溶液系のめっき浴、特に有機溶媒系のめっき浴で検討が行われている。例えば、金属の表面にアルミニウムをめっきする技術として、特許文献3にはオニウムハロゲン化物とアルミニウムハロゲン化物とを混合溶融した低融点組成物をめっき浴として用い、浴中の水分量を2wt%以下に維持しながら陰極にアルミニウムを析出させることを特徴とする電気アルミニウムめっき方法が開示されている。
特許第3413662号公報 特開平8−170126号公報 特許第3202072号公報
上記特許文献1の方法によれば、2〜20μmの厚さのアルミニウム多孔体が得られるとされているが、気相法によるため大面積での製造は困難であり、基体の厚さや気孔率によっては内部まで均一な層の形成が難しい。またアルミニウム層の形成速度が遅い、設備が高価などにより製造コストが増大するなどの問題点がある。さらに、厚膜を形成する場合には、膜に亀裂が生じたりアルミニウムの脱落が生じるおそれがある。特許文献2の方法によればアルミニウムと共晶合金を形成する層が出来てしまい、純度の高いアルミニウム層が形成できない。一方、アルミニウムの電気めっき方法自体は知られているものの、金属表面へのめっきが可能であるのみで、樹脂表面への電気めっき、とりわけ三次元網目構造を有する多孔質樹脂成形体の表面に電気めっきする方法は知られていなかった。これには、めっき浴中における多孔質樹脂の溶解などの問題が影響していると考えられる。
そこで本発明は、樹脂成形体とりわけ三次元網目構造を有する多孔質樹脂成形体であっても、その表面へのアルミニウムのめっきを可能とし、厚膜を均一に形成することで純度の高いアルミニウム構造体を形成することが可能な方法、および特に大面積のアルミニウム多孔体を得ることが可能な方法を目的とする。
上記課題解決のため、本願発明者らは、ポリウレタンやメラミンなどの樹脂成形体の表面にアルミニウムを電気めっきする方法に想到した。すなわち本発明は、樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法である前述のとおり従来はアルミニウムめっきは金属表面に対しては行われていたものの、樹脂成形体表面への電気めっきは考えられていなかった。樹脂成形体表面を導電化することで、溶融塩浴中でもアルミニウムのめっきが可能なことを見いだしたことに特徴がある。またアルミニウムからなる導電層を形成して導電化することで、アルミニウム以外の金属を実質的に含まないアルミニウム構造体を得ることができる。
アルミニウムは酸素と反応しやすいため、アルミニウムからなる導電層の表面には薄い酸化皮膜が生成しやすい。酸化皮膜があるとめっきの密着性が悪く、良好にめっきが行えない。そこで前記導電化工程と前記めっき工程との間に、該導電層を陽極として電解処理する陽極電解工程を備えると好ましい(請求項2)。陽極電解処理により、導電化工程で形成された導電層の表面の酸化膜を溶解除去することができ、溶融塩中でのアルミニウムめっきを良好に行うことができる。
前記導電化工程と前記めっき工程との間で、前記導電化された樹脂成形体を酸化雰囲気中に曝すことなく工程間移送すると好ましい(請求項3)。このような工程とすれば導電層を酸化させることなく、溶融塩中でのアルミニウムめっきが良好に行える。
前記導電化工程は、気相法により前記樹脂成形体表面にアルミニウムを付着する工程であっても良いし(請求項4)、前記樹脂成形体をアルミニウムを含む塗料に浸漬することでアルミニウムを付着する工程であっても良い(請求項5)。いずれの方法によっても、アルミニウム以外の金属を混入することなく、金属として実質的にアルミニウムからなる構造体を製造することが可能となる。
このような工程により、特に三次元網目構造を有する樹脂多孔体のように複雑な骨格構造の表面に均一に厚いアルミニウム層を形成することが可能となる(請求項6)。気孔率が高い樹脂多孔体を得ることができるウレタンまたはメラミンが、樹脂成形体として好ましい(請求項7)。
以上の工程により、金属層を表面に備えた樹脂成形体を有するアルミニウム構造体が得
られる各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良いし、また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には樹脂を除去しても良い(請求項8)。
上記の製造方法により得られるアルミニウム構造体は金属層として1μm〜100μmの厚さを有するアルミニウム層からなるアルミニウム構造体であって、樹脂を除いた金属層全体としてアルミニウム純度が99.0%以上、カーボン含有量1.0%以下で、残部が不可避不純物からなるアルミニウム構造体であるなおカーボン含有量はJIS−G1211の高周波誘導加熱炉燃焼−赤外線吸収法で測定する。またアルミニウムの純度は、アルミニウム構造体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定する。
また、樹脂として三次元網目構造を有する多孔質樹脂を用いることにより、アルミニウム層が筒状の骨格構造をなし、全体として連続した気孔を有する多孔体を形成してなる当該アルミニウム構造体が得られる
また、当該骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが該三角の辺の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体を得ることができる
多孔質樹脂成形体として三次元網目構造を有する発泡ウレタンや発泡メラミンを用いた場合、網目構造の骨格部分は全体として断面三角形状をなしている。ここで三角は厳密な意味ではなく、およそ3つの頂部を有し、3つの曲線を辺とする形状を呼ぶ。したがって、めっきにより形成されたアルミニウム構造体の形状もその骨格が略三角形状をなす構造となる。ここで、導電化方法として気相法によりアルミニウムを付着させる場合を考える。気相法では比較的厚みが均一な導電層を形成することができ導電度は三角の全ての位置で同様となる。このような状態でアルミニウムをめっきすると、角部(三角の頂点部分)に電解が集中し、三角形の辺の中央部分よりも、頂上部分の厚みが厚くなる。このことから上述の形状を実現することが可能となる。かかる形状により筒状の骨格構造の強度が向上し、また電池電極などの用途では、活物質の保持性に優れるという利点がある。
