WO2011142338A1 - アルミニウム構造体の製造方法およびアルミニウム構造体 - Google Patents

アルミニウム構造体の製造方法およびアルミニウム構造体 Download PDF

Info

Publication number
WO2011142338A1
WO2011142338A1 PCT/JP2011/060722 JP2011060722W WO2011142338A1 WO 2011142338 A1 WO2011142338 A1 WO 2011142338A1 JP 2011060722 W JP2011060722 W JP 2011060722W WO 2011142338 A1 WO2011142338 A1 WO 2011142338A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
plating
layer
resin molded
molded body
Prior art date
Application number
PCT/JP2011/060722
Other languages
English (en)
French (fr)
Inventor
細江 晃久
新田 耕司
奥野 一樹
知之 粟津
稲澤 信二
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010110141A external-priority patent/JP2011236476A/ja
Priority claimed from JP2010110142A external-priority patent/JP5488994B2/ja
Priority claimed from JP2010122366A external-priority patent/JP2011246779A/ja
Priority claimed from JP2010130607A external-priority patent/JP5488996B2/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2011800049313A priority Critical patent/CN102666934A/zh
Priority to CA2784182A priority patent/CA2784182A1/en
Priority to EP11780595A priority patent/EP2570518A1/en
Priority to KR1020127015024A priority patent/KR20130069539A/ko
Priority to US13/237,204 priority patent/US8728627B2/en
Publication of WO2011142338A1 publication Critical patent/WO2011142338A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component

