WO2011126058A1 - 破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体 - Google Patents

破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2011126058A1
WO2011126058A1 PCT/JP2011/058739 JP2011058739W WO2011126058A1 WO 2011126058 A1 WO2011126058 A1 WO 2011126058A1 JP 2011058739 W JP2011058739 W JP 2011058739W WO 2011126058 A1 WO2011126058 A1 WO 2011126058A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracture
stress
deformation
state
determination target
Prior art date
Application number
PCT/JP2011/058739
Other languages
English (en)
French (fr)
Inventor
俊二 樋渡
繁 米村
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to EP11765958.1A priority Critical patent/EP2543983B1/en
Priority to CN201180016980.9A priority patent/CN102822659B/zh
Priority to US13/634,341 priority patent/US8606532B2/en
Priority to JP2012504219A priority patent/JP4980499B2/ja
Priority to BR112012025328A priority patent/BR112012025328B1/pt
Priority to ES11765958.1T priority patent/ES2565802T3/es
Priority to RU2012145307/28A priority patent/RU2507496C1/ru
Priority to KR1020127026005A priority patent/KR101227295B1/ko
Publication of WO2011126058A1 publication Critical patent/WO2011126058A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations

Definitions

  • the present invention relates to a fracture determination method, a fracture determination apparatus, a program, and a computer for determining fracture of a metal plate, a component made of a metal plate, a structure made of a metal plate, etc.
  • the present invention relates to a readable recording medium.
  • Such a vehicle body structure excellent in collision safety can be realized by absorbing the impact energy at the time of collision by a structural member other than the passenger compartment to ensure the living space by minimizing the deformation of the passenger compartment.
  • each member passes through a complicated deformation path, so that the risk of fracture changes depending on the deformation history. Therefore, it has been difficult to accurately evaluate the risk of breakage for each part of each member.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-152407
  • press forming simulation means equivalent plastic strain calculation means
  • forming crack determination value calculation means forming crack determination means
  • forming crack determination means forming crack determination means
  • An arithmetic processing device for predicting forming cracks in Japanese Patent Application Laid-Open No. 2004-260260 is disclosed.
  • the molding crack judgment means of the arithmetic processing unit predicts the molding crack based on whether the judgment subject equivalent plastic strain exceeds the molding crack judgment value in the progressing direction of the strain, thereby forming the molding crack with reference to the molding limit diagram. When the occurrence is predicted, the molding crack can be predicted with higher accuracy.
  • Patent Document 1 is a method for evaluating the margin of fracture based on the distance from the non-proportional forming limit value in the strain space, and it is necessary to recalculate the non-proportional forming limit value every time the progress direction of the strain changes. It was complicated.
  • Patent Document 2 describes a data obtained from numerical analysis using a finite element method and a fracture limit stress as a fracture limit stress line obtained by converting a hole expansion rate into a stress. It is disclosed that the risk of fracture of a material is quantitatively evaluated by comparing line relationships.
  • the fracture limit line can be easily and efficiently obtained, and the fracture limit can be determined with high prediction accuracy. .
  • Patent Document 3 describes a data obtained from numerical analysis using a finite element method and a fracture limit stress as a fracture limit stress line obtained by converting a hole expansion rate into a stress. It is disclosed that the risk of fracture of a material is quantitatively evaluated by comparing line relationships.
  • a fracture limit line is easily and efficiently obtained, and fracture is predicted with high accuracy. It is possible to evaluate the risk of fracture during press molding or collision.
  • Patent Document 4 discloses a fracture limit acquisition system in which a user terminal provides material data for fracture determination to a server and acquires data of a fracture limit line from the server. It is disclosed. It is disclosed that the user terminal quantitatively evaluates the risk of material breakage using the obtained breakage limit line.
  • Patent Documents 2 to 4 described above can cope with non-proportional deformation by evaluating with stress, but do not specifically show a quantitative index expressing the degree of risk of fracture.
  • the simple fracture determination method has a problem that the risk of fracture changes when the metal structure returns from the plastic state to the elastic state.
  • the present invention has been made in view of the above-described problems of the prior art, and is capable of performing a fracture determination with high accuracy even when the metal structure is returned from a plastic state to an elastic state.
  • An object is to provide a determination method, a break determination device, a program, and a computer-readable recording medium.
  • the present invention relates to a fracture determination method for determining fracture of a metal structure, a deformation analysis step for performing a deformation analysis from a deformation start to a deformation end of the metal structure, and the metal obtained by the deformation analysis step
  • the stress when returning to the elastic state is expressed by (x, y) coordinates.
  • the present invention is a fracture determination device for determining fracture of a metal structure, obtained by a deformation analysis unit that performs a deformation analysis from a deformation start to a deformation end of the metal structure, and the deformation analysis unit.
  • the stress when returning to the elastic state is expressed as (x, y )
  • a rupture determination unit that performs rupture determination of the rupture determination target portion using a re-yield stress determined by an intersection with a yield curve obtained from the plastic state.
  • the present invention is a program for determining fracture of a metal structure, and obtained by the deformation analysis step for performing deformation analysis from the start of deformation to the end of deformation of the metal structure, and the deformation analysis step.
  • the stress when returning to the elastic state is expressed as (x, y )
  • This is a program for causing a computer to execute a rupture determination step of performing a rupture determination of the rupture determination target portion using a re-yield stress determined by an intersection with a yield curve obtained from the plastic state.
  • the present invention is a computer-readable recording medium recording a program for determining fracture of a metal structure, a deformation analysis step for performing deformation analysis from the start of deformation to the end of deformation of the metal structure;
  • a rupture determination step for determining a rupture of the rupture determination target portion using a re-yield stress determined by an intersection of a straight line satisfying the condition and a yield curve obtained from the plastic state of the rupture determination target portion.
  • the fracture determination target portion of the metal structure is returned from the plastic state to the elastic state, the fracture determination can be performed with high accuracy.
  • FIG. 1 is a diagram illustrating a functional configuration of the fracture determination device.
  • FIG. 2 is a flowchart showing processing of the fracture determination method in the first fracture determination mode.
  • FIG. 3 is a flowchart showing processing of the fracture determination method in the second fracture determination mode.
  • FIG. 4 is a diagram showing a stress space in an elastic state.
  • FIG. 5 is a diagram showing a stress space in a plastic state.
  • FIG. 6 is a diagram illustrating a stress space when the plastic state returns to the elastic state.
  • FIG. 7 is a flowchart showing a process for calculating the risk of fracture.
  • FIG. 8 is a diagram for explaining processing for calculating the equivalent plastic strain and the fracture limit equivalent plastic strain.
  • FIG. 9 is a flowchart showing breakage determination in the molding process.
  • FIG. 9 is a flowchart showing breakage determination in the molding process.
  • FIG. 10 is a flowchart showing break determination in the collision process.
  • FIG. 11 is a schematic diagram illustrating an internal configuration of the fracture determination device.
  • FIG. 12 is a diagram illustrating an example in which the risk of fracture calculated by the method of the comparative example is displayed with contour lines.
  • FIG. 13 is a diagram showing an example in which the fracture risk calculated by the method of the first embodiment is displayed with contour lines.
  • FIG. 14 is a diagram showing an example in which the fracture risk calculated by the method of the second embodiment is displayed with contour lines.
  • FIG. 15 is a diagram showing the contour lines of the risk of breaking along the top t from the starting point s.
  • FIG. 1 is a diagram illustrating a functional configuration of a fracture determination device 10 according to the present embodiment.
  • the break determination device 10 includes a break determination main body 1, an input unit 2, and a display unit 3.
  • the fracture determination main body 1 includes a deformation analysis unit 4, an extraction unit 5, and a fracture analysis unit 6.
  • the fracture analysis unit 6 includes an estimation unit 7, a conversion unit 8, and a fracture determination unit 9.
  • the fracture determination device 10 of the present embodiment simulates a series of deformations from the start of deformation to the end of deformation of a metal plate, a component made of a metal plate, and a structure made of a metal plate (hereinafter referred to as a metal structure).
  • the rupture determination device 10 extracts a rupture determination target portion that is a target of rupture determination from the deformation state of the metal structure at an arbitrary timing according to the rupture determination mode, and performs a rupture determination on the rupture determination target portion.
  • the rupture determination target portion is extracted from the deformation state of one or more predetermined or predetermined steps, and the extracted rupture Breakage determination is performed on the determination target part.
  • the deformation analysis is performed from the start of deformation of the metal structure, and subsequently, the rupture determination target portion is extracted from the deformation state, the rupture determination is performed on the extracted rupture determination target portion, and the deformation is performed until the end of deformation. Repeat analysis and break determination.
  • the fracture determination device 10 stores the material of the metal structure, the mechanical characteristic value, and the like in advance, and is ready for simulation. Assuming that a predetermined stress is applied to a predetermined position of the metal structure, the deformation analysis unit 4 starts a deformation analysis of the metal structure in accordance with an instruction from the input unit 2 (S21). The deformation analysis unit 4 performs deformation analysis at predetermined time intervals or time-steps determined according to the degree of deformation.
  • the deformation analysis unit 4 uses a technique such as a finite element method for each step, sequentially analyzes deformation states such as stress and strain generated in the metal structure, and performs deformation analysis of the next step based on the deformation state. (S22). For example, at one part of the metal structure, as will be described later, the elastic state shifts to the plastic state, or the plastic state returns to the elastic state. The deformation analysis unit 4 performs deformation analysis until the end of deformation of the metal structure (S23). The deformation analysis unit 4 stores the deformation state of the metal structure by the deformation analysis for each step. In practical metal structure analysis, the number of steps is, for example, tens of thousands to millions of steps.
  • the extraction unit 5 extracts the deformation state of one or more steps arbitrarily or in advance from the stored deformation state, and extracts an arbitrary or predetermined break determination target part from the extracted deformation state (S24).
  • the deformation state to be extracted is a step deformation state arbitrarily input from the user via the input unit 2 or a predetermined step deformation state.
  • the rupture determination target part to be extracted is a rupture determination target part arbitrarily input from the user via the input unit 2 or a predetermined rupture determination target part. It is possible to set the fracture determination target parts to be extracted as all the parts of the metal structure.
  • it is desirable to extract the deformation state of all steps in order to determine the fracture state it is preferable to extract the deformation state of every step every 10 to 1000 steps in order to increase calculation efficiency.
  • the rupture analysis unit 6 performs rupture determination on the extracted rupture determination target parts (steps S25 and S26). Details of the break determination by the break analysis unit 6 will be described later.
  • the rupture analysis unit 6 stores the rupture determination of the rupture determination target part and ends the rupture determination.
  • the first rupture determination mode after the deformation analysis from the start of deformation to the end of deformation of the metal structure, the deformation state of one or more steps is extracted, and an arbitrary or predetermined rupture determination target portion is extracted from the extracted deformation state. Extraction is performed, and rupture determination is performed on the extracted rupture determination target part. Therefore, even when the fracture determination target portion of the metal structure is in an elastic state or a plastic state, it is possible to determine the fracture in any step. Moreover, since the fracture
  • the fracture determination device 10 stores the material of the metal structure, the mechanical characteristic value, and the like in advance, and is ready for simulation. Assuming that a predetermined stress is applied to a predetermined position of the metal structure, the deformation analysis unit 4 starts a deformation analysis of the metal structure in accordance with an instruction from the input unit 2 (S31). The deformation analysis unit 4 performs deformation analysis at predetermined time intervals or time-steps determined according to the degree of deformation.
  • the deformation analysis unit 4 uses a technique such as a finite element method for each step, sequentially analyzes deformation states such as stress and strain generated in the metal structure, and performs deformation analysis of the next step based on the deformation state. (S32, S33). For example, at one part of the metal structure, as will be described later, the elastic state shifts to the plastic state, or the plastic state returns to the elastic state.
  • the deformation analysis unit 4 stores the deformation state of the metal structure by the deformation analysis for each step.
  • the extraction unit 5 extracts an arbitrary or predetermined fracture determination target portion from the deformed state of the metal structure after a predetermined step interval (S34).
  • the step interval may be one step interval or an arbitrary step interval, but is preferably every 10 steps to 1000 steps in order to improve calculation efficiency.
  • the rupture determination target part to be extracted is a rupture determination target part arbitrarily input from the user via the input unit 2 or a predetermined rupture determination target part. It is possible to set the fracture determination target parts to be extracted as all the parts of the metal structure. Note that the flowchart shown in FIG. 3 shows a method of performing deformation analysis after two step intervals.
  • the break analysis unit 6 performs break determination of the extracted break determination target part (S35). Details of the break determination by the break analysis unit 6 will be described later.