本発明によれば、樹脂成形体表面、特に三次元網目構造を有する多孔質樹脂成形体に対して表面へのアルミニウムのめっきが可能となり、ほぼ均一な厚膜で純度の高い、また大面積のアルミニウム構造体を形成することが可能な方法、およびアルミニウム構造体を提供することができる。
本発明によるアルミニウム構造体の製造工程を示すフロー図である。 本発明によるアルミニウム構造体の製造工程を説明する断面模式図である。 多孔質樹脂成形体の一例としての発泡ウレタン樹脂の構造を示す表面拡大写真である。 アルミニウム多孔体の骨格断面を説明する模式図である。 溶融塩めっきによるアルミニウム連続めっき工程の一例を説明する図である。 アルミニウム多孔体を溶融塩電池に適用した構造例を示す断面模式図である。 アルミニウム多孔体を電気二重層コンデンサに適用した構造例を示す断面模式図である。 アルミニウム多孔体の断面SEM写真である。
以下、本発明の実施の形態をアルミニウム多孔体を製造するプロセスを代表例として説明する。以下で参照する図面で同じ番号が付されている部分は同一またはそれに相当する部分である。なお本発明はこれに限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(アルミニウム構造体の製造工程)
図1は、本発明によるアルミニウム構造体の製造工程を示すフロー図である。また図2は、フロー図に対応して樹脂成形体を芯材としてアルミニウム構造体を形成する様子を模式的に示したものである。両図を参照して製造工程全体の流れを説明する。まず基体樹脂成形体の準備101を行う。図2(a)は、基体樹脂成形体の例として、連通気孔を有する発泡樹脂成形体の表面を拡大視した樹脂の断面の一部を示す拡大模式図である。発泡樹脂成形体1を骨格として気孔が形成されている。次に樹脂成形体表面の導電化102を行う。この工程により、図2(b)に示すように樹脂成形体1の表面には薄くアルミニウムからなる導電層2が形成される。続いて溶融塩中でのアルミニウムめっき103を行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層3を形成する(図2(c))。これで、基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去104を行っても良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる(図2(d))。 以下各工程について順を追って説明する。
(多孔質樹脂成形体の準備)
三次元網目構造を有し連通気孔を有する多孔質樹脂成形体を準備する。多孔質樹脂成形体の素材は任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。発泡樹脂成形体と表記したが、連続した気孔(連通気孔)を有するものであれば任意の形状の樹脂成形体を選択できる。例えば繊維状の樹脂を絡めて不織布のような形状を有するものも発泡樹脂成形体に代えて使用可能である。発泡樹脂成形体の気孔率は80%〜98%、気孔径は50μm〜500μmとするのが好ましい。発泡ウレタン及び発泡メラミンは気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため発泡樹脂成形体として好ましく使用できる。発泡ウレタンは気孔の均一性や入手の容易さ等の点で好ましく、発泡ウレタンは気孔径の小さなものが得られる点で好ましい。
多孔質樹脂成形体には発泡体製造過程での製泡剤や未反応モノマーなどの残留物があることが多く、洗浄処理を行うことが後の工程のために好ましい。多孔質樹脂成形体の例として、発泡ウレタンを前処理として洗浄処理したものを図3に示す。樹脂成形体が骨格として三次元的に網目を構成することで、全体として連続した気孔を構成している。発泡ウレタンの骨格はその延在方向に垂直な断面において略三角形状をなしている。ここで気孔率は、次式で定義される。
気孔率=(1−(多孔質材の重量[g]/(多孔質材の体積[cm]×素材密度)))×100[%]
また、気孔径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりのセル数を計数して、平均孔径=25.4mm/セル数として平均的な値を求める。
(樹脂成形体表面の導電化:気相法)
まず発泡樹脂成形体の表面にアルミニウムからなる導電層を形成する。導電層の形成は蒸着、スパッタ、プラズマCVD等の気相法、アルミニウム塗料の塗布等任意の方法で行うことができる。薄い膜を均一に形成できるため、蒸着法が好ましい。導電層の厚みは0.05μm〜1μm、好ましくは0.1μm〜0.5μmとすることが好ましい。導電層の厚みが0.01μmよりも薄い場合は導電化が不十分であり、次の工程で良好に電解めっきを行うことができない。また厚みが1μmを超えると導電化工程のコストが高くなる。
(樹脂成形体表面の導電化:塗料)
導電化処理は、発泡樹脂成形体を、アルミニウムを含む塗料に浸漬して行っても良い。塗料に含まれているアルミニウム成分が発泡樹脂成形体の表面に付着してアルミニウムからなる導電層が形成されることで、溶融塩中でめっき可能な導電状態となる。アルミニウムを含む塗料としては、例えば粒径10nm〜1μmのアルミニウム微粒子を水または有機溶剤中に分散させた液を使用できる。発泡樹脂を塗料に浸漬した後加熱して溶剤を蒸発させることで導電層を形成できる。
(めっき前処理:アノード電解)