Definitions

  • the present invention relates to a method of forming an aluminum structure on a resin surface by aluminum plating, and particularly to an aluminum structure that can be suitably used as a porous metal body in applications such as various filters and battery electrodes, and a method for producing the same.
  • Metal porous bodies having a three-dimensional network structure are used in various fields such as various filters, catalyst carriers, and battery electrodes.
  • cermet made of nickel (manufactured by Sumitomo Electric Industries, Ltd .: registered trademark) is used as an electrode material for batteries such as nickel metal hydride batteries and nickel cadmium batteries.
  • Celmet is a metal porous body having continuous air holes, and has a feature that the porosity is higher (90% or more) than other porous bodies such as a metal nonwoven fabric. This can be obtained by forming a nickel layer on the surface of the porous resin skeleton having continuous air holes such as urethane foam, then heat-treating it to decompose the foamed resin molded product, and further reducing the nickel.
  • the formation of the nickel layer is performed by depositing nickel by electroplating after applying carbon powder or the like to the surface of the skeleton of the foamed resin molded body and conducting a conductive treatment.
  • Aluminum has excellent characteristics such as conductivity, corrosion resistance, and light weight.
  • a positive electrode of a lithium ion battery in which an active material such as lithium cobaltate is applied to the surface of an aluminum foil is used.
  • an active material such as lithium cobaltate
  • aluminum is made porous to increase the surface area and the aluminum is filled with an active material. This is because the active material can be used even if the electrode is thickened, and the active material utilization rate per unit area is improved.
  • Patent Document 1 discloses that a metal aluminum layer having a thickness of 2 to 20 ⁇ m is formed by subjecting a three-dimensional net-like plastic substrate having an internal communication space to aluminum vapor deposition by an arc ion plating method. A method is described.
  • Patent Document 2 a film made of a metal (such as copper) that forms a eutectic alloy below the melting point of aluminum is formed on the skeleton of a foamed resin molding having a three-dimensional network structure, and then an aluminum paste is applied.
  • a method is described in which a metal porous body is obtained by performing heat treatment at a temperature of 550 ° C. or higher and 750 ° C. or lower in a non-oxidizing atmosphere to eliminate organic components (foamed resin) and sinter aluminum powder.
  • Patent Document 3 uses a low melting point composition in which onium halide and aluminum halide are mixed and melted as a plating bath, and the water content in the bath is 2 wt% or less.
  • An aluminum electroplating method is disclosed, in which aluminum is deposited on the cathode while maintaining the same.
  • Patent Document 1 an aluminum porous body having a thickness of 2 to 20 ⁇ m is obtained, but since it is based on a gas phase method, it is difficult to produce a large area, and the thickness of the substrate and the pores Depending on the rate, it is difficult to form a uniform layer up to the inside. In addition, there are problems such as a slow formation rate of the aluminum layer and an increase in manufacturing cost due to expensive equipment. According to the method of Patent Document 2, a layer that forms a eutectic alloy with aluminum is formed, and a high-purity aluminum layer cannot be formed.
  • the electroplating method of aluminum itself is known, it is only possible to plate on the metal surface, and electroplating on the resin surface, especially on the surface of the porous resin molded body having a three-dimensional network structure.
  • the method of electroplating has not been known. This is considered to be affected by problems such as dissolution of the porous resin in the plating bath.
  • the present invention provides a method capable of forming an aluminum structure capable of plating aluminum on the surface of a resin molded body, particularly a porous resin molded body having a three-dimensional network structure, and a large
  • An object of the present invention is to provide a porous aluminum body that can be manufactured in an area and that is particularly suitable for electrode applications.
  • the inventors of the present application have come up with a method of electroplating aluminum on the surface of a resin molded body such as polyurethane or melamine. That is, the present invention forms a conductive layer made of one or more metals selected from the group consisting of gold, silver, platinum, rhodium, ruthenium, palladium, nickel, copper, cobalt, iron and aluminum on the surface of the resin molded body. And a plating process for plating aluminum in a molten salt bath on the conductive resin molded body (first invention of the present application). As described above, conventionally, although aluminum plating has been performed on a metal surface, electroplating on the surface of a resin molded body has not been considered. By making the surface of the resin molded body conductive, it is characterized in that it can be plated with aluminum even in a molten salt bath and has found a structure suitable as a conductive layer.
  • the conductive layer made of the above-described metal has a higher conductivity than that of other metal or carbon, and is suitable as a conductive layer. Moreover, these metals are easy to form a layer having a smooth surface. Furthermore, since these metal materials are difficult to oxidize and do not form an oxide layer that impairs the adhesion of aluminum plating, the plating step can be performed without any special treatment immediately before aluminum plating. From these things, it is suitable for forming a uniform and large-area aluminum plating layer even on the surface of a resin molded body having a complicated shape.
  • a suitable thickness is 0.001 ⁇ m to 0.2 ⁇ m, preferably 0.01 ⁇ m to 0.1 ⁇ m.
  • a step of attaching one or more metals selected from the group consisting of gold, silver, platinum, rhodium, ruthenium, palladium and aluminum to the surface of the resin molded body by a vapor phase method is preferably used (this application).
  • Third invention The vapor phase method is suitable for smoothly forming a thin conductive layer.
  • a step of attaching one or more metals selected from the group consisting of gold, silver, platinum, rhodium, ruthenium, palladium, nickel, copper, cobalt and iron to the surface of the resin molded body by electroless plating. It is also possible (the fourth invention of the present application).
  • Electroless plating forms a substantially uniform conductive layer regardless of the position of the surface layer part or deep part of the whole molded product, even if it is a resin molded product with a complicated structure such as a porous material with a fine three-dimensional network structure. It is preferable in that it can be performed.
  • the step of attaching the metal by immersing the resin molded body in a paint containing one or more metals selected from the group consisting of gold, silver, platinum, rhodium, ruthenium, palladium and aluminum, Is preferably used in the same manner as electroless plating (the fifth invention of the present application).
  • an aluminum porous body by using a resin porous body having a three-dimensional network structure (the second invention of the present application).
  • a resin porous body made of urethane or melamine is preferably used in that a resin porous body having a high porosity can be obtained, and an aluminum porous body suitable for electrode applications can be obtained (No. 6 of the present application). invention).
  • an aluminum structure having a resin molded body layer provided with a metal layer on the surface is obtained.
  • it may be used as a composite of resin and metal as it is, or when used as a metal structure without resin due to restrictions on the usage environment such as electrode application, May be removed.
  • the finished aluminum structure becomes a structure including two metal layers, ie, a metal as a conductive layer and aluminum.
  • a structure having various advantageous characteristics such as an increase in mechanical strength as compared with a structure made of only aluminum, and a structure according to the application can be obtained.
  • copper has a characteristic that high conductivity can be obtained
  • nickel, cobalt, and iron have a characteristic that magnetism can be imparted.
  • the eighth invention of the present application it is preferable to use a method for producing an aluminum structure having a dissolving step of dissolving the conductive layer after the plating step (the eighth invention of the present application).
  • the conductive layer can be dissolved by immersing it in acid, particularly concentrated nitric acid, which is an oxidizing acid, without dissolving the aluminum.
  • Aluminum does not dissolve in acid to form a passive film in an oxidizing acid on the surface, while the metal used for the conductive layer dissolves.
  • the inventors of the present application have also come up with a method of electroplating aluminum on the surface of a resin molded body such as polyurethane or melamine. That is, in the present invention, a conductive step of forming a conductive layer made of aluminum on the surface of a resin molded body, a step of forming a zinc coating by performing zinc substitution plating on the surface of the conductive layer, and the zinc coating are formed. And a plating step of plating aluminum in a molten salt bath on a resin molded body. (Tenth invention of this application)
  • zinc replacement plating (zincate treatment) is performed after the conductive step.
  • zinc displacement plating zinc is deposited while removing the oxide film of aluminum, so that the zinc film is formed with the oxide film being broken. Since the galvanizing treatment is a substitution reaction between aluminum and zinc, if the surface of aluminum is covered with zinc, the reaction is completed, and the zinc film is formed extremely thin. Therefore, the zinc film does not become thick and the purity of aluminum can be kept high. Since it is difficult to form a strong oxide film on the surface of zinc and an oxide layer that hinders the adhesion of aluminum plating is not formed, the plating process can be performed satisfactorily thereafter.
  • the zinc displacement plating step is performed by immersing the resin molded body on which the conductive layer is formed in a zinc displacement plating treatment solution.
  • the zinc-displacement plating solution is a solution in which zinc oxide is dissolved in a strong alkaline solution, and an oxide film on the aluminum surface, which is a conductive layer, is dissolved by an alkali component.
  • a base material with a complicated shape such as a porous resin body having a three-dimensional network structure
  • a portion where an oxide film is not formed as a minute defect on the surface of the conductive layer (aluminum layer) formed on the surface. Occurs.
  • the temperature of the zinc displacement plating solution is lower than the normal treatment temperature to be 4 ° C. or higher and 15 ° C. or lower (the 11th invention of the present application).
  • the temperature of the zinc displacement plating treatment solution 15 ° C. or lower the reaction becomes mild and it is possible to prevent the aluminum surface from being excessively dissolved.
  • the processing temperature is lower than 4 ° C., the reaction rate is slowed down, and the manufacturing time is increased due to the longer processing time.
  • the inventors of the present application have come up with a method of electroplating aluminum on the surface of a resin molded body such as polyurethane or melamine. That is, the present invention provides a conductive step for forming a conductive layer made of aluminum on the surface of a resin molded body, and one type selected from the group consisting of gold, silver, platinum, rhodium, ruthenium and palladium on the surface of the conductive layer. It is a manufacturing method of an aluminum structure provided with the process of attaching the above-mentioned noble metal, and the plating process of plating aluminum in the molten salt bath to the resin fabrication object to which the noble metal adhered. (Twelfth Invention of the Present Application)
  • one or more noble metals selected from the group consisting of gold, silver, platinum, rhodium, ruthenium and palladium are attached to the surface of the conductive layer.
  • a vapor phase method such as vapor deposition or sputtering can be used. In the vapor phase method, noble metal can be deposited without any problem even if a thin oxide film is formed on the surface of the underlying aluminum.
  • the noble metal can be attached by electroless plating or application of a paint containing the noble metal. Since these noble metals are not easily oxidized and do not form an acid underlayer that inhibits the adhesion of aluminum plating, aluminum plating in molten salt can be performed satisfactorily thereafter. Moreover, since these noble metals are not easily ionized, they are rarely eluted from the electrode in the charge / discharge cycle of the battery, and even if they are contained in the electrode material, no problem occurs.
  • the aluminum structure obtained by the above production method is a structure in which the surface in contact with the resin or the one surface on which the resin is removed is a noble metal and the other surface is aluminum.
  • the component ratio of each metal is measured by dissolving an aluminum structure in aqua regia and using an ICP (inductively coupled plasma) emission spectrometer.
  • the aluminum structure obtained by the above manufacturing method is an aluminum structure having an aluminum layer having a thickness of 1 ⁇ m to 100 ⁇ m as a metal layer, and the metal layer has an aluminum content of 80% by mass or more, nickel, copper, cobalt And the total amount of iron is 2 mass% or more and 20 mass% or less, and the aluminum structure which consists of remainder unavoidable impurities (this invention 15th invention).
  • the aluminum structure obtained when the conductive layer is removed in the above manufacturing method is an aluminum structure having an aluminum layer with a thickness of 1 ⁇ m to 100 ⁇ m as a metal layer, and the metal layer is made of 98% aluminum. 0.0 mass% or more, the total amount of nickel, copper, cobalt and iron is 0.0001 mass% or more and less than 2 mass%, and the balance is an aluminum structure composed of inevitable impurities (the 16th invention of the present application).
  • the aluminum structure obtained by the above manufacturing method is an aluminum structure having an aluminum layer with a thickness of 1 ⁇ m to 100 ⁇ m as a metal layer, and the aluminum layer as a whole excluding the resin has an aluminum purity of 98.0% or more, This is an aluminum structure in which the zinc content is 0.0001% or more and 2% or less, and the balance is inevitable impurities (the seventeenth invention of the present application).
  • the aluminum structure obtained by the above-described manufacturing method is an aluminum structure having a noble metal layer inside, with the surface in contact with the resin or one surface on the side where the resin is removed and the other surface being aluminum. More specifically, the metal layer has a first aluminum layer having a thickness of 1 ⁇ m to 100 ⁇ m on one surface and a second aluminum layer having a thickness of 0.05 ⁇ m to 1 ⁇ m on the other surface.
  • An aluminum structure having a noble metal layer between aluminum layers (the eighteenth invention of the present application).
  • the aluminum purity is 99.0% by mass or more
  • the total amount of gold, silver, platinum, rhodium, ruthenium and palladium is 0.001% by mass to 1.0% by mass
  • the balance is It is an inevitable impurity (the 19th invention of the present application).
  • the skeleton has a shape in which a metal layer is formed in a cylindrical shape around the cavity from which the resin is removed or the resin is removed, and the inner side of the cylindrical body is a noble metal surface and the outer side is an aluminum surface. .
  • the components as the whole metal layer are as described above.
  • the skeleton portion of the network structure has a triangular shape as a whole.
  • the triangle is not a strict meaning and refers to a shape having approximately three apexes and having three curves as sides. Therefore, the shape of the aluminum structure formed by plating also has a structure in which the skeleton has a substantially triangular shape.
  • a process of attaching at least one noble metal selected from the group consisting of gold, silver, platinum, rhodium, ruthenium and palladium by electroless plating is considered as a conductive method.
  • a conductive layer having a relatively uniform thickness can be formed, and the conductivity is the same at all positions of the triangle.
  • electrolysis concentrates on corners (triangular apex portions), and the top portion becomes thicker than the central portion of the triangular side. This makes it possible to realize the shape described above. With such a shape, the strength of the cylindrical skeleton structure is improved, and in applications such as battery electrodes, there is an advantage that the active material retainability is excellent.
  • the present invention it is possible to plate aluminum on the surface of a resin molded body, particularly a porous resin molded body having a three-dimensional network structure, and a large area can be manufactured with a substantially uniform thick film.
  • a method capable of obtaining a porous aluminum body suitable for electrode applications it is possible to provide a method capable of obtaining a porous aluminum body suitable for electrode applications.
  • FIG. 1 is a flowchart showing a manufacturing process of an aluminum structure according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a manufacturing process of the aluminum structure according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged surface photograph showing the structure of a urethane foam resin as an example of a porous resin molded body.
  • FIG. 4 is a schematic diagram illustrating a skeleton cross section of an aluminum porous body.
  • FIG. 5 is a diagram for explaining an example of an aluminum continuous plating process by molten salt plating.
  • FIG. 6 is a schematic cross-sectional view showing a structural example in which an aluminum porous body is applied to a molten salt battery.
  • FIG. 1 is a flowchart showing a manufacturing process of an aluminum structure according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a manufacturing process of the aluminum structure according to the first embodiment of the present invention
  • FIG. 7 is a schematic cross-sectional view showing a structural example in which an aluminum porous body is applied to an electric double layer capacitor. It is a flowchart which shows the manufacturing process of the aluminum structure of 2nd Embodiment by this invention. It is a SEM photograph of the aluminum porous body concerning the example of the 2nd embodiment by the present invention. It is a SEM photograph of the aluminum porous body concerning another example of the 2nd embodiment by the present invention. It is the photograph which observed the frame
  • FIG. 13 is a flowchart showing manufacturing steps of the aluminum structure according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional SEM photograph of a porous aluminum body according to a third embodiment of the present invention.
  • FIG. 15 is a flowchart showing manufacturing steps of the aluminum structure according to the fourth embodiment of the present invention.
  • FIG. 1 is a flowchart showing a manufacturing process of an aluminum structure according to a first embodiment of the present invention.
  • FIG. 2 schematically shows a state in which an aluminum structure is formed using a resin molded body as a core material corresponding to the flowchart. The flow of the entire manufacturing process will be described with reference to both drawings.
  • preparation 101 of the base resin molded body is performed.
  • FIG. 2A is an enlarged schematic view showing a part of a cross section of a resin in which the surface of a foamed resin molded body having continuous air holes is enlarged as an example of the base resin molded body. The pores are formed with the foamed resin molded body 1 as a skeleton.
  • the surface 102 of the resin molded body is made conductive.
  • the conductive layer 2 is thinly formed on the surface of the resin molded body 1 as shown in FIG.
  • aluminum plating 103 in molten salt is performed to form an aluminum plating layer 3 on the surface of the resin molded body on which the conductive layer is formed (FIG. 2C).
  • an aluminum structure in which the aluminum plating layer 3 is formed on the surface using the base resin molded body as a base material is obtained.
  • the removal 104 of the base resin molded body may be performed.
  • An aluminum structure (porous body) in which only the metal layer remains can be obtained by disassembling and disappearing the foamed resin molded body 1 (FIG. 2D).
  • each step will be described in order.
  • a porous resin molded body having a three-dimensional network structure and continuous air holes is prepared.
  • Arbitrary resin can be selected as a raw material of a porous resin molding.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • a resin molded article having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes). For example, what has a shape like a nonwoven fabric entangled with a fibrous resin can be used instead of the foamed resin molded article.
  • the foamed resin molded article preferably has a porosity of 80% to 98% and a pore diameter of 50 ⁇ m to 500 ⁇ m.
  • Foamed urethane and foamed melamine can be preferably used as a foamed resin molded article because they have high porosity, have pore connectivity and are excellent in thermal decomposability.
  • Foamed urethane is preferable in terms of uniformity of pores and availability, and urethane foam is preferable in that a product having a small pore diameter is obtained.
  • the porous resin molded body often has residues such as foaming agents and unreacted monomers in the foam production process, and it is preferable to perform a washing treatment for the subsequent steps.
  • FIG. 3 shows one obtained by washing urethane foam as a pretreatment.
  • the resin molded body forms a three-dimensional network as a skeleton, thereby forming continuous pores as a whole.
  • the skeleton of the urethane foam has a substantially triangular shape in a cross section perpendicular to the extending direction.
  • the porosity is defined by the following equation.
  • Porosity (1 ⁇ (weight of porous material [g] / (volume of porous material [cm 3 ] ⁇ material density))) ⁇ 100 [%]
  • a conductive layer made of at least one noble metal selected from the group consisting of gold, silver, platinum, rhodium, ruthenium and palladium is formed on the surface of the foamed resin molded body.
  • the conductive layer can be formed by any method other than electroless plating, such as sputtering, gas phase methods such as plasma CVD, and coating.
  • a vapor phase method such as a vapor deposition method can be preferably applied.
  • the thickness of the conductive layer is 0.001 ⁇ m to 0.2 ⁇ m, preferably 0.01 ⁇ m to 0.1 ⁇ m.
  • the thickness of the conductive layer is thinner than 0.001 ⁇ m, the electroconductivity is insufficient and the electroplating cannot be performed satisfactorily in the next step.
  • the thickness exceeds 0.2 ⁇ m, the cost of the conductive step increases.
  • electroless plating or the like can be used in order to form a uniform layer throughout the entire depth.
  • the means for evaporating is not particularly limited, and a method of irradiating an electron beam with an electron gun, resistance heating, induction overheating, a laser method, or the like can be used.
  • a method of irradiating an electron beam with an electron gun, resistance heating, induction overheating, a laser method, or the like can be used.
  • the pressure of the inert gas to be introduced is 0.01 Pa or more. When the pressure of the inert gas is less than 0.01 Pa, the thin film is poorly attached and unattached portions are formed.
  • the atmospheric gas upper limit of the inert gas varies depending on the raw material heating method (electron gun, resistance heating, etc.) to be used, but is preferably 1 Pa or less from the viewpoint of the amount of gas used and the film forming speed.
  • argon gas can be suitably used as the inert gas.
  • Argon gas is preferable because it exists in nature in a relatively large amount, is available at low cost, and has little adverse effect on the human body.
  • an existing film forming apparatus may be used.
  • a vacuum deposition apparatus having a film formation chamber that divides a film formation target, a support base and a heating container on which gold and a film formation target are respectively mounted, and an electron gun for heating gold. it can.
  • a vacuum deposition apparatus it is easy to introduce an inert gas uniformly around the urethane that is the film formation target of the present invention, and the space around the urethane is partitioned, so the pressure of the inert gas is adjusted. It is preferable because it is easy.
  • urethane is placed on a support base of a vacuum deposition apparatus, and gold, which is a thin film raw material, is placed on a heating container.
  • gold which is a thin film raw material
  • a heating container is placed on a heating container.
  • an inert gas is introduced into the film formation chamber.
  • the pressure of the inert gas introduced into the film formation chamber is adjusted to be 0.01 to 1 Pa.
  • an electron beam is emitted from an electron gun to melt gold, and a gold thin film is deposited on urethane.
  • Formation of aluminum layer molten salt plating
  • electrolytic plating is performed in a molten salt to form an aluminum plating layer 3 on the surface of the resin molded body.
  • a direct current is applied in a molten salt using a resin molded body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode.
  • the thickness of the aluminum plating layer is 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • aluminum chloride, 1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) based molten salt It is most preferably used because it is highly stable and hardly decomposes.
  • plating is preferably performed in an inert gas atmosphere such as nitrogen or argon and in a sealed environment.
  • an inert gas atmosphere such as nitrogen or argon
  • the temperature of the plating bath is 10 ° C. to 60 ° C., preferably 25 ° C. to 45 ° C.
  • FIG. 5 is a diagram schematically showing a configuration of an apparatus for continuously performing metal plating treatment on the belt-shaped resin.
  • a configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure.
  • the first plating tank 21 a includes a cylindrical electrode 24, a positive electrode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 through the plating bath 23 along the cylindrical electrode 24, a uniform current can easily flow through the entire resin, and uniform plating can be obtained.
  • the plating tank 21b is a tank for applying a thick and uniform plating, and is configured to be repeatedly plated in a plurality of tanks.
  • Plating is performed by passing the belt-like resin 22 having a thin metal tank on the surface through a plating bath 28 while sequentially feeding it by an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an aluminum structure (aluminum porous body) having a resin molded body as a skeleton core is obtained.
  • the resin and metal composite may be used as they are.
  • the resin may be removed when it is used as a metal structure without resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with an organic solvent, molten salt, or supercritical water, and thermal decomposition.
  • methods such as thermal decomposition at high temperature are simple, but involve oxidation of aluminum. Aluminum, unlike nickel or the like, is difficult to reduce once oxidized.
  • a method of removing the resin by thermal decomposition in a molten salt described below is preferably used so that oxidation of aluminum does not occur.
  • the thermal decomposition in the molten salt is performed by the following method.
  • a foamed resin molded body with an aluminum plating layer having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the foamed resin molded body.
  • a negative potential is applied while immersed in the molten salt, the oxidation reaction of aluminum can be prevented.
  • heating temperature can be suitably selected according to the kind of foaming resin molding, in order not to melt aluminum, it is necessary to process at the temperature below melting
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • molten salt used for the thermal decomposition of the resin a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • LiCl lithium chloride
  • KCl potassium chloride
  • NaCl sodium chloride
  • AlCl 3 aluminum chloride
  • FIG. 4 is a schematic diagram showing the A-A ′ cross section of FIG.
  • the aluminum layer composed of the conductive layer 2 and the aluminum plating layer 3 has a cylindrical skeleton structure, and the cavity 4 in the skeleton structure has a substantially triangular cross-sectional shape.
  • the thickness (t1) including the conductive layer of the aluminum layer at the apex portion of the triangle is thicker than the thickness (t2) of the central portion of the triangular side.
  • the skeleton structure has a substantially triangular cross-sectional shape, and the thickness of the aluminum layer at the apex portion of the triangle is thicker than the thickness of the aluminum layer at the central portion of the triangle. An aluminum structure is obtained.
  • LiNiO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium nickelate
  • the active material is used in combination with a conductive additive and a binder.
  • Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased.
  • the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in a mixture with a conductive additive.
  • the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced.
  • a lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte.
  • the energy density of the battery can be made higher than that of a conventional lithium ion battery.
  • the metal material formed as the conductive layer other than aluminum remains, but these metals are not eluted in the charge / discharge cycle of the battery and do not cause a problem.
  • the aluminum porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating a cation of a molten salt serving as an electrolyte such as sodium chromate (NaCrO 2 ) or titanium disulfide (TiO 2 ) as an active material.
  • the active material is used in combination with a conductive additive and a binder.
  • a conductive auxiliary agent acetylene black or the like can be used.
  • the binder polytetrafluoroethylene (PTFE) or the like can be used.
  • PTFE polytetrafluoroethylene
  • the aluminum porous body can also be used as a negative electrode material for a molten salt battery.
  • an aluminum porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • the melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle.
  • Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping.