  • the break analysis unit 6 stores the break determination of the break determination target part.
  • the extraction unit 5 extracts an arbitrary or predetermined fracture determination target part from the deformation state of the metal structure following the deformation analysis (S36, S37) after a predetermined step interval (S38). ).
  • the break analysis unit 6 performs break determination of the extracted break determination target part (S39), records the break determination, and ends the break determination.
  • S39 break determination of the extracted break determination target part
  • the second break determination mode following the deformation analysis after a predetermined step interval from the start of deformation of the metal structure, an arbitrary or predetermined break determination target portion is extracted from the deformation state, and the extracted break determination target Break determination is performed on the part. This process is performed until the deformation is completed. Therefore, even when the fracture determination target portion of the metal structure is in an elastic state or a plastic state, the fracture determination can be performed. Moreover, since the fracture determination of the fracture determination target part can be performed continuously, the user can grasp how the metal structure breaks.
  • the break determination device 10 can perform a break determination in a deformed state desired by the user.
  • the break determination device 10 can perform break determination at any time after the end of deformation of the metal structure or from the start of deformation of the metal structure to the end of deformation. It can respond flexibly to this.
  • the break analysis unit 6 can perform break determination of a break determination target part in a process including one or more deformation path changes.
  • the fracture analysis unit 6 includes the estimation unit 7, the conversion unit 8, and the fracture determination unit 9 as described above.
  • the estimation unit 7 estimates the fracture limit line of the strain space using the proportional load path.
  • the conversion unit 8 converts the fracture limit line of the strain space obtained through the proportional load path into a fracture limit line of the stress space (hereinafter referred to as a fracture limit stress line).
  • the rupture determination unit 9 calculates a rupture risk using the rupture limit stress line, performs a rupture determination from the calculated rupture risk, displays the result of the rupture determination on the display unit 3, and sets the rupture risk to a contour line. Or display.
  • FIGS. 4 to 6 are diagrams showing the stress space on the (x, y) coordinate plane. 4 to 6, the extracted fracture determination target portions are the same, but the extracted timings are different. That is, FIG. 4 is a stress space when the elastic state before the fracture determination target part starts plastic deformation is extracted.
  • FIG. 5 is a stress space when a plastic state in which the fracture determination target portion has started plastic deformation is extracted.
  • FIG. 6 shows a stress space when a state in which a fracture determination target portion returns from a plastic state to an elastic state is extracted.
  • FIGS. 4 to 6 will be described in detail.
  • the above-mentioned fracture limit stress line can be shown on the outermost side, and the yield curve in the initial state estimated based on the material of the metal structure can be shown on the inner side.
  • the elastic stress P shown in FIG. 4 is the stress P generated at the fracture determination target site, and can be indicated as the minimum principal stress ⁇ 2 on the x-axis and the maximum principal stress ⁇ 1 on the y-axis.
  • y ( ⁇ 1 / ⁇ 2) x connecting the origin and the stress P can be obtained.
  • the initial plastic stress A is a stress when the fracture determination target region shifts from the elastic state to the plastic state. Therefore, it is in an elastic state until the stress P exceeds the initial plastic stress A in the fracture determination target portion, and when it exceeds the initial plastic stress A, plastic deformation starts and a plastic state is obtained.
  • the fracture limit stress B is a stress when the fracture determination target site is broken. Therefore, the fracture occurs when the stress P reaches the fracture limit stress B at the fracture determination target site.
  • the same fracture limit stress line as in FIG. 4 and the yield curve in the initial state can be shown.
  • the stress P in the plastic state shown in FIG. 5 is the stress P generated in the fracture determination target portion, and can be indicated as the minimum principal stress ⁇ 2 on the x-axis and the maximum principal stress ⁇ 1 on the y-axis.
  • the yield curve in the plastic state can be shown in conjunction with the increase of the stress P in the plastic state.
  • the breakage determination target part may be unloaded due to, for example, buckling of a part different from the breakage determination target part.
  • the fracture determination target part since the stress P of the fracture determination target part is smaller than the stress P in the plastic state, the fracture determination target part returns from the plastic state to the elastic state.
  • FIG. 6 shows the stress space when the fracture determination target part returns from the plastic state to the elastic state.
  • the stress P when returning to the elastic state shown in FIG. 6 is the stress P generated in the fracture determination target portion, and is indicated as the minimum principal stress ⁇ 2 on the x axis and the maximum principal stress ⁇ 1 on the y axis. Can do. Note that the stress P is smaller than the stress P in the plastic state shown in FIG. 5 by being unloaded.
  • the yield curve when returning to an elastic state can be shown.
  • the yield curve when returning to the elastic state and the yield curve in the plastic state shown in FIG. 5 are the same curve.
  • the yield curve when returning to the elastic state of FIG. 6 and the yield curve when returning to the elastic state of FIG. 5 will be described as the current yield curve. That is, even if the fracture determination target portion returns from the plastic state to the elastic state, the current yield curve shown in FIG. 6 is maintained without changing from the current yield curve shown in FIG. Therefore, the current yield curve shown in FIG. 6 can be obtained from the current yield curve shown in FIG.
  • it is in an elastic state when the stress P when returning to the elastic state is inside the current yield curve.
  • the rupture risk level (by comparing the rupture limit stress line with the stress P generated in the rupture determination target portion) Or the deformation margin) was calculated. Specifically, the fracture risk was calculated by the following f 1 expression.
  • the f 1 formula based on the origin of the stress zero shown in FIGS. 4 to 6, the distance to the coordinate point of the stress P occurring in fracture determination target portion in each of FIGS. 4 to 6, the breaking stress limit The ratio of the distance to the coordinate point of B is taken as the risk of breakage.
  • Formula 1 when the stress P in the plastic state and the re-yield stress R coincide with each other as in the plastic state shown in FIG. 5, it is possible to calculate a certain degree of fracture risk. However, when the plastic state shown in FIG. 6 returns to the elastic state, the stress P when returning to the elastic state is closer to the origin than the re-yield stress R.
  • the rupture risk is calculated to be smaller than the re-yield stress R in spite of the progress of the plasticity of the rupture determination target portion, and an accurate rupture determination cannot be made.
  • the stress P of the elastic state has not exceeded the initial plastic stress A, occurs fracture risk Despite the absence, the risk of breakage is calculated.
  • the fracture risk is calculated using the stress P in the plastic state in the plastic state shown in FIG.
  • the fracture risk is calculated using the re-yield stress R instead of the stress P when the elastic state is returned.
  • the criterion for calculating the fracture risk is the initial plastic stress A, not the origin. Therefore, in the elastic state shown in FIG. 4, the fracture risk is calculated as 0. That is, to calculate the risk broken by formula f 2 below.
  • fracture risk is calculated as 0. Further, in the plastic state shown in FIG. 5, the fracture risk is calculated by a numerical value between 0 and 1 based on the coordinate point of the stress P in the plastic state. Further, when the plastic state shown in FIG. 6 returns to the elastic state, the fracture risk is calculated as a numerical value between 0 and 1 based on the coordinate point of the re-yield stress R.
  • the break determination unit 9 can perform a break determination using the calculated break risk as a break determination index. Specifically, the break determination unit 9 performs a break determination based on a safety factor input in advance by the user via the input unit 2. The break determination unit 9 determines that “there is no possibility of breakage” when the risk of breakage is 0, and when the risk of breakage is greater than 0 and less than the safety factor, “the risk of breakage is low”. If the risk of breakage is greater than or equal to the safety factor and less than 1, it is determined that “the risk of breakage is high”, and if the risk of breakage is 1, it is determined that “breakage”. For example, the safety factor can be arbitrarily set by the user in the range of 0 to 1, such as 0.9.
  • the estimation unit 7 has already estimated the fracture limit line of the strain space, and the conversion unit 8 converts the estimated fracture limit line of the strain space into the fracture limit stress line of the stress space, as shown in FIGS.
  • FIGS. Such a (x, y) coordinate plane is shown.
  • the converter 8 also shows the initial yield curve and possibly the current yield curve shown in FIGS. 5 and 6 on the (x, y) coordinate plane.
  • the break determination unit 9 determines whether or not the break determination target part has started plastic deformation (S71).
  • the fracture determination unit 9 may determine that plastic deformation has started when plastic strain is stored in the deformation analysis by the deformation analysis unit 5.
  • the rupture determination unit 9 determines whether the rupture determination target part is in a plastic state or a state in which the plastic state has returned to the elastic state (S72). In the stress space shown in FIGS. 5 and 6, the fracture determination unit 9 is in a plastic state when the stress P has reached the current yield curve, and is in a plastic state when the stress P has not reached the current yield curve. From this, it is determined that the state has returned to the elastic state.
  • the current yield curve is obtained by the deformation analysis unit 5 storing the plastic strain of the fracture determination target portion, and the estimation unit 7 and the conversion unit 8 by the plastic strain. Can be shown in the (x, y) coordinate plane. This process is the same as the process shown on the (x, y) coordinate plane by converting the fracture limit line of the strain space estimated by the estimation unit 7 into the fracture limit stress line by the conversion unit 8.
  • the break determination unit 9 calculates the break risk of the break determination target part (S74).
  • the rupture determination unit 9 determines that the rupture determination target part is in an elastic state, and the above-described formula f 2 To calculate the risk of breakage as 0.
  • fracture determination target region when the plastic state fracture determination unit 9, using the stress P of the plastic state, the initial plastic stress A, the fracture limit stress B the equation f 2 described above To calculate the risk of breakage.
  • the fracture determination unit 9 determines the re-yield stress R, the initial plastic stress A, and the fracture limit stress B estimated in step S73. calculating a fracture risk using the equation f 2 that.
  • the initial plastic stress A and the fracture limit stress B can be calculated in the same manner as in the plastic state.
  • the fracture determination unit 9 calculates the risk of fracture using the re-yield stress R when the fracture determination target part returns from the plastic state to the elastic state. Therefore, when the fracture determination is performed in the stress space, it is possible to avoid the problem that the fracture risk changes when the fracture determination target part returns from the plastic state to the elastic state. Further, by using the initial plastic stress A as a reference instead of the origin as a reference for calculating the risk of fracture, the risk of fracture can be calculated excluding the case where no risk of fracture occurs.
  • the above-described fracture determination method is an explanation from a state in which plastic deformation has not occurred in the fracture determination target part, but even if plastic deformation has already occurred in a part of the metal structure, the fracture is similarly performed. Can be determined. That is, the fracture determination device 10 can also determine a fracture even for a metal structure in which plastic deformation occurs due to, for example, press molding. In the case of such a metal structure, depending on the fracture determination target part, the current yield curve exists outside the initial yield curve as shown in FIG. 6 before the deformation analysis is started. The current yield curve can be shown on the (x, y) coordinate plane of the stress space by the conversion unit 8 by using the plastic strain stored by the deformation analysis unit 5 in the deformation analysis such as press forming.
  • the fracture determination unit 9 converts the re-yield stress R and the fracture limit stress B calculated using the stress space in the first embodiment into equivalent stresses, respectively, and the equivalent stress shown in FIG. -Using the equivalent plastic strain curve, obtain the equivalent plastic strain ⁇ eq P and the fracture limit equivalent plastic strain ⁇ eq B, and calculate the fracture risk.
  • the equivalent stress-equivalent plastic strain curve shown in FIG. 8 is based on the material of the metal structure, and is stored in the fracture determination device 10 in advance.
  • the risk of fracture is calculated as 0 in the elastic state until the stress P at the fracture determination target site exceeds the initial plastic stress A.
  • the fracture determination unit 9 converts the calculated re-yield stress R and the fracture limit stress B into equivalent stresses, respectively, and uses the equivalent stress-equivalent plastic strain curve shown in FIG. 8 to correspond to the equivalent plastic strain ⁇ eq P and the fracture limit equivalent.
  • the plastic strain ⁇ eq B is obtained.
  • Fracture determination unit 9 calculates the risk breakage by substituting the equivalent plastic strain epsilon eq P and fracture limit equivalent plastic strain epsilon eq B obtained below f 3 expression.
  • the break determination unit 9 can perform a break determination using the calculated break risk and safety factor.
  • the third embodiment a fracture determination method according to the third embodiment will be described.
  • the degree of fracture risk described in the first embodiment or the second embodiment is calculated, and the fracture determination target portion is in an elastic state, a plastic state, or as shown in FIGS. regardless of when returning from the plastic state to the elastic state, and calculates the fracture risk by using the stress P which is generated in the fracture determination target portion and fracture limit stress B Comparative example f 1 described above.
  • the break determination unit 9 determines the break risk calculated by the method of the first embodiment or the second embodiment and the break risk calculated by the comparative example according to an instruction via the input unit 2 of the user. At least one of the degrees is displayed on the display unit 3.
  • the break determination unit 9 uses the origin of zero stress as a reference, the distance to the coordinate point of the stress P occurring at the break determination target site in FIGS. The ratio with the distance to the point is calculated as the risk of breakage.