上記工程で形成された導電層の上に、溶融塩めっきによりアルミニウムをめっきしてアルミニウムめっき層を形成する。このとき導電層の表面に酸化膜が存在すると、次のめっき工程においてアルミニウムの付着性が悪くなり、島状にアルミニウムが付着したり、アルミニウムめっき層の厚みにばらつきが生じる可能性がある。従ってめっき工程の前に陽極電解処理を行い、導電層(アルミニウム層)の表面に生成した酸化皮膜(酸化アルミニウム層)を溶解して除去することが好ましい。具体的には、導電化された樹脂成形体とアルミ板等の対極を溶融塩中に浸漬し、導電化された樹脂成形体(導電層)を陽極側に、対極を陰極として直流電流を印加する。溶融塩は、次の工程の溶融塩めっきと同じ物を使用しても良いし、別の物であっても良い。
(めっき前処理:非酸化雰囲気)
導電層(アルミニウム層)の酸化を防ぐ別の手法として、導電層を形成した後、導電層つき樹脂成形体(導電化された樹脂成形体)を酸化雰囲気中に曝すことなく次の工程であるめっき工程に移動することが考えられる。例えばアルゴン雰囲気中に蒸着装置と溶融塩めっき装置を入れておき、アルゴン雰囲気中で蒸着による導電化工程を行った後、アルゴン雰囲気中でサンプルを次の工程に移送し、溶融塩めっきを行うことができる。このような手法により導電化工程で形成された導電層の表面を酸化させることなくめっきを行うことができる。
(アルミニウム層の形成:溶融塩めっき)
次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層3を形成する。表面が導電化された樹脂成形体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。アルミニウムめっき層の厚みは1μm〜100μm、好ましくは5μm〜20μmである。陽極電解処理とは逆に導電化された樹脂成形体を陰極、対極を陽極として溶融塩中で直流電流を印加する。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としてはイミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1−エチル−3−メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム、1−エチル−3−メチルイミダゾリウムクロライド(AlCl−EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。
溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。有機溶融塩浴としてEMIC浴を用いた場合、めっき浴の温度は10℃から60℃、好ましくは25℃から45℃である。
図5は帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属槽が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。
以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。ここで、高温での加熱分解等の方法は簡便であるが、アルミニウムの酸化を伴う。アルミニウムはニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、酸化により導電性が失われることから用いることが出来ない。このため、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。
(樹脂の除去:溶融塩中熱分解)
溶融塩中での熱分解は以下の方法で行う。表面にアルミニウムめっき層を形成した、アルミニウムめっき層付き発泡樹脂成形体を溶融塩に浸漬し、該アルミニウム層に負電位を印加しながら加熱して発泡樹脂成形体を分解する。溶融塩に浸漬した状態で負電位を印加するとアルミニウムの酸化反応を防止できる。このような状態で加熱することでアルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。加熱温度は発泡樹脂成形体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためにはアルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩が使用できる。具体的には塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むと好ましい。このような方法で樹脂を除去することで、表面の酸化層を薄く(酸素量を少なく)できると共にカーボン含有量の少ないアルミニウム多孔体を得ることができる。
図4は図2(d)のA−A’断面を示す模式図である。導電層2及びアルミニウムめっき層3からなるアルミニウム層は筒状の骨格構造をしており、骨格構造の内部にある空洞4は略三角断面形状をなしている。該三角の頂点の部分のアルミニウム層の厚さ(t1)は、該三角の辺の中央部分のアルミニウム層の厚さ(t2)よりも厚い形状となっている。めっきによりアルミニウム層を形成する際に角部(三角の頂点部分)に電界が集中するため、このような形状となると推測される。すなわち、本発明の製造方法により、前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが、該三角の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体が得られる。
(リチウムイオン電池)
次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためにはアルミニウム箔と活物質とが電気的に接触している必要があるので活物質は導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には黒鉛、電解質には有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。
(溶融塩電池)
アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質としてクロム酸ナトリウム(NaCrO)、二硫化チタン(TiO)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は導電助剤及びバインダーと組み合わせて使用する。導電助剤としてはアセチレンブラック等が使用できる。またバインダーとしてはポリテトラフルオロエチレン(PTFE)等を使用できる。活物質としてクロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEはこの両者をより強固に固着することができ好ましい。
アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
図6は上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)はそれぞれ、正極端子128、負極端子129に、リード線130で接続されている。
電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばKFSAとNaFSAとを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
溶融塩はセパレータに含浸させて使用する。セパレータは正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。
(電気二重層コンデンサ)
アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は導電助剤やバインダーと組み合わせて使用する。導電助剤としては黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしてはポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
図7は上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141はリード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。
以上、樹脂成形体として発泡樹脂成形体を使用する場合について説明したが、本発明は発泡樹脂成形体に限定されず、任意の形状の樹脂成形体を用いることで任意の形状のアルミニウム構造体を得ることができる。
(実施例:アルミニウム多孔体の製造:蒸着法によるアルミニウム層の形成)
以下、アルミニウム多孔体の製造例を具体的に説明する。発泡樹脂成形体として、厚み1mm、気孔率95%、1cm当たりの気孔数約20個のウレタン発泡体を準備し、10mm×30m角に切断した。ウレタン発泡体の表面にアルミニウムを蒸着し、厚み約0.3μmの導電層を形成した。
(陽極電解)
表面に導電層を形成したウレタン発泡体を給電機能を有する治具にセットした後、温度40℃の溶融塩アルミめっき浴(67mol%AlCl−33mol%EMIC)に浸漬した。ウレタン発泡体をセットした治具を整流器の陽極側に接続し、対極のアルミニウム板(純度99.99%)は陰極側に接続した。電流密度1A/dmの直流電流を1分間印加し、陽極電解を行った。なお電流密度の計算ではアルミニウム多孔体の見かけの面積を使用している。
(溶融塩めっき)
表面に導電層を形成したウレタン発泡体を溶融塩アルミめっき浴に浸漬した状態で、整流器の陽極と陰極とを繋ぎ換えた後、温度を40℃とし、電流密度3.6A/dmの直流電流を90分間印加してアルミニウムをめっきした。
(アルミニウム多孔体の製造:発泡樹脂成形体の分解)
アルミニウムめっき層を形成した発泡樹脂を温度500℃のLiCl−KCl共晶溶融塩に浸漬し、−1Vの負電位を30分間印加した。溶融塩中に気泡が発生し、ポリウレタンの分解反応が起こっていると推定された。その後大気中で室温まで冷却した後、水洗して溶融塩を除去しアルミニウム多孔体を得た。アルミニウムの付着量は150g/mであった。得られたアルミニウム多孔体のSEM写真を図8に示す。
得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定したところ、アルミニウム純度は99.1質量%であった。またカーボン含有量をJIS−G1211の高周波誘導加熱炉燃焼−赤外線吸収法で測定したところ、0.8質量%であった。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークはほとんど観測されず、アルミニウム多孔体の酸素量はEDXの検出限界(3.1質量%)以下であることが確認された。
(アルミニウム多孔体の電池としての評価)
アルミニウム多孔体の実用上の評価例として電池用電極に用いた場合をアルミニウム箔を電極とした従来構造との比較で説明する。
正極活物質として平均粒径7μmのLiCoO、導電助剤としてカーボンブラック、バインダー樹脂としてPVdFを10:1:1(質量比)で混合し、さらに溶媒としてN−メチル−2−ピロリドンを混合してペーストを作製した。このペーストを三次元網目構造を有する気孔率約95%のアルミニウム多孔体に充填した後150℃で真空乾燥し、さらに厚みが初期厚みの70%となるまでロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は2.4mAhであった。
比較のため、厚み20μmのアルミニウム箔上に上記のLiCoO、カーボンブラック、PVdF混合ペーストを塗布し、上記と同様に乾燥及びロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は0.24mAhであった。