  • a metal alloy (such as Si) to be alloyed with sodium is attached to the aluminum porous body by a method such as plating, and then charged in a molten salt battery to form a sodium alloy.
  • FIG. 6 is a schematic cross-sectional view showing an example of a molten salt battery using the above-described battery electrode material.
  • the molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte.
  • a separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed.
  • the current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the operating temperature of the battery can be made 90 ° C. or lower.
  • the molten salt is used by impregnating the separator.
  • a separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, porous resin, etc. can be used for it.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
  • the aluminum porous body can also be used as an electrode material for an electric double layer capacitor.
  • activated carbon or the like is used as an electrode active material.
  • Activated carbon is used in combination with a conductive additive and a binder.
  • a conductive aid graphite, carbon nanotubes, and the like can be used.
  • the binder polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
  • FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor.
  • an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141.
  • the electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
  • the present invention is not limited to the foamed resin molded body, and an aluminum structure having an arbitrary shape can be obtained by using the resin molded body having an arbitrary shape. Can be obtained.
  • Example 1 a production example of the aluminum porous body will be specifically described.
  • a foamed resin molding a urethane foam having a thickness of 1.6 mm, a porosity of 95%, and a pore number of about 20 per 1 cm was prepared and cut into 140 mm ⁇ 340 mm.
  • a conductive layer having a thickness of 0.02 ⁇ m was formed by vapor-depositing gold on the surface of the urethane foam by a vapor deposition method.
  • the means for evaporating gold was a method of irradiating an electron beam with an electron gun.
  • An inert gas was introduced in the range of 0.01 to 1 Pa around the urethane, and gold was melted by an electron beam to deposit a gold thin film on the urethane.
  • a urethane foam having a conductive layer formed on the surface was set in a jig having a power feeding function.
  • the jig can feed power from four sides of the urethane foam and can be plated in an area of 100 mm ⁇ 300 mm.
  • the set urethane foam was put in a glove box having an argon atmosphere and low moisture (dew point ⁇ 30 ° C. or lower) and immersed in a molten salt aluminum plating bath (67 mol% AlCl 3 -33 mol% EMIC) at a temperature of 40 ° C.
  • a jig in which urethane foam was set was connected to the cathode side of the rectifier, and a counter aluminum plate (purity 99.99%) was connected to the anode side.
  • the jig is provided with electrodes on four sides so that power can be supplied from four sides of the urethane foam.
  • a direct current with a current density of 3.6 A / dm 2 was applied for 60 minutes to plate aluminum. Stirring was performed with a stirrer using a Teflon (registered trademark) rotor.
  • Teflon registered trademark
  • the apparent area of the porous aluminum body is used (the actual surface area of the urethane foam is about 8 times the apparent area).
  • an aluminum plating film having a weight of 120 g / m 2 could be formed almost uniformly.
  • the foamed resin on which the aluminum plating layer was formed was immersed in a LiCl—KCl eutectic molten salt at a temperature of 500 ° C., and a negative potential of ⁇ 1 V was applied for 30 minutes. It was estimated that bubbles were generated in the molten salt and the polyurethane decomposition reaction occurred. Then, after cooling to room temperature in the air, the molten salt was removed by washing with water to obtain a porous aluminum body.
  • the obtained aluminum porous body was dissolved in aqua regia and measured with an ICP (inductively coupled plasma) emission spectrometer.
  • the aluminum purity was 91.5 wt%, 8% gold, 0.5 wt% carbon. Was included.
  • EDX analysis of the surface at an acceleration voltage of 15 kV almost no oxygen peak was observed, and it was confirmed that the oxygen content of the aluminum porous body was below the EDX detection limit (3.1 mass%). .
  • a paste was prepared. The paste was filled in a porous aluminum body having a three-dimensional network structure and having a porosity of about 95%, and then vacuum-dried at 150 ° C., and further roll-pressed until the thickness became 70% of the initial thickness. Positive electrode) was prepared. This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding. The positive electrode filling capacity was 2.4 mAh.
  • LiCoO 2 , carbon black, and PVdF mixed paste were applied onto an aluminum foil having a thickness of 20 ⁇ m, and dried and roll-pressed in the same manner as described above to produce a battery electrode material (positive electrode).
  • This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding.
  • the positive electrode filling capacity was 0.24 mAh.
  • a polypropylene porous membrane having a thickness of 25 ⁇ m was used as a separator, and an EC / DEC (volume ratio 1: 1) solution in which 1M concentration of LiPF 6 was dissolved was added dropwise at 0.1 ml / cm 2 to the separator, and vacuum was applied. Impregnated.
  • a lithium aluminum foil having a thickness of 20 ⁇ m and 11 mm ⁇ was used as the negative electrode, and was bonded and fixed to the upper cover of the coin battery container.
  • the battery electrode material (positive electrode), separator, and negative electrode were laminated in this order, and a Viton O-ring was sandwiched between the upper lid and the lower lid to produce a battery.
  • the upper limit voltage during charging and discharging was 4.2 V
  • the lower limit voltage was 3.0 V
  • discharging was performed at each discharge rate.
  • the lithium secondary battery using the aluminum porous body as the positive electrode material had a capacity of about 5 times at a rate of 0.2 C compared with a conventional lithium foil battery electrode material.
  • the problem of a short circuit was not seen also in the life test of the lithium ion battery.
  • a life cycle test was performed based on the cycle life described in JIS C 8711.
  • the upper limit voltage at the time of charging / discharging was 4.2V
  • the lower limit voltage was 3.0V
  • the cycle of discharging at a discharge rate of 0.2C was repeated.
  • the lithium secondary battery using a porous aluminum body as a positive electrode material has no particular decrease in voltage or capacity, and no problem in the cycle characteristics, compared to a conventional aluminum foil electrode material. .
  • FIG. 8 is a flowchart showing a manufacturing process of the aluminum structure according to the second embodiment of the present invention.
  • an aluminum structure having an aluminum plating layer 3 formed on the surface using a base resin molded body as a base material is obtained in the same manner as in the first embodiment of the present invention.
  • the removal 104 of the base resin molded body may be performed.
  • the conductive layer removal 105 may be performed depending on the application.
  • An aluminum structure (porous body) in which only the metal layer remains can be obtained by disassembling and disappearing the foamed resin molded body 1.
  • each step will be described in order.
  • a porous resin molded body having a three-dimensional network structure and continuous vents is prepared in the same manner as in the first embodiment of the present invention.
  • Arbitrary resin can be selected as a raw material of a porous resin molding.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • a conductive layer made of one or more metals selected from the group consisting of nickel, copper, cobalt, and iron is formed on the surface of the foamed resin molded body.
  • the conductive layer can be formed by any method other than electroless plating, such as vapor deposition, sputtering, plasma CVD, etc., and coating.
  • a vapor phase method such as a vapor deposition method can be preferably applied.
  • electroless plating is preferable in order to form a uniform layer over the entire depth as the thickness increases.
  • the thickness of the conductive layer is 0.01 ⁇ m to 1 ⁇ m, preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the thickness of the conductive layer is smaller than 0.01 ⁇ m, the electroconductivity is insufficient and the electroplating cannot be performed satisfactorily in the next step.
  • the thickness exceeds 1 ⁇ m, the cost of the conductive step increases.
  • the method of electroless plating is not limited.
  • a case where nickel is plated on a urethane foam is shown as an example.
  • a colloidal catalyst composed of palladium chloride and tin chloride is adsorbed on the urethane surface.
  • Sn is removed with sulfuric acid to activate the catalyst.
  • it can immerse in the nickel plating liquid which uses hypophosphorous acid as a reducing agent, and can perform nickel electroless plating.
  • hypophosphorous acid as a reducing agent
  • phosphorus inevitably co-deposits to form a phosphorus alloy.
  • Formation of aluminum layer molten salt plating
  • electrolytic plating is performed in a molten salt to form an aluminum plating layer 3 on the surface of the resin molded body.
  • a direct current is applied in a molten salt using a resin molded body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode.
  • the thickness of the aluminum plating layer is 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • aluminum chloride, 1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) based molten salt It is most preferably used because it is highly stable and hardly decomposes.
  • plating is preferably performed in an inert gas atmosphere such as nitrogen or argon and in a sealed environment.
  • an inert gas atmosphere such as nitrogen or argon
  • the temperature of the plating bath is 10 ° C. to 60 ° C., preferably 25 ° C. to 45 ° C.
  • an organic solvent is particularly preferably used as the organic solvent. Addition of an organic solvent, particularly xylene, can provide effects peculiar to the formation of an aluminum porous body. That is, the first feature that the aluminum skeleton forming the porous body is not easily broken and the second feature that uniform plating with a small difference in plating thickness between the surface portion and the inside of the porous body can be obtained. .
  • the first feature is that by adding an organic solvent, the plating on the surface of the skeleton is improved from a granular shape (large irregularities look like particles in surface observation) to a flat shape, so that the thin skeleton is thin and strong. It will be.
  • the second feature is that by adding an organic solvent to the molten salt bath, the viscosity of the molten salt bath decreases, and the plating bath easily flows into the fine network structure. That is, if the viscosity is high, a new plating bath is easily supplied to the surface of the porous body, and conversely, it is difficult to supply inside, but by reducing the viscosity, the plating bath is also easily supplied to the inside, It is possible to perform plating with a uniform thickness.
  • the amount of the organic solvent added to the plating bath is preferably 25 to 57 mol%. If it is 25 mol% or less, it is difficult to obtain the effect of reducing the thickness difference between the surface layer and the inside. If it is 57 mol% or more, the plating bath becomes unstable and the plating solution and xylene are partially separated.
  • the method further includes a cleaning step using the organic solvent as a cleaning liquid after the step of plating with the molten salt bath to which the organic solvent is added.
  • the surface of the plated resin needs to be washed to wash away the plating bath.
  • Such washing after plating is usually performed with water.
  • water in the imidazolium salt bath, it is essential to avoid moisture.
  • water is brought into the plating solution in the form of water vapor. Therefore, it is desirable to avoid washing with water in order to prevent adverse effects on the plating. Therefore, cleaning with an organic solvent is effective.
  • an organic solvent is added to the plating bath as described above, a further advantageous effect can be obtained by washing with the organic solvent added to the plating bath.
  • the washed plating solution can be collected and reused relatively easily, and the cost can be reduced.
  • a plated body to which a bath in which xylene is added to molten salt AlCl 3 -EMIC is adhered is washed with xylene.
  • the washed liquid becomes a liquid containing more xylene than the plating bath used.
  • the molten salt AlCl 3 -EMIC is not mixed with a certain amount or more in xylene, and is separated from the molten salt AlCl 3 -EMIC containing xylene on the upper side and about 57 mol% xylene on the lower side.
  • the molten liquid can be recovered by pumping the liquid on the side. Furthermore, since the boiling point of xylene is as low as 144 ° C., it is possible to adjust the xylene concentration in the recovered molten salt to the concentration in the plating solution and reuse it by applying heat. In addition, after washing
  • FIG. 5 is a diagram schematically showing a configuration of an apparatus for continuously performing metal plating treatment on the belt-shaped resin.
  • a configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure.
  • the first plating tank 21 a includes a cylindrical electrode 24, a positive electrode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 through the plating bath 23 along the cylindrical electrode 24, a uniform current can easily flow through the entire resin, and uniform plating can be obtained.
  • the plating tank 21b is a tank for applying a thick and uniform plating, and is configured to be repeatedly plated in a plurality of tanks.
  • Plating is performed by passing the belt-like resin 22 having a thin metal tank on the surface through a plating bath 28 while sequentially feeding it by an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an aluminum structure (aluminum porous body) having a resin molded body as a skeleton core is obtained.
  • the resin and metal composite may be used as they are.
  • the resin may be removed when it is used as a metal structure without resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with an organic solvent, molten salt, or supercritical water, and thermal decomposition.
  • methods such as thermal decomposition at high temperature are simple, but involve oxidation of aluminum. Aluminum, unlike nickel or the like, is difficult to reduce once oxidized.
  • a method of removing the resin by thermal decomposition in a molten salt described below is preferably used so that oxidation of aluminum does not occur.
  • the thermal decomposition in the molten salt is performed by the following method.
  • a foamed resin molded body with an aluminum plating layer having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the foamed resin molded body.
  • a negative potential is applied while immersed in the molten salt, the oxidation reaction of aluminum can be prevented.
  • heating temperature can be suitably selected according to the kind of foaming resin molding, in order not to melt aluminum, it is necessary to process at the temperature below melting
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • molten salt used for the thermal decomposition of the resin a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • LiCl lithium chloride
  • KCl potassium chloride
  • NaCl sodium chloride
  • AlCl 3 aluminum chloride
  • FIG. 4 is a schematic diagram showing the A-A ′ cross section of FIG.
  • the aluminum layer composed of the conductive layer 2 and the aluminum plating layer 3 has a cylindrical skeleton structure, and the cavity 4 in the skeleton structure has a substantially triangular cross-sectional shape.
  • the thickness (t1) of the aluminum layer at the apex portion of the triangle is thicker than the thickness (t2) of the aluminum layer at the center portion of the triangular side.
  • the skeleton structure has a substantially triangular cross-sectional shape, and the thickness of the aluminum layer at the apex portion of the triangle is thicker than the thickness of the aluminum layer at the central portion of the triangle. An aluminum structure is obtained.
  • the conductive layer is dissolved by immersing it in an acid, particularly concentrated nitric acid, which is an oxidizing acid, by removing the conductive layer without dissolving aluminum.
  • an acid particularly concentrated nitric acid, which is an oxidizing acid
  • Aluminum does not dissolve in acid to form a passive film in an oxidizing acid on the surface, while the metal used for the conductive layer dissolves.
  • nickel when nickel is used as the conductive layer, it may be immersed in concentrated nitric acid 67.5% at 15 ° C. to 35 ° C. for 1 to 30 minutes, then washed with water and dried. Even when another metal is used as the conductive layer, it is only necessary to select and use an acid that dissolves.
  • LiNiO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium nickelate
  • the active material is used in combination with a conductive additive and a binder.
  • Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased.
  • the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in a mixture with a conductive additive.
  • the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced.
  • a lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte. Since such a lithium ion battery can improve capacity even with a small electrode area, the energy density of the battery can be made higher than that of a conventional lithium ion battery.
  • the aluminum porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating a cation of a molten salt serving as an electrolyte such as sodium chromate (NaCrO 2 ) or titanium disulfide (TiO 2 ) as an active material.
  • the active material is used in combination with a conductive additive and a binder.
  • a conductive auxiliary agent acetylene black or the like can be used.
  • the binder polytetrafluoroethylene (PTFE) or the like can be used.
  • PTFE polytetrafluoroethylene
  • the aluminum porous body can also be used as a negative electrode material for a molten salt battery.
  • an aluminum porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • the melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle.
  • Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping.
  • a metal alloy (such as Si) to be alloyed with sodium is attached to the aluminum porous body by a method such as plating, and then charged in a molten salt battery to form a sodium alloy.
  • FIG. 6 is a schematic cross-sectional view showing an example of a molten salt battery using the above-described battery electrode material.
  • the molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte.
  • a separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed.
  • the current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the operating temperature of the battery can be made 90 ° C. or lower.
  • the molten salt is used by impregnating the separator.
  • a separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, porous resin, etc. can be used for it.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
  • the aluminum porous body can also be used as an electrode material for an electric double layer capacitor.
  • activated carbon or the like is used as an electrode active material.
  • Activated carbon is used in combination with a conductive additive and a binder.
  • a conductive aid graphite, carbon nanotubes, and the like can be used.
  • the binder polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
  • FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor.
  • an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141.
  • the electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
  • the present invention is not limited to the foamed resin molded body, and an aluminum structure having an arbitrary shape can be obtained by using the resin molded body having an arbitrary shape. Can be obtained.
  • Example 2 a production example of the aluminum porous body will be specifically described.
  • a foamed resin molding a urethane foam having a thickness of 1 mm, a porosity of 95%, and a number of pores (number of cells) per inch of about 50 was prepared and cut into 140 mm ⁇ 340 m.
  • Electroless nickel plating was performed on the surface of the urethane foam to form a conductive layer.
  • the urethane foam having a conductive layer formed on the surface was set in a jig having a power feeding function, and then immersed in a molten salt aluminum plating bath (17 mol% EMIC-34 mol% AlCl 3 -49 mol% xylene) at a temperature of 40 ° C.
  • a jig in which urethane foam was set was connected to the cathode side of the rectifier, and a counter aluminum plate (purity 99.99%) was connected to the anode side.
  • a direct current with a current density of 3.6 A / dm 2 was applied for 60 minutes to plate aluminum.
  • FIG. 9 SEM photographs of the obtained porous aluminum body are shown in FIG. 9 (plating 1) and FIG. 10 (plating 2).
  • FIG. 10 SEM photographs of the obtained porous aluminum body are shown in FIG. 9 (plating 1) and FIG. 10 (plating 2).
  • the surface unevenness is relatively large, and especially in the vicinity of the skeleton ridgeline, the plating appears to grow in granular form, whereas in the plating containing xylene (FIG. 9) It can be seen that the surface is very smooth.
  • FIG. 9 is a cross-sectional view obtained by cutting the porous aluminum body of FIG. 9 obtained by molten salt plating 1 along a plane parallel to the thickness direction
  • FIG. 12 is a similar cross-section of the porous aluminum body of FIG. Show.
  • the vertical direction is the thickness direction of the porous body
  • the upper part surrounded by a dotted line is the front side
  • the central part is the central part
  • the lower part is the back side.
  • front and back there is no distinction between front and back, and one surface is temporarily called the front surface and the other surface is temporarily called the back surface.
  • the dotted line area is also meant to give an approximate distinction for explanation, and there is no particular boundary.
  • the aluminum layer formed on the surface is visible as a substantially triangular cross section.
  • the aluminum layer is uniformly formed as a whole as compared with FIG. That is, in FIG. 11, even if each side of one substantially triangular cross section is taken, the top portion is slightly more uniform than the side portion although it is slightly thicker than the side portion.
  • the surface side, center part, and back side in the thickness direction of the entire porous body are compared, there is almost no difference in plating thickness. This corresponds to a very smooth skeleton surface in surface observation.
  • the plating thickness in the vicinity of the top of the substantially triangular cross section is very thick, and this appears to be a granular lump by surface observation. Also, the plating thickness is thinner at the center than on the front and back sides.
  • the foamed resin on which the aluminum plating layer was formed was immersed in a LiCl—KCl eutectic molten salt at a temperature of 500 ° C., and a negative potential of ⁇ 1 V was applied for 30 minutes. It was estimated that bubbles were generated in the molten salt and the polyurethane decomposition reaction occurred. Then, after cooling to room temperature in the air, the molten salt was removed by washing with water to obtain a porous aluminum body.
  • the obtained aluminum porous body was immersed in 67.5% concentrated nitric acid at room temperature for 5 minutes, washed with water and dried to dissolve nickel as a conductive layer. Concentrated nitric acid dissolves nickel, but aluminum forms a passive film in the oxidizing acid on the surface, so it does not dissolve in the acid. Thereby, nickel is almost removed and an aluminum porous body with high aluminum purity can be obtained.
  • the aluminum purity was 98.25 wt%, 0.7% nickel, 0.05% Of phosphorus and 1.0 wt% carbon. Furthermore, as a result of EDX analysis of the surface with an acceleration voltage of 15 kV, almost no oxygen peak was observed, and it was confirmed that the oxygen content of the aluminum porous body was below the EDX detection limit (3.1 mass%).
  • a paste was prepared. The paste is filled in a porous aluminum body having a three-dimensional network structure and having a porosity of about 95%, and then vacuum-dried at 150 ° C., and further roll-pressed until the thickness reaches 70% of the initial thickness. (Positive electrode) was produced. This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding. The positive electrode filling capacity was 2.4 mAh.
  • LiCoO 2 , carbon black, and PVdF mixed paste were applied onto an aluminum foil having a thickness of 20 ⁇ m, and dried and roll-pressed in the same manner as described above to produce a battery electrode material (positive electrode).
  • This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding.
  • the positive electrode filling capacity was 0.24 mAh.
  • a polypropylene porous membrane having a thickness of 25 ⁇ m was used as a separator, and an EC / DEC (volume ratio 1: 1) solution in which 1M concentration of LiPF 6 was dissolved was added dropwise at 0.1 ml / cm 2 to the separator, and vacuum was applied. Impregnated.
  • a lithium aluminum foil having a thickness of 20 ⁇ m and 11 mm ⁇ was used as the negative electrode, and was bonded and fixed to the upper cover of the coin battery container.
  • the battery electrode material (positive electrode), separator, and negative electrode were laminated in this order, and a Viton O-ring was sandwiched between the upper lid and the lower lid to produce a battery.
  • the upper limit voltage during charging and discharging was 4.2 V
  • the lower limit voltage was 3.0 V
  • discharging was performed at each discharge rate.
  • the lithium secondary battery using the aluminum porous body as the positive electrode material had a capacity of about 5 times at a rate of 0.2 C compared with a conventional lithium foil battery electrode material.
  • the problem of a short circuit was not seen also in the life test of the lithium ion battery.
  • a life cycle test was performed based on the cycle life described in JIS C 8711.
  • the upper limit voltage at the time of charging / discharging was 4.2V
  • the lower limit voltage was 3.0V
  • the cycle of discharging at a discharge rate of 0.2C was repeated.
  • the lithium secondary battery using an aluminum porous body as a positive electrode material has no particular decrease in voltage or capacity, and no problem in cycle characteristics is found, compared with a conventional lithium foil using an aluminum foil as an electrode material.
  • FIG. 13 is a flowchart showing manufacturing steps of the aluminum structure according to the third embodiment of the present invention.
  • an aluminum structure having an aluminum plating layer 3 formed on the surface using a base resin molded body as a base material is obtained in the same manner as in the first embodiment of the present invention.
  • a thin conductive layer 2 made of aluminum is formed on the surface of the resin molded body 1.
  • coat by zinc substitution plating on the conductive layer 2 surface is performed. Since the zinc coating is deposited very thinly, it is not shown in FIG.
  • a porous resin molded body having a three-dimensional network structure and continuous vents is prepared in the same manner as in the first embodiment of the present invention.
  • Arbitrary resin can be selected as a raw material of a porous resin molding.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • a conductive layer made of aluminum is formed on the surface of the foamed resin molded body.
  • the conductive layer can be formed by an arbitrary method such as vapor deposition, sputtering, gas phase method such as plasma CVD, or application of aluminum paint.
  • a vapor deposition method is preferable because a thin film can be formed uniformly.
  • the thickness of the conductive layer is 0.05 ⁇ m to 5 ⁇ m, preferably 0.1 ⁇ m to 3 ⁇ m. When the thickness of the conductive layer is less than 0.05 ⁇ m, the electroconductivity is insufficient and the electroplating cannot be performed satisfactorily in the next step. On the other hand, if the thickness of the conductive layer is too thin, a zinc film cannot be formed satisfactorily in the zinc displacement plating process. If the thickness exceeds 5 ⁇ m, the cost of the conductive step increases.
  • the conductive treatment may be performed by immersing the foamed resin molded body in a paint containing aluminum.
  • a paint containing aluminum for example, a liquid in which aluminum fine particles having a particle diameter of 10 nm to 1 ⁇ m are dispersed in water or an organic solvent can be used.
  • the conductive layer can be formed by immersing the foamed resin in the paint and then heating to evaporate the solvent.
  • the resin molded body on which the conductive layer is formed is immersed in a zinc substitution plating solution.
  • a zinc substitution plating treatment solution an aqueous solution of sodium hydroxide and zinc oxide, or a solution of ferric chloride dissolved in an aqueous solution of sodium hydroxide and zinc oxide can be used.
  • the temperature of the zinc substitution plating solution is high, the reactivity increases and aluminum may be dissolved excessively. Therefore, the temperature of the solution is preferably controlled in the range of 4 ° C to 15 ° C.
  • a so-called double zincate treatment in which zinc substitution plating is repeated may be performed.
  • the zinc coating is stripped with nitric acid or the like, and zinc substitution plating is performed again.
  • the double zincate treatment is performed, a zinc film having a dense structure can be formed, the adhesion between the conductive layer and the plating layer can be improved, and the elution of zinc from the aluminum structure can be suppressed.
  • Formation of aluminum layer molten salt plating
  • electrolytic plating is performed in a molten salt to form an aluminum plating layer 3 on the surface of the resin molded body.
  • a direct current is applied in a molten salt using a resin molded body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode.
  • the thickness of the aluminum plating layer is 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • a direct current is applied in the molten salt with the resin molded body made conductive as a cathode and the counter electrode as an anode.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • aluminum chloride, 1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) based molten salt It is most preferably used because it is highly stable and hardly decomposes.
  • plating is preferably performed in an inert gas atmosphere such as nitrogen or argon and in a sealed environment.
  • an inert gas atmosphere such as nitrogen or argon
  • the temperature of the plating bath is 10 ° C. to 60 ° C., preferably 25 ° C. to 45 ° C.
  • FIG. 5 is a diagram schematically showing a configuration of an apparatus for continuously performing metal plating treatment on the belt-shaped resin.
  • a configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure.
  • the first plating tank 21 a includes a cylindrical electrode 24, a positive electrode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 through the plating bath 23 along the cylindrical electrode 24, a uniform current can easily flow through the entire resin, and uniform plating can be obtained.