  • the fracture risk calculated by the first embodiment or the second embodiment is a more useful index.
  • the user has a purpose such as wanting to suppress the stress of the rupture determination target portion, he wants to grasp the stress generated in the rupture determination target portion regardless of the state of the rupture determination target portion.
  • the direction of fracture risk calculated a valuable indicator in Comparative Example f 1 described above. Therefore, by calculating both the fracture risk by the method of the first embodiment or the second embodiment and the fracture risk by the method of the comparative example, 1) increase the margin as a material, 2) stress It can be properly used according to the purpose such as suppressing. That is, it is possible to design a metal structure while properly using a margin as a material and a margin as a stress state.
  • the estimation unit 7 is an approximate expression of a stress-strain curve obtained from a uniaxial tensile test, for example.
  • the estimation unit 7 is an approximate expression of a stress-strain curve obtained from a uniaxial tensile test.
  • the estimation unit 7 identifies the material parameter Kc based on the measured values of one or more maximum fracture limit strain ⁇ 1 and minimum fracture limit strain ⁇ 2 .
  • the fracture limit line of the strain space is theoretically estimated using the estimation unit 7
  • the fracture limit line of the strain space is experimentally measured without using the estimation unit 7.
  • the fracture limit line of the strain space is obtained by calculating a plurality of in-plane strain ratios for a metal plate by a proportional load experiment, and then calculating the maximum fracture limit strain ⁇ 1 and the minimum fracture limit strain ⁇ 2 at each strain ratio. Obtained using measured values.
  • the conversion unit 8 When converting the fracture limit line of the strain space into the fracture limit stress line of the stress space, the conversion unit 8 performs the above-described conversion using the yield law vertical law as an increase law of plastic strain. Specifically, as described above, Mises' yield function, which is a relational expression between the equivalent plastic strain ⁇ eq and each strain component ⁇ ij
  • the fracture determination unit 9 compares the positional relationship between the fracture limit stress line of the stress space converted by the conversion unit 8 and the strain state of each part obtained from the simulation result of the plastic deformation process by the finite element method. When the strain in the deformation process reaches this limit strain, it is judged as “breaking” or “high risk of breaking”.
  • the dynamic explicit method which is one of the finite element methods, is used as a deformation analysis method, the plastic strain obtained by the dynamic explicit method is converted into stress, and the stress is compared with the fracture limit stress line in the stress space. .
  • the fracture determination unit 9 converts the strain obtained from the deformation state of the metal structure evaluated by the experiment into stress instead of performing the above simulation, and generates a fracture using the fracture limit stress line in the stress space. You may make it evaluate quantitatively the presence or absence of.
  • the fracture determination unit 9 performs deformation analysis in consideration of the speed dependency of the deformation stress of the metal structure.
  • the fracture determination unit 9 converts the plastic strain obtained from the deformation analysis to calculate the stress at the reference strain rate, and compares the stress with the fracture limit stress line in the stress space corresponding to the reference strain rate.
  • FIG. 9 is a flowchart in the case of performing fracture determination in the process of forming a metal structure, specifically, a metal plate.
  • the estimation unit 7 stores the material and mechanical characteristic values (t (thickness of the metal plate), YP (yield strength), TS (tensile strength), El (total elongation), Based on U.El (uniform elongation), r value (Rankford value), n-th power hardening law / Swift hardening law), the fracture limit line of the strain space is estimated by the proportional load path (S91).
  • the conversion unit 8 converts the experimentally measured fracture limit line of the strain space into the fracture limit stress line of the stress space using, for example, the Mises yield function (S92).
  • the rupture determination unit 9 uses the rupture limit stress line converted by the conversion unit 8, the stress generated in the rupture determination target region, the current yield curve, and the initial yield curve to determine the rupture determination target region.
  • the risk of breakage is calculated and a breakage determination is performed (S93).
  • the break determination as described above, the risk of breakage and the safety factor are used, and “there is no possibility of breakage”, “the risk of breakage is low”, “the risk of breakage is high”, “ And so on. Further, the process for calculating the risk of breakage corresponds to the flowchart shown in FIG.
  • step S93 the break determination unit 9 uses the break risk level and the safety factor of the break determination target part and determines that “breaking” or “high risk of break”, the following processing is performed. Is executed (S94). That is, the break determination unit 9 outputs the element ID, the metal plate thickness, strain, and stress information to the log file. In some cases, the break determination unit 9 erases the broken element, and the deformation analysis unit 4 continues the deformation analysis after the break.
  • the break determination unit 9 performs the following various displays on the display unit 3 (step S95). That is, the break determination unit 9 contour-displays the risk of breakage in which the metal plate breaks as a scalar amount, or displays the stress history and the fracture limit stress line of the breakable risk part in the stress space. In addition, the break determination unit 9 also contours the risk of wrinkling in the metal plate. Here, the risk of breakage may be displayed for the variation (average value, lower limit value) within the standard of the shipping test value.
  • step S93 determines in step S93 that each break determination target portion is “no possibility of breakage” or “the risk of breakage is low”, the fact is displayed on the display unit 3. (S96).
  • FIG. 10 is a flowchart in the case of performing the fracture determination in the collision process of the structure made of the metal plate formed through the molding process following the fracture determination in the molding process of the metal plate in FIG.
  • the fracture limit stress line converted in step S92 of FIG. 9 is taken over and used.
  • the fracture determination unit 9 performs deformation analysis in consideration of the speed dependency of the deformation stress of the structure made of a metal plate.
  • the fracture determination unit 9 converts the plastic strain obtained from the deformation analysis to calculate a stress at a reference strain rate, compares the stress with a fracture limit stress line corresponding to the reference strain rate, and A rupture risk is calculated and a rupture determination is performed (S103).
  • the break determination as described above, the risk of breakage and the safety factor are used, and “there is no possibility of breakage”, “the risk of breakage is low”, “the risk of breakage is high”, “ And so on. Further, the process for calculating the risk of breakage corresponds to the flowchart shown in FIG.
  • the fracture determination unit 9 takes over the deformation state of the metal plate that has been subjected to the deformation analysis in the forming process of FIG. 9 as the initial condition of the deformation analysis in the collision process.
  • This deformation state is the thickness of the metal plate and the equivalent plastic strain, or the thickness of the metal plate, the equivalent plastic strain, the stress tensor and the strain tensor.
  • step S103 the break determination unit 9 uses the break risk level and the safety factor of the break determination target part to determine that “breaking” or “the risk of breakage is high”. Is executed (step S104). That is, the break determination unit 9 outputs the element ID, the metal plate thickness, strain, and stress information to the log file. In some cases, the break determination unit 9 erases the broken element, and the deformation analysis unit 4 continues the deformation analysis after the break.
  • the break determination unit 9 performs the following various displays on the display unit 3 (step S105). That is, the break determination unit 9 contour-displays the risk of breakage in which a structure made of a metal plate breaks as a scalar amount, or displays the stress history and the breakage limit stress line of the breakable part in the stress space. At the same time, the fracture determination unit 9 also contours the risk of wrinkling in the structure made of the metal plate. Here, the risk of breakage may be displayed for the variation (average value, lower limit value) within the standard of the shipping test value.
  • step S103 when the break determination unit 9 determines that each break determination target site is “no possibility of breakage” or “the risk of breakage is low”, the fact is displayed on the display unit 3. (S106).
  • the present embodiment when determining the fracture of a metal structure, it is possible to easily and efficiently determine the fracture limit stress line and determine the fracture with high accuracy. Thereby, it is possible to quantitatively evaluate the risk of press forming and fracture at the time of collision, and it is possible to realize an efficient and highly accurate design of an automobile body or the like that simultaneously considers the material, construction method, and structure.
  • each step of deformation analysis and fracture determination (the flowcharts of FIGS. 2, 3, 7, 9, and 10) can be realized by operating a program stored in a RAM or ROM of a computer.
  • This program and a computer-readable storage medium storing the program are included in the present invention.
  • the program is recorded on a recording medium such as a CD-ROM or provided to a computer via various transmission media.
  • a recording medium for recording the program besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
  • the program transmission medium a communication medium in a computer network system for propagating and supplying program information as a carrier wave can be used.
  • the computer network is a WAN such as a LAN or the Internet, a wireless communication network, or the like
  • the communication medium is a wired line such as an optical fiber or a wireless line.
  • the program included in the present invention is not limited to the one in which the functions of the above-described embodiments are realized by the computer executing the supplied program.
  • a program is also included in the present invention when the function of the above-described embodiment is realized in cooperation with an OS (operating system) or other application software running on the computer.
  • OS operating system
  • the program is also included in the present invention.
  • FIG. 11 is a schematic diagram showing an internal configuration of the fracture determination device 10.
  • reference numeral 1200 denotes a personal computer (PC) provided with a CPU 1201.
  • the PC 1200 executes device control software stored in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk drive (FD) 1212.
  • the PC 1200 generally controls each device connected to the system bus 1204.
  • a RAM 1203 functions as a main memory, work area, and the like for the CPU 1201.
  • a keyboard controller (KBC) 1205 controls instruction input from a keyboard (KB) 1209, a device (not shown), or the like.
  • CRT controller 1206 is a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210.
  • Reference numeral 1207 denotes a disk controller (DKC).
  • the DKC 1207 controls access to a hard disk (HD) 1211 and a flexible disk (FD) 1212 that store a boot program, a plurality of applications, an edit file, a user file, a network management program, and the like.
  • the boot program is a startup program: a program for starting execution (operation) of hardware and software of a personal computer.
  • NIC network interface card
  • Figure 12 is a diagram showing a result of displaying the fracture risk calculated using the comparative example f 1 by contour lines.
  • the contour line in the vicinity of the peak having the highest degree of risk of fracture becomes rough, and the fracture risk part cannot be specified.
  • the deformation at both ends in the longitudinal direction is extremely small, the stress is distributed with a distribution when returning from the plastic state to the elastic state, so that dense contour lines are formed.
  • FIG. 13 and FIG. 14 are diagrams showing the results of displaying the risk of fracture calculated by the method of the present embodiment with contour lines. By displaying the fracture risk calculated according to the first embodiment and the second embodiment with contour lines, the exact fracture risk can be visualized.
  • FIG. 13 is a diagram showing the rupture risk calculated by the method of the first embodiment with contour lines. As shown in FIG. 13, it is displayed in an easy-to-understand manner that the risk of fracture is high near the top at the center of the metal plate. In addition, it can be seen that the contour lines shown in FIG. 13 are rougher in the region where the deformation at both ends in the longitudinal direction is smaller than that in FIG.
  • FIG. 14 is a diagram showing the fracture risk calculated by the method of the second embodiment by contour lines.
  • the distribution of the risk of fracture near the top of the center of the metal plate can be displayed in more detail, and it can be seen that the risk of fracture is high slightly outside the top. Further, it can be seen that the contour lines shown in FIG. 14 have a very low risk of fracture at a portion where the deformation at both ends in the longitudinal direction is small. In this respect, it can be seen that this is sensibly consistent with conventional experience.
  • FIG. 15 is a diagram showing the contour lines shown in FIGS. 12 to 14 along the path from the starting point s to the top t as shown in FIG.
  • FIG. 15 shows contour lines in a state further deformed from the deformed state shown in FIGS.
  • the horizontal axis is the position from the starting point s to the top t
  • the vertical axis is the fracture risk.
  • the actually broken position is a position near the top.
  • the contour lines of fracture risk calculated using the comparative example f 1 it is difficult to accurately identify the position to break.
  • the contour line of the risk of fracture calculated using the first embodiment it is possible to specify the fracture position to some extent, and it coincides with the actual fracture position.
  • the contour line of the fracture risk calculated using the second embodiment the difference between the fracture position and the other fracture risk is clear, and it is possible to specify the fracture position more accurately.
  • the degree of risk of fracture can be evaluated with high accuracy for each fracture determination target part even when complicated deformation is involved.
  • visualizing the risk of breakage can help intuitional understanding, which is useful for studying countermeasures. Even if unloading occurs, the risk of breakage does not change, and the remaining ductility can be known.
  • the risk of breakage may be converted into a deformation allowance and displayed, which can further help intuitive understanding.
  • the fracture and the stress along the plane composed of the x axis and the y axis are generated in the fracture determination target portion of the metal structure, and the z axis is orthogonal to the x axis and the y axis. Applicable to negligible directional strain and stress.
  • the present invention can be used for automobile collision simulation, part molding simulation, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 金属構造体の破断を判定する破断判定方法であって、破断判定対象部位が塑性状態から弾性状態に戻っている場合、前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、y=(σ1/σ2)xの関係を満たす直線と破断判定対象部位の塑性状態から求まる降伏曲線との交点により定まる再降伏応力Rを用いて破断判定対象部位の破断判定を行う。破断判定対象部位が塑性状態から弾性状態に戻っている場合であっても高精度に破断判定をすることができる。