厚さ25μmのポリプロピレン製の多孔膜をセパレータとして使用し、1M濃度のLiPFを溶解したEC/DEC(体積比1:1)溶液をセパレータに対して0.1ml/cmで滴下し、真空含浸した。負極として、厚さ20μm、11mmφのリチウムアルミニウム箔を用い、コイン電池容器上蓋に接合して固定した。上記の電池用電極材料(正極)、セパレータ、負極をこの順で積層し、バイトンOリングを上蓋と下蓋との間に挟んでかしめ電池を作製した。重放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、各放電レートで放電させた。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、レート0.2Cにおいて約5倍の容量であった。
以上の説明は、以下の特徴を含む。
(付記1)
樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを第1の溶融塩浴中でめっきするめっき工程と、アルミニウムめっき層が形成された樹脂成形体を第2の溶融塩に浸漬した状態で、該アルミニウムめっき層に負電位を印加しながらアルミニウムの融点以下の温度に加熱して前記樹脂成形体を分解する、アルミニウム構造体の製造方法。
(付記2)
前記樹脂成形体は連続した気孔を有する発泡樹脂成形体である、付記1に記載のアルミニウム多孔体の製造方法。
(付記3)
本発明により得られるアルミニウム構造体のアルミニウム表面に活物質が担持された電極材料。
(付記4)
付記3に記載の電極材料を、正極、負極の一方又は両方に用いた電池。
(付記5)
付記3に記載の電極材料を電極として用いた電気二重層コンデンサ。
(付記6)
本発明により得られるアルミニウム構造体からなる濾過フィルタ。
(付記7)
本発明により得られるアルミニウム構造体の表面に触媒が担持された触媒担体。
以上の如く本発明によれば、樹脂成形体表面にアルミニウムをめっきした構造体、またそこから樹脂成形体を除去したアルミニウム構造体を得ることができるので、例えばアルミニウム多孔体として電池用電極等の電気材料や、各種濾過用のフィルタ、触媒担体などにおいて、アルミニウムの特性が活かされる場合に広く適用することができる。
1 発泡樹脂、2 導電層、3 アルミニウムめっき層、4 空洞
21a,21b めっき槽、22 帯状樹脂、23,28 めっき浴、24 円筒状電極
25,27 正電極、26 電極ローラ
121 正極、122負極、123セパレータ、124押え板
125 バネ、126 押圧部材、127 ケース、128 正極端子
129 負極端子、130 リード線
141 分極性電極、142 セパレータ、143 有機電解液
144 リード線、145 ケース

Claims (8)

  1. 樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、前記導電層が形成された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法であって、前記導電化工程と前記めっき工程との間に、前記導電層の表面の酸化膜を溶解除去する工程、または/および前記導電層を酸化させることなく工程間移送する工程を備える、アルミニウム構造体の製造方法。
  2. 前記溶解除去する工程は、前記導電層を陽極として電解処理する陽極電解工程である、請求項1に記載のアルミニウム構造体の製造方法。
  3. 前記工程間移送する工程は、前記導電化工程と前記めっき工程との間で、前記導電化された樹脂成形体を酸化雰囲気中に曝すことなく工程間移送する工程である、請求項1に記載のアルミニウム構造体の製造方法。
  4. 前記導電化工程は、気相法により前記樹脂成形体表面にアルミニウムを付着する工程である、請求項1〜3のいずれか1項に記載のアルミニウム構造体の製造方法。
  5. 前記導電化工程は、前記樹脂成形体をアルミニウムを含む塗料に浸漬することで前記樹脂表面にアルミニウムを付着する工程である、請求項1〜3のいずれか1項に記載のアルミニウム構造体の製造方法。
  6. 前記樹脂成形体は三次元網目構造を有する樹脂多孔体である、請求項1〜5のいずれか1項に記載のアルミニウム構造体の製造方法。
  7. 前記樹脂成形体はウレタンまたはメラミンである、請求項1〜6のいずれか1項に記載のアルミニウム構造体の製造方法。
  8. 前記めっき工程の後に、さらに前記樹脂成形体を除去する工程を有する、請求項1〜7のいずれか1項に記載のアルミニウム構造体の製造方法。
JP2010098335A 2010-04-22 2010-04-22 アルミニウム構造体の製造方法およびアルミニウム構造体 Active JP5663938B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010098335A JP5663938B2 (ja) 2010-04-22 2010-04-22 アルミニウム構造体の製造方法およびアルミニウム構造体
CN201180004624.5A CN102666887B (zh) 2010-04-22 2011-04-07 用于制造铝结构体的方法和铝结构体
CA2781170A CA2781170A1 (en) 2010-04-22 2011-04-07 Method for producing aluminum structural body and aluminum structural body
PCT/JP2011/058782 WO2011132539A1 (ja) 2010-04-22 2011-04-07 アルミニウム構造体の製造方法およびアルミニウム構造体
KR1020127012836A KR20130079308A (ko) 2010-04-22 2011-04-07 알루미늄 구조체의 제조 방법 및 알루미늄 구조체
EP11771875.9A EP2562278A4 (en) 2010-04-22 2011-04-07 METHOD FOR PRODUCING AN ALUMINUM STRUCTURE AND ALUMINUM STRUCTURE