  • the plating tank 21b is a tank for applying a thick and uniform plating, and is configured to be repeatedly plated in a plurality of tanks.
  • Plating is performed by passing the belt-like resin 22 having a thin metal tank on the surface through a plating bath 28 while sequentially feeding it by an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an aluminum structure (aluminum porous body) having a resin molded body as a skeleton core is obtained.
  • the resin and metal composite may be used as they are.
  • the resin may be removed when it is used as a metal structure without resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with organic solvent, molten salt, or supercritical water, and thermal decomposition.
  • methods such as thermal decomposition at high temperature are simple, but involve oxidation of aluminum.
  • Aluminum, unlike nickel or the like, is difficult to reduce once oxidized.
  • a method of removing the resin by thermal decomposition in a molten salt described below is preferably used so that oxidation of aluminum does not occur.
  • Thermal decomposition in the molten salt is performed by the following method.
  • a foamed resin molded body with an aluminum plating layer having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the foamed resin molded body.
  • a negative potential is applied while immersed in the molten salt, the oxidation reaction of aluminum can be prevented.
  • the foamed resin molded body can be decomposed without oxidizing aluminum.
  • heating temperature can be suitably selected according to the kind of foaming resin molding, in order not to melt aluminum, it is necessary to process at the temperature below melting
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • molten salt used for the thermal decomposition of the resin a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • LiCl lithium chloride
  • KCl potassium chloride
  • NaCl sodium chloride
  • AlCl 3 aluminum chloride
  • FIG. 4 is a schematic diagram showing the A-A ′ cross section of FIG.
  • the aluminum layer composed of the conductive layer 2 and the aluminum plating layer 3 has a cylindrical skeleton structure, and the cavity 4 in the skeleton structure has a substantially triangular cross-sectional shape.
  • the thickness (t1) including the conductive layer of the aluminum layer at the apex portion of the triangle is thicker than the thickness (t2) of the central portion of the triangular side.
  • the skeleton structure has a substantially triangular cross-sectional shape, and the thickness of the aluminum layer at the apex portion of the triangle is thicker than the thickness of the aluminum layer at the central portion of the triangle. An aluminum structure is obtained.
  • LiNiO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium nickelate
  • the active material is used in combination with a conductive additive and a binder.
  • Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased.
  • the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in a mixture with a conductive additive.
  • the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced.
  • a lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte. Since such a lithium ion battery can improve capacity even with a small electrode area, the energy density of the battery can be made higher than that of a conventional lithium ion battery.
  • the aluminum porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating a cation of a molten salt serving as an electrolyte such as sodium chromate (NaCrO 2 ) or titanium disulfide (TiO 2 ) as an active material.
  • the active material is used in combination with a conductive additive and a binder.
  • a conductive auxiliary agent acetylene black or the like can be used.
  • the binder polytetrafluoroethylene (PTFE) or the like can be used.
  • PTFE polytetrafluoroethylene
  • the aluminum porous body can also be used as a negative electrode material for a molten salt battery.
  • an aluminum porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • the melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle.
  • Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping.
  • a metal alloy (such as Si) to be alloyed with sodium is attached to the aluminum porous body by a method such as plating, and then charged in a molten salt battery to form a sodium alloy.
  • FIG. 6 is a schematic cross-sectional view showing an example of a molten salt battery using the above-described battery electrode material.
  • the molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte.
  • a separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed.
  • the current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the operating temperature of the battery can be made 90 ° C. or lower.
  • the molten salt is used by impregnating the separator.
  • a separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, porous resin, etc. can be used for it.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
  • the aluminum porous body can also be used as an electrode material for an electric double layer capacitor.
  • activated carbon or the like is used as an electrode active material.
  • Activated carbon is used in combination with a conductive additive and a binder.
  • a conductive aid graphite, carbon nanotubes, and the like can be used.
  • the binder polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
  • FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor.
  • an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141.
  • the electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
  • the present invention is not limited to the foamed resin molded body, and an aluminum structure having an arbitrary shape can be obtained by using the resin molded body having an arbitrary shape. Can be obtained.
  • Example Production of porous aluminum body: formation of aluminum layer by vapor deposition
  • a production example of the aluminum porous body will be specifically described.
  • a foamed resin molding a urethane foam having a thickness of 1.6 mm, a porosity of 95%, and a pore number of about 20 per 1 cm was prepared and cut into 140 mm ⁇ 190 mm squares.
  • Aluminum was vapor-deposited on the surface of the urethane foam to form a conductive layer having a thickness of about 2.5 ⁇ m.
  • urethane foam was set was connected to the cathode side of the rectifier, and a counter aluminum plate (purity 99.99%) was connected to the anode side.
  • the jig can supply power from four sides of the urethane foam and can be plated on an area of 100 mm ⁇ 150 mm. It was immersed in a molten salt aluminum plating bath (67 mol% AlCl 3 -33 mol% EMIC) at a temperature of 40 ° C., and a direct current having a current density of 3.6 A / dm 2 was applied for 60 minutes to plate aluminum.
  • the obtained porous aluminum body was dissolved in aqua regia and measured with an ICP (inductively coupled plasma) emission spectrometer.
  • the carbon content was measured by a high frequency induction furnace combustion-infrared absorption method of JIS-G1211.
  • the aluminum purity was 99.48% by mass and contained 0.5% by mass of carbon and 0.02% by mass of zinc.
  • EDX analysis of the surface at an acceleration voltage of 15 kV almost no oxygen peak was observed, and it was confirmed that the oxygen content of the aluminum porous body was below the EDX detection limit (3.1 mass%).
  • a paste was prepared. The paste is filled in a porous aluminum body having a three-dimensional network structure and having a porosity of about 95%, and then vacuum-dried at 150 ° C., and further roll-pressed until the thickness reaches 70% of the initial thickness. (Positive electrode) was produced. This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding. The positive electrode filling capacity was 2.4 mAh.
  • LiCoO 2 , carbon black, and PVdF mixed paste were applied onto an aluminum foil having a thickness of 20 ⁇ m, and dried and roll-pressed in the same manner as described above to produce a battery electrode material (positive electrode).
  • This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding.
  • the positive electrode filling capacity was 0.24 mAh.
  • a polypropylene porous membrane having a thickness of 25 ⁇ m was used as a separator, and an EC / DEC (volume ratio 1: 1) solution in which 1M concentration of LiPF 6 was dissolved was added dropwise at 0.1 ml / cm 2 to the separator, and vacuum was applied. Impregnated.
  • a lithium aluminum foil having a thickness of 20 ⁇ m and 11 mm ⁇ was used as the negative electrode, and was bonded and fixed to the upper cover of the coin battery container.
  • the battery electrode material (positive electrode), separator, and negative electrode were laminated in this order, and a Viton O-ring was sandwiched between the upper lid and the lower lid to produce a battery.
  • the upper limit voltage during heavy discharge was 4.2 V
  • the lower limit voltage was 3.0 V
  • discharging was performed at each discharge rate.
  • the lithium secondary battery using the aluminum porous body as the positive electrode material had a capacity of about 5 times at a rate of 0.2 C compared with a conventional lithium foil battery electrode material. Further, a life cycle test was performed based on the cycle life described in JIS C 8711.
  • the upper limit voltage at the time of charging / discharging was 4.2V
  • the lower limit voltage was 3.0V
  • after charging to the positive electrode filling capacity, the cycle of discharging at a discharge rate of 0.2C was repeated.
  • the lithium secondary battery using an aluminum porous body as a positive electrode material has no particular decrease in voltage or capacity, and no problem in cycle characteristics is found, compared with a conventional lithium foil using an aluminum foil as an electrode material.
  • FIG. 15 is a flowchart which shows the manufacturing process of the aluminum structure of 4th Embodiment by this invention by this invention.
  • FIG. 2 schematically shows a state in which an aluminum structure is formed using a resin molded body as a core material corresponding to the flowchart.
  • a thin conductive layer 2 made of aluminum is formed on the surface of the resin molded body 1.
  • the process 103 which adheres a noble metal to the surface of the conductive layer 2 is performed.
  • the noble metal is not shown in FIG. 2 because it is deposited very thinly.
  • a porous resin molded body having a three-dimensional network structure and continuous vents is prepared in the same manner as in the first embodiment of the present invention.
  • Arbitrary resin can be selected as a raw material of a porous resin molding.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • a conductive layer made of aluminum is formed on the surface of the foamed resin molded body.
  • the conductive layer can be formed by an arbitrary method such as vapor deposition, sputtering, gas phase method such as plasma CVD, or application of aluminum paint.
  • a vapor deposition method is preferable because a thin film can be formed uniformly.
  • the thickness of the conductive layer is 0.05 ⁇ m to 1 ⁇ m, preferably 0.1 ⁇ m to 0.5 ⁇ m. When the thickness of the conductive layer is smaller than 0.01 ⁇ m, the electroconductivity is insufficient and the electroplating cannot be performed satisfactorily in the next step. On the other hand, when the thickness exceeds 1 ⁇ m, the cost of the conductive step increases.
  • the conductive treatment may be performed by immersing the foamed resin molded body in a paint containing aluminum.
  • a paint containing aluminum for example, a liquid in which aluminum fine particles having a particle diameter of 10 nm to 1 ⁇ m are dispersed in water or an organic solvent can be used.
  • the conductive layer can be formed by immersing the foamed resin in the paint and then heating to evaporate the solvent.
  • Platinum pretreatment Precious metal adhesion
  • aluminum is plated by molten salt plating to form an aluminum plating layer.
  • a noble metal is attached to the surface of the conductive layer (aluminum layer) before the plating step.
  • the noble metal can be attached by an arbitrary method such as vapor deposition such as vapor deposition, sputtering, or plasma CVD, electroless plating, or coating of a coating containing noble metal.
  • a vapor deposition method is preferable because a thin film can be formed uniformly. Since these noble metals are very expensive, they are preferably thin from the viewpoint of cost.
  • the thickness of the noble metal layer is 0.0001 ⁇ m to 1 ⁇ m, preferably 0.001 ⁇ m to 0.01 ⁇ m. When the thickness of the noble metal layer is less than 0.0001 ⁇ m, the aluminum oxide film cannot be completely covered and good plating cannot be performed. When the thickness of the noble metal layer exceeds 1 ⁇ m, the cost of the conductive process increases.
  • the means for evaporating is not particularly limited, and a method of irradiating an electron beam with an electron gun, resistance heating, induction overheating, a laser method, or the like can be used.
  • an inert gas around the urethane with the conductive layer.
  • the pressure of the inert gas to be introduced is 0.01 Pa or more. When the pressure of the inert gas is less than 0.01 Pa, the thin film is poorly attached and unattached portions are formed.
  • the atmospheric gas upper limit of the inert gas varies depending on the raw material heating method (electron gun, resistance heating, etc.) to be used, but is preferably 1 Pa or less from the viewpoint of the amount of gas used and the film forming speed.
  • argon gas can be suitably used as the inert gas.
  • Argon gas is preferable because it exists in nature in a relatively large amount, is available at low cost, and has little adverse effect on the human body.
  • an existing film forming apparatus may be used.
  • a vacuum deposition apparatus having a film formation chamber that divides a film formation target, a support base and a heating container on which gold and a film formation target are respectively mounted, and an electron gun for heating gold. it can.
  • a vacuum deposition apparatus it is easy to uniformly introduce an inert gas around the urethane with a conductive layer, which is a film formation target of the present invention, and the inert space because the space around the urethane with the conductive layer is partitioned. This is preferable because the gas pressure can be easily adjusted.
  • the urethane with a conductive layer is placed on a support base of a vacuum deposition apparatus, and gold, which is a thin film raw material, is placed on a heating container.
  • gold which is a thin film raw material
  • the film formation chamber is evacuated to a high vacuum state, an inert gas is introduced into the film formation chamber.
  • the pressure of the inert gas introduced into the film formation chamber is adjusted to be 0.01 to 1 Pa.
  • an electron beam is emitted from an electron gun to melt gold, and a gold thin film is deposited on urethane.
  • Formation of aluminum layer molten salt plating
  • electrolytic plating is performed in a molten salt to form an aluminum plating layer 3 on the surface of the resin molded body.
  • a direct current is applied in a molten salt using a resin molded body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode.
  • the thickness of the aluminum plating layer is 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • a direct current is applied in the molten salt using a conductive resin molded body as a cathode and a counter electrode as an anode.
  • an organic molten salt that is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt that is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
  • the imidazolium salt a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • aluminum chloride, 1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) based molten salt It is most preferably used because it is highly stable and hardly decomposes.
  • plating is preferably performed in an inert gas atmosphere such as nitrogen or argon and in a sealed environment.
  • an inert gas atmosphere such as nitrogen or argon
  • the temperature of the plating bath is 10 ° C. to 60 ° C., preferably 25 ° C. to 45 ° C.
  • FIG. 5 is a diagram schematically showing a configuration of an apparatus for continuously performing metal plating treatment on the belt-shaped resin.
  • a configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure.
  • the first plating tank 21 a includes a cylindrical electrode 24, a positive electrode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 through the plating bath 23 along the cylindrical electrode 24, a uniform current can easily flow through the entire resin, and uniform plating can be obtained.
  • the plating tank 21b is a tank for applying a thick and uniform plating, and is configured to be repeatedly plated in a plurality of tanks.
  • Plating is performed by passing the belt-like resin 22 having a thin metal tank on the surface through a plating bath 28 while sequentially feeding it by an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an electrode roller 26 that also serves as a feed roller and an external power feeding negative electrode.
  • an aluminum structure (aluminum porous body) having a resin molded body as a skeleton core is obtained.
  • the resin and metal composite may be used as they are.
  • the resin may be removed when it is used as a metal structure without resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with an organic solvent, molten salt, or supercritical water, and thermal decomposition.
  • methods such as thermal decomposition at high temperature are simple, but involve oxidation of aluminum. Aluminum, unlike nickel or the like, is difficult to reduce once oxidized.
  • a method of removing the resin by thermal decomposition in a molten salt described below is preferably used so that oxidation of aluminum does not occur.
  • Thermal decomposition in the molten salt is performed by the following method.
  • a foamed resin molded body with an aluminum plating layer having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the foamed resin molded body.
  • a negative potential is applied while immersed in the molten salt, the oxidation reaction of aluminum can be prevented.
  • the foamed resin molded body can be decomposed without oxidizing aluminum.
  • heating temperature can be suitably selected according to the kind of foaming resin molding, in order not to melt aluminum, it is necessary to process at the temperature below melting
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • molten salt used for the thermal decomposition of the resin a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • a salt of an alkali metal or alkaline earth metal halide that makes the electrode potential of aluminum base can be used.
  • LiCl lithium chloride
  • KCl potassium chloride
  • NaCl sodium chloride
  • AlCl 3 aluminum chloride
  • FIG. 4 is a schematic diagram showing the A-A ′ cross section of FIG.
  • the aluminum layer composed of the conductive layer 2 and the aluminum plating layer 3 has a cylindrical skeleton structure, and the cavity 4 in the skeleton structure has a substantially triangular cross-sectional shape.
  • the thickness (t1) including the conductive layer of the aluminum layer at the apex portion of the triangle is thicker than the thickness (t2) of the central portion of the triangular side.
  • the skeleton structure has a substantially triangular cross-sectional shape, and the thickness of the aluminum layer at the apex portion of the triangle is thicker than the thickness of the aluminum layer at the central portion of the triangle. An aluminum structure is obtained.
  • a noble metal layer is formed between the conductive layer 2 and the aluminum plating layer 3. Since noble metals hardly cause oxidation-reduction reactions, when an aluminum structure is used as an electrode of a battery, it is less likely to be dissolved or deposited to cause deterioration of the battery. Further, the noble metal layer is inside the aluminum structure, and the surface portion in contact with the battery electrolyte has high aluminum purity, so that the battery is hardly deteriorated. Therefore, even if a trace amount of noble metal is contained in the aluminum structure, it can be used favorably as a battery electrode material. The total amount of gold, silver, platinum, rhodium, ruthenium and palladium is 0.001% to 1.0%. Note that the noble metal layer may diffuse into the aluminum through a heating step such as a resin decomposition step.
  • LiNiO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium nickelate
  • the active material is used in combination with a conductive additive and a binder.
  • Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased.
  • the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in a mixture with a conductive additive.
  • the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced.
  • a lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte. Since such a lithium ion battery can improve capacity even with a small electrode area, the energy density of the battery can be made higher than that of a conventional lithium ion battery.
  • the aluminum porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating a cation of a molten salt serving as an electrolyte such as sodium chromate (NaCrO 2 ) or titanium disulfide (TiO 2 ) as an active material.
  • the active material is used in combination with a conductive additive and a binder.
  • a conductive auxiliary agent acetylene black or the like can be used.
  • the binder polytetrafluoroethylene (PTFE) or the like can be used.
  • PTFE polytetrafluoroethylene
  • the aluminum porous body can also be used as a negative electrode material for a molten salt battery.
  • an aluminum porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • the melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle.
  • Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping.
  • a metal alloy (such as Si) to be alloyed with sodium is attached to the aluminum porous body by a method such as plating, and then charged in a molten salt battery to form a sodium alloy.
  • FIG. 6 is a schematic cross-sectional view showing an example of a molten salt battery using the above-described battery electrode material.
  • the molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte.
  • a separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed.
  • the current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the operating temperature of the battery can be made 90 ° C. or lower.
  • the molten salt is used by impregnating the separator.
  • a separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, porous resin, etc. can be used for it.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
  • the aluminum porous body can also be used as an electrode material for an electric double layer capacitor.
  • activated carbon or the like is used as an electrode active material.
  • Activated carbon is used in combination with a conductive additive and a binder.
  • a conductive aid graphite, carbon nanotubes, and the like can be used.
  • the binder polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
  • FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor.
  • an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141.
  • the electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
  • the present invention is not limited to the foamed resin molded body, and an aluminum structure having an arbitrary shape can be obtained by using the resin molded body having an arbitrary shape. Can be obtained.
  • Example Production of porous aluminum body: formation of aluminum layer by vapor deposition
  • a production example of the aluminum porous body will be specifically described.
  • a foamed resin molded body a urethane foam having a thickness of 1.6 mm, a porosity of 95%, and a number of pores (number of cells) per inch of about 50 was prepared and cut into 140 mm ⁇ 340 mm squares.
  • Aluminum was deposited on the surface of the urethane foam to form a conductive layer having a thickness of about 1 ⁇ m.
  • a noble metal layer having a thickness of 0.005 ⁇ m was formed by vapor-depositing gold on the resin molded body on which the conductive layer was formed.
  • the means for evaporating gold was a method of irradiating an electron beam with an electron gun.
  • An inert gas was introduced at a pressure of 0.01 to 1 Pa around the urethane with the conductive layer, and gold was melted by an electron beam to deposit a gold thin film on the surface of the conductive layer.
  • a jig having a urethane foam having a conductive layer and a noble metal layer formed on the surface was connected to the cathode side of the rectifier, and a counter aluminum plate (purity 99.99%) was connected to the anode side.
  • the jig can feed power from four sides of the urethane foam and can be plated in an area of 100 mm ⁇ 300 mm. It was immersed in a molten salt aluminum plating bath (67 mol% AlCl 3 -33 mol% EMIC) at a temperature of 40 ° C., and a direct current with a current density of 3.6 A / dm 2 was applied for 90 minutes to plate aluminum.
  • the obtained porous aluminum body was dissolved in aqua regia and measured with an ICP (inductively coupled plasma) emission spectrometer.
  • the carbon content was measured by a high frequency induction furnace combustion-infrared absorption method of JIS-G1211.
  • the aluminum purity was 99% by mass and contained 0.5% by mass of carbon and 0.03% by mass of gold.
  • EDX analysis of the surface at an acceleration voltage of 15 kV almost no oxygen peak was observed, and it was confirmed that the oxygen content of the aluminum porous body was below the EDX detection limit (3.1 mass%).
  • a paste was prepared. The paste is filled in a porous aluminum body having a three-dimensional network structure and having a porosity of about 95%, and then vacuum-dried at 150 ° C., and further roll-pressed until the thickness reaches 70% of the initial thickness. (Positive electrode) was produced. This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding. The positive electrode filling capacity was 2.4 mAh.
  • LiCoO 2 , carbon black, and PVdF mixed paste were applied onto an aluminum foil having a thickness of 20 ⁇ m, and dried and roll-pressed in the same manner as described above to produce a battery electrode material (positive electrode).
  • This battery electrode material was punched out to 10 mm ⁇ , and fixed to a SUS304 coin battery container by spot welding.
  • the positive electrode filling capacity was 0.24 mAh.
  • a polypropylene porous membrane having a thickness of 25 ⁇ m was used as a separator, and an EC / DEC (volume ratio 1: 1) solution in which 1M concentration of LiPF 6 was dissolved was added dropwise at 0.1 ml / cm 2 to the separator, and vacuum was applied. Impregnated.
  • a lithium aluminum foil having a thickness of 20 ⁇ m and 11 mm ⁇ was used as the negative electrode, and was bonded and fixed to the upper cover of the coin battery container.
  • the battery electrode material (positive electrode), separator, and negative electrode were laminated in this order, and a Viton O-ring was sandwiched between the upper lid and the lower lid to produce a battery.
  • the upper limit voltage during heavy discharge was 4.2 V
  • the lower limit voltage was 3.0 V
  • discharging was performed at each discharge rate.
  • the lithium secondary battery using the aluminum porous body as the positive electrode material had a capacity of about 5 times at a rate of 0.2 C compared with a conventional lithium foil battery electrode material. Further, a life cycle test was performed based on the cycle life described in JIS C 8711.
  • the upper limit voltage at the time of charging / discharging was 4.2V
  • the lower limit voltage was 3.0V
  • after charging to the positive electrode filling capacity, the cycle of discharging at a discharge rate of 0.2C was repeated.
  • the lithium secondary battery using an aluminum porous body as a positive electrode material has no particular decrease in voltage or capacity, and no problem in cycle characteristics is found, compared with a conventional lithium foil using an aluminum foil as an electrode material.
  • a method for producing an aluminum structure comprising a plating step of plating aluminum in a first molten salt bath, While the resin molded body on which the aluminum plating layer is formed is immersed in the second molten salt, the resin molded body is decomposed by heating to a temperature below the melting point of aluminum while applying a negative potential to the aluminum plating layer.
  • the manufacturing method of the aluminum structure which has a process to do.
  • a method for producing an aluminum structure comprising a plating step of plating in a salt bath, and a dissolution step of dissolving the conductive layer after the plating step, Furthermore, a step of decomposing the resin molded body by heating to a temperature below the melting point of aluminum while applying a negative potential to the aluminum plated layer in a state where the resin molded body on which the aluminum plated layer is formed is immersed in a molten salt.
  • a conductive step of forming a conductive layer made of aluminum on the surface of the resin molded body, a step of performing zinc substitution plating on the surface of the conductive layer to form a zinc film, and a resin molded body on which the zinc film is formed A plating process in which aluminum is plated in a first molten salt bath, and a resin molded body on which the aluminum plating layer is formed is immersed in the second molten salt while applying a negative potential to the aluminum plating layer.
  • the manufacturing method of the aluminum structure which heats to the temperature below melting
  • a method for producing an aluminum structure wherein the resin molded body is decomposed by heating to a temperature below the melting point of aluminum while applying a negative potential to the aluminum plating layer.
  • (Appendix 5) The method for producing a porous aluminum body according to any one of appendices 1 to 4, wherein the resin molded body is a foamed resin molded body having continuous pores.
  • (Appendix 6) The method for producing an aluminum structure according to appendix 2, wherein the molten salt bath used in the plating step is an imidazolium salt bath.
  • (Appendix 7) The method for producing an aluminum structure according to appendix 2 or 6, wherein the molten salt bath is an imidazolium salt bath to which an organic solvent is added.
  • (Appendix 8) The method for producing an aluminum structure according to appendix 7, wherein the addition of the organic solvent is 25 to 57 mol% of the entire plating bath.
  • (Appendix 13) A battery using the electrode material according to appendix 12 for one or both of a positive electrode and a negative electrode.
  • (Appendix 14) An electric double layer capacitor using the electrode material according to appendix 12 as an electrode.
  • (Appendix 15) The filtration filter which consists of an aluminum structure obtained by this invention.
  • (Appendix 16) A catalyst carrier having a catalyst supported on the surface of an aluminum structure obtained by the present invention.
  • the present invention it is possible to obtain a structure in which the surface of a resin molded body is plated with aluminum, and an aluminum structure from which the resin molded body is removed.
  • the present invention can be widely applied to the case where the characteristics of aluminum are utilized in electric materials, filters for various types of filtration, catalyst carriers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