Description

破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体
 本発明は、自動車の衝突シミュレーションや部品のプレス成形シミュレーション等において金属板、金属板からなる部品および金属板からなる構造体等の破断を判定するための破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体に関する。
 近年、自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっている。そのような衝突安全性に優れた車体構造は、衝突時の衝撃エネルギーを客室部以外の構造部材で吸収させ、客室部の変形を最小限とし生存空間を確保することにより実現できる。
 すなわち、構造部材により衝撃エネルギーを吸収させることが重要である。衝撃エネルギーの吸収を向上させるためには、座屈形態を安定化させ、途中で折れ曲りや破断をさせないことが重要であり、現時点でどの程度の破断危険度に達しているかを正確に評価する必要がある。
 しかし、自動車の衝突やプレス成形においては、各部材が複雑な変形経路を経るため、その変形履歴によって破断危険度が変わってしまう。したがって、各部材の部位ごとの破断危険度を正確に評価することが困難であった。
 従来から破断を予測する方法や装置等の提案が多くなされている。例えば、特開2007-152407号公報(下記特許文献1)には、プレス成形シミュレーション手段と、相当塑性歪算出手段と、成形割れ判定値算出手段と、成形割れ判定手段とを用いて、プレス成形における成形割れ予測をする演算処理装置が開示されている。演算処理装置の成形割れ判定手段は、判定対象相当塑性歪みが歪みの進行方向における成形割れ判定値を超えるか否かにより成形割れの予測をなすことにより、成形限界線図を参照しながら成形割れ発生の予測を行う場合に、より精度の高い成形割れの予測をすることができる。しかし、特許文献1の方法は、歪み空間内で非比例成形限界値との距離で破断余裕度を評価する方法であり、歪みの進行方向が変わる都度、非比例成形限界値を計算し直す必要があり、煩雑であった。
 また、特開2007-232714号公報(下記特許文献2)には、穴広げ率を応力に換算した線を破断限界応力線とし、有限要素法を用いた数値解析から得られるデータと破断限界応力線の関係を比較することで材料の破断危険性を定量的に評価することが開示されている。特許文献2の方法では、1つ以上の変形経路変化を含む過程における薄板の破断限界を判定するに際して、破断限界線を容易且つ効率的に求め、高い予測精度をもって破断限界を判定することができる。
 また、特開2007-232715号公報(下記特許文献3)には、穴広げ率を応力に換算した線を破断限界応力線とし、有限要素法を用いた数値解析から得られるデータと破断限界応力線の関係を比較することで材料の破断危険性を定量的に評価することが開示されている。特許文献3の方法では、1つ以上の変形経路変化を含む過程における薄板において伸びフランジ部の破断限界を判定するに際して、破断限界線を容易かつ効率的に求め、高い精度で破断を予測することを可能とし、プレス成形や衝突時の破断の危険性を評価することができる。
 また、特開2007-285832号公報(下記特許文献4)には、ユーザ端末が、サーバに破断判定を対象とする材料データを提供しサーバから破断限界線のデータを取得する破断限界取得システムが開示されている。ユーザ端末は、取得した破断限界線を用いて材料の破断危険性を定量的に評価することが開示されている。
特開2007-152407号公報 特開2007-232714号公報 特開2007-232715号公報 特開2007-285832号公報
 しかしながら、上述した特許文献2~4は、応力で評価することで非比例変形に対応することができるが、破断の危険性の程度を表現する定量的指標を具体的に示していない。また、単純な破断判定方法では金属構造体が塑性状態から弾性状態に戻っている場合、破断危険度が変化してしまうという問題点があった。
 本発明は上述のような従来技術の問題点に鑑みてなされたものであり、金属構造体が塑性状態から弾性状態に戻っている場合であっても高精度に破断判定を行うことができる破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体を提供することを目的とする。
 本発明は、金属構造体の破断を判定する破断判定方法であって、前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析工程と、前記変形解析工程によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定工程とを有することを特徴とする。
 また、本発明は、金属構造体の破断を判定する破断判定装置であって、前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析部と、前記変形解析部によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定部とを有することを特徴とする。
 また、本発明は、金属構造体の破断を判定するためのプログラムであって、前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析工程と、前記変形解析工程によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定工程とをコンピュータに実行させるためのプログラムである。
 また、本発明は、金属構造体の破断を判定するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析工程と、前記変形解析工程によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定工程とをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明によれば、金属構造体の破断判定対象部位が塑性状態から弾性状態に戻っている場合であっても高精度に破断判定を行うことができる。
図1は、破断判定装置の機能構成を示す図である。 図2は、第1の破断判定モードの破断判定方法の処理を示すフローチャートである。 図3は、第2の破断判定モードの破断判定方法の処理を示すフローチャートである。 図4は、弾性状態における応力空間を示す図である。 図5は、塑性状態における応力空間を示す図である。 図6は、塑性状態から弾性状態に戻った場合の応力空間を示す図である。 図7は、破断危険度を算出する処理を示すフローチャートである。 図8は、相当塑性歪みと破断限界相当塑性歪みとを算出する処理を説明するための図である。 図9は、成形過程における破断判定を示すフローチャートである。 図10は、衝突過程における破断判定を示すフローチャートである。 図11は、破断判定装置の内部構成を示す模式図である。 図12は、比較例の方法により算出された破断危険度を等高線で表示した一例を示す図である。 図13は、第1の実施形態の方法により算出された破断危険度を等高線で表示した一例を示す図である。 図14は、第2の実施形態の方法により算出された破断危険度を等高線で表示した一例を示す図である。 図15は、破断危険度の等高線を始点sから頂上tに沿って示した図である。
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。
 図1は、本実施形態に係る破断判定装置10の機能構成を示す図である。破断判定装置10は、破断判定本体部1、入力部2、表示部3を備えている。破断判定本体部1は、変形解析部4、抽出部5、破断解析部6を備えている。破断解析部6は、推定部7、変換部8、破断判定部9を備えている。
 本実施形態の破断判定装置10は、金属板、金属板からなる部品および金属板からなる構造体(以下、金属構造体という)の変形開始から変形終了までの一連の変形をシミュレーションする。破断判定装置10は、破断判定モードに応じた任意のタイミングでの金属構造体の変形状態から、破断判定の対象とする破断判定対象部位を抽出し、この破断判定対象部位について破断判定を行う。
 第1の破断判定モードでは、金属構造体の変形開始から変形終了までを変形解析した後、任意あるいは予め定められた1つ以上のステップの変形状態から破断判定対象部位を抽出し、抽出した破断判定対象部位について破断判定を行う。
 第2の破断判定モードでは、金属構造体の変形開始から変形解析を行うと共に引き続いてその変形状態から破断判定対象部位を抽出し、抽出した破断判定対象部位について破断判定を行い、変形終了まで変形解析と破断判定とを繰り返す。
 まず、第1の破断判定モードの破断判定方法について図2に示すフローチャートを参照して説明する。ここでは、破断判定装置10は金属構造体の材料および機械的特性値等を予め記憶し、シミュレーションの準備が整えられている。
 変形解析部4は金属構造体の所定の位置に所定の応力が加わったと仮定して入力部2の指示に応じて金属構造体の変形解析を開始する(S21)。変形解析部4は所定の時間毎あるいは変形の度合に応じて定められる時間毎のステップで変形解析をする。また、変形解析部4は各ステップについて有限要素法等の手法を用い、金属構造体に生じる応力、歪み等の変形状態を逐次解析し、その変形状態に基づいて次のステップの変形解析を行う(S22)。例えば金属構造体の一部位では後述するように弾性状態から塑性状態に移行したり、塑性状態から弾性状態に戻ったりする。変形解析部4は金属構造体の変形終了まで変形解析を行う(S23)。変形解析部4はステップ毎に変形解析による金属構造体の変形状態を記憶する。なお、実用的な金属構造体の解析では、ステップ数が例えば数万ステップ~数百万ステップになる。
 次に、抽出部5は記憶されている変形状態から任意あるいは予め定められた1つ以上のステップの変形状態を抽出すると共に、抽出した変形状態から任意あるいは予め定められた破断判定対象部位を抽出する(S24)。抽出する変形状態は、ユーザから入力部2を介して任意に入力されたステップの変形状態または予め定められているステップの変形状態である。また、抽出する破断判定対象部位は、ユーザから入力部2を介して任意に入力された破断判定対象部位または予め定められている破断判定対象部位である。抽出する破断判定対象部位は、金属構造体の全ての部位とすることが可能である。また、抽出するステップの変形状態は、破断状態を見極めるために全てのステップの変形状態を抽出することが望ましいものの、計算効率を高めるために10ステップ~1000ステップ毎に抽出することが好ましい。
 破断解析部6は、抽出された破断判定対象部位の破断判定をそれぞれ行う(ステップS25、S26)。なお、破断解析部6による破断判定の詳細は後述する。破断解析部6では、破断判定対象部位の破断判定を記憶し、破断判定を終了する。
 第1の破断判定モードでは金属構造体の変形開始から変形終了までの変形解析後に、1つ以上のステップの変形状態を抽出し、抽出した変形状態から任意あるいは予め定められた破断判定対象部位を抽出し、抽出した破断判定対象部位について破断判定を行う。したがって、金属構造体の破断判定対象部位が弾性状態および塑性状態であっても、任意のステップでの破断判定が可能である。また、任意の破断判定対象部位の破断判定ができるので、ユーザは金属構造体の局所的な強度を把握することができる。
 次に、第2の破断判定モードの破断判定方法について図3に示すフローチャートを参照して説明する。ここでは、破断判定装置10は金属構造体の材料および機械的特性値等を予め記憶し、シミュレーションの準備が整えられている。
 変形解析部4は金属構造体の所定の位置に所定の応力が加わったと仮定して入力部2の指示に応じて金属構造体の変形解析を開始する(S31)。変形解析部4は所定の時間毎あるいは変形の度合に応じて定められる時間毎のステップで変形解析をする。また、変形解析部4は各ステップについて有限要素法等の手法を用い、金属構造体に生じる応力、歪み等の変形状態を逐次解析し、その変形状態に基づいて次のステップの変形解析を行う(S32、S33)。例えば金属構造体の一部位では後述するように弾性状態から塑性状態に移行したり、塑性状態から弾性状態に戻ったりする。変形解析部4はステップ毎に変形解析による金属構造体の変形状態を記憶する。
 次に、抽出部5は予め定められたステップ間隔後における金属構造体の変形状態から、任意あるいは予め定められている破断判定対象部位を抽出する(S34)。なお、ステップ間隔は、1ステップ間隔あるいは任意のステップ間隔であってもよいが、計算効率を高めるために10ステップ~1000ステップ毎であることが好ましい。また、抽出する破断判定対象部位は、ユーザから入力部2を介して任意に入力された破断判定対象部位または予め定められている破断判定対象部位である。抽出する破断判定対象部位は、金属構造体の全ての部位とすることが可能である。なお、図3に示すフローチャートでは、2ステップ間隔後に変形解析を行う方法を示している。
 次に、破断解析部6は抽出された破断判定対象部位の破断判定を行う(S35)。なお、破断解析部6による破断判定の詳細は後述する。破断解析部6は破断判定対象部位の破断判定を記憶する。
 以降も同様に、抽出部5は所定のステップ間隔後の変形解析(S36、S37)に引き続いて、金属構造体の変形状態から、任意あるいは予め定められている破断判定対象部位を抽出する(S38)。破断解析部6は抽出された破断判定対象部位の破断判定を行い(S39)、破断判定を記録し、破断判定を終了する。
 第2の破断判定モードでは、金属構造体の変形開始から所定のステップ間隔後の変形解析に引き続いて、その変形状態から任意あるいは予め定められた破断判定対象部位を抽出し、抽出した破断判定対象部位について破断判定を行う。この処理は、変形終了まで行われる。したがって、金属構造体の破断判定対象部位が弾性状態および塑性状態であっても、破断判定が可能である。また、連続して破断判定対象部位の破断判定ができるので、ユーザは金属構造体がどのような経過を経て破断するかを把握することができる。
 このように破断判定装置10は、ユーザが所望する変形状態の破断判定を行うことができる。また、破断判定装置10は、金属構造体の変形終了後または金属構造体の変形開始から変形終了までの間に随時、破断判定を行うことができるので、ユーザが所望する任意の破断判定方法に対して柔軟に対応することができる。
 (第1の実施形態)
 次に、第1の実施形態に係る破断判定方法について説明する。なお、以下では抽出部5によって抽出された一つの破断判定対象部位の破断判定について説明するが、他に抽出された破断判定対象部位についても同様に行われる。
 破断解析部6は、1つ以上の変形経路変化を含む過程における破断判定対象部位の破断判定を行うことができる。破断解析部6は、上述したように推定部7、変換部8、破断判定部9を備えている。推定部7は、比例負荷経路で歪み空間の破断限界線を推定する。変換部8は、比例負荷経路で得られた歪み空間の破断限界線を応力空間の破断限界線(以下、破断限界応力線という)に変換する。破断判定部9は、破断限界応力線を用いて破断危険度を算出し、算出した破断危険度から破断判定を行ったり破断判定の結果を表示部3に表示したり破断危険度を等高線にして表示したりする。