TW100112606A TW201207162A (en) 2010-04-22 2011-04-12 Method for producing aluminum structure and aluminum structure
US13/237,218 US20120067731A1 (en) 2010-04-22 2011-09-20 Manufacturing method of aluminum structure and aluminum structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098335A JP5663938B2 (ja) 2010-04-22 2010-04-22 アルミニウム構造体の製造方法およびアルミニウム構造体

Publications (2)

Publication Number Publication Date
JP2011225950A JP2011225950A (ja) 2011-11-10
JP5663938B2 true JP5663938B2 (ja) 2015-02-04

Family

ID=44834070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098335A Active JP5663938B2 (ja) 2010-04-22 2010-04-22 アルミニウム構造体の製造方法およびアルミニウム構造体

Country Status (8)

Country Link
US (1) US20120067731A1 (ja)
EP (1) EP2562278A4 (ja)
JP (1) JP5663938B2 (ja)
KR (1) KR20130079308A (ja)
CN (1) CN102666887B (ja)
CA (1) CA2781170A1 (ja)
TW (1) TW201207162A (ja)
WO (1) WO2011132539A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696648B2 (ja) * 2011-11-21 2015-04-08 住友電気工業株式会社 溶融塩電池の製造方法
JP2013114795A (ja) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd アルミニウム多孔体を集電体として用いた電極及びその製造方法
US9040144B2 (en) 2012-09-04 2015-05-26 National Tsing Hua University Filtering film structure
JP5582371B1 (ja) * 2013-02-26 2014-09-03 住友電気工業株式会社 アルミニウム多孔体、伝熱材料及び熱交換装置
JP2014237873A (ja) * 2013-06-07 2014-12-18 住友電気工業株式会社 溶融塩の製造方法、溶融塩及びアルミニウムの製造方法
JP2014237606A (ja) * 2013-06-07 2014-12-18 住友電気工業株式会社 溶融塩の製造方法、溶融塩及びアルミニウムの製造方法
CN105406229B (zh) * 2015-12-24 2018-07-03 贵州航天计量测试技术研究所 一种复合泡沫金属接触件
EP3757237A4 (en) * 2018-02-22 2021-07-07 Sumitomo Electric Industries, Ltd. POROUS METAL BODY
CN108520833B (zh) * 2018-03-16 2019-09-17 江苏中天科技股份有限公司 多孔铝宏观体及其制造系统与方法
WO2020039693A1 (ja) 2018-08-24 2020-02-27 富山住友電工株式会社 金属多孔体および金属多孔体の製造方法
US11189837B2 (en) 2018-08-29 2021-11-30 Sumitomo Electric Toyama Co., Ltd. Metal porous body and method for manufacturing metal porous body
EP3789317A4 (en) 2019-06-12 2022-04-13 Sumitomo Electric Toyama Co., Ltd. PACKAGING BODY AND METHOD OF MAKING A PACKING BODY
EP3819391B1 (en) 2019-09-12 2023-07-19 Sumitomo Electric Toyama Co., Ltd. Porous metal body and method for producing porous metal body
US20220228281A1 (en) 2020-03-27 2022-07-21 Sumitomo Electric Toyama Co., Ltd. Porous metal body and method for producing porous metal body
CN116033953A (zh) 2020-09-17 2023-04-28 富山住友电工株式会社 金属多孔体和金属多孔体的制造方法、以及过滤器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169770A (en) * 1978-02-21 1979-10-02 Alcan Research And Development Limited Electroplating aluminum articles
FR2558485B1 (fr) * 1984-01-25 1990-07-13 Rech Applic Electrochimique Structure metallique poreuse, son procede de fabrication et applications