樹脂成形体の表面に金、銀、白金、ロジウム、ルテニウム、パラジウム、ニッケル、銅、コバルト、鉄及びアルミニウムからなる群より選択される1種以上の金属からなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備え、三次元網目構造を有する多孔質樹脂成形体であっても、その表面へのアルミニウムのめっきを可能としてアルミニウム構造体を形成することが可能な方法、および特に大面積のアルミニウム多孔体を得ることが可能なアルミニウム構造体の製造方法を提供する。

Description

アルミニウム構造体の製造方法およびアルミニウム構造体
 本発明は、アルミニウムめっきにより樹脂表面にアルミニウム構造体を形成する方法に関し、特に各種フィルタや電池用電極などの用途で金属多孔体として好適に用いることができるアルミニウム構造体とその製造方法に関する。
 三次元網目構造を有する金属多孔体は、各種フィルタ、触媒担体、電池用電極など多方面に用いられている。例えばニッケルからなるセルメット(住友電気工業(株)製:登録商標)がニッケル水素電池やニッケルカドミウム電池等の電池の電極材料として使用されている。セルメットは、連通気孔を有する金属多孔体であり、金属不織布など他の多孔体に比べて気孔率が高い(90%以上)という特徴がある。これは、発泡ウレタン等の連通気孔を有する多孔体樹脂の骨格表面にニッケル層を形成した後、熱処理して発泡樹脂成形体を分解し、さらにニッケルを還元処理することで得られる。ニッケル層の形成は、発泡樹脂成形体の骨格表面にカーボン粉末等を塗布して導電化処理した後、電気めっきによってニッケルを析出させることで行われる。
 アルミニウムは、導電性、耐腐食性、軽量などの優れた特徴がある。電池用途では、例えば、リチウムイオン電池の正極として、アルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものが使用されている。正極の容量を向上するためには、アルミニウムを多孔体にして表面積を大きくし、アルミニウム内部にも活物質を充填することが考えられる。そうすると電極を厚くしても活物質を利用でき、単位面積当たりの活物質利用率が向上するからである。
 アルミニウム多孔体の製造方法として、特許文献1には、内部連通空間を有する三次元網状のプラスチック基体にアークイオンプレーティング法によりアルミニウムの蒸着処理を施して、2~20μmの金属アルミニウム層を形成する方法が記載されている。また、特許文献2には、三次元網目状構造を有する発泡樹脂成形体の骨格にアルミニウムの融点以下で共晶合金を形成する金属(銅等)による皮膜を形成した後、アルミニウムペーストを塗布し、非酸化性雰囲気下で550℃以上750℃以下の温度で熱処理をすることで有機成分(発泡樹脂)の消失及びアルミニウム粉末の焼結を行い、金属多孔体を得る方法が記載されている。
 一方、アルミニウムのめっきは、アルミニウムの酸素に対する親和力が大きく、電位が水素より低いために水溶液系のめっき浴で電気めっきを行うことが困難である。従来よりアルミニウムの電気めっきは、非水溶液系のめっき浴、特に有機溶媒系のめっき浴で検討が行われている。例えば、金属の表面にアルミニウムをめっきする技術として、特許文献3には、オニウムハロゲン化物とアルミニウムハロゲン化物とを混合溶融した低融点組成物をめっき浴として用い、浴中の水分量を2wt%以下に維持しながら陰極にアルミニウムを析出させることを特徴とする電気アルミニウムめっき方法が開示されている。
特許第3413662号公報 特開平8-170126号公報 特許第3202072号公報
 上記特許文献1の方法によれば、2~20μmの厚さのアルミニウム多孔体が得られるとされているが、気相法によるため大面積での製造は、困難であり、基体の厚さや気孔率によっては、内部まで均一な層の形成が難しい。またアルミニウム層の形成速度が遅い、設備が高価などにより製造コストが増大するなどの問題点がある。特許文献2の方法によればアルミニウムと共晶合金を形成する層が出来てしまい、純度の高いアルミニウム層が形成できない。一方、アルミニウムの電気めっき方法自体は、知られているものの、金属表面へのめっきが可能であるのみで、樹脂表面への電気めっき、とりわけ三次元網目構造を有する多孔質樹脂成形体の表面に電気めっきする方法は、知られていなかった。これには、めっき浴中における多孔質樹脂の溶解などの問題が影響していると考えられる。
 そこで本発明は、樹脂成形体とりわけ三次元網目構造を有する多孔質樹脂成形体であっても、その表面へのアルミニウムのめっきを可能とするアルミニウム構造体を形成することが可能な方法、および大面積で製造可能で特に電極用途にも適したアルミニウム多孔体を得ることが可能な方法を目的とする。
 上記課題解決のため、本願発明者らは、ポリウレタンやメラミンなどの樹脂成形体の表面にアルミニウムを電気めっきする方法に想到した。すなわち本発明は、樹脂成形体の表面に金、銀、白金、ロジウム、ルテニウム、パラジウム、ニッケル、銅、コバルト、鉄及びアルミニウムからなる群より選択される1種以上の金属からなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法である(本願第1の発明)。前述のとおり従来は、アルミニウムめっきは、金属表面に対しては行われていたものの、樹脂成形体表面への電気めっきは、考えられていなかった。樹脂成形体表面を導電化することで、溶融塩浴中でもアルミニウムのめっきが可能なこと、および導電層として適した構造を見いだしたことに特徴がある。
 前述のとおり従来は、アルミニウムめっきは、金属表面に対しては行われていたものの、樹脂成形体表面への電気めっきは、考えられていなかった。樹脂成形体表面をアルミニウムで導電化することで、溶融塩浴中でもアルミニウムのめっきが可能なことを見いだしたことに特徴がある。
 導電層として用いる金属として、上述の金属を用いることにより他の手段に比べて次のような利点がある。上述の金属による導電層は、他の金属やカーボンによる導電化に比べて導電率が高く導電層として適している。また、これら金属は、表面が平滑な層を形成しやすい。さらには、これら金属材料は、酸化しにくく、アルミニウムめっきの密着性を阻害する酸化層を形成しないため、アルミニウムめっきの直前に特別な処理をすることなくめっき工程を行うことができる。これらのことから、複雑な形状の樹脂成形体表面であっても均一で大面積のアルミニウムめっき層を形成することに適している。一方、これらの材料は、高価であるため、使用量を少なくするために導電層の厚みを極力薄くすることが求められる。このため、適した厚みは、0.001μm~0.2μm、好ましくは、0.01μm~0.1μmである。
 さらに、電池等の電極材料として使用する場合にも他の金属より優れた特有の利点がある。導電層として他の金属を用いた場合、アルミニウム以外の金属材料が多く残留すると、電池の電極材料に用いて充放電サイクルを与えた際に電極からの溶解、対極への析出という反応が起こり、短絡を引き起こすことが懸念される。しかし前述の金属であれば、電極材料として使用した際に、電池の充放電サイクルにおいて溶出することが無く問題とならない。
 前記導電化工程は、気相法により樹脂成形体表面に金、銀、白金、ロジウム、ルテニウム、パラジウム及びアルミニウムからなる群より選択される1種以上の金属を付着する工程が好ましく用いられる(本願第3の発明)。気相法は、薄い導電層を滑らかに形成することに適している。また、無電解めっきにより前記樹脂成形体表面に金、銀、白金、ロジウム、ルテニウム、パラジウム、ニッケル、銅、コバルト及び鉄からなる群より選択される1種以上の金属を付着する工程であってもよい(本願第4の発明)。無電解めっきは、例えば微細な三次元網目構造の多孔体など複雑な構造の樹脂成形体であっても、成形体全体の表層部か深部かなどの位置にかかわらずほぼ均一な導電層を形成することが可能な点で好ましい。他の方法として、樹脂成形体を金、銀、白金、ロジウム、ルテニウム、パラジウム及びアルミニウムからなる群より選択される1種以上の金属を含む塗料に浸漬することで金属を付着する工程であっても、無電解めっきと同様に好ましく用いられる(本願第5の発明)。
 三次元網目構造を有する樹脂多孔体を用いることによりアルミニウム多孔体を得ることが可能となる(本願第2の発明)。好ましくは、ウレタンまたはメラミンからなる樹脂多孔体は、気孔率が高い樹脂多孔体を得ることができる点で好ましく用いられ、電極用途などに適したアルミニウム多孔体を得ることが出来る(本願第6の発明)。
  以上の工程により、金属層を表面に備えた樹脂成形体層を有するアルミニウム構造体が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良いし、また電極用途など使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い。
 樹脂成形体の表面に金、銀、白金、ロジウム、ルテニウム、パラジウム、ニッケル、銅、コバルト及び鉄からなる群より選択される1種以上の金属からなる導電層を形成する導電化工程を用いる場合、出来上がったアルミニウム構造体は、導電層としての金属とアルミニウムの2層の金属層を備えた構造体となる。2層構造とすることによってアルミニウムのみからなる構造体よりも機械的強度を増すなど種々の有利な特性を持った構造体とすることが可能となり、用途に応じた構造体を得ることができる。例えば、銅には高い導電性が得られる特徴があり、ニッケル、コバルト、鉄には磁性を付与出来るという特徴がある。
 一方、例えば電池用などの電極用途においては、電解質とその作用電位との関係において含めることが出来ない金属があり、極力アルミニウムのみの構造体とすることが求められる場合がある。かかる用途のために、前記めっき工程の後に、導電層を溶解する溶解工程を有するアルミニウム構造体の製造方法とすると良い(本願第8の発明)。導電層の溶解は、酸、特に酸化性の酸である濃硝酸に浸漬することによりアルミニウムを溶解させることなく導電層を除去することが可能となる。アルミニウムは、表面に酸化性の酸の中で不働態皮膜を形成するために酸の中でも溶解せず、一方、導電層に使用した金属は、溶解する。
 ここで溶解工程の前に、樹脂成形体を除去する工程をさらに備えることで、樹脂成形体を残したアルミニウム構造体、あるいは樹脂成形体の無いアルミニウム構造体のいずれでも製造することができる(本願第9の発明)。電極用途では、樹脂は残っていないことが望ましいため、樹脂成形体は、除去することが好ましい。
また、本願発明者らは、ポリウレタンやメラミンなどの樹脂成形体の表面にアルミニウムを電気めっきする方法に想到した。すなわち本発明は、樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電層の表面に亜鉛置換めっきを行い亜鉛皮膜を形成する工程と、該亜鉛皮膜が形成された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法である。(本願第10の発明)
 前述のとおり従来は、アルミニウムめっきは、金属表面に対しては行われていたものの、樹脂成形体表面への電気めっきは、考えられていなかった。樹脂成形体表面を導電化することで、溶融塩浴中でもアルミニウムのめっきが可能なことを見いだしたことに特徴がある。
 アルミニウムは、酸素と反応しやすいため、アルミニウムからなる導電層の表面には、薄い酸化皮膜が生成しやすい。酸化皮膜があるとめっきの密着性が悪く、アルミニウムめっきをした場合にめっきが膜状に成長せず島状に成長する等、アルミニウムめっき膜を良好に形成できない。そこで導電化工程の後に亜鉛置換めっき(ジンケート処理)を行う。亜鉛置換めっきでは、アルミニウムの酸化膜を除去しながら亜鉛が析出するので、酸化膜が突き破られた状態で亜鉛皮膜が形成される。亜鉛めっき処理は、アルミニウムと亜鉛との置換反応であるため、アルミニウムの表面を亜鉛が覆ってしまえば反応が終了し亜鉛皮膜は、極薄く生成する。そのため、亜鉛皮膜は厚くならず、アルミニウムの純度を高く保つことができる。亜鉛の表面には、強固な酸化皮膜ができにくく、アルミニウムめっきの密着性を阻害する酸化層を形成しないため、その後良好にめっき工程を行うことができる。
 亜鉛置換めっき工程は、導電層が形成された樹脂成形体を亜鉛置換めっき処理液に浸漬して行う。亜鉛置換めっき液は、強アルカリ性溶液に酸化亜鉛が溶解したものであり、アルカリ成分によって導電層であるアルミニウム表面の酸化皮膜が溶解する。三次元網目構造を有する樹脂多孔体のような複雑な形状の基材を用いた場合、その表面に形成された導電層(アルミニウム層)の表面には、微小な欠陥として酸化皮膜が形成されない部分が生じる。このような状態の樹脂成形体を強アルカリ性の亜鉛置換めっき液に浸漬すると、表面に酸化皮膜がない部分でアルミニウムが過剰に溶解してしまい、導電層が脆くなって剥離し、その後のめっきが良好に行えない場合がある。そのため亜鉛置換めっき工程では、亜鉛置換めっき処理液の温度を通常の処理温度よりも低くし、4℃以上15℃以下とすることが好ましい(本願第11の発明)。亜鉛置換めっき処理液の温度を15℃以下とすることで反応がマイルドになり、アルミニウム表面が過剰に溶解するのを防ぐことができる。一方、処理温度を4℃よりも低くすると反応速度が遅くなり、処理にかかる時間が長くなることで製造コストが高くなる。
 また、本願発明者らは、ポリウレタンやメラミンなどの樹脂成形体の表面にアルミニウムを電気めっきする方法に想到した。すなわち本発明は、樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、前記導電層の表面に金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属を付着する工程と、該貴金属が付着した樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法である。(本願第12の発明)
 前述のとおり従来は、アルミニウムめっきは、金属表面に対しては行われていたものの、樹脂成形体表面への電気めっきは、考えられていなかった。樹脂成形体表面をアルミニウムで導電化することで、溶融塩浴中でもアルミニウムのめっきが可能なことを見いだしたことに特徴がある。
 アルミニウムは、酸素と反応しやすいため、アルミニウムからなる導電層の表面には、薄い酸化皮膜が生成しやすい。酸化皮膜があるとめっきの密着性が悪く、アルミニウムめっきをした場合にめっきが膜状に成長せず島状に成長する等、良好にめっきが行えない。そこで導電化工程の後に、導電層の表面に金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属を付着する。貴金属の付着は、蒸着、スパッタ等の気相法を用いることができる。気相法では、下地のアルミニウムの表面に薄い酸化皮膜が生成しても問題なく貴金属を付着することが可能である。また無電解めっきや、貴金属を含む塗料の塗布により貴金属を付着することもできる。これらの貴金属は、酸化しにくくアルミニウムめっきの密着性を阻害する酸下層を形成しないため、その後溶融塩中でのアルミニウムめっきを良好に行うことができる。またこれらの貴金属は、イオンになりにくいため、電池の充放電サイクルにおいて電極から溶出することが少なく、電極材料に含まれていても問題を生じない。
 上記の製造方法により得られるアルミニウム構造体は、樹脂に接する面あるいは樹脂が除去された側の一方面が貴金属であり、他の面がアルミニウムである構造体である。全体としては、金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムの純度が90.0%以上、金、銀、白金、ロジウム、ルテニウム及びパラジウムの合計量が0.01%以上10%以下、残部不可避不純物からなるアルミニウム構造体である(本願第14の発明)。各金属の成分比は、アルミニウム構造体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定する。
 上記の製造方法により得られるアルミニウム構造体は、金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムが80質量%以上、ニッケル、銅、コバルトおよび鉄の合計量が2質量%以上20質量%以下、残部不可避不純物からなるアルミニウム構造体である(本願第15の発明)。
 また、上記の製造方法において導電層を除去する場合に得られるアルミニウム構造体は、金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムが98.0質量%以上、ニッケル、銅、コバルトおよび鉄の合計量が0.0001質量%以上2質量%未満、残部不可避不純物からなるアルミニウム構造体である(本願第16の発明)。
 上記の製造方法により得られるアルミニウム構造体は、金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、樹脂を除いた金属層全体としてアルミニウム純度が98.0%以上、亜鉛含有量が0.0001%以上2%以下、残部が不可避不純物からなるアルミニウム構造体である(本願第17の発明)。
 上記の製造方法により得られるアルミニウム構造体は、樹脂に接する面あるいは樹脂が除去された側の一方面及び他の面がアルミニウムであり、内部に貴金属層を有するアルミニウム構造体である。より具体的には、金属層として、一方の表面に厚み1μm~100μmの第1のアルミニウム層を、他方の表面に厚み0.05μm~1μmの第2のアルミニウム層を有し、前記2層のアルミニウム層の間に貴金属層を有するアルミニウム構造体である(本願第18の発明)。樹脂を除いた金属層全体としては、アルミニウム純度が99.0質量%以上、金、銀、白金、ロジウム、ルテニウム及びパラジウムの合計量が0.001質量%以上1.0質量%以下、残部が不可避不純物である(本願第19の発明)。
 樹脂として三次元網目構造を有する多孔質樹脂を用いることにより、アルミニウム層が筒状の骨格構造をなし、全体として連続した気孔を有する多孔体を形成してなる当該アルミニウム構造体が得られる(本願第21の発明)。この場合、骨格は、樹脂を芯として、あるいは樹脂が除去された空洞部の周囲に金属層が筒状に形成された形状であり、筒状体の内側が貴金属面、外側がアルミニウム面となる。金属層全体としての成分は、上述の通りである。
 また、当該骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが該三角の辺の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体を得ることができる(本願第22の発明)。
 多孔質樹脂成形体として三次元網目構造を有する発泡ウレタンや発泡メラミンを用いた場合、網目構造の骨格部分は、全体として断面三角形状をなしている。ここで三角は、厳密な意味ではなく、およそ3つの頂部を有し、3つの曲線を辺とする形状を呼ぶ。したがって、めっきにより形成されたアルミニウム構造体の形状もその骨格が略三角形状をなす構造となる。ここで、導電化方法として無電解めっきにより金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属を付着する工程を考える。かかるめっきにより比較的厚みが均一な導電層を形成することができ導電度は、三角の全ての位置で同様となる。このような状態でアルミニウムをめっきすると、角部(三角の頂点部分)に電解が集中し、三角形の辺の中央部分よりも、頂上部分の厚みが厚くなる。このことから上述の形状を実現することが可能となる。かかる形状により筒状の骨格構造の強度が向上し、また電池電極などの用途では、活物質の保持性に優れるという利点がある。
 本発明によれば、樹脂成形体表面、特に三次元網目構造を有する多孔質樹脂成形体に対して表面へのアルミニウムのめっきが可能となり、ほぼ均一な厚膜で大面積の製造が可能で、特に電極用途にも適したアルミニウム多孔体を得ることが可能な方法を提供することができる。
図1は、本発明による第1の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。 図2は、本発明による第1の実施の形態のアルミニウム構造体の製造工程を説明する断面模式図である。 図3は、多孔質樹脂成形体の一例としての発泡ウレタン樹脂の構造を示す表面拡大写真である。 図4は、アルミニウム多孔体の骨格断面を説明する模式図である。 図5は、溶融塩めっきによるアルミニウム連続めっき工程の一例を説明する図である。 図6は、アルミニウム多孔体を溶融塩電池に適用した構造例を示す断面模式図である。 図7は、アルミニウム多孔体を電気二重層コンデンサに適用した構造例を示す断面模式図である。 本発明による第2の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。 本発明による第2の実施の形態の実施例にかかるアルミニウム多孔体のSEM写真である。 本発明による第2の実施の形態の別な実施例にかかるアルミニウム多孔体のSEM写真である。 本発明による第2の実施の形態の実施例にかかるアルミニウム多孔体の厚み方向の骨格断面を観察した写真である。 本発明による第2の実施の形態の別な実施例にかかるアルミニウム多孔体の厚み方向の骨格断面を観察した写真である。 図13は、本発明による第3の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。 図14は、本発明による第3の実施の形態のアルミニウム多孔体の断面SEM写真である。 図15は、本発明による第4の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。
 以下、本発明の実施の形態を、アルミニウム多孔体を製造するプロセスを代表例として説明する。以下で参照する図面で同じ番号が付されている部分は、同一またはそれに相当する部分である。なお、本発明はこれに限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(本発明による第1の実施の形態のアルミニウム構造体の製造工程)
 図1は、本発明による第1の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。また図2は、フロー図に対応して樹脂成形体を芯材としてアルミニウム構造体を形成する様子を模式的に示したものである。両図を参照して製造工程全体の流れを説明する。まず基体樹脂成形体の準備101を行う。図2(a)は、基体樹脂成形体の例として、連通気孔を有する発泡樹脂成形体の表面を拡大視した樹脂の断面の一部を示す拡大模式図である。発泡樹脂成形体1を骨格として気孔が形成されている。次に樹脂成形体表面の導電化102を行う。この工程により、図2(b)に示すように樹脂成形体1の表面には、薄く導電層2が形成される。続いて溶融塩中でのアルミニウムめっき103を行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層3を形成する(図2(c))。これで、基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去104を行っても良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる(図2(d))。
 以下各工程について順を追って説明する。
(多孔質樹脂成形体の準備)
 三次元網目構造を有し連通気孔を有する多孔質樹脂成形体を準備する。多孔質樹脂成形体の素材は、任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。発泡樹脂成形体と表記したが、連続した気孔(連通気孔)を有するものであれば任意の形状の樹脂成形体を選択できる。例えば繊維状の樹脂を絡めて不織布のような形状を有するものも発泡樹脂成形体に代えて使用可能である。発泡樹脂成形体の気孔率は、80%~98%、気孔径は、50μm~500μmとするのが好ましい。発泡ウレタン及び発泡メラミンは、気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため発泡樹脂成形体として好ましく使用できる。発泡ウレタンは、気孔の均一性や入手の容易さ等の点で好ましく、発泡ウレタンは、気孔径の小さなものが得られる点で好ましい。
 多孔質樹脂成形体には、発泡体製造過程での製泡剤や未反応モノマーなどの残留物があることが多く、洗浄処理を行うことが後の工程のために好ましい。多孔質樹脂成形体の例として、発泡ウレタンを前処理として洗浄処理したものを図3に示す。樹脂成形体が骨格として三次元的に網目を構成することで、全体として連続した気孔を構成している。発泡ウレタンの骨格は、その延在方向に垂直な断面において略三角形状をなしている。ここで気孔率は、次式で定義される。
 気孔率=(1-(多孔質材の重量[g]/(多孔質材の体積[cm]×素材密度)))×100[%]
 また、気孔径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりのセル数を計数して、平均孔径=25.4mm/セル数として平均的な値を求める。なお、以下の他の実施の形態においても、同様に気孔率、平均孔径を測定する。
(樹脂成形体表面の導電化)
 まず発泡樹脂成形体の表面に金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属からなる導電層を形成する。導電層の形成は、無電解めっきの他、スパッタ、プラズマCVD等の気相法、塗料の塗布等任意の方法で行うことができる。薄い膜を均一に形成するには、蒸着法などの気相法が好ましく適用できる。導電層の厚みは、0.001μm~0.2μm、好ましくは、0.01μm~0.1μmとすることが好ましい。導電層の厚みが0.001μmよりも薄い場合は、導電化が不十分であり、次の工程で良好に電解めっきを行うことができない。また厚みが0.2μmを超えると導電化工程のコストが高くなる。発泡樹脂成形体では、厚さが厚くなると深部まで全体に均一な層を形成するために無電解めっきなども用いることができる。
 以下金をウレタン表面に蒸着する場合を例にとって説明する。蒸発させる手段は、特に限定されず、電子銃により電子ビームを照射する方法や、抵抗加熱、誘導過熱、レーザー法などが使用できる。均一な蒸着のため、ウレタンの周囲に不活性ガスを導入することが好ましい。導入する不活性ガスの圧力は、0.01Pa以上である。不活性ガスの圧力が0.01Pa未満であると、薄膜の付き回りが悪く未着部分ができる。不活性ガスの雰囲気圧力上限は、使用する原料加熱方式(電子銃や抵抗加熱など)によって異なるが、ガス使用量、成膜速度の観点から1Pa以下が好ましい。また、不活性ガスとしては、アルゴンガスが好適に利用できる。アルゴンガスは、比較的多く自然界に存在し、安価に入手可能であり、人体に対する悪影響が少ないので好ましい。
 ウレタンに金を蒸着するには、既存の成膜装置を利用すれば良い。例えば、成膜する対象を区画する成膜室、金および成膜対象をそれぞれ載置する支持台および加熱容器、金を加熱する電子銃を有している真空蒸着装置を好適に利用することができる。真空蒸着装置を使用すると、本発明の成膜対象であるウレタンの周囲に不活性ガスを均等に導入し易く、また、ウレタンの周囲の空間が区画されているので不活性ガスの圧力を調節し易いので好ましい。始めに、ウレタンを真空蒸着装置の支持台に載置するとともに、薄膜の原料である金を加熱容器に載置する。次に、成膜室内を真空引きして高真空状態とした後、成膜室内に不活性ガスを導入する。ここで、成膜室内に導入する不活性ガスの圧力は、0.01~1Paとなるように調節する。そして、電子銃から電子ビームを発射して金を溶融し、ウレタン上に金薄膜を蒸着する。
(アルミニウム層の形成:溶融塩めっき)
 次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層3を形成する。表面が導電化された樹脂成形体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。アルミニウムめっき層の厚みは、1μm~100μm、好ましくは、5μm~20μmである。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としては、イミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム、1-エチル-3-メチルイミダゾリウムクロライド(AlCl-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは、窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。有機溶融塩浴としてEMIC浴を用いた場合、めっき浴の温度は、10℃から60℃、好ましくは、25℃から45℃である。
 図5は、帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は、円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属槽が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には、樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。
(樹脂の除去:溶融塩中熱分解)
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。ここで、高温での加熱分解等の方法は、簡便であるが、アルミニウムの酸化を伴う。アルミニウムは、ニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、酸化により導電性が失われることから用いることが出来ない。このため、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。
 溶融塩中での熱分解は、以下の方法で行う。表面にアルミニウムめっき層を形成した、アルミニウムめっき層付き発泡樹脂成形体を溶融塩に浸漬し、該アルミニウム層に負電位を印加しながら加熱して発泡樹脂成形体を分解する。溶融塩に浸漬した状態で負電位を印加するとアルミニウムの酸化反応を防止できる。このような状態で加熱することでアルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。加熱温度は、発泡樹脂成形体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためには、アルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は、500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
 樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩が使用できる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むと好ましい。このような方法で樹脂を除去することで、表面の酸化層を薄く(酸素量を少なく)できると共にカーボン含有量の少ないアルミニウム多孔体を得ることができる。
 図4は、図2(d)のA-A’断面を示す模式図である。導電層2及びアルミニウムめっき層3からなるアルミニウム層は、筒状の骨格構造をしており、骨格構造の内部にある空洞4は、略三角断面形状をなしている。該三角の頂点の部分のアルミニウム層の導電層を含む厚さ(t1)は、該三角の辺の中央部分の厚さ(t2)よりも厚い形状となっている。めっきによりアルミニウム層を形成する際に角部(三角の頂点部分)に電界が集中するため、このような形状となると推測される。すなわち、本発明の製造方法により、前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが、該三角の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体が得られる。
(リチウムイオン電池)
 次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためには、アルミニウム箔と活物質とが電気的に接触している必要があるので活物質は、導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は、気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には黒鉛、電解質には有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。また、本願発明のアルミニウム多孔体においては、アルミニウム以外に導電層として形成した金属材料が残留するが、これら金属は、電池の充放電サイクルにおいて溶出することが無く問題とならない。
(溶融塩電池)
 アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質としてクロム酸ナトリウム(NaCrO)、二硫化チタン(TiO)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。導電助剤としては、アセチレンブラック等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)等を使用できる。活物質としてクロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEは、この両者をより強固に固着することができ好ましい。
 アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は、約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは、扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
 図6は、上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)は、それぞれ、正極端子128、負極端子129に、リード線130で接続されている。
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばKFSAとNaFSAとを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