 ここで、変換部8によって応力空間に変換された破断限界応力線を図4~図6に示す。図4~図6は、応力空間を(x、y)座標平面に示した図である。図4~図6は、抽出した破断判定対象部位はそれぞれ同一であるが、抽出したタイミングが異なっている。すなわち、図4は、破断判定対象部位が塑性変形を開始する前の弾性状態を抽出したときの応力空間である。図5は、破断判定対象部位が塑性変形を開始した塑性状態を抽出したときの応力空間である。図6は、破断判定対象部位が塑性状態から弾性状態に戻った状態を抽出したときの応力空間である。以下、具体的に図4~図6について説明する。
 図4に示す弾性状態の応力空間には、最も外側に上述した破断限界応力線、その内側に金属構造体の材料に基づいて推定される初期状態の降伏曲線を示すことができる。また、図4に示す弾性状態の応力Pは、破断判定対象部位に発生している応力Pであって、x軸に最小主応力σ2、y軸に最大主応力σ1として示すことができる。
 図4において、応力Pが比例負荷経路を経るとすると、原点と応力Pとを結ぶy=(σ1/σ2)xの関係を満たす直線を得ることができる。このy=(σ1/σ2)xの関係を満たす直線と初期状態の降伏曲線との交わる交点は、推定される初期塑性応力Aとなる。初期塑性応力Aは、破断判定対象部位が弾性状態から塑性状態に移行するときの応力である。したがって、破断判定対象部位において応力Pが初期塑性応力Aを超えるまでが弾性状態であり、初期塑性応力Aを超えると塑性変形を開始して塑性状態となる。
 また、図4において、上述したy=(σ1/σ2)xの関係を満たす直線と破断限界応力線との交わる交点は、推定される破断限界応力Bとなる。破断限界応力Bは、破断判定対象部位が破断するときの応力である。したがって、破断判定対象部位において応力Pが破断限界応力Bに達したとき破断する。
 次に、図5に示す塑性状態の応力空間には、図4と同一の破断限界応力線および初期状態の降伏曲線を示すことができる。また、図5に示す塑性状態の応力Pは、破断判定対象部位に発生している応力Pであって、x軸に最小主応力σ2、y軸に最大主応力σ1として示すことができる。
 図5では、図4で上述したように応力Pが初期塑性応力Aを超えているので破断判定対象部位が塑性状態である。また、塑性状態の応力Pが大きくなるのに連動して、塑性状態における降伏曲線を示すことができる。
 ところで、変形解析において、例えば破断判定対象部位とは異なる部位が座屈すること等により破断判定対象部位が除荷されることがある。このとき、破断判定対象部位の応力Pは塑性状態のときの応力Pよりも小さくなるために、破断判定対象部位が塑性状態から弾性状態に戻ってしまう。図6は、このように破断判定対象部位が塑性状態から弾性状態に戻った場合の応力空間を示している。
 図6に示す塑性状態から弾性状態に戻った場合の応力空間には、図4と同一の破断限界応力線および初期状態の降伏曲線を示すことができる。また、図6に示す弾性状態に戻ったときの応力Pは、破断判定対象部位に発生している応力Pであって、x軸に最小主応力σ2、y軸に最大主応力σ1として示すことができる。なお、応力Pは、除荷されていることで図5に示す塑性状態の応力Pよりも小さくなっている。
 また、図6では、弾性状態に戻ったときの降伏曲線を示すことができる。弾性状態に戻ったときの降伏曲線と図5に示す塑性状態における降伏曲線とは同一の曲線である。以下では、図6の弾性状態に戻ったときの降伏曲線と図5の弾性状態に戻ったときの降伏曲線とを現在の降伏曲線として説明する。すなわち、破断判定対象部位が、塑性状態から弾性状態に戻ったとしても、図6に示す現在の降伏曲線は、図5に示す現在の降伏曲線から変化せずに維持される。したがって、図6に示す現在の降伏曲線は、図5に示す現在の降伏曲線から求めることができる。ここで、図6に示すように弾性状態に戻ったときの応力Pが現在の降伏曲線の内側にある状態では弾性状態である。一方、図6に示す状態から、破断判定対象部位の応力Pが現在の降伏曲線を超えると再び塑性変形を開始して塑性状態となる。このことから、y=(σ1/σ2)xの関係を満たす直線と現在の降伏曲線との交わる交点は、破断判定対象部位が再び塑性変形を開始する、推定される再降伏応力Rとなる。
 さて、これまでは、図4~図6に示す応力空間を用いて破断判定を行う場合、破断限界応力線と破断判定対象部位に発生している応力Pとを比較することで破断危険度(あるいは変形余裕度)を算出していた。具体的には、破断危険度を下記f式によって算出していた。
Figure JPOXMLDOC01-appb-M000001
 このf式は、図4~図6に示す応力ゼロの原点を基準として、各図4~図6における破断判定対象部位に発生している応力Pの座標点までの距離と、破断限界応力Bの座標点までの距離との比を破断危険度としている。
 f式では、図5に示す塑性状態のように、塑性状態の応力Pと再降伏応力Rとが一致するような場合には、ある程度正確な破断危険度を算出することができる。しかしながら、図6に示す塑性状態から弾性状態に戻った場合には、弾性状態に戻ったときの応力Pが再降伏応力Rよりも原点に近づいてしまう。そのために、破断判定対象部位の塑性が進行しているにも関わらず、再降伏応力Rよりも破断危険度が小さく算出されてしまい、正確な破断判定をすることができない。また、f式では、破断危険度を算出する基準を原点にしているために、図4に示す弾性状態では、弾性状態の応力Pは初期塑性応力Aを超えておらず、破断危険が生じないにも関わらず、破断危険度が算出されてしまう。
 そこで、本実施形態では、破断判定対象部位の破断判定をする際、図5に示す塑性状態では、塑性状態の応力Pを用いて破断危険度を算出する。また、図6に示す塑性状態から弾性状態に戻った場合では、弾性状態に戻ったときの応力Pではなく、再降伏応力Rを用いて破断危険度を算出する。
 更に、破断危険が生じない場合を除外して破断危険度を算出するために、破断危険度を算出する基準を原点ではなく初期塑性応力Aとする。したがって、図4に示す弾性状態では破断危険度を0として算出する。
 すなわち、以下の式fによって破断危険度を算出する。
Figure JPOXMLDOC01-appb-M000002
 上述した式fを用いると、図4に示す弾性状態では、破断危険度が0として算出される。また、図5に示す塑性状態では、塑性状態の応力Pの座標点に基づいて、破断危険度が0~1の間の数値で算出される。また、図6に示す塑性状態から弾性状態に戻った場合では、再降伏応力Rの座標点に基づいて、破断危険度が0~1の間の数値で算出される。
 次に、破断判定部9は、算出した破断危険度を破断判定指標として用いて破断判定を行うことができる。具体的には、破断判定部9はユーザにより入力部2を介して予め入力された安全係数に基づいて破断判定を行う。破断判定部9は、破断危険度が0の場合、「破断が生じる可能性がない」と判定し、破断危険度が0よりも大きく安全係数未満の場合、「破断の危険性が低い」と判定し、破断危険度が安全係数以上であり1よりも小さい場合、「破断の危険性が高い」と判定し、破断危険度が1の場合、「破断している」と判定する。例えば安全係数は0.9のように0から1の範囲でユーザが任意に設定することができる。
 次に、上述した破断危険度を算出する方法について図7に示すフローチャートを参照して説明する。ここでは、既に推定部7が歪み空間の破断限界線を推定し、変換部8が推定された歪み空間の破断限界線を応力空間の破断限界応力線に変換し、図4~図6に示すような(x、y)座標平面に示している。同様に、変換部8は、初期状態の降伏曲線および、場合によっては図5および図6に示す現在の降伏曲線も(x、y)座標平面に示している。
 まず、破断判定部9は、破断判定対象部位が塑性変形開始しているか否かを判断する(S71)。破断判定部9は、変形解析部5による変形解析において塑性歪みが記憶されている場合、塑性変形開始していると判断すればよい。
 破断判定対象部位が塑性変形開始している場合、破断判定部9は破断判定対象部位が塑性状態であるか、塑性状態から弾性状態に戻った状態であるかを判断する(S72)。破断判定部9は、図5および図6に示す応力空間において、応力Pが現在の降伏曲線に達している場合、塑性状態であり、応力Pが現在の降伏曲線に達していない場合、塑性状態から弾性状態に戻った状態であると判断する。
 なお、現在の降伏曲線は、上述した図2および図3に示す変形解析の過程において、変形解析部5が破断判定対象部位の塑性歪みを記憶し、推定部7および変換部8がその塑性歪みを用いて(x、y)座標平面に示すことができる。この処理は、推定部7が推定した歪み空間の破断限界線を変換部8が破断限界応力線に変換して、(x、y)座標平面に示す処理と同様である。
 破断判定対象部位が塑性状態から弾性状態に戻った状態の場合、破断判定部9は再降伏応力Rを推定する(S73)。具体的には、図6で上述したように、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と現在の降伏曲線との交わる交点を再降伏応力Rとして算出する。
 次に、破断判定部9は破断判定対象部位の破断危険度を算出する(S74)。破断判定対象部位が塑性変形開始する前であると判断された場合(S71をNOに進む場合)、破断判定部9は、破断判定対象部位が弾性状態であると判断し、上述した式fにより破断危険度を0として算出する。
 また、破断判定対象部位が塑性状態の場合(S72を塑性状態に進む場合)、破断判定部9は、塑性状態の応力P、初期塑性応力A、破断限界応力Bを上述した式fに用いて破断危険度を算出する。なお、図5で上述したように、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と初期状態の降伏曲線との交わる交点を初期塑性応力Aとして算出する。また、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と破断限界応力線との交わる交点を破断限界応力Bとして算出する。
 破断判定対象部位が塑性状態から弾性状態に戻った場合(S73からS74に進む場合)、破断判定部9は、ステップS73で推定した再降伏応力R、初期塑性応力A、破断限界応力Bを上述した式fに用いて破断危険度を算出する。なお、初期塑性応力Aおよび破断限界応力Bは、塑性状態の場合と同様に、算出することができる。
 このように破断判定部9は、破断判定対象部位が塑性状態から弾性状態に戻っている場合、再降伏応力Rを用いて破断危険度を算出する。したがって、応力空間内で破断判定を行うときに、破断判定対象部位が塑性状態から弾性状態に戻った場合、破断危険度が変化してしまう問題を回避することができる。
 また、破断危険度を算出する基準を原点ではなく初期塑性応力Aを基準とすることで、破断危険が生じない場合を除外して破断危険度を算出することができる。
 なお、上述した破断判定方法は破断判定対象部位に塑性変形が生じていない状態からの説明であるが、金属構造体の一部において既に塑性変形が生じている場合であっても、同様に破断判定することができる。すなわち、破断判定装置10は、例えばプレス成形等して塑性変形が生じている金属構造体についても破断判定をすることができる。
 このような金属構造体の場合、破断判定対象部位によっては変形解析が開始される前から図6に示すように初期状態の降伏曲線の外側に現在の降伏曲線が存在する。この現在の降伏曲線は、変形解析部5がプレス成形等の変形解析で記憶した塑性歪みを用いることで、変換部8が応力空間の(x、y)座標平面に示すことができる。
 (第2の実施形態)
 次に、第2の実施形態に係る破断判定方法について図8を参照して説明する。
 第2の実施形態では、破断判定部9は、第1の実施形態において応力空間を用いて算出した再降伏応力Rと破断限界応力Bとをそれぞれ相当応力に換算し、図8に示す相当応力-相当塑性歪み曲線を用いて相当塑性歪みεeq Pと破断限界相当塑性歪みεeq Bとを求め、破断危険度を算出する。図8に示す相当応力-相当塑性歪み曲線は、金属構造体の材料に基づくものであり、予め破断判定装置10に記憶されている。また、第1の実施形態と同様、破断判定対象部位の応力Pが初期塑性応力Aを超えるまでの弾性状態では破断危険度を0として算出する。
 具体的には、図5に示す塑性状態では、破断判定部9は、塑性状態の応力Pを再降伏応力Rとして算出する。また、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と破断限界応力線との交わる交点から破断限界応力Bを算出する。
 また、図6に示す塑性状態から弾性状態に戻った場合では、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と現在の降伏曲線との交わる交点から再降伏応力Rを算出する。また、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と破断限界応力線との交わる交点から破断限界応力Bを算出する。
 破断判定部9は、算出した再降伏応力Rと破断限界応力Bとをそれぞれ相当応力に換算し、図8に示す相当応力-相当塑性歪み曲線を用いて相当塑性歪みεeq Pと破断限界相当塑性歪みεeq Bとを求める。ここで、図5に示す塑性状態でも図6に示す塑性状態から弾性状態に戻った場合でも、再降伏応力Rは同一であり、破断限界応力Bも同一であるため、求まる相当塑性歪みεeq Pは同一であり、破断限界相当塑性歪みεeq Bも同一である。破断判定部9は、求めた相当塑性歪みεeq Pと破断限界相当塑性歪みεeq Bとを下記f式に代入することによって破断危険度を計算する。
Figure JPOXMLDOC01-appb-M000003
 図8に示す相当応力-相当塑性歪み曲線では、相当応力の変化量に対して相当塑性歪みの変化量が大きいので、相当塑性歪みと破断限界相当塑性歪みとを用いて破断危険度を算出することで、精度が向上する。また、応力と歪みの非線形性によって応力で見た破断危険度が歪みで見た破断危険度とかい離してしまうことを抑制することができる。
 なお、第1の実施形態と同様に、破断判定部9は算出した破断危険度と安全係数を用いて、破断判定を行うことができる。
 (第3の実施形態)
 次に、第3の実施形態に係る破断判定方法について説明する。
 第3の実施形態では、第1の実施形態または第2の実施形態に記載した破断危険度を算出すると共に、破断判定対象部位が図4~図6に示すような、弾性状態、塑性状態または塑性状態から弾性状態に戻った場合に関わらず、破断判定対象部位に発生している応力Pと破断限界応力Bとを上述した比較例fに用いて破断危険度を算出する。この場合、破断判定部9は、ユーザの入力部2を介した指示に応じて、第1の実施形態または第2の実施形態の方法により算出した破断危険度と、比較例により算出した破断危険度との少なくとも何れかを表示部3に表示する。
 具体的には、破断判定部9は、応力ゼロの原点を基準として、図4~図6において破断判定対象部位に発生している応力Pの座標点までの距離と、破断限界応力Bの座標点までの距離との比を破断危険度として算出する。なお、破断判定部9は、y=(σ1/σ2)xの関係を満たす直線と破断限界応力線との交わる交点から破断限界応力Bを算出する。
 ユーザが破断判定対象部位に用いる材料の余裕を高めたい等の目的がある場合、第1の実施形態または第2の実施形態により算出される破断危険度の方が有益な指標となる。一方、ユーザが破断判定対象部位の応力を抑制させたい等の目的がある場合、破断判定対象部位の状態に関わらず、破断判定対象部位に発生している応力を把握したい。このような場合、上述した比較例fにより算出される破断危険度の方が有益な指標となる。したがって、第1の実施形態または第2の実施形態の方法による破断危険度と、比較例の方法による破断危険度との両方を算出することにより、1)材料としての余裕を高める、2)応力を抑制する等の目的に応じて使い分けることができる。すなわち、材料としての余裕確保と応力状態としての余裕確保を使い分けながら金属構造体を設計することが可能になる。
 次に、上述した推定部7、変換部8および破断判定部9による具体的な計算方法について説明する。
 推定部7は、例えば単軸引張試験から得られる応力-歪み曲線の近似式
Figure JPOXMLDOC01-appb-M000004
と、局部くびれモデル
Figure JPOXMLDOC01-appb-M000005
と、拡散くびれモデル
Figure JPOXMLDOC01-appb-M000006
 とを併用して歪み空間のくびれ発生限界を求め、比例負荷経路で歪み空間の破断限界線を推定する。
 推定部7は、単軸引張試験から得られる応力-歪み曲線の近似式
Figure JPOXMLDOC01-appb-M000007
と、塑性歪み増分則として塑性歪み増分テンソルの方向が応力増分テンソルに依存する構成式と、塑性歪み増分テンソルの方向を規定する材料パラメータKcと、シュテーレン-ライスの局所くびれモデルとを用いて歪み空間のくびれ発生限界を求め、比例負荷経路で歪み空間の破断限界線を推定するようにしても良い。ここで、推定部7は、1つ以上の最大破断限界歪みεおよび最小破断限界歪みεの測定値に基づいて、材料パラメータKcを同定する。
 なお、本例では、歪み空間の破断限界線を推定部7を用いて理論的に推定する場合について例示したが、歪み空間の破断限界線を推定部7を用いずに実験的に測定しても良い。具体的には、歪み空間の破断限界線は、金属板について複数の面内歪み比を比例負荷実験により求めた後、それぞれの歪み比における最大破断限界歪みεおよび最小破断限界歪みεの測定値を用いて得られる。
 変換部8は、歪み空間の破断限界線を応力空間の破断限界応力線に変換する際に、塑性歪みの増分則として降伏曲面の垂直則を用いて上記の変換を行う。具体的には、上述したように、相当塑性歪みεeqと各歪み成分εijとの関係式であるMisesの降伏関数
Figure JPOXMLDOC01-appb-M000008
を用いる。
 破断判定部9は、変換部8により変換された応力空間の破断限界応力線と、塑性変形過程の有限要素法によるシミュレーションの結果から得られる各部位の歪み状態との位置関係を比較することで評価し、変形過程の歪みがこの限界歪みに達したときに「破断している」もしくは「破断の危険性が高い」等と判定する。ここでは、変形解析の手法として有限要素法の1つである動的陽解法を用い、動的陽解法により得られる塑性歪みを応力に変換し、その応力と応力空間の破断限界応力線とを比較する。
 なお、破断判定部9は、上記のシミュレーションを行う代わりに、実験により評価された金属構造体の変形状態から得られた歪みを応力に換算し、応力空間の破断限界応力線を用いて破断発生の有無を定量的に評価するようにしても良い。
 ここで、自動車部材の衝突解析のように、金属構造体に高速変形が生じる場合には、破断判定部9は、金属構造体の変形応力の速度依存性を考慮して変形解析を実行する。破断判定部9は、当該変形解析から得られた塑性歪みを変換して基準歪み速度における応力を算出し、その応力と基準歪み速度に対応した応力空間の破断限界応力線とを比較する。
 次に、上述した図2に示すS25、S26、図3に示すS35、S39の破断判定を行う処理について図9に示すフローチャートを参照して説明する。図9は、金属構造体、具体的には金属板の成形過程において破断判定を行う場合のフローチャートである。
 まず、推定部7は、予め記憶されている金属板の材料および機械的特性値(t(金属板の厚み)、YP(降伏強さ)、TS(引張り強さ)、El(全伸び)、U.El(均一伸び)、r値(ランクフォード値)、n乗硬化則/Swift硬化則)に基づき、比例負荷経路で歪み空間の破断限界線を推定する(S91)。
 続いて、変換部8は、例えばMisesの降伏関数を用いて、実験的に測定された歪み空間の破断限界線を応力空間の破断限界応力線に変換する(S92)。
 続いて、破断判定部9は、変換部8により変換された破断限界応力線、破断判定対象部位に発生している応力、現在の降伏曲線、初期状態の降伏曲線を用いて、破断判定対象部位の破断危険度を算出し、破断判定を行う(S93)。破断判定では、上述したように破断危険度と安全率とを用いて、「破断が生じる可能性がない」、「破断の危険性が低い」、「破断の危険性が高い」、「破断している」等の判定をする。また、破断危険度を算出する処理は、上述した図7に示すフローチャートに相当する。
 ステップS93では、破断判定部9は、破断判定対象部位の破断危険度と安全率とを用いて、「破断している」あるいは「破断の危険性が高い」と判定した場合、以下の緒処理を実行する(S94)。
 すなわち、破断判定部9は、要素ID、金属板の板厚、歪み、応力情報をログファイルに出力する。場合によっては、破断判定部9は破断した要素を消去し、変形解析部4は破断後の変形解析を継続する。
 続いて、破断判定部9は、表示部3に以下の各種表示を行う(ステップS95)。すなわち、破断判定部9は、金属板に破断が生じる破断危険度をスカラー量でコンター表示したり、応力空間で破断危険部位の応力履歴および破断限界応力線を表示する。併せて、破断判定部9は、金属板におけるしわ発生の危険性もコンター表示する。ここで、出荷試験値の規格内におけるばらつき(平均値、下限値)に対して、破断の危険性を表示するようにしても良い。
 一方、ステップS93において、破断判定部9は、各破断判定対象部位が「破断が生じる可能性がない」あるいは「破断の危険性が低い」と判定した場合、その旨を表示部3に表示する(S96)。
 図10は、図9の金属板の成形過程における破断判定に引き続いて、金属板が成形過程を経て構成された金属板からなる構造体の衝突過程における破断判定を行う場合のフローチャートである。
 この場合、図9のステップS92で変換された破断限界応力線を引き継いで用いる。破断判定部9は、金属板からなる構造体の変形応力の速度依存性を考慮して変形解析を実行する。破断判定部9は、当該変形解析から得られた塑性歪みを変換して基準歪み速度における応力を算出し、その応力と基準歪み速度に対応した破断限界応力線と比較し、破断判定対象部位の破断危険度を算出し、破断判定を行う(S103)。破断判定では、上述したように破断危険度と安全率とを用いて、「破断が生じる可能性がない」、「破断の危険性が低い」、「破断の危険性が高い」、「破断している」等の判定をする。また、破断危険度を算出する処理は、上述した図7に示すフローチャートに相当する。
 このステップS103において、破断判定部9は、図9の成形過程において変形解析された金属板の変形状態を、衝突過程における変形解析の初期条件として引き継ぐ。この変形状態は、金属板の板厚および相当塑性歪み、或いは金属板の板厚、相当塑性歪み、応力テンソルおよび歪みテンソルである。
 ステップS103では、破断判定部9は、破断判定対象部位の破断危険度と安全率とを用いて、「破断している」あるいは「破断の危険性が高い」と判定した場合、以下の緒処理を実行する(ステップS104)。
 すなわち、破断判定部9は、要素ID、金属板の板厚、歪み、応力情報をログファイルに出力する。場合によっては、破断判定部9は破断した要素を消去し、変形解析部4は破断後の変形解析を継続する。
 続いて、破断判定部9は、表示部3に以下の各種表示を行う(ステップS105)。すなわち、破断判定部9は、金属板からなる構造体に破断が生じる破断危険度をスカラー量でコンター表示したり、応力空間で破断危険部位の応力履歴および破断限界応力線を表示する。併せて、破断判定部9は、金属板からなる構造体におけるしわ発生の危険性もコンター表示される。ここで、出荷試験値の規格内におけるばらつき(平均値、下限値)に対して、破断の危険性を表示するようにしても良い。
 一方、ステップS103において、破断判定部9は、各破断判定対象部位が「破断が生じる可能性がない」あるいは「破断の危険性が低い」と判定した場合、その旨を表示部3に表示する(S106)。
 以上説明したように、本実施形態によれば、金属構造体の破断判定をするに際して、破断限界応力線を容易且つ効率的に求め、高精度で破断判定することが可能となる。これにより、プレス成形や衝突時の破断の危険性を定量的に評価することができ、材料・工法・構造を同時に考慮した自動車車体等の効率的・高精度な設計を実現できる。
 上述した破断判定装置10を構成する各構成要素(表示部3、入力部2を除く)の機能は、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。同様に、変形解析や破断判定の各ステップ(図2、図3、図7、図9、図10のフローチャート)は、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。このプログラムおよび当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。
 具体的に、前記プログラムは、例えばCD-ROMのような記録媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録媒体としては、CD-ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワークシステムにおける通信媒体を用いることができる。ここで、コンピュータネットワークとは、LAN、インターネットの等のWAN、無線通信ネットワーク等であり、通信媒体とは、光ファイバ等の有線回線や無線回線等である。
 また、本発明に含まれるプログラムとしては、供給されたプログラムをコンピュータが実行することにより上述の実施形態の機能が実現されるようなもののみではない。例えば、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。また、供給されたプログラムの処理の全て或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。
 例えば、図11は、破断判定装置10の内部構成を示す模式図である。図11において、1200はCPU1201を備えたパーソナルコンピュータ(PC)である。PC1200は、ROM1202またはハードディスク(HD)1211に記憶された、又はフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行する。このPC1200は、システムバス1204に接続される各デバイスを総括的に制御する。
 PC1200のCPU1201、ROM1202またはハードディスク(HD)1211に記憶されたプログラムにより、図2、図3、図7、図9、図10のフローチャートの各ステップの手順等が実現される。1203はRAMで、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209や不図示のデバイス等からの指示入力を制御する。
 1206はCRTコントローラ(CRTC)であり、CRTディスプレイ(CRT)1210の表示を制御する。1207はディスクコントローラ(DKC)である。DKC1207は、ブートプログラム、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211およびフレキシブルディスク(FD)1212とのアクセスを制御する。ここで、ブートプログラムとは、起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラムである。
 1208はネットワーク・インターフェースカード(NIC)で、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、あるいは他のPCと双方向のデータのやり取りを行う。
 次に、金属板をプレス成形したときの破断危険度を等高線で表示した例を図12~図14を参照して説明する。
 図12は、比較例fを用いて算出した破断危険度を等高線で表示した結果を示す図である。図12に示すように、最も破断危険度が高い頂上近傍での等高線が粗になってしまい、破断危険部位を特定できない。一方、長手方向両端部は変形が極めて小さいにもかかわらず、塑性状態から弾性状態に戻ったときの応力が分布をもって負荷されているため、密な等高線ができてしまう。
 図13および図14は、本実施形態の方法により算出した破断危険度を等高線で表示した結果を示す図である。第1の実施形態および第2の実施形態により算出された破断危険度を等高線表示することにより、正確な破断危険度を可視化することができる。
 図13は、第1の実施形態の方法により算出した破断危険度を等高線で表示した図である。図13に示すように、金属板の中央の頂上付近で破断危険度が高いことが分かり易く表示される。また、図13に示す等高線は、図12に比べて長手方向両端部の変形が小さい部位での等高線が粗になり、破断危険度が低いことが分かる。
 図14は、第2の実施形態の方法により算出した破断危険度を等高線で表示した図である。図14に示す等高線では、金属板の中央の頂上付近の破断危険度の分布を更に詳細に表示することができ、頂上よりやや外側で破断危険度が高いことが分かる。また、図14に示す等高線は、長手方向両端部の変形が小さい部位では破断危険度が極めて小さいことが分かる。この点では従来経験と感覚的に一致することがわかる。
 図15は、図12~図14に示す等高線を図12に示すような始点sから頂上tまでの経路に沿って示した図である。なお、図15は、図12~図14に示す変形状態から更に変形した状態の等高線を示している。横軸は始点sから頂上tまでの位置であり、縦軸は破断危険度である。図15に示すように実際に破断した位置は、頂上付近の位置である。比較例fを用いて算出した破断危険度の等高線では、破断する位置を正確に特定するのが困難である。一方、第1の実施形態を用いて算出した破断危険度の等高線では、破断する位置の特定がある程度可能であり、実際に実験により破断した位置と一致していた。更に第2の実施形態を用いて算出した破断危険度の等高線では、破断位置とそれ以外の破断危険度との差が明確であり、より正確に破断する位置の特定が可能である。
 このように本実施形態では、複雑な変形を伴う場合でも破断危険度の程度を破断判定対象部位ごとに高精度に評価できる。また、破断危険度を可視化させることで、直観的な理解を助けることができるので、対策検討に有益である。
 また、除荷が発生しても、破断危険度が変化してしまうことがなく、実質的に残されている延性を知ることができる。また、破断危険度を変形余裕度に変換して表示してもよく、更に直観的な理解を助けることができる。
 本実施形態の具体的な効果は次のようなものである。
1)金属構造体が受けたダメージに応じて破断危険度を算出でき、除荷時にダメージから回復したという誤解を生じることがない。
2)相当塑性歪みに変換することで、破断の危険性が高い部位をより詳細に評価することができる。また、破断危険度が低い部位での等高線を粗にすることができるので、破断の危険性に対する従来経験とのかい離を少なくすることができる。
 以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。なお、本実施形態に係る破断判定では、金属構造体の破断判定対象部位についてx軸およびy軸からなる平面に沿った歪みおよび応力が生じていて、x軸およびy軸それぞれに直交するz軸方向の歪みおよび応力を無視できるものに適当することができる。
 本発明は、自動車の衝突シミュレーションや部品の成形シミュレーション等に用いることができる。

Claims (7)

  1.  金属構造体の破断を判定する破断判定方法であって、
     前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析工程と、
     前記変形解析工程によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、
     前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、
     y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定工程とを有することを特徴とする破断判定方法。
  2.  前記破断判定工程では、
     前記y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の初期状態の降伏曲線との交点により定まる初期塑性応力の座標点と、
     前記y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の破断限界応力線との交点により定まる破断限界応力の座標点とを求め、
     前記初期塑性応力の座標点から前記破断限界応力の座標点までの距離と前記初期塑性応力の座標点から前記再降伏応力の座標点までの距離とを用いて前記破断判定対象部位の破断危険度を算出することを特徴とする請求項1に記載の破断判定方法。
  3.  前記破断判定工程では、
     前記y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の破断限界応力線との交点により定まる破断限界応力を求め、
     前記破断限界応力に対応する破断限界相当塑性歪みと前記再降伏応力に対応する相当塑性歪みとを相当応力-相当塑性歪み曲線を用いて求め、
     前記破断限界相当塑性歪みと前記相当塑性歪みとを用いて前記破断判定対象部位の破断危険度を算出することを特徴とする請求項1に記載の破断判定方法。
  4.  前記破断判定工程では、
     前記y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の破断限界応力線との交点により定まる破断限界応力の座標点を求め、
     原点から前記破断限界応力の座標点までの距離と前記原点から前記弾性状態に戻ったときの応力の座標点までの距離とを用いて前記破断判定対象部位の破断危険度を算出することを特徴とする請求項1に記載の破断判定方法。
  5.  金属構造体の破断を判定する破断判定装置であって、
     前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析部と、
     前記変形解析部によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、
     前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、
     y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定部とを有することを特徴とする破断判定装置。
  6.  金属構造体の破断を判定するためのプログラムであって、
     前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析工程と、
     前記変形解析工程によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、
     前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、
     y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定工程とをコンピュータに実行させるためのプログラム。
  7.  金属構造体の破断を判定するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記金属構造体の変形開始から変形終了までの変形解析を行う変形解析工程と、
     前記変形解析工程によって得られた前記金属構造体の変形状態から破断判定対象部位を抽出し、抽出した前記破断判定対象部位が塑性状態から弾性状態に戻っている場合、
     前記弾性状態に戻ったときの応力を、(x、y)座標平面において(x、y)=(σ2、σ1)(最大主応力:σ1、最小主応力:σ2)とすると、
     y=(σ1/σ2)xの関係を満たす直線と前記破断判定対象部位の前記塑性状態から求まる降伏曲線との交点により定まる再降伏応力を用いて前記破断判定対象部位の破断判定を行う破断判定工程とをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
     
PCT/JP2011/058739 2010-04-07 2011-04-06 破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体 WO2011126058A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11765958.1A EP2543983B1 (en) 2010-04-07 2011-04-06 Method of assessing fractures, fracture assessment device, program and computer readable recording medium
CN201180016980.9A CN102822659B (zh) 2010-04-07 2011-04-06 断裂判断方法、断裂判断装置
US13/634,341 US8606532B2 (en) 2010-04-07 2011-04-06 Fracture determination method, fracture determination apparatus, program, and computer readable recording medium
JP2012504219A JP4980499B2 (ja) 2010-04-07 2011-04-06 破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体
BR112012025328A BR112012025328B1 (pt) 2010-04-07 2011-04-06 método para determinação de fratura, aparelho para determinação de fratura e meio de gravação legível por computador
ES11765958.1T ES2565802T3 (es) 2010-04-07 2011-04-06 Método de evaluación de fracturas, dispositivo de evaluación de fracturas, programa y medio de registro legible por ordenador
RU2012145307/28A RU2507496C1 (ru) 2010-04-07 2011-04-06 Способ определения разрушения, устройство, программа и читаемый компьютером носитель записи для определения разрушения
KR1020127026005A KR101227295B1 (ko) 2010-04-07 2011-04-06 파단 판정 방법, 파단 판정 장치, 프로그램 및 컴퓨터 판독 가능한 기록 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-088269 2010-04-07
JP2010088269 2010-04-07

Publications (1)

Publication Number Publication Date
WO2011126058A1 true WO2011126058A1 (ja) 2011-10-13

Family

ID=44762993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058739 WO2011126058A1 (ja) 2010-04-07 2011-04-06 破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体

Country Status (11)

Country Link
US (1) US8606532B2 (ja)
EP (2) EP2543983B1 (ja)
JP (1) JP4980499B2 (ja)
KR (1) KR101227295B1 (ja)
CN (1) CN102822659B (ja)
BR (1) BR112012025328B1 (ja)
ES (2) ES2637038T3 (ja)
MY (1) MY165050A (ja)
RU (1) RU2507496C1 (ja)
TW (1) TWI391657B (ja)
WO (1) WO2011126058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115348A1 (ja) * 2014-01-28 2015-08-06 Jfeスチール株式会社 プレス成形方法およびプレス成形部品の製造方法並びにそれらの方法に用いられる予備成形形状の決定方法
WO2020129903A1 (ja) * 2018-12-17 2020-06-25 Jfeスチール株式会社 自動車車体用金属板材の衝突性能評価試験方法および設備

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330641B2 (en) * 2012-10-27 2019-06-25 Valerian Goroshevskiy Metallic constructions monitoring and assessment in unstable zones of the earth's crust
US10331809B2 (en) * 2013-05-10 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Deformation analysis device, deformation analysis method, and program
KR101840918B1 (ko) * 2013-06-26 2018-03-21 신닛테츠스미킨 카부시키카이샤 금속판의 굽힘 파단 판정 방법 및 기억 매체
KR101809398B1 (ko) 2014-05-08 2017-12-14 신닛테츠스미킨 카부시키카이샤 가소성 재료의 평가 방법 및 가소성 재료의 소성 가공의 평가 방법
KR101543707B1 (ko) 2014-05-28 2015-08-11 한양대학교 산학협력단 초음파를 이용한 강도 추정 장치 및 이의 강도 추정 방법
CN106461614B (zh) * 2014-05-28 2019-04-26 汉阳大学校产学协力团 利用超声波的热化评价及强度估算装置及方法
US9939359B2 (en) * 2014-09-25 2018-04-10 East China University Of Science And Technology Method of measurement and determination on fracture toughness of structural materials at high temperature
JP6176410B2 (ja) * 2015-05-18 2017-08-09 新日鐵住金株式会社 破断予測方法、プログラム、記録媒体及び演算処理装置
CA3038257A1 (en) * 2016-10-05 2018-04-12 Nippon Steel & Sumitomo Metal Corporation Fracture determination device, fracture determination program, and method thereof
KR102354894B1 (ko) 2017-03-16 2022-01-24 닛폰세이테츠 가부시키가이샤 냉간 가공 부품의 경도 추정 방법 및 강재의 경도-상당 소성 변형 곡선 취득 방법
CN107766693B (zh) * 2017-09-30 2020-05-29 上海思致汽车工程技术有限公司 一种用于冲压的流经拉延筋的板料的开裂评判方法
CN116249885A (zh) * 2020-09-30 2023-06-09 大金工业株式会社 预测装置及预测方法
CN113959838B (zh) * 2021-09-15 2024-03-29 深圳市比洋光通信科技股份有限公司 一种用于光纤毛细管应力监测方法
CN114563345B (zh) * 2022-03-31 2024-05-31 中交第一公路勘察设计研究院有限公司 一种水泥基3d打印试件层间粘结强度测试装置和测试方法
CN115712998B (zh) * 2022-11-11 2024-07-02 国能锅炉压力容器检验有限公司 调峰机组金属通流部件内壁开裂的可修复性判定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312933A (ja) * 1999-04-28 2000-11-14 Toyota Motor Corp スプリングバック量予測方法
JP2004042098A (ja) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc 成形シミュレーション解析方法
JP2006155254A (ja) * 2004-11-30 2006-06-15 Toyota Central Res & Dev Lab Inc 応力解析方法、プログラムおよび記録媒体
JP2007152407A (ja) 2005-12-07 2007-06-21 Fusahito Yoshida プレス成形における成形割れ予測方法および予測装置
JP2007232715A (ja) 2006-02-01 2007-09-13 Nippon Steel Corp 破断予測方法及び装置、並びにプログラム及び記録媒体
JP2007232714A (ja) 2006-02-01 2007-09-13 Nippon Steel Corp 破断限界取得方法及び装置、並びにプログラム及び記録媒体
JP2007285832A (ja) 2006-04-14 2007-11-01 Nippon Steel Corp 破断限界取得システム及び方法、破断予測システム及び方法、並びにこれら方法のプログラム及び記録媒体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299120A (en) 1979-03-19 1981-11-10 Terra Tek, Inc. Method for determining plane strain fracture toughness of non-elastic fracture mechanics specimens
US4733567A (en) * 1986-06-23 1988-03-29 Shosei Serata Method and apparatus for measuring in situ earthen stresses and properties using a borehole probe
JPH0610648B2 (ja) * 1988-12-09 1994-02-09 昭 前川 主として金属材料の近似耐力測定方法
JP2000301262A (ja) 1999-04-20 2000-10-31 Hitachi Metals Ltd 金型寿命の予測方法及びそれを用いた金型材の最適物性値の予測方法
RU2146818C1 (ru) * 1999-06-22 2000-03-20 Чургель Анатолий Олегович Способ определения характеристик напряженно-деформированного состояния конструкционных материалов
JP4018572B2 (ja) * 2003-03-24 2007-12-05 株式会社神戸製鋼所 降伏応力及び残留応力のバラツキの小さい鋼板の製造方法
JP4150383B2 (ja) * 2004-04-13 2008-09-17 新日本製鐵株式会社 スポット溶接部の破断予測装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
RU2261436C1 (ru) * 2004-06-28 2005-09-27 Институт Машиноведения им. акад. Благонравова РАН Способ определения ресурса работоспособности металлов
US7480573B2 (en) 2004-07-09 2009-01-20 Kyushu Tlo Company, Limited Fatigue crack growth curve estimation method, estimation program, and estimation device
RU2279657C1 (ru) * 2004-11-22 2006-07-10 Дмитрий Михалевич Беленький Способ определения механических характеристик и физического критерия прочности материала детали
MX2008009816A (es) * 2006-02-01 2008-09-11 Nippon Steel Corp Metodo de prediccion de fractura.
CN1995962A (zh) 2006-12-29 2007-07-11 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置及方法
CN100552426C (zh) * 2007-01-22 2009-10-21 中国科学院力学研究所 一种涂层质量的判断方法
JP4733159B2 (ja) * 2008-04-02 2011-07-27 株式会社フューチュアテック 降伏応力測定法
US8494827B2 (en) * 2009-09-25 2013-07-23 Exxonmobil Upstream Research Company Method of predicting natural fractures and damage in a subsurface region
US8688415B2 (en) * 2010-02-03 2014-04-01 Kellogg Brown & Root Llc Systems and methods for performing stress intensity factor calculations using non-singular finite elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312933A (ja) * 1999-04-28 2000-11-14 Toyota Motor Corp スプリングバック量予測方法
JP2004042098A (ja) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc 成形シミュレーション解析方法
JP2006155254A (ja) * 2004-11-30 2006-06-15 Toyota Central Res & Dev Lab Inc 応力解析方法、プログラムおよび記録媒体
JP2007152407A (ja) 2005-12-07 2007-06-21 Fusahito Yoshida プレス成形における成形割れ予測方法および予測装置
JP2007232715A (ja) 2006-02-01 2007-09-13 Nippon Steel Corp 破断予測方法及び装置、並びにプログラム及び記録媒体
JP2007232714A (ja) 2006-02-01 2007-09-13 Nippon Steel Corp 破断限界取得方法及び装置、並びにプログラム及び記録媒体
JP2007285832A (ja) 2006-04-14 2007-11-01 Nippon Steel Corp 破断限界取得システム及び方法、破断予測システム及び方法、並びにこれら方法のプログラム及び記録媒体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543983A4 *
SHIGERU YONEMURA ET AL.: "Forming Limit Prediction and Work-hardening Behavior under Strain-path Changes", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 93, no. 4, 1 April 2007 (2007-04-01), pages 317 - 323, XP008169031 *
SHIGERU YONEMURA ET AL.: "Improvement of Impact Energy Absorption by Using High Strength Steel, Part VIII-Forming Limit Prediction under Strain- path Changes for Automotive High Strength Steels", PREPRINTS OF MEETING ON AUTOMOTIVE ENGINEERS, 23 May 2007 (2007-05-23), pages 1 - 4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115348A1 (ja) * 2014-01-28 2015-08-06 Jfeスチール株式会社 プレス成形方法およびプレス成形部品の製造方法並びにそれらの方法に用いられる予備成形形状の決定方法
JPWO2015115348A1 (ja) * 2014-01-28 2017-03-23 Jfeスチール株式会社 プレス成形方法およびプレス成形部品の製造方法並びにそれらの方法に用いられる予備成形形状の決定方法
US10639695B2 (en) 2014-01-28 2020-05-05 Jfe Steel Corporation Press forming method, method for manufacturing press-formed component and method for determining preform shape used in these methods
WO2020129903A1 (ja) * 2018-12-17 2020-06-25 Jfeスチール株式会社 自動車車体用金属板材の衝突性能評価試験方法および設備
JP6748382B1 (ja) * 2018-12-17 2020-09-02 Jfeスチール株式会社 自動車車体用金属板材の衝突性能評価試験方法および設備
CN113196034A (zh) * 2018-12-17 2021-07-30 杰富意钢铁株式会社 汽车车身用金属板材的碰撞性能评价试验方法和设备
CN113196034B (zh) * 2018-12-17 2024-03-08 杰富意钢铁株式会社 汽车车身用金属板材的碰撞性能评价试验方法和设备

Also Published As

Publication number Publication date
RU2507496C1 (ru) 2014-02-20
JPWO2011126058A1 (ja) 2013-07-11
EP3023764B1 (en) 2017-05-31
US8606532B2 (en) 2013-12-10
EP3023764A1 (en) 2016-05-25
CN102822659B (zh) 2014-02-19
BR112012025328B1 (pt) 2020-02-04
CN102822659A (zh) 2012-12-12
US20130006543A1 (en) 2013-01-03
ES2565802T3 (es) 2016-04-07
KR101227295B1 (ko) 2013-01-30
EP2543983A4 (en) 2013-11-06
TW201144800A (en) 2011-12-16
EP2543983A1 (en) 2013-01-09
KR20120123724A (ko) 2012-11-09
JP4980499B2 (ja) 2012-07-18
MY165050A (en) 2018-02-28
EP2543983B1 (en) 2016-01-27
TWI391657B (zh) 2013-04-01
BR112012025328A2 (pt) 2016-06-28
ES2637038T3 (es) 2017-10-10

Similar Documents

Publication Publication Date Title
JP4980499B2 (ja) 破断判定方法、破断判定装置、プログラムおよびコンピュータ読み取り可能な記録媒体
JP6229718B2 (ja) 金属板の曲げ破断判定方法、プログラム及び記憶媒体
US8990028B2 (en) Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
JP4621217B2 (ja) 破断予測方法及び装置、並びにプログラム及び記録媒体
JP5445381B2 (ja) 材料の曲げ破断予測方法および装置、ならびにプログラムおよび記録媒体
JP6828476B2 (ja) エッジ部破断予測方法、プログラム及び記録媒体
US10915679B2 (en) Break prediction method, break prediction device, program, recording medium, and break discernment standard calculation method
JP4880043B2 (ja) 破断予測方法、破断予測システム、プログラム及び記録媒体
JP7110976B2 (ja) 成形性評価方法、プログラム及び記録媒体
JP6176410B2 (ja) 破断予測方法、プログラム、記録媒体及び演算処理装置
JP2008185347A (ja) フードデント性能評価方法
JP6287665B2 (ja) 薄鋼板製部材の延性脆性破壊特性の予測方法及び装置、並びにそのプログラム及び記録媒体
JP3814226B2 (ja) 材料データの同定方法、強度予測評価システム、記録媒体、及びプログラム
JP7206902B2 (ja) 成形性評価方法、プログラム及び記録媒体
JP5896150B2 (ja) 破断判定装置、破断判定方法、及び破断判定プログラム
EP4431201A1 (en) Press-forming analysis method, press-forming analysis device, and press-forming analysis program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016980.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13634341

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 8421/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127026005

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011765958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201005263

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2012145307

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025328

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012025328

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121004