JPS60253157A (ja) * 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd 非水系二次電池
EP0323520B1 (en) * 1987-07-13 1992-11-11 Nisshin Steel Co., Ltd. Process for electroplating metal plate with aluminum
US5478780A (en) * 1990-03-30 1995-12-26 Siemens Aktiengesellschaft Method and apparatus for producing conductive layers or structures for VLSI circuits
JPH042795A (ja) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd 金属多孔体の連続製造方法
JPH04341594A (ja) * 1991-05-17 1992-11-27 Eagle Ind Co Ltd 電鋳法
JP3413662B2 (ja) * 1992-01-13 2003-06-03 上村工業株式会社 アルミニウム多孔体の製造方法
JPH05271986A (ja) * 1992-03-24 1993-10-19 Mitsubishi Petrochem Co Ltd アルミニウム・有機高分子積層体
JP3202072B2 (ja) 1992-09-21 2001-08-27 三菱化学株式会社 電気アルミニウムめっき方法
JP3180200B2 (ja) * 1992-10-12 2001-06-25 日清紡績株式会社 金属多孔体の製造方法
JP3568052B2 (ja) 1994-12-15 2004-09-22 住友電気工業株式会社 金属多孔体、その製造方法及びそれを用いた電池用極板
JP2005285629A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 非水電解質電池
US8110076B2 (en) * 2006-04-20 2012-02-07 Inco Limited Apparatus and foam electroplating process

Also Published As

Publication number Publication date
JP2011225950A (ja) 2011-11-10
WO2011132539A1 (ja) 2011-10-27
KR20130079308A (ko) 2013-07-10
CA2781170A1 (en) 2011-10-27
EP2562278A4 (en) 2015-12-16
TW201207162A (en) 2012-02-16
US20120067731A1 (en) 2012-03-22
CN102666887A (zh) 2012-09-12
CN102666887B (zh) 2015-04-22
EP2562278A1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5663938B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2011132538A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2012111615A1 (ja) 空気電池および電極
WO2011142338A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2012096220A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
US20130130124A1 (en) Porous metal body, method for producing the same, and battery using the same
WO2012165213A1 (ja) 金属多孔体及びそれを用いた電極材料、電池
JP2012186160A (ja) 電池
JP5648588B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
US9184448B2 (en) Method of producing aluminum structure and aluminum structure
JP2011246779A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5692233B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5488994B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2013194308A (ja) 金属多孔体及びそれを用いた電極材料、電池
JP5488996B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2011236476A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2013077245A1 (ja) アルミニウム多孔体を集電体として用いた電極及びその製造方法
JP2015083716A (ja) アルミニウム構造体を含む電極材料、それを用いた電池および電気二重層コンデンサ、ならびにアルミニウム構造体を用いた濾過フィルタおよび触媒担体
JP2012219372A (ja) アルミニウム多孔体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5663938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250