 溶融塩は、セパレータに含浸させて使用する。セパレータは、正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。
(電気二重層コンデンサ)
 アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は、導電助剤やバインダーと組み合わせて使用する。導電助剤としては、黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
 図7は、上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141は、リード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。
 以上、樹脂成形体として発泡樹脂成形体を使用する場合について説明したが、本発明は、発泡樹脂成形体に限定されず、任意の形状の樹脂成形体を用いることで任意の形状のアルミニウム構造体を得ることができる。
(実施例1)
 以下、アルミニウム多孔体の製造例を具体的に説明する。発泡樹脂成形体として、厚み1.6mm、気孔率95%、1cm当たりの気孔数約20個のウレタン発泡体を準備し、140mm×340mmに切断した。
(導電層の形成)
ウレタン発泡体の表面に蒸着法によって金を蒸着することで0.02μm厚の導電層を形成した。金を蒸発させる手段は、電子銃により電子ビームを照射する方法とした。ウレタンの周囲に不活性ガスを圧力は、0.01~1Paの範囲で導入し、電子ビームにより金を溶融して、ウレタン上に金薄膜を蒸着した。
(溶融塩めっき)
 表面に導電層を形成したウレタン発泡体を給電機能を有する治具にセットした。治具は、ウレタン発泡体の4辺からの給電が可能で100mm×300mmのエリアにめっき可能としたものである。セットしたウレタン発泡体を、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内に入れ、温度40℃の溶融塩アルミめっき浴(67mol%AlCl-33mol%EMIC)に浸漬した。ウレタン発泡体をセットした治具を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続した。治具は、ウレタン発泡体の4辺からの給電が可能なように4辺に電極を設けたものである。電流密度3.6A/dmの直流電流を60分間印加してアルミニウムをめっきした。攪拌は、テフロン(登録商標)製の回転子を用いてスターラーにて行った。なお電流密度の計算では、アルミニウム多孔体の見かけの面積を使用している(ウレタン発泡体の実表面積は、見かけの面積の約8倍)。この結果、120g/mの重量のアルミめっき皮膜をほぼ均一に形成することができた。
(発泡樹脂成形体の分解)
 アルミニウムめっき層を形成した発泡樹脂を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を30分間印加した。溶融塩中に気泡が発生し、ポリウレタンの分解反応が起こっていると推定された。その後大気中で室温まで冷却した後、水洗して溶融塩を除去しアルミニウム多孔体を得た。
 得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定したところ、アルミニウム純度は、純度91.5wt%であり、8%の金、0.5wt%のカーボンを含んでいた。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークは、ほとんど観測されず、アルミニウム多孔体の酸素量は、EDXの検出限界(3.1質量%)以下であることが確認された。
(アルミニウム多孔体の電池としての評価)
 アルミニウム多孔体の実用上の評価例として電池用電極に用いた場合をアルミニウム箔を電極とした従来構造との比較で説明する。
 正極活物質として平均粒径7μmのLiCoO、導電助剤としてカーボンブラック、バインダー樹脂としてPVdFを10:1:1(質量比)で混合し、さらに溶媒としてN-メチル-2-ピロリドンを混合してペーストを作製した。このペーストを三次元網目構造を有する気孔率約95%のアルミニウム多孔体に充填した後150℃で真空乾燥し、さらに厚みが初期厚みの70%となるまでロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、2.4mAhであった。
 比較のため、厚み20μmのアルミニウム箔上に上記のLiCoO、カーボンブラック、PVdF混合ペーストを塗布し、上記と同様に乾燥及びロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、0.24mAhであった。
 厚さ25μmのポリプロピレン製の多孔膜をセパレータとして使用し、1M濃度のLiPFを溶解したEC/DEC(体積比1:1)溶液をセパレータに対して0.1ml/cmで滴下し、真空含浸した。負極として、厚さ20μm、11mmφのリチウムアルミニウム箔を用い、コイン電池容器上蓋に接合して固定した。上記の電池用電極材料(正極)、セパレータ、負極をこの順で積層し、バイトンOリングを上蓋と下蓋との間に挟んでかしめ電池を作製した。充放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、各放電レートで放電させた。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、レート0.2Cにおいて約5倍の容量であった。また、リチウムイオン電池のライフ試験においても、短絡の問題は、見られなかった。さらに、JIS C 8711に記載のサイクル寿命に基づきライフサイクル試験を行った。充放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、0.2Cの放電レートで放電させるサイクルを繰り返した。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、電圧や容量の低下は、特になく、サイクル特性に問題は、見られなかった。
(本発明による第2の実施の形態のアルミニウム構造体の製造工程)
 図8は、本発明による第2の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。また、図2に示すように、本発明による第1の実施の形態と同様に基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去104を行っても良い。また、用途によって導電層の除去105を行うと良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる。
 以下各工程について順を追って説明する。
(多孔質樹脂成形体の準備)
 三次元網目構造を有し連通気孔を有する多孔質樹脂成形体は、本発明による第1の実施の形態と同様に準備する。多孔質樹脂成形体の素材は、任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。
(樹脂成形体表面の導電化)
 まず発泡樹脂成形体の表面にニッケル、銅、コバルト、及び鉄からなる群より選択される1種以上の金属からなる導電層を形成する。導電層の形成は、無電解めっきの他、蒸着、スパッタ、プラズマCVD等の気相法、塗料の塗布等任意の方法で行うことができる。薄い膜を形成するには、蒸着法などの気相法も好ましく適用できるが、発泡樹脂成形体では、厚さが厚くなると深部まで全体に均一な層を形成するために無電解めっきが好ましい。導電層の厚みは、0.01μm~1μm、好ましくは、0.1μm~0.5μmとすることが好ましい。導電層の厚みが0.01μmよりも薄い場合は、導電化が不十分であり、次の工程で良好に電解めっきを行うことができない。また厚みが1μmを超えると導電化工程のコストが高くなる。
 無電解めっきの方法は、限定されない。例えばウレタン発泡体にニッケルをめっきする場合を例に示す。まず、ウレタン表面に塩化パラジウムと塩化錫からなるコロイド触媒を吸着させる。次に硫酸によってSnを除去し、触媒を活性化する。そして、次亜リン酸を還元剤とするニッケルめっき液に浸漬し、ニッケル無電解めっきが行える。なお、この場合次亜リン酸を還元剤として使用することで、不可避的にリンが共析してリン合金を形成する。
(アルミニウム層の形成:溶融塩めっき)
 次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層3を形成する。表面が導電化された樹脂成形体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。アルミニウムめっき層の厚みは、1μm~100μm、好ましくは、5μm~20μmである。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としては、イミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム、1-エチル-3-メチルイミダゾリウムクロライド(AlCl-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは、窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。有機溶融塩浴としてEMIC浴を用いた場合、めっき浴の温度は、10℃から60℃、好ましくは、25℃から45℃である。
 溶融塩浴としてイミダゾリウム塩浴を用いる場合、溶融塩浴に有機溶媒を添加することが好ましい。有機溶媒としては、キシレンが特に好ましく用いられる。有機溶媒、中でもキシレンの添加によりアルミニウム多孔体の形成に特有の効果が得られる。すなわち、多孔体を形成するアルミニウム骨格が折れにくいという第1の特徴と、多孔体の表面部と内部とのめっき厚さの差が小さい均一なめっきが可能であるという第2の特徴が得られる。第1の特徴は、有機溶媒の添加によって骨格表面のめっきが粒状(凹凸が大きく表面観察で粒のように見える)から平坦な形状に改善されることにより、厚さが薄く細い骨格が強固になるものである。第2の特徴は、溶融塩浴に有機溶媒を添加することにより、溶融塩浴の粘度が下がり、細かい網目構造の内部へめっき浴が流通しやすくなることによるものである。すなわち、粘度が高いと多孔体表面には、新たなめっき浴が供給されやすく、逆に内部には、供給されにくいところ、粘度を下げることによって内部にもめっき浴が供給されやすくなることにより、均一な厚さのめっきを行うことが可能となる。
 折れにくい、めっき厚が内外で均一という2つの特徴により、完成したアルミニウム多孔体をプレスする場合などに、骨格が全体に折れにくく均等にプレスされた多孔体を得ることができる。アルミニウム多孔体を電池等の電極材料として用いる場合に、電極に電極活物質を充填してプレスにより密度を上げることが行われ、活物質の充填工程やプレス時に骨格が折れやすいため、このような用途では、極めて有効である。
 上記の特徴を得るため、めっき浴への有機溶媒の添加量は、25~57mol%が好ましい。25mol%以下では、表層と内部の厚み差を小さくする効果が得られ難い。また57mol%以上では、めっき浴が不安定となり部分的にめっき液とキシレンが分離してしまう。
 さらに、前記の有機溶媒を添加した溶融塩浴によりめっきする工程に次いで、前記有機溶媒を洗浄液として用いる洗浄工程をさらに有することが好ましい。めっきされた樹脂の表面は、めっき浴を洗い流すために洗浄が必要となる。このようなめっき後の洗浄は、通常は、水で行われる。しかし、イミダゾリウム塩浴は、水分を避けることが必須であるところ、洗浄を水で行うと水蒸気の形などでめっき液に水が持ち込まれることになる。よって、めっきへの悪影響を防ぐために水での洗浄は、避けたい。そこで、有機溶媒による洗浄が効果的である。さらに上記のようにめっき浴に有機溶媒を添加する場合、めっき浴に添加した有機溶媒で洗浄を行うことによりさらなる有利な効果が得られる。すなわち、洗浄されためっき液の回収、再利用を比較的容易に行うことができ、コスト低減が可能となる。たとえば、溶融塩AlCl-EMICにキシレンを添加した浴が付着しためっき体をキシレンで洗浄する場合を考える。洗浄された液体は、使用しためっき浴に比較してキシレンが多く含まれた液体となる。ここで溶融塩AlCl-EMICは、キシレン中に一定量以上は、混ざり合わず、上側にキシレン、下側に約57mol%のキシレンを含む溶融塩AlCl-EMICと分離するため、分離した下側の液を汲み取ることで溶融液を回収することができる。さらにキシレンの沸点は、144℃と低いので、熱を加えることで回収溶融塩中のキシレン濃度をめっき液中濃度にまで調整し、再利用することが可能となるのである。なお、有機溶媒での洗浄の後に、めっき浴とは、離れた別の場所において水でさらに洗浄することも好ましく用いられる。
 図5は、帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は、円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属槽が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には、樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。
(樹脂の除去:溶融塩中熱分解)
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。ここで、高温での加熱分解等の方法は、簡便であるが、アルミニウムの酸化を伴う。アルミニウムは、ニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、酸化により導電性が失われることから用いることが出来ない。このため、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。
 溶融塩中での熱分解は、以下の方法で行う。表面にアルミニウムめっき層を形成した、アルミニウムめっき層付き発泡樹脂成形体を溶融塩に浸漬し、該アルミニウム層に負電位を印加しながら加熱して発泡樹脂成形体を分解する。溶融塩に浸漬した状態で負電位を印加するとアルミニウムの酸化反応を防止できる。このような状態で加熱することでアルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。加熱温度は、発泡樹脂成形体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためには、アルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は、500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
 樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩が使用できる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むと好ましい。このような方法で樹脂を除去することで、表面の酸化層を薄く(酸素量を少なく)できると共にカーボン含有量の少ないアルミニウム多孔体を得ることができる。
 図4は、図2(d)のA-A’断面を示す模式図である。導電層2及びアルミニウムめっき層3からなるアルミニウム層は、筒状の骨格構造をしており、骨格構造の内部にある空洞4は、略三角断面形状をなしている。該三角の頂点の部分のアルミニウム層の厚さ(t1)は、該三角の辺の中央部分のアルミニウム層の厚さ(t2)よりも厚い形状となっている。めっきによりアルミニウム層を形成する際に角部(三角の頂点部分)に電界が集中するため、このような形状となると推測される。すなわち、本発明の製造方法により、前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが、該三角の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体が得られる。
(導電層の除去)
 導電層の溶解は、酸、特に酸化性の酸である濃硝酸に浸漬することによりアルミニウムを溶解させることなく導電層を除去することで行う。アルミニウムは、表面に酸化性の酸の中で不働態皮膜を形成するために酸の中でも溶解せず、一方、導電層に使用した金属は、溶解する。例えばニッケルを導電層とする場合、15℃~35℃の濃硝酸67.5%中に1~30分浸漬後、水洗、乾燥するとよい。他の金属を導電層とする場合においてもそれぞれ溶解する酸を選択して使用できればよい。
(リチウムイオン電池)
 次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためには、アルミニウム箔と活物質とが電気的に接触している必要があるので活物質は、導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は、気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には、黒鉛、電解質には、有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。
(溶融塩電池)
 アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質としてクロム酸ナトリウム(NaCrO)、二硫化チタン(TiO)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。導電助剤としては、アセチレンブラック等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)等を使用できる。活物質としてクロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEは、この両者をより強固に固着することができ好ましい。
 アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は、約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは、扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
 図6は、上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)は、それぞれ、正極端子128、負極端子129に、リード線130で接続されている。
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばKFSAとNaFSAとを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
 溶融塩は、セパレータに含浸させて使用する。セパレータは、正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。
(電気二重層コンデンサ)
 アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は、導電助剤やバインダーと組み合わせて使用する。導電助剤としては、黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
 図7は、上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141は、リード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。
 以上、樹脂成形体として発泡樹脂成形体を使用する場合について説明したが、本発明は、発泡樹脂成形体に限定されず、任意の形状の樹脂成形体を用いることで任意の形状のアルミニウム構造体を得ることができる。
(実施例2)
 以下、アルミニウム多孔体の製造例を具体的に説明する。発泡樹脂成形体として、厚み1mm、気孔率95%、1インチ当たりの気孔数(セル数)約50個のウレタン発泡体を準備し、140mm×340mに切断した。
(ニッケル導電層の形成)
 ウレタン発泡体の表面に無電解ニッケルめっきを行い、導電層を形成した。処理工程は、以下の通りである。
 ・親水化処理;アルカリ+カチオン系界面活性剤+ノニオン系界面活性剤、50℃、2分
 ・水洗
 ・酸処理;8%塩酸、室温、30秒
 ・触媒付け;塩酸+キャタリストC(奥野製薬)、20℃、3分
 ・水洗
 ・活性化;硫酸+アクセレータX(奥野製薬)45℃、2分
 ・水洗
 ・無電解めっき;めっき液(硫酸Ni:22g/L、次亜リン酸Na:20g/L、クエン酸Na:40g/L、ホウ酸アンモニウム:10g/L、安定剤:1ppm)をアンモニア水にてpH=9に調整、35℃、3分
 ・水洗
 ・乾燥
 こうして得られた無電解Niめっきの目付量は、10g/mで組成は、Ni-3wt%Pであった。
(溶融塩めっき1)
 表面に導電層を形成したウレタン発泡体を、給電機能を有する治具にセットした後、温度40℃の溶融塩アルミめっき浴(17mol%EMIC-34mol%AlCl-49mol%キシレン)に浸漬した。ウレタン発泡体をセットした治具を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続した。電流密度3.6A/dmの直流電流を60分間印加してアルミニウムをめっきした。攪拌は、テフロン(登録商標)製の回転子を用いてスターラーにて行った。なお電流密度の計算では、アルミニウム多孔体の見かけの面積を使用している(ウレタン発泡体の実表面積は、見かけの面積の約8倍)。この結果、120g/mの重量のアルミめっき皮膜をほぼ均一に形成することができた。
(溶融塩めっき2)
 めっき浴として温度40℃の溶融塩アルミめっき浴(33mol%EMIC-67mol%AlCl)を用いた他は、上記と同様にめっきを行い同じく目付量120g/mのアルミニウム多孔体を得た。
 得られたアルミニウム多孔体のSEM写真を図9(めっき1)および図10(めっき2)に示す。キシレンを含まないめっき(図10)では、表面の凹凸が比較的大きく、特に骨格稜線付近では、粒状にめっきが成長しているように見えるのに対して、キシレンを含むめっき(図9)では、表面が非常に滑らかであることがわかる。
 溶融塩めっき1で得た図9のアルミニウム多孔体を厚み方向に並行な面で切断した断面を図11に、溶融塩めっき2で得た図10のアルミニウム多孔体の同様の断面を図12に示す。それぞれ、図の上下方向が多孔体の厚み方向であり、点線で囲った上部が表面側、中央部が中心部、下部が裏面側にあたる。なお、実際のめっきにおいて表裏の区別は無く、一方表面を表面、他方表面を裏面と仮に呼ぶ。点線の領域もおよその区別を説明のために付ける意味であって特に境界があるわけではない。ウレタン骨格の断面は、略三角形をなしているため、その表面に形成されたアルミニウム層が略三角形の断面として見えている。図11のキシレン添加浴では、図12に比べて、アルミニウム層が全体に均一に形成されていることが判る。すなわち図11では、一つの略三角形断面の各辺をとっても頂部が辺部よりも若干厚みが厚いものの図12に比較して非常に均一である。また多孔体全体の厚み方向の表面側、中心部、裏面側を比較してもめっき厚の差がほとんど無い。これは、表面観察では非常に滑らかな骨格表面となっていることに対応している。一方の図12では、略三角断面の頂部付近のめっき厚が非常に厚く、表面観察ではこれが粒状の固まりに見えている。また、表面側や裏面側に比べて中心部では、めっき厚が薄い。
(発泡樹脂成形体の分解)
 アルミニウムめっき層を形成した発泡樹脂を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を30分間印加した。溶融塩中に気泡が発生し、ポリウレタンの分解反応が起こっていると推定された。その後大気中で室温まで冷却した後、水洗して溶融塩を除去しアルミニウム多孔体を得た。
(導電層の除去)
 得られたアルミニウム多孔体を、室温の67.5%濃硝酸中に5分浸漬後、水洗、乾燥して導電層としてのニッケルを溶解させた。濃硝酸によりニッケルは、溶解するが、アルミニウムは、表面に酸化性の酸の中で不働態皮膜を形成するために、酸の中でも溶解しない。これによりニッケルがほぼ除去され、アルミニウム純度の高いアルミニウム多孔体を得ることができる。
 得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定したところ、アルミニウム純度は、純度98.25wt%であり、0.7%のニッケル、0.05%のリン、1.0wt%のカーボンを含んでいた。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークはほとんど観測されず、アルミニウム多孔体の酸素量は、EDXの検出限界(3.1質量%)以下であることが確認された。
(アルミニウム多孔体の電池としての評価)
 アルミニウム多孔体の実用上の評価例として電池用電極に用いた場合を、アルミニウム箔を電極とした従来構造との比較で説明する。
 正極活物質として平均粒径7μmのLiCoO、導電助剤としてカーボンブラック、バインダー樹脂としてPVdFを10:1:1(質量比)で混合し、さらに溶媒としてN-メチル-2-ピロリドンを混合してペーストを作製した。このペーストを、三次元網目構造を有する気孔率約95%のアルミニウム多孔体に充填した後150℃で真空乾燥し、さらに厚みが初期厚みの70%となるまでロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、2.4mAhであった。
 比較のため、厚み20μmのアルミニウム箔上に上記のLiCoO、カーボンブラック、PVdF混合ペーストを塗布し、上記と同様に乾燥及びロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、0.24mAhであった。
 厚さ25μmのポリプロピレン製の多孔膜をセパレータとして使用し、1M濃度のLiPFを溶解したEC/DEC(体積比1:1)溶液をセパレータに対して0.1ml/cmで滴下し、真空含浸した。負極として、厚さ20μm、11mmφのリチウムアルミニウム箔を用い、コイン電池容器上蓋に接合して固定した。上記の電池用電極材料(正極)、セパレータ、負極をこの順で積層し、バイトンOリングを上蓋と下蓋との間に挟んでかしめ電池を作製した。充放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、各放電レートで放電させた。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、レート0.2Cにおいて約5倍の容量であった。また、リチウムイオン電池のライフ試験においても、短絡の問題は見られなかった。さらに、JIS C 8711に記載のサイクル寿命に基づきライフサイクル試験を行った。充放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、0.2Cの放電レートで放電させるサイクルを繰り返した。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、電圧や容量の低下は特になく、サイクル特性に問題は、見られなかった。
(本発明による第3の実施の形態のアルミニウム構造体の製造工程)
 図13は、本発明による第3の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。また、図2に示すように、本発明による第1の実施の形態と同様に基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。なお、図2(b)に示すように樹脂成形体1の表面には、薄くアルミニウムからなる導電層2が形成される。さらに、導電層2表面に亜鉛置換めっきにより亜鉛皮膜を形成する工程103を行う。亜鉛皮膜は、ごく薄く付着されるため、図2には、図示していない。続いて溶融塩中でのアルミニウムめっき104を行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層3を形成する(図2(c))。これで、基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去105を行っても良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる(図2(d))。
 以下各工程について順を追って説明する。
(多孔質樹脂成形体の準備)
 三次元網目構造を有し連通気孔を有する多孔質樹脂成形体は、本発明による第1の実施の形態と同様に準備する。多孔質樹脂成形体の素材は、任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。
(樹脂成形体表面の導電化:気相法)
 まず発泡樹脂成形体の表面にアルミニウムからなる導電層を形成する。導電層の形成は、蒸着、スパッタ、プラズマCVD等の気相法、アルミニウム塗料の塗布等任意の方法で行うことができる。薄い膜を均一に形成できるため、蒸着法が好ましい。導電層の厚みは、0.05μm~5μm、好ましくは、0.1μm~3μmとする。導電層の厚みが0.05μmよりも薄い場合は、導電化が不十分であり、次の工程で良好に電解めっきを行うことができない。また導電層の厚みが薄すぎると亜鉛置換めっき工程において良好に亜鉛皮膜を形成できない。厚みが5μmを超えると導電化工程のコストが高くなる。
(樹脂成形体表面の導電化:塗料)
 導電化処理は、発泡樹脂成形体を、アルミニウムを含む塗料に浸漬して行っても良い。塗料に含まれているアルミニウム成分が発泡樹脂成形体の表面に付着してアルミニウムからなる導電層が形成されることで、溶融塩中でめっき可能な導電状態となる。アルミニウムを含む塗料としては、例えば粒径10nm~1μmのアルミニウム微粒子を水または有機溶剤中に分散させた液を使用できる。発泡樹脂を塗料に浸漬した後加熱して溶剤を蒸発させることで導電層を形成できる。
(亜鉛置換めっきによる亜鉛皮膜の形成)
 上記工程で形成された導電層の上に、溶融塩めっきによりアルミニウムをめっきしてアルミニウムめっき層を形成する。このとき導電層の表面に酸化膜が存在すると、次のめっき工程においてアルミニウムの付着性が悪くなり、島状にアルミニウムが付着したり、アルミニウムめっき層の厚みにばらつきが生じる可能性がある。そこでめっき工程の前に亜鉛置換めっきを行い導電層の表面に亜鉛皮膜を形成する。亜鉛置換めっきは、以下のように行う。
 導電層が形成された樹脂成形体を亜鉛置換めっき処理液に浸漬する。亜鉛置換めっき処理液としては、水酸化ナトリウムと酸化亜鉛の水溶液や、水酸化ナトリウムと酸化亜鉛の水溶液に塩化第二鉄を溶解したもの等を用いることができる。亜鉛置換めっき処理液の温度が高いと反応性が上がり、アルミニウムが過剰に溶解するおそれがあるため、液の温度を4℃から15℃の範囲に制御することが好ましい。
 アルミニウム合金等の金属に対して亜鉛置換めっきを行う場合には、一般的には、前処理としてアルミニウムの表面にある酸化膜をアルカリ性のエッチング処理液により除去するソフトエッチング処理を行った後、硝酸を用いてデスマット処理(溶解残渣処理)を行う。さらに水洗した後、酸化膜が除去された表面に亜鉛置換めっき処理液を接触させる。しかし樹脂成形体の表面に薄く形成されたアルミニウム層に対してこのような処理を行うとエッチング処理液によってアルミニウム層の表面が過剰に溶解する可能性がある。従って、エッチング処理等の前処理を行わずに亜鉛置換めっき処理液に浸漬することが好ましい。
 亜鉛置換めっきを繰り返して行う、いわゆるダブルジンケート処理を行っても良い。この場合、いったん亜鉛置換めっきを行って亜鉛皮膜を形成した後、硝酸等により亜鉛皮膜の剥離処理を行い、再度亜鉛置換めっきを行う。ダブルジンケート処理を行うと緻密な組織の亜鉛皮膜を形成することが可能となり、導電層とめっき層との密着性を向上させ、アルミニウム構造体からの亜鉛の溶出を抑制することができる。
(アルミニウム層の形成:溶融塩めっき)
 次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層3を形成する。表面が導電化された樹脂成形体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。アルミニウムめっき層の厚みは、1μm~100μm、好ましくは、5μm~20μmである。陽極電解処理とは、逆に導電化された樹脂成形体を陰極、対極を陽極として溶融塩中で直流電流を印加する。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としては、イミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム、1-エチル-3-メチルイミダゾリウムクロライド(AlCl-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは、窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。有機溶融塩浴としてEMIC浴を用いた場合、めっき浴の温度は、10℃から60℃、好ましくは、25℃から45℃である。
 図5は、帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は、円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属槽が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には、樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は、超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。ここで、高温での加熱分解等の方法は、簡便であるが、アルミニウムの酸化を伴う。アルミニウムは、ニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、酸化により導電性が失われることから用いることが出来ない。このため、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。
(樹脂の除去:溶融塩中熱分解)
 溶融塩中での熱分解は、以下の方法で行う。表面にアルミニウムめっき層を形成した、アルミニウムめっき層付き発泡樹脂成形体を溶融塩に浸漬し、該アルミニウム層に負電位を印加しながら加熱して発泡樹脂成形体を分解する。溶融塩に浸漬した状態で負電位を印加するとアルミニウムの酸化反応を防止できる。このような状態で加熱することでアルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。加熱温度は、発泡樹脂成形体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためには、アルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は、500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
 樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩が使用できる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むと好ましい。このような方法で樹脂を除去することで、表面の酸化層を薄く(酸素量を少なく)できると共にカーボン含有量の少ないアルミニウム多孔体を得ることができる。
 図4は、図2(d)のA-A’断面を示す模式図である。導電層2及びアルミニウムめっき層3からなるアルミニウム層は、筒状の骨格構造をしており、骨格構造の内部にある空洞4は、略三角断面形状をなしている。該三角の頂点の部分のアルミニウム層の導電層を含む厚さ(t1)は、該三角の辺の中央部分の厚さ(t2)よりも厚い形状となっている。めっきによりアルミニウム層を形成する際に角部(三角の頂点部分)に電界が集中するため、このような形状となると推測される。すなわち、本発明の製造方法により、前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが、該三角の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体が得られる。
(リチウムイオン電池)
 次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためには、アルミニウム箔と活物質とが電気的に接触している必要があるので活物質は、導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は、気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には、黒鉛、電解質には、有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。
(溶融塩電池)
 アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質としてクロム酸ナトリウム(NaCrO)、二硫化チタン(TiO)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。導電助剤としては、アセチレンブラック等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)等を使用できる。活物質としてクロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEは、この両者をより強固に固着することができ好ましい。
 アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は、約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
 図6は、上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)は、それぞれ、正極端子128、負極端子129に、リード線130で接続されている。
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばKFSAとNaFSAとを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
 溶融塩は、セパレータに含浸させて使用する。セパレータは、正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。
(電気二重層コンデンサ)
 アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は、導電助剤やバインダーと組み合わせて使用する。導電助剤としては、黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
 図7は、上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141は、リード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。
 以上、樹脂成形体として発泡樹脂成形体を使用する場合について説明したが、本発明は、発泡樹脂成形体に限定されず、任意の形状の樹脂成形体を用いることで任意の形状のアルミニウム構造体を得ることができる。
(実施例:アルミニウム多孔体の製造:蒸着法によるアルミニウム層の形成)
 以下、アルミニウム多孔体の製造例を具体的に説明する。発泡樹脂成形体として、厚み1.6mm、気孔率95%、1cm当たりの気孔数約20個のウレタン発泡体を準備し、140mm×190mm角に切断した。ウレタン発泡体の表面にアルミニウムを蒸着し、厚み約2.5μmの導電層を形成した。
(亜鉛置換めっき)
 導電層を形成した樹脂成形体を、10℃に温度制御した亜鉛置換めっき処理液(奥野製薬(株)製、サブスターZN)に15秒間浸漬し、亜鉛置換めっきを行った。その後水洗し、乾燥して亜鉛皮膜が形成された樹脂組成物を得た。
(溶融塩めっき)
 ウレタン発泡体をセットした治具を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続した。治具は、ウレタン発泡体の4辺からの給電が可能で100mm×150mmのエリアにめっき可能としたものである。温度40℃の溶融塩アルミめっき浴(67mol%AlCl-33mol%EMIC)に浸漬し、電流密度3.6A/dmの直流電流を60分間印加してアルミニウムをめっきした。攪拌は、テフロン(登録商標)製の回転子を用いてスターラーにて行った。なお一連の操作は、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内で行った。また電流密度の計算では、アルミニウム多孔体の見かけの面積を使用している(ウレタン発泡体の実表面積は、見かけの面積の約8倍)。この結果、120g/mの重量のアルミニウムめっき皮膜をほぼ均一に形成することができた。
(本発明による第3の実施の形態のアルミニウム多孔体の製造:発泡樹脂成形体の分解)
 アルミニウムめっき層を形成した発泡樹脂を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を30分間印加した。溶融塩中に気泡が発生し、ポリウレタンの分解反応が起こっていると推定された。その後大気中で室温まで冷却した後、水洗して溶融塩を除去しアルミニウム多孔体を得た。得られたアルミニウム多孔体のSEM写真を図14に示す。
 得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定した。またカーボン含有量をJIS-G1211の高周波誘導加熱炉燃焼-赤外線吸収法で測定した。アルミニウム純度は、99.48質量%であり、0.5質量%のカーボンと0.02質量%の亜鉛を含んでいた。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークは、ほとんど観測されず、アルミニウム多孔体の酸素量は、EDXの検出限界(3.1質量%)以下であることが確認された。
(アルミニウム多孔体の電池としての評価)
 アルミニウム多孔体の実用上の評価例として電池用電極に用いた場合を、アルミニウム箔を電極とした従来構造との比較で説明する。
 正極活物質として平均粒径7μmのLiCoO、導電助剤としてカーボンブラック、バインダー樹脂としてPVdFを10:1:1(質量比)で混合し、さらに溶媒としてN-メチル-2-ピロリドンを混合してペーストを作製した。このペーストを、三次元網目構造を有する気孔率約95%のアルミニウム多孔体に充填した後150℃で真空乾燥し、さらに厚みが初期厚みの70%となるまでロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、2.4mAhであった。
 比較のため、厚み20μmのアルミニウム箔上に上記のLiCoO、カーボンブラック、PVdF混合ペーストを塗布し、上記と同様に乾燥及びロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、0.24mAhであった。
 厚さ25μmのポリプロピレン製の多孔膜をセパレータとして使用し、1M濃度のLiPFを溶解したEC/DEC(体積比1:1)溶液をセパレータに対して0.1ml/cmで滴下し、真空含浸した。負極として、厚さ20μm、11mmφのリチウムアルミニウム箔を用い、コイン電池容器上蓋に接合して固定した。上記の電池用電極材料(正極)、セパレータ、負極をこの順で積層し、バイトンOリングを上蓋と下蓋との間に挟んでかしめ電池を作製した。重放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、各放電レートで放電させた。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、レート0.2Cにおいて約5倍の容量であった。さらに、JIS C 8711に記載のサイクル寿命に基づきライフサイクル試験を行った。充放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、0.2Cの放電レートで放電させるサイクルを繰り返した。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、電圧や容量の低下は特になく、サイクル特性に問題は、見られなかった。
(本発明による第4の実施の形態のアルミニウム構造体の製造工程)
 図15は、本発明による本発明による第4の実施の形態のアルミニウム構造体の製造工程を示すフロー図である。また図2は、フロー図に対応して樹脂成形体を芯材としてアルミニウム構造体を形成する様子を模式的に示したものである。なお、図2(b)に示すように樹脂成形体1の表面には、薄くアルミニウムからなる導電層2が形成される。さらに、導電層2の表面に貴金属を付着する工程103を行う。貴金属は、ごく薄く付着されるため、図2には、図示していない。続いて溶融塩中でのアルミニウムめっき104を行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層3を形成する(図2(c))。これで、基体樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去105を行っても良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる(図2(d))。
 以下各工程について順を追って説明する。
(多孔質樹脂成形体の準備)
 三次元網目構造を有し連通気孔を有する多孔質樹脂成形体は、本発明による第1の実施の形態と同様に準備する。多孔質樹脂成形体の素材は、任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。
(樹脂成形体表面の導電化:気相法)
 まず発泡樹脂成形体の表面にアルミニウムからなる導電層を形成する。導電層の形成は、蒸着、スパッタ、プラズマCVD等の気相法、アルミニウム塗料の塗布等任意の方法で行うことができる。薄い膜を均一に形成できるため、蒸着法が好ましい。導電層の厚みは、0.05μm~1μm、好ましくは、0.1μm~0.5μmとすることが好ましい。導電層の厚みが0.01μmよりも薄い場合は、導電化が不十分であり、次の工程で良好に電解めっきを行うことができない。また厚みが1μmを超えると導電化工程のコストが高くなる。
(樹脂成形体表面の導電化:塗料)
 導電化処理は、発泡樹脂成形体を、アルミニウムを含む塗料に浸漬して行っても良い。塗料に含まれているアルミニウム成分が発泡樹脂成形体の表面に付着してアルミニウムからなる導電層が形成されることで、溶融塩中でめっき可能な導電状態となる。アルミニウムを含む塗料としては、例えば粒径10nm~1μmのアルミニウム微粒子を水または有機溶剤中に分散させた液を使用できる。発泡樹脂を塗料に浸漬した後加熱して溶剤を蒸発させることで導電層を形成できる。
(めっき前処理:貴金属の付着)
 上記工程で形成された導電層の上に、溶融塩めっきによりアルミニウムをめっきしてアルミニウムめっき層を形成する。このとき導電層の表面に酸化膜が存在すると、次のめっき工程においてアルミニウムの付着性が悪くなり、島状にアルミニウムが付着したり、アルミニウムめっき層の厚みにばらつきが生じる可能性がある。そこでめっき工程の前に導電層(アルミニウム層)表面に貴金属を付着させる。貴金属の付着は、蒸着、スパッタ、プラズマCVD等の気相法、無電解めっき、貴金属を含む塗料の塗布等任意の方法で行うことができる。薄い膜を均一に形成できるため、蒸着法が好ましい。これらの貴金属は、非常に高価であるので、コストの点からは、薄い方が好ましい。貴金属層の厚みは、0.0001μm~1μm、好ましくは、0.001μm~0.01μmとする。貴金属層の厚みが0.0001μmよりも薄い場合は、アルミニウムの酸化膜を完全に被覆することができず、良好なめっきが行えない。貴金属層の厚みが1μmを超えると導電化工程のコストが高くなる。
 以下、金をウレタン表面に形成された導電層の表面に蒸着する場合を例にとって説明する。蒸発させる手段は、特に限定されず、電子銃により電子ビームを照射する方法や、抵抗加熱、誘導過熱、レーザー法などが使用できる。均一な蒸着のため、導電層付きウレタンの周囲に不活性ガスを導入することが好ましい。導入する不活性ガスの圧力は、0.01Pa以上である。不活性ガスの圧力が0.01Pa未満であると、薄膜の付き回りが悪く未着部分ができる。不活性ガスの雰囲気圧力上限は、使用する原料加熱方式(電子銃や抵抗加熱など)によって異なるが、ガス使用量、成膜速度の観点から1Pa以下が好ましい。また、不活性ガスとしては、アルゴンガスが好適に利用できる。アルゴンガスは、比較的多く自然界に存在し、安価に入手可能であり、人体に対する悪影響が少ないので好ましい。
 導電層付きウレタンの表面に金を蒸着するには、既存の成膜装置を利用すれば良い。例えば、成膜する対象を区画する成膜室、金および成膜対象をそれぞれ載置する支持台および加熱容器、金を加熱する電子銃を有している真空蒸着装置を好適に利用することができる。真空蒸着装置を使用すると、本発明の成膜対象である導電層付きウレタンの周囲に不活性ガスを均等に導入し易く、また、導電層付きウレタンの周囲の空間が区画されているので不活性ガスの圧力を調節し易いので好ましい。始めに、導電層付きウレタンを真空蒸着装置の支持台に載置するとともに、薄膜の原料である金を加熱容器に載置する。次に、成膜室内を真空引きして高真空状態とした後、成膜室内に不活性ガスを導入する。ここで、成膜室内に導入する不活性ガスの圧力は、0.01~1Paとなるように調節する。そして、電子銃から電子ビームを発射して金を溶融し、ウレタン上に金薄膜を蒸着する。
(アルミニウム層の形成:溶融塩めっき)
 次に溶融塩中で電解めっきを行い、樹脂成形体表面にアルミニウムめっき層3を形成する。表面が導電化された樹脂成形体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。アルミニウムめっき層の厚みは、1μm~100μm、好ましくは、5μm~20μmである。陽極電解処理とは逆に導電化された樹脂成形体を陰極、対極を陽極として溶融塩中で直流電流を印加する。溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなくめっきができ好ましい。有機系ハロゲン化物としては、イミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム、1-エチル-3-メチルイミダゾリウムクロライド(AlCl-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは、窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。有機溶融塩浴としてEMIC浴を用いた場合、めっき浴の温度は、10℃から60℃、好ましくは、25℃から45℃である。
 図5は、帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は、円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属槽が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には、樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから、樹脂が無い金属構造体として用いる場合には、樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。ここで、高温での加熱分解等の方法は、簡便であるが、アルミニウムの酸化を伴う。アルミニウムは、ニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、酸化により導電性が失われることから用いることが出来ない。このため、アルミニウムの酸化が起こらないように、以下に説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。
(樹脂の除去:溶融塩中熱分解)
 溶融塩中での熱分解は、以下の方法で行う。表面にアルミニウムめっき層を形成した、アルミニウムめっき層付き発泡樹脂成形体を溶融塩に浸漬し、該アルミニウム層に負電位を印加しながら加熱して発泡樹脂成形体を分解する。溶融塩に浸漬した状態で負電位を印加するとアルミニウムの酸化反応を防止できる。このような状態で加熱することでアルミニウムを酸化させることなく発泡樹脂成形体を分解することができる。加熱温度は、発泡樹脂成形体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためには、アルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は、500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
 樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩が使用できる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むと好ましい。このような方法で樹脂を除去することで、表面の酸化層を薄く(酸素量を少なく)できると共にカーボン含有量の少ないアルミニウム多孔体を得ることができる。
 図4は、図2(d)のA-A’断面を示す模式図である。導電層2及びアルミニウムめっき層3からなるアルミニウム層は、筒状の骨格構造をしており、骨格構造の内部にある空洞4は、略三角断面形状をなしている。該三角の頂点の部分のアルミニウム層の導電層を含む厚さ(t1)は、該三角の辺の中央部分の厚さ(t2)よりも厚い形状となっている。めっきによりアルミニウム層を形成する際に角部(三角の頂点部分)に電界が集中するため、このような形状となると推測される。すなわち、本発明の製造方法により、前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが、該三角の中央部分のアルミニウム層の厚さよりも厚い形状であるアルミニウム構造体が得られる。
 導電層2とアルミニウムめっき層3との間には、貴金属層が形成されている。貴金属は、酸化還元反応を起こしにくいので、アルミニウム構造体を電池の電極として使用する場合に溶解や析出して電池の劣化を起こすことが少ない。また、貴金属層は、アルミ構造体の内部にあり、電池の電解液と接触する表面部分は、アルミニウム純度が高くなっているので、電池の劣化が起こりにくい。したがってアルミニウム構造体に微量の貴金属が含まれていても電池用電極材料として良好に使用できる。金、銀、白金、ロジウム、ルテニウム及びパラジウムの合計量は、0.001%以上1.0%以下となる。なお貴金属層は、樹脂の分解工程等の加熱工程を経ることでアルミニウム中に拡散することがある。
(リチウムイオン電池)
 次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためには、アルミニウム箔と活物質とが電気的に接触している必要があるので活物質は、導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は、気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には黒鉛、電解質には有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。
(溶融塩電池)
 アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質としてクロム酸ナトリウム(NaCrO)、二硫化チタン(TiO)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は、導電助剤及びバインダーと組み合わせて使用する。導電助剤としては、アセチレンブラック等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)等を使用できる。活物質としてクロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEは、この両者をより強固に固着することができ好ましい。
 アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は、約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。
 図6は、上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)は、それぞれ、正極端子128、負極端子129に、リード線130で接続されている。
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばKFSAとNaFSAとを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。
 溶融塩は、セパレータに含浸させて使用する。セパレータは、正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。
(電気二重層コンデンサ)
 アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は、導電助剤やバインダーと組み合わせて使用する。導電助剤としては、黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしては、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
 図7は、上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141は、リード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。
 以上、樹脂成形体として発泡樹脂成形体を使用する場合について説明したが、本発明は、発泡樹脂成形体に限定されず、任意の形状の樹脂成形体を用いることで任意の形状のアルミニウム構造体を得ることができる。
(実施例:アルミニウム多孔体の製造:蒸着法によるアルミニウム層の形成)
 以下、アルミニウム多孔体の製造例を具体的に説明する。発泡樹脂成形体として、厚み1.6mm、気孔率95%、1インチ当たりの気孔数(セル数)約50個のウレタン発泡体を準備し、140mm×340mm角に切断した。ウレタン発泡体の表面にアルミニウムを蒸着し、厚み約1μmの導電層を形成した。
(貴金属の付着)
 導電層を形成した樹脂成形体に金を蒸着することで厚み0.005μmの貴金属層を形成した。金を蒸発させる手段は、電子銃により電子ビームを照射する方法とした。導電層付きウレタンの周囲に不活性ガスを圧力0.01~1Paの範囲で導入し、電子ビームにより金を溶融して、導電層の表面に金薄膜を蒸着した。
(溶融塩めっき)
 表面に導電層及び貴金属層を形成したウレタン発泡体をセットした治具を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続した。治具は、ウレタン発泡体の4辺からの給電が可能で100mm×300mmのエリアにめっき可能としたものである。温度40℃の溶融塩アルミめっき浴(67mol%AlCl-33mol%EMIC)に浸漬し、電流密度3.6A/dmの直流電流を90分間印加してアルミニウムをめっきした。攪拌は、テフロン(登録商標)製の回転子を用いてスターラーにて行った。なお一連の操作は、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内で行った。また電流密度の計算では、アルミニウム多孔体の見かけの面積を使用している(ウレタン発泡体の実表面積は、見かけの面積の約8倍)。この結果、180g/mの重量のアルミニウムめっき皮膜をほぼ均一に形成することができた。
(アルミニウム多孔体の製造:発泡樹脂成形体の分解)
 アルミニウムめっき層を形成した発泡樹脂を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を30分間印加した。溶融塩中に気泡が発生し、ポリウレタンの分解反応が起こっていると推定された。その後大気中で室温まで冷却した後、水洗して溶融塩を除去しアルミニウム多孔体を得た。
 得られたアルミニウム多孔体を王水に溶解し、ICP(誘導結合プラズマ)発光分析装置で測定した。またカーボン含有量をJIS-G1211の高周波誘導加熱炉燃焼-赤外線吸収法で測定した。アルミニウム純度は、99質量%であり、0.5質量%のカーボンと0.03質量%の金を含んでいた。さらに表面を15kVの加速電圧でEDX分析した結果、酸素のピークは、ほとんど観測されず、アルミニウム多孔体の酸素量は、EDXの検出限界(3.1質量%)以下であることが確認された。
(アルミニウム多孔体の電池としての評価)
 アルミニウム多孔体の実用上の評価例として電池用電極に用いた場合を、アルミニウム箔を電極とした従来構造との比較で説明する。
 正極活物質として平均粒径7μmのLiCoO、導電助剤としてカーボンブラック、バインダー樹脂としてPVdFを10:1:1(質量比)で混合し、さらに溶媒としてN-メチル-2-ピロリドンを混合してペーストを作製した。このペーストを、三次元網目構造を有する気孔率約95%のアルミニウム多孔体に充填した後150℃で真空乾燥し、さらに厚みが初期厚みの70%となるまでロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、2.4mAhであった。
 比較のため、厚み20μmのアルミニウム箔上に上記のLiCoO、カーボンブラック、PVdF混合ペーストを塗布し、上記と同様に乾燥及びロールプレスを行って電池用電極材料(正極)を作製した。この電池用電極材料を10mmφに打ち抜き、SUS304製のコイン電池容器にスポット溶接して固定した。正極充填容量は、0.24mAhであった。
 厚さ25μmのポリプロピレン製の多孔膜をセパレータとして使用し、1M濃度のLiPFを溶解したEC/DEC(体積比1:1)溶液をセパレータに対して0.1ml/cmで滴下し、真空含浸した。負極として、厚さ20μm、11mmφのリチウムアルミニウム箔を用い、コイン電池容器上蓋に接合して固定した。上記の電池用電極材料(正極)、セパレータ、負極をこの順で積層し、バイトンOリングを上蓋と下蓋との間に挟んでかしめ電池を作製した。重放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、各放電レートで放電させた。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、レート0.2Cにおいて約5倍の容量であった。さらに、JIS C 8711に記載のサイクル寿命に基づきライフサイクル試験を行った。充放電時の上限電圧を4.2V、下限電圧を3.0Vとし、正極充填容量まで充電後、0.2Cの放電レートで放電させるサイクルを繰り返した。アルミニウム多孔体を正極材料として用いたリチウム二次電池は、従来のアルミニウム箔を電極材料としたものと比較して、電圧や容量の低下は特になく、サイクル特性に問題は、見られなかった。
 以上の説明は、以下の特徴を含む。
(付記1)
 樹脂成形体の表面に金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属からなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを第1の溶融塩浴中でめっきするめっき工程を有するアルミニウム構造体の製造方法であって、
 前記アルミニウムめっき層が形成された樹脂成形体を第2の溶融塩に浸漬した状態で、該アルミニウムめっき層に負電位を印加しながらアルミニウムの融点以下の温度に加熱して前記樹脂成形体を分解する工程を有する、アルミニウム構造体の製造方法。
(付記2)
樹脂成形体の表面にニッケル、銅、コバルト、及び鉄からなる群より選択される1種以上の金属からなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程と、前記めっき工程の後に、前記導電層を溶解する溶解工程を有するアルミニウム構造体の製造方法であって、
 さらにアルミニウムめっき層が形成された樹脂成形体を溶融塩に浸漬した状態で、該アルミニウムめっき層に負電位を印加しながらアルミニウムの融点以下の温度に加熱して前記樹脂成形体を分解する工程を有する、アルミニウム構造体の製造方法。
(付記3)
 樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、該導電層の表面に亜鉛置換めっきを行い、亜鉛皮膜を形成する工程と、該亜鉛皮膜が形成された樹脂成形体にアルミニウムを第1の溶融塩浴中でめっきするめっき工程と、アルミニウムめっき層が形成された樹脂成形体を第2の溶融塩に浸漬した状態で、該アルミニウムめっき層に負電位を印加しながらアルミニウムの融点以下の温度に加熱して前記樹脂成形体を分解する、アルミニウム構造体の製造方法。
(付記4)
 樹脂成形体の表面にアルミニウムからなる導電層を形成する導電化工程と、前記導電層の表面に金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属を付着する工程と、該貴金属が付着した樹脂成形体にアルミニウムを第1の溶融塩浴中でめっきするめっき工程と、アルミニウムめっき層が形成された樹脂成形体を第2の溶融塩に浸漬した状態で、該アルミニウムめっき層に負電位を印加しながらアルミニウムの融点以下の温度に加熱して前記樹脂成形体を分解する、アルミニウム構造体の製造方法。
(付記5)
 前記樹脂成形体は、連続した気孔を有する発泡樹脂成形体である、付記1~4のいずれか1項に記載のアルミニウム多孔体の製造方法。
(付記6)
 前記めっき工程に用いる溶融塩浴は、イミダゾリウム塩浴である、付記2に記載のアルミニウム構造体の製造方法。
(付記7)
 前記溶融塩浴は、有機溶媒を添加したイミダゾリウム塩浴である、付記2または6に記載のアルミニウム構造体の製造方法。
(付記8)
 前記有機溶媒の添加は、めっき浴全体の25~57mol%である、付記7に記載のアルミニウム構造体の製造方法。
(付記9)
 前記めっきする工程に次いで前記有機溶媒を洗浄液として用いる洗浄工程をさらに有する、付記8に記載のアルミニウム構造体の製造方法。
(付記10)
 前記亜鉛置換めっきを行い、亜鉛皮膜を形成する工程は、4℃以上15℃以下の温度の亜鉛置換めっき処理液に、前記導電層が形成された樹脂成形体を浸漬して行う、付記3に記載のアルミニウム構造体の製造方法。
(付記11)
 前記貴金属を付着する工程を気相法により行うことを特徴とする、付記4に記載のアルミニウム構造体の製造方法。
(付記12)
 本発明により得られるアルミニウム構造体のアルミニウム表面に活物質が担持された電極材料。
(付記13)
 付記12に記載の電極材料を、正極、負極の一方又は、両方に用いた電池。
(付記14)
 付記12に記載の電極材料を電極として用いた電気二重層コンデンサ。
(付記15)
 本発明により得られるアルミニウム構造体からなる濾過フィルタ。
(付記16)
 本発明により得られるアルミニウム構造体の表面に触媒が担持された触媒担体。
 以上の如く本発明によれば、樹脂成形体表面にアルミニウムをめっきした構造体、またそこから樹脂成形体を除去したアルミニウム構造体を得ることができるので、例えばアルミニウム多孔体として電池用電極等の電気材料や、各種濾過用のフィルタ、触媒担体などにおいて、アルミニウムの特性が活かされる場合に広く適用することができる。
 1 発泡樹脂  2 導電層  3 アルミニウムめっき層  4 空洞
 21a,21b めっき槽   22 帯状樹脂   23,28 めっき浴
 24 円筒状電極
 25,27 正電極  26 電極ローラ
 121 正極  122 負極  123 セパレータ  124 押え板
 125バネ  126押圧部材  127ケース  128 正極端子
 129 負極端子   130 リード線
 141 分極性電極  142 セパレータ  143 有機電解液
 144 リード線   145 ケース

Claims (22)

  1.  樹脂成形体の表面に金、銀、白金、ロジウム、ルテニウム、パラジウム、ニッケル、銅、コバルト、鉄及びアルミニウムからなる群より選択される1種以上の金属からなる導電層を形成する導電化工程と、該導電化された樹脂成形体にアルミニウムを溶融塩浴中でめっきするめっき工程とを備えるアルミニウム構造体の製造方法。
  2.  前記樹脂成形体は、三次元網目構造を有する樹脂多孔体である、請求項1に記載のアルミニウム構造体の製造方法。
  3.  前記導電化工程は、気相法により前記樹脂成形体表面に金、銀、白金、ロジウム、ルテニウム、パラジウム及びアルミニウムからなる群より選択される1種以上の金属を付着する工程である請求項1又は2に記載のアルミニウム構造体の製造方法
  4.  前記導電化工程は、無電解めっきにより前記樹脂成形体表面に金、銀、白金、ロジウム、ルテニウム、パラジウム、ニッケル、銅、コバルト、鉄からなる群より選択される1種以上の金属を付着する工程である、請求項1~3のいずれか1項に記載のアルミニウム構造体の製造方法。
  5.  前記導電化工程は、前記樹脂成形体を金、銀、白金、ロジウム、ルテニウム、パラジウム及びアルミニウムからなる群より選択される1種以上の金属を含む塗料に浸漬することで前記樹脂成形体表面に金、銀、白金、ロジウム、ルテニウム、パラジウム及びアルミニウムからなる群より選択される1種以上の金属を付着する工程である、請求項1~4のいずれか1項に記載のアルミニウム構造体の製造方法。
  6.  前記樹脂成形体は、ウレタンまたはメラミンである、請求項1~5のいずれか1項に記載のアルミニウム構造体の製造方法。
  7.  前記めっき工程の後に、さらに前記樹脂成形体を除去する工程を有する、請求項1~6のいずれか1項に記載のアルミニウム構造体の製造方法。
  8. 前記めっき工程の後に、前記導電層を溶解する溶解工程を有する、請求項1に記載のアルミニウム構造体の製造方法。
  9. 前記溶解工程と同時、または前記溶解工程の前に、前記樹脂成形体を除去する工程を有する、請求項8に記載のアルミニウム構造体の製造方法。
  10.  前記めっき工程の後に、前記導電層の表面に亜鉛置換めっきを行い亜鉛皮膜を形成する工程を有する、請求項1に記載のアルミニウム構造体の製造方法。
  11.  前記亜鉛置換めっきを行い亜鉛皮膜を形成する工程は、4℃以上15℃以下の温度の亜鉛置換めっき処理液に、前記導電層が形成された樹脂成形体を浸漬して行う、請求項10に記載のアルミニウム構造体の製造方法。
  12.  前記導電化工程の後に、前記導電層の表面に金、銀、白金、ロジウム、ルテニウム及びパラジウムからなる群より選択される1種以上の貴金属を付着する工程を有する、請求項1に記載のアルミニウム構造体の製造方法。
  13.  請求項1~12のいずれか1項に記載の製造方法により製造されたアルミニウム構造体。
  14.  金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムの純度が90.0%以上、金、銀、白金、ロジウム、ルテニウム及びパラジウムの合計量が0.01%以上10%以下、残部不可避不純物からなるアルミニウム構造体。
  15.  金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムの純度が80質量%以上、ニッケル、銅、コバルトおよび鉄の合計量が2質量%以上20質量%以下、残部可避不純物からなるアルミニウム構造体。
  16.  金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムの純度が98.0質量%以上、ニッケル、銅、鉄およびコバルトの合計量が0.0001質量%以上2質量%未満、残部不可避不純物からなるアルミニウム構造体。
  17.  金属層として1μm~100μmの厚さのアルミニウム層を有するアルミニウム構造体であって、該金属層は、アルミニウムの純度が98.0%以上、亜鉛含有量が0.0001%以上2%以下、残部不可避不純物からなるアルミニウム構造体。
  18.  金属層として、一方の表面に厚み1μm~100μmの第1のアルミニウム層を、他方の表面に厚み0.05μm~1μmの第2のアルミニウム層を有し、前記2層のアルミニウム層の間に貴金属層を有するアルミニウム構造体。
  19.  前記金属層は、アルミニウムの純度が99.0質量%以上、金、銀、白金、ロジウム、ルテニウム及びパラジウムの合計量が0.001質量%以上1.0質量%以下、残部不可避不純物からなる請求項13に記載のアルミニウム構造体。
  20.  さらに前記金属層を表面に備えた樹脂成形体を有する、請求項13~19のいずれか1項に記載のアルミニウム構造体。
  21.  前記アルミニウム層が筒状の骨格構造をなし、全体として連続した気孔を有する多孔体を形成してなる、請求項13~20のいずれか1項に記載のアルミニウム構造体。
  22.  前記骨格構造が略三角断面形状をなし、該三角の頂点の部分のアルミニウム層の厚さが該三角の中央部分のアルミニウム層の厚さよりも厚い形状である、請求項21に記載のアルミニウム構造体。
PCT/JP2011/060722 2010-05-12 2011-05-10 アルミニウム構造体の製造方法およびアルミニウム構造体 WO2011142338A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800049313A CN102666934A (zh) 2010-05-12 2011-05-10 铝结构体的制造方法和铝结构体
CA2784182A CA2784182A1 (en) 2010-05-12 2011-05-10 Method for producing aluminum structural body and aluminum stuctural body
EP11780595A EP2570518A1 (en) 2010-05-12 2011-05-10 Method of manufacturing aluminum structure, and aluminum structure
KR1020127015024A KR20130069539A (ko) 2010-05-12 2011-05-10 알루미늄 구조체의 제조 방법 및 알루미늄 구조체
US13/237,204 US8728627B2 (en) 2010-05-12 2011-09-20 Manufacturing method of aluminum structural body and aluminum structural body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-110142 2010-05-12
JP2010110141A JP2011236476A (ja) 2010-05-12 2010-05-12 アルミニウム構造体の製造方法およびアルミニウム構造体
JP2010-110141 2010-05-12
JP2010110142A JP5488994B2 (ja) 2010-05-12 2010-05-12 アルミニウム構造体の製造方法およびアルミニウム構造体
JP2010122366A JP2011246779A (ja) 2010-05-28 2010-05-28 アルミニウム構造体の製造方法およびアルミニウム構造体
JP2010-122366 2010-05-28
JP2010130607A JP5488996B2 (ja) 2010-06-08 2010-06-08 アルミニウム構造体の製造方法およびアルミニウム構造体
JP2010-130607 2010-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/237,204 Continuation US8728627B2 (en) 2010-05-12 2011-09-20 Manufacturing method of aluminum structural body and aluminum structural body

Publications (1)

Publication Number Publication Date
WO2011142338A1 true WO2011142338A1 (ja) 2011-11-17

Family

ID=44914393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060722 WO2011142338A1 (ja) 2010-05-12 2011-05-10 アルミニウム構造体の製造方法およびアルミニウム構造体

Country Status (7)

Country Link
US (1) US8728627B2 (ja)
EP (1) EP2570518A1 (ja)
KR (1) KR20130069539A (ja)
CN (1) CN102666934A (ja)
CA (1) CA2784182A1 (ja)
TW (1) TW201207161A (ja)
WO (1) WO2011142338A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049991A1 (ja) * 2010-10-13 2012-04-19 住友電気工業株式会社 金属多孔体とその製造方法、および溶融塩電池
EP2555290A4 (en) * 2010-03-26 2015-08-19 Sumitomo Electric Industries METHOD FOR PRODUCING A POROUS METAL BODY, POROUS ALUMINUM BODY, BATTERY ELECTRODE MATERIAL WITH THE POROUS METAL BODY OR THE POROUS ALUMINUM BODY, AND ELECTRODE MATERIAL FOR A TWIN-LAYER ELECTRIC COATING APPARATUS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988104A1 (fr) * 2012-03-15 2013-09-20 Eurocopter France Procede de fabrication d'une piece comprenant une ame obtenue sans outillage
JP2014234531A (ja) * 2013-05-31 2014-12-15 住友電気工業株式会社 アルミニウム多孔体の製造方法、アルミニウム多孔体、集電体、電極、及び電気化学デバイス
CN108300969B (zh) * 2018-03-14 2020-02-25 河南科技大学 一种低电阻泡沫金属的制备方法
CN108441821B (zh) * 2018-03-16 2019-10-18 江苏中天科技股份有限公司 铝或铝/铜或铝/镍空心丝宏观体及其制造系统与方法
CN108520833B (zh) * 2018-03-16 2019-09-17 江苏中天科技股份有限公司 多孔铝宏观体及其制造系统与方法
CN112095034B (zh) * 2020-10-16 2024-01-16 成都师范学院 内孔表层为双金属复合梯度结构的泡沫铝及其制备方法
WO2022263681A2 (de) * 2021-06-19 2022-12-22 Gerhardi Kunststofftechnik Gmbh Dekoratives kunststoffbauteil und verfahren zur herstellung eines solchen bauteils

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293058A (ja) * 1985-10-18 1987-04-28 Mazda Motor Corp 複合部材の製造方法
JPH05271986A (ja) * 1992-03-24 1993-10-19 Mitsubishi Petrochem Co Ltd アルミニウム・有機高分子積層体
JPH06306672A (ja) * 1993-04-26 1994-11-01 Denki Kagaku Kogyo Kk 複合材料強化材、その製造方法及び複合材料
JPH08165590A (ja) * 1994-12-14 1996-06-25 Shin Etsu Chem Co Ltd 多孔金属の製造方法
JPH08170126A (ja) 1994-12-15 1996-07-02 Sumitomo Electric Ind Ltd 金属多孔体、その製造方法及びそれを用いた電池用極板
JP3202072B2 (ja) 1992-09-21 2001-08-27 三菱化学株式会社 電気アルミニウムめっき方法
JP3413662B2 (ja) 1992-01-13 2003-06-03 上村工業株式会社 アルミニウム多孔体の製造方法
JP2004509230A (ja) * 2000-09-18 2004-03-25 サーキット フォイル ルクセンブルグ トレーディング エス.エイ アール.エル. 発泡材ストリップの電気メッキ方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1210082B (de) * 1963-09-10 1966-02-03 Rheinische Blattmetall Ag UEberwiegend aus Reinstaluminium bestehende Metallfolie fuer Elektrolytkondensatoren
US3171820A (en) * 1964-02-17 1965-03-02 Scott Paper Co Reticulated polyurethane foams and process for their production
US3351442A (en) * 1966-10-21 1967-11-07 Republic Foil Inc Treatment of aluminum foil and product produced thereby
US3397044A (en) * 1967-08-11 1968-08-13 Reynolds Metals Co Aluminum-iron articles and alloys
NL7607390A (nl) * 1975-07-09 1977-01-11 Montedison Spa Werkwijze voor de vervaardiging van metallische en/of metaalkeramische en/of keramische spons.
FR2558485B1 (fr) 1984-01-25 1990-07-13 Rech Applic Electrochimique Structure metallique poreuse, son procede de fabrication et applications
JPS60253157A (ja) 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd 非水系二次電池
JPH0723553B2 (ja) 1986-10-02 1995-03-15 住友電気工業株式会社 三次元網状構造体のメッキ方法
JP2662635B2 (ja) 1988-04-26 1997-10-15 日新製鋼株式会社 電気アルミニウムめっき浴およびその浴によるめっき方法
JP2664072B2 (ja) 1988-09-10 1997-10-15 住友電気工業株式会社 多孔質金属の製造方法
US5087245A (en) 1989-03-13 1992-02-11 Ivac Corporation System and method for detecting abnormalities in intravascular infusion
JPH02305988A (ja) 1989-05-18 1990-12-19 Mitsubishi Petrochem Co Ltd 低融点組成物およびその浴を用いる電気アルミニウムめっき方法
US4978431A (en) * 1989-08-07 1990-12-18 Eltech Systems Corporation Continuous electroplating of conductive foams
JPH042795A (ja) 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd 金属多孔体の連続製造方法
JPH04341594A (ja) 1991-05-17 1992-11-27 Eagle Ind Co Ltd 電鋳法
JPH05214578A (ja) 1992-01-31 1993-08-24 Tanaka Kikinzoku Kogyo Kk 貴金属電鋳品の製造方法
JP3180200B2 (ja) 1992-10-12 2001-06-25 日清紡績株式会社 金属多孔体の製造方法
JPH06279609A (ja) 1993-03-29 1994-10-04 Mitsubishi Petrochem Co Ltd 合成樹脂成形品
US7462425B2 (en) * 2003-09-26 2008-12-09 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery module
JP2005187921A (ja) 2003-12-26 2005-07-14 Alps Electric Co Ltd 電鋳用基板及びその製造方法、並びにメッキ層の製造方法
JP2008195990A (ja) 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 電気アルミニウムめっき浴及びそれを用いためっき方法
US20090178741A1 (en) * 2008-01-11 2009-07-16 Reactive Nanotechnologies, Inc. Method Of Making Reactive Composite Materials and Resulting Products
JP5598027B2 (ja) 2009-03-05 2014-10-01 日立金属株式会社 アルミニウム多孔質材およびその製造方法、アルミニウム多孔質材を電極集電体として用いた蓄電デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293058A (ja) * 1985-10-18 1987-04-28 Mazda Motor Corp 複合部材の製造方法
JP3413662B2 (ja) 1992-01-13 2003-06-03 上村工業株式会社 アルミニウム多孔体の製造方法
JPH05271986A (ja) * 1992-03-24 1993-10-19 Mitsubishi Petrochem Co Ltd アルミニウム・有機高分子積層体
JP3202072B2 (ja) 1992-09-21 2001-08-27 三菱化学株式会社 電気アルミニウムめっき方法
JPH06306672A (ja) * 1993-04-26 1994-11-01 Denki Kagaku Kogyo Kk 複合材料強化材、その製造方法及び複合材料
JPH08165590A (ja) * 1994-12-14 1996-06-25 Shin Etsu Chem Co Ltd 多孔金属の製造方法
JPH08170126A (ja) 1994-12-15 1996-07-02 Sumitomo Electric Ind Ltd 金属多孔体、その製造方法及びそれを用いた電池用極板
JP2004509230A (ja) * 2000-09-18 2004-03-25 サーキット フォイル ルクセンブルグ トレーディング エス.エイ アール.エル. 発泡材ストリップの電気メッキ方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555290A4 (en) * 2010-03-26 2015-08-19 Sumitomo Electric Industries METHOD FOR PRODUCING A POROUS METAL BODY, POROUS ALUMINUM BODY, BATTERY ELECTRODE MATERIAL WITH THE POROUS METAL BODY OR THE POROUS ALUMINUM BODY, AND ELECTRODE MATERIAL FOR A TWIN-LAYER ELECTRIC COATING APPARATUS
WO2012049991A1 (ja) * 2010-10-13 2012-04-19 住友電気工業株式会社 金属多孔体とその製造方法、および溶融塩電池

Also Published As

Publication number Publication date
CA2784182A1 (en) 2011-11-17
US20120070683A1 (en) 2012-03-22
KR20130069539A (ko) 2013-06-26
TW201207161A (en) 2012-02-16
EP2570518A1 (en) 2013-03-20
CN102666934A (zh) 2012-09-12
US8728627B2 (en) 2014-05-20

Similar Documents

Publication Publication Date Title
JP5663938B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2011142338A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2011132538A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2012111615A1 (ja) 空気電池および電極
WO2012017851A1 (ja) 金属多孔体およびその製造方法、それを用いた電池
JP2012144763A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
WO2012165213A1 (ja) 金属多孔体及びそれを用いた電極材料、電池
JP2012186160A (ja) 電池
JP5648588B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
US20120237827A1 (en) Porous metal body, method for producing the same, and molten-salt battery
JP2011246779A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
US9184448B2 (en) Method of producing aluminum structure and aluminum structure
JP2013008540A (ja) 非水電解質二次電池用集電体及びそれを用いた電極
JP5692233B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5488996B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP5488994B2 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2013194308A (ja) 金属多孔体及びそれを用いた電極材料、電池
JP2011236476A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127015024

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2784182

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6070/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011780595

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE