WO2011122199A1 - 基板の製造方法およびそれに用いられる組成物 - Google Patents

基板の製造方法およびそれに用いられる組成物 Download PDF

Info

Publication number
WO2011122199A1
WO2011122199A1 PCT/JP2011/054489 JP2011054489W WO2011122199A1 WO 2011122199 A1 WO2011122199 A1 WO 2011122199A1 JP 2011054489 W JP2011054489 W JP 2011054489W WO 2011122199 A1 WO2011122199 A1 WO 2011122199A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
polyimide
component
polyamic acid
Prior art date
Application number
PCT/JP2011/054489
Other languages
English (en)
French (fr)
Inventor
高明 宇野
敬 岡田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012508153A priority Critical patent/JP5725017B2/ja
Priority to KR1020127028255A priority patent/KR101848522B1/ko
Publication of WO2011122199A1 publication Critical patent/WO2011122199A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a substrate and a composition used therefor.
  • wholly aromatic polyimide obtained from aromatic tetracarboxylic dianhydride and aromatic diamine is due to the rigidity of the molecule, the fact that the molecule is resonance-stabilized, the strong chemical bond, etc. Excellent heat resistance, mechanical properties, electrical properties, oxidation / hydrolysis resistance, etc. In fields such as electricity, batteries, automobiles and aerospace industries, as films, coating agents, molded parts, insulating materials Widely used.
  • polyimide polyimide film obtained by polycondensation of pyromellitic dianhydride and 4,4'-oxydianiline is excellent in heat resistance and electrical insulation, has high dimensional stability, and is a flexible printed circuit board. It is used for etc.
  • the polyimide film is produced by removing a solvent from a polyamic acid solution obtained by reacting pyromellitic dianhydride and 4,4'-oxydianiline and performing a thermal imidization step.
  • the polyimide film is generally formed on a relatively rigid support such as a stainless steel belt.
  • Patent Document 1 polyimide synthesized from pyromellitic dianhydride, 4,4′-oxydianiline and p-phenylenediamine is excellent in thermal dimensional stability (Patent Document 1 and Patent Document 2).
  • the conventional polyimide formation composition
  • the substrate or the film itself warps due to shrinkage deformation at the time of film formation. Problems that arise are pointed out. Therefore, it is difficult to produce a flexible substrate such as a flexible printed circuit board or a flexible display substrate from these polyimides (formation composition) where smoothness, flexibility, flexibility and dimensional stability are required. It was.
  • the conventional polyimide film is formed on a support such as a silicon wafer or non-alkali glass, it is difficult to achieve both adhesion and peelability of the resulting film to the support.
  • An object of the present invention is to provide a low-cost and simple method for producing a substrate and a composition used for the production method that can more effectively avoid the occurrence of warping and twisting.
  • the present inventor produces a substrate on a support using a polyimide-based film forming composition containing a polyamic acid having a specific structural unit and an organic solvent.
  • a polyimide-based film forming composition containing a polyamic acid having a specific structural unit and an organic solvent.
  • the present invention provides the following [1] to [10].
  • a polyimide film-forming composition containing a polyamic acid having a structural unit represented by the following formula (1) and an organic solvent is applied to a support and dried, and a coating film containing polyamic acid is applied. Forming, and (B) heating the coating film containing the polyamic acid to obtain a polyimide film; (C) forming a device on the polyimide film; (D) peeling the polyimide film on which the element is formed from the support;
  • a method for manufacturing a substrate comprising:
  • a plurality of R 1 are each independently a monovalent organic group having 1 to 20 carbon atoms, and n is an integer of 1 to 200.
  • the polyamic acid is a component containing (A) at least one acyl compound selected from the group consisting of tetracarboxylic dianhydride and a reactive derivative thereof; and (B) a component containing an imino forming compound;
  • the component (A) includes (A-1) an acyl compound having a structural unit represented by the above formula (1).
  • the component (B) is (B-1) the above formula (1).
  • the content of the imino-forming compound having the structural unit represented by the formula (1) in the component (B) is 5 with respect to 100% by mass of the total amount of the component (B).
  • the polyamic acid contains the component (A) and the component (B) in a molar ratio of the component (A) and the component (B) (component (B) / component (A)) 0.8 to
  • the organic solvent is composed of N, N′-dimethylimidazolidinone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, tetrahydrofuran, cyclohexanone, acetonitrile, and ethylene glycol monoethyl ether.
  • the method for producing a substrate according to any one of [1] to [5], wherein at least one solvent selected from the group comprises 50% by weight or more based on the total amount of the organic solvent.
  • a composition for forming a polyimide-based film comprising a solvent
  • a plurality of R 1 are each independently a monovalent organic group having 1 to 20 carbon atoms, and n is an integer of 1 to 200.
  • the substrate manufacturing method of the present invention it is possible to easily manufacture a substrate with less warping and twisting.
  • composition for forming a polyimide-based film of the present invention is composed of a composition containing a polyamic acid having the structural unit represented by the above formula (1) and an organic solvent, warping and twisting are generated when a substrate is produced. Can be avoided more effectively.
  • the polyimide-based film forming composition of the present invention By using the polyimide-based film forming composition of the present invention, even when film formation is performed on a support such as a silicon wafer or non-alkali glass, warpage that may occur on a substrate or film accompanying shrinkage deformation during film formation Can be reduced. For this reason, the polyimide film-forming composition of the present invention is suitable for use in applications requiring smoothness, flexibility, flexibility and dimensional stability, in particular for the production of flexible substrates such as flexible printed circuit boards and flexible display substrates. Yes. Furthermore, according to the method for producing a substrate of the present invention, even when a silicon wafer, non-alkali glass or the like is used as a support, it is possible to achieve both adhesion to the support and peelability. A polyimide film and a substrate can be easily produced.
  • adheresion refers to a property that the polyimide film formed on the support and the substrate and the support are difficult to peel off, for example, in the step (b) or the step (c).
  • peelability means, for example, the property that in step (d), there are few peeling traces and the substrate can be peeled from the support.
  • a polyimide film-forming composition containing a polyamic acid having a structural unit represented by the following formula (1) and an organic solvent is applied to a support and dried.
  • a step of forming a coating film containing an acid (b) a step of heating the coating film containing the polyamic acid to obtain a polyimide film, (c) a step of forming an element on the polyimide film, d) peeling the polyimide film on which the element is formed from the support.
  • a plurality of R 1 are each independently an organic group having 1 to 20 carbon atoms, and n is an integer of 1 to 200.
  • C1-20 means “1 to 20 carbon atoms”. Similar descriptions in the present invention have similar meanings.
  • R 1 is a monovalent organic group having 1 to 20 carbon atoms, at least selected from the group consisting of monovalent hydrocarbon groups having 1 to 20 carbon atoms, and oxygen atoms and nitrogen atoms. Examples thereof include monovalent organic groups having 1 to 20 carbon atoms and containing one kind of atom.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t- A butyl group, a pentyl group, a hexyl group, etc. are mentioned.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
  • Examples of the organic group having 1 to 20 carbon atoms including an oxygen atom include an organic group consisting of a hydrogen atom, a carbon atom and an oxygen atom.
  • the organic group having an ether bond, a carbonyl group and an ester group can be used. There may be mentioned 20 organic groups.
  • Examples of the organic group having 1 to 20 carbon atoms having an ether bond include alkoxy groups having 1 to 20 carbon atoms, alkenyloxy groups having 2 to 20 carbon atoms, alkynyloxy groups having 2 to 20 carbon atoms, and 6 to 20 carbon atoms. Examples thereof include an aryloxy group and an alkoxyalkyl group having 1 to 20 carbon atoms. Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group, a cyclohexyloxy group, and a methoxymethyl group.
  • examples of the organic group having 1 to 20 carbon atoms having a carbonyl group include an acyl group having 2 to 20 carbon atoms. Specific examples include an acetyl group, a propionyl group, an isopropionyl group, and a benzoyl group.
  • Examples of the organic group having 1 to 20 carbon atoms having an ester group include acyloxy groups having 2 to 20 carbon atoms. Specific examples include an acetyloxy group, a propionyloxy group, an isopropionyloxy group, and a benzoyloxy group.
  • Examples of the organic group having 1 to 20 carbon atoms including a nitrogen atom include an organic group consisting of a hydrogen atom, a carbon atom, and a nitrogen atom. Specifically, an imidazole group, a triazole group, a benzimidazole group, a benztriazole group, etc. Is mentioned.
  • Examples of the organic group having 1 to 20 carbon atoms including an oxygen atom and a nitrogen atom include an organic group consisting of a hydrogen atom, a carbon atom, an oxygen atom and a nitrogen atom.
  • an oxazole group, an oxadiazole group examples include a benzoxazole group and a benzoxadiazole group.
  • At least one of the plurality of R 1 in the formula (1) contains an aryl group from the viewpoint of effectively avoiding the occurrence of warping and twisting of the resulting polyimide film. More specifically, the plurality of R 1 are preferably an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 12 carbon atoms.
  • the alkyl group (i) having 1 to 10 carbon atoms is preferably a methyl group
  • the aryl group (ii) having 6 to 12 carbon atoms is preferably a phenyl group.
  • N in the formula (1) is an integer of 1 to 200, preferably 3 to 200, more preferably 10 to 200, more preferably 20 to 150, still more preferably 30 to 100, and particularly preferably 35 to 80. Is an integer.
  • n in the formula (1) is within the above range, the polyimide obtained from the polyamic acid can easily form a microphase separation structure, so that the occurrence of warping and twisting of the resulting polyimide film can be suppressed. The cloudiness of the film and the decrease in mechanical strength are suppressed.
  • Step (a) First, the process of apply
  • the polyimide film-forming composition used in this step contains a polyamic acid having a structural unit (1) and an organic solvent.
  • a polyamic acid having a structural unit (1)
  • organic solvent By using such a polyamic acid, it is possible to obtain a substrate excellent in the balance between adhesion and peelability and smoothness without warping.
  • blend additives such as antioxidant, a ultraviolet absorber, and surfactant, with the said polyimide-type film formation composition in the range which does not impair the objective of this invention.
  • the polyamic acid having the structural unit (1) is preferably a component containing at least one acyl compound selected from the group consisting of (A) tetracarboxylic dianhydride and a reactive derivative thereof (in the present invention, “(A ) Component ”) and (B) a component containing an imino-forming compound (also referred to as“ component (B) ”in the present invention).
  • an acyl compound having (A-1) structural unit (1) hereinafter also referred to as “compound (A-1)”
  • compound (B-1) an imino-forming compound having the structural unit (1)
  • both the compound (A-1) and the compound (B-1) can be used.
  • a polyamic acid corresponding to the structure of the raw material compound used can be obtained, and a polyamic acid having a structural unit derived from the compound can be obtained in an amount corresponding to the amount of the raw material compound used. it can.
  • the component (A) includes at least one acyl compound selected from tetracarboxylic dianhydrides and reactive derivatives thereof.
  • at least one compound selected from the group consisting of the compound (A-1) and an acyl compound (A-2) other than the compound (A-1) is included.
  • the compound (A-1) include at least one acyl compound selected from a tetracarboxylic dianhydride having the structural unit (1) and a reactive derivative thereof, preferably the following formula (2) ), Compounds represented by formula (2A), formula (2B) and formula (2C), and the like.
  • Examples of the reactive derivative include a tetracarboxylic acid having the structural unit (1), an acid ester of the tetracarboxylic acid, and an acid chloride of the tetracarboxylic acid.
  • R 1 and n are each independently synonymous with R 1 and n in the formula (1), and a preferred range is also It is the same.
  • R 2 each independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • each of R 11 independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the monovalent organic group having 1 to 20 carbon atoms In the formula (1), the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 1 can be used.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms in R 2 include a methylene group, an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. Can be mentioned.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and examples thereof include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • the cycloalkylene group having 3 to 20 carbon atoms is preferably a cycloalkylene group having 3 to 10 carbon atoms, and examples thereof include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group.
  • the arylene group having 6 to 20 carbon atoms is preferably an arylene group having 6 to 12 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • the compound (A-1) preferably has a number average molecular weight of 200 to 10,000 from the viewpoint of obtaining a polyamic acid and / or a polyimide excellent in heat resistance (high glass transition temperature) and water resistance. More preferably, it is 8,000.
  • the component (A) contains the compound (A-1)
  • the component (A) contains 10 to 60 masses of the compound (A-1) with respect to 100 mass% of the total amount of all acyl compounds (component (A)).
  • % Preferably 20 to 50% by mass, more preferably 25 to 50% by mass, and particularly preferably 30 to 50% by mass.
  • the amount of compound (A-1) used is preferably within the above range.
  • the preferable blending amount of the compound (A-1) with respect to the total amount of 100% by mass of the total acyl compound (component (A)) is the case where the compound (B-1) is not used when the polyamic acid is synthesized.
  • the compound (A-1) and the compound (B-1) are used as raw materials when synthesizing the polyamic acid, the total of the compound (A-1) and the compound (B-1) to be used It is preferable that the amount is the same as the preferable blending amount of the compound (A-1).
  • acyl compounds other than compound (A-1) include, for example, aromatic tetracarboxylic dianhydrides, aliphatic tetra Examples thereof include at least one compound selected from the group consisting of carboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and reactive derivatives thereof.
  • aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is preferably used from the viewpoint of excellent transparency and good solubility in an organic solvent.
  • aromatic tetracarboxylic dianhydrides are preferably used from the viewpoints of heat resistance, low linear expansion coefficient (dimensional stability), and low water absorption.
  • acyl compound (A-2) a compound having a group represented by the following formula (4) is preferable from the viewpoint of effectively avoiding warpage and twisting of the resulting polyimide film, and the following formula (4) A compound having a group represented by ') is more preferred.
  • each R 4 independently represents a hydrogen atom or an alkyl group
  • the hydrogen atom of the alkyl group may be substituted with a halogen atom
  • each A independently represents an ether group, a thioether group, a ketone group, A group containing at least one group selected from the group consisting of an ester group, a sulfonyl group, an alkylene group, an amide group and a siloxane group, wherein the hydrogen atom of the alkylene group may be substituted with a halogen atom
  • D is an ether group
  • the hydrogen atom of the alkylene group may be substituted with a halogen atom
  • each b independently represents 1 or 2
  • c independently represents an integer of 1 to 3
  • f represents an integer of
  • the alkyl group in R 4 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, specifically, a methyl group, ethyl Group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group and the like.
  • Any hydrogen atom in these alkyl groups may be substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • examples of the alkylene group in D include a methylene group or an alkylene group having 2 to 20 carbon atoms, and the hydrogen atom of the methylene group and the alkylene group may be substituted with a halogen atom.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and is a dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, isopropylidene group, fluorene group. And a group in which any hydrogen atom in these alkylene groups is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • A each independently represents an ether group (—O—), a thioether group (—S—), a ketone group (—C ( ⁇ O) —), an ester group (—COO—), a sulfonyl group (—SO 2 —), Selected from the group consisting of an alkylene group (—R 7 —), an amide group (—C ( ⁇ O) —NR 8 —) and a siloxane group (—Si (R 9 ) 2 —O—Si (R 9 ) 2 —) And a hydrogen atom of the alkylene group may be substituted with a halogen atom.
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group or a halogen atom, and the hydrogen atom of this alkyl group may be substituted with a halogen atom.
  • Examples of the alkyl group for R 8 and R 9 include the same groups as the alkyl group for R 4 .
  • the halogen atom is preferably a chlorine atom or a fluorine atom.
  • Examples of the alkylene group (—R 7 —) in A include the same groups as the alkylene group in D, and among these, a methylene group, an isopropylidene group, a hexafluoroisopropylidene group, and a fluorene group are preferable.
  • R 4 is preferably a hydrogen atom
  • A is preferably an ether group
  • D is preferably a sulfonyl group.
  • F is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • the total amount of the total acyl compound (component (A)) is 100.
  • the component (A) is preferably contained in an amount of 40% by mass or more, more preferably 40 to 90% by mass, more preferably 50 to 80% by mass, and more preferably 50 to 75%. More preferably, it is contained in an amount of 50% to 70% by mass. From the viewpoint of obtaining a substrate (polyimide film) excellent in heat resistance and adhesion to the substrate and peelability, the amount of the acyl compound (A-2) used is preferably within the above range.
  • the component (B) is an imino forming compound.
  • the “imino forming compound” refers to a compound that reacts with the component (A) to form an imino (group), and specifically includes a diamine compound, a diisocyanate compound, a bis (trialkylsilyl) amino compound, and the like. Can be mentioned.
  • the component (B) preferably contains at least one selected from the group consisting of the compound (B-1) and an imino forming compound (B-2) other than the compound (B-1).
  • Examples of the imino forming compound having the structural unit (1) include compounds represented by the following formulas (3) and (3A).
  • R 1 and n are each independently synonymous with R 1 and n in the formula (1), and the preferred range is also the same.
  • R 11 has the same meaning as R 11 in the formula (2A) and (2C).
  • R 3 each independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms. Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms include those represented by the formulas (2), (2A), ( Examples of 2B) and (2C) include the same groups as the divalent hydrocarbon group having 1 to 20 carbon atoms in R 2 .
  • the compound (B-1) has a number average molecular weight calculated from the amine value of 500 to 10,000 from the viewpoint of obtaining a polyamic acid and / or polyimide having excellent heat resistance (high glass transition temperature) and water resistance. Preferably, it is 1,000 to 9,000, more preferably 3,000 to 8,000.
  • the imino-forming compound (B-1) can be used alone or in combination of two or more.
  • the component (B) includes the imino forming compound (B-1) having the structural unit represented by the above formula (1)
  • the total amount of all the imino forming compounds (component (B)) is 100% by mass (B )
  • Component preferably contains 5-70% by mass of compound (B-1), more preferably 10-60% by mass, more preferably 15-55% by mass. From the viewpoint of obtaining a polyimide film excellent in heat resistance and adhesion to the substrate and peelability, the amount of the imino forming compound (B-1) is preferably included in the above range.
  • the preferable blending amount of the compound (B-1) with respect to 100% by mass of the total imino-forming compound (component (B)) is that when the compound (A-1) is not used when the polyamic acid is synthesized. It is.
  • imino-forming compounds other than compound (B-1) include aromatic diamines, aliphatic diamines, and alicyclic diamines. And at least one compound selected from the group consisting of:
  • aromatic diamine examples include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether (4,4′-ODA), 3, 4'-diaminodiphenyl ether (3,4'-ODA), 3,3'-diaminodiphenyl ether (3,3'-ODA), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'- Dimethyl-4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 3,7-diamino-dimethyldibenzothiophene-5,5-dioxide, 4,4 ′ -Diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-d
  • aliphatic diamines examples include aliphatic diamines having 2 to 30 carbon atoms, and specific examples thereof include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-heptanediamine, Alkylene diamines such as 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine; oxydi (2-aminoethane) And oxyalkylenediamines such as oxydi (2-aminopropane) and 2- (2-aminoethoxy) ethoxyaminoethane. These aliphatic diamines can be used for imidization reaction alone or in combination of two or more.
  • alicyclic diamine what has at least 1 alicyclic group in a molecule
  • numerator can be used, and any group of a monocyclic ring, a polycyclic ring, and a condensed ring is sufficient as an alicyclic group. Good.
  • an alicyclic diamine having 4 to 30 carbon atoms is preferably used, and 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethylcyclohexylmethane, , 4'-diamino-3,3 ', 5,5'-tetramethylcyclohexylmethane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1-amino-3-aminomethyl-3,5,5- Trimethylcyclohexane, 2,2-bis (4,4′-diaminocyclohexyl) propane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 2,3-diaminobicyclo [2.2.1] Heptane, 2,5-diaminobicyclo [2.2.1] heptane
  • imino forming compounds can be used alone or in combination of two or more.
  • a compound having a group represented by the following formula (5) is preferable from the viewpoint of effectively avoiding the occurrence of warping and twisting of the obtained polyimide-based film.
  • a compound having a group represented by 5 ′) is more preferable.
  • each R 5 independently represents an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group or a siloxane group-containing group, a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group.
  • Group, a nitro group, a cyano group or a sulfo group, the hydrogen atom of the alkyl group and alkylene group may be substituted with a halogen atom, a1 independently represents an integer of 1 to 3, and a2 each independently 1 or 2; a3 independently represents an integer of 1 to 4; and e represents an integer of 0 to 3.
  • a and D are each independently synonymous with A and D in formula (4), and preferred groups are also the same.
  • R 5 is preferably a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, a nitro group, a cyano group or a sulfo group, and preferably a hydrogen atom or an alkyl group.
  • the alkyl group in R 5 has the same meaning as the alkyl group in R 4 in the formula (4).
  • the alkylene group in R 5 represents the formula (4). Inside, it is synonymous with the alkylene group in D.
  • E is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • each R 5 is independently the same as R 5 in the formula (5).
  • the imino-forming compound (B-2) other than the compound (B-1) is 40 to 90% by mass in the component (B) when the total amount of all imino-forming compounds (component (B)) is 100% by mass. %, Preferably 50 to 80% by mass, more preferably 50 to 75% by mass, and particularly preferably 50 to 70% by mass. From the viewpoint of obtaining a substrate (polyimide film) excellent in heat resistance and adhesion to the substrate and peelability, the amount of the imino-forming compound (B-2) used is preferably within the above range.
  • a composition for forming a polyimide film containing a polyamic acid and an organic solvent can be obtained by reacting the component (A) and the component (B) in an organic solvent.
  • a specific method of reacting the component (A) and the component (B) at least one (B) imino-forming compound is dissolved in an organic solvent, and then the obtained solution is mixed with at least one (A) And a method of adding an acyl compound and stirring at a temperature of 0 to 100 ° C. for 1 to 60 hours.
  • organic solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, N, N′-dimethylimidazolidinone, and tetramethyl.
  • aprotic polar solvents such as urea, tetrahydrofuran, cyclohexanone, acetonitrile and ethylene glycol monoethyl ether; and phenolic solvents such as cresol, xylenol and halogenated phenol.
  • N, N′-dimethylimidazolidinone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, tetrahydrofuran, cyclohexanone, acetonitrile and ethylene glycol monoethyl ether are preferred.
  • at least one solvent selected from N, N′-dimethylimidazolidinone, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, tetrahydrofuran, cyclohexanone, acetonitrile, and ethylene glycol monoethyl ether is used in an amount of 50% by weight or more, preferably 70 to 100% by weight based on the total amount of the organic solvent used (100% by weight).
  • the organic solvent it is possible to use a mixed solvent of an amide solvent and an ether solvent, a ketone solvent, a nitrile solvent, and an ester solvent selected from the group consisting of an ester solvent.
  • the coating film (film) is more preferable from the viewpoints of adhesion, peelability, residual stress, and the like. Further, when the mixed solvent is used, a drying rate at the time of film formation is increased, the film quality is not deteriorated, a polyimide-based film is excellent in productivity, and a composition having a high polyamic acid concentration can be obtained.
  • the non-amide solvent is preferably a solvent that selectively evaporates during the following vacuum drying and is almost completely removed from the coating film formed on the substrate, and has a boiling point in the range of 40 to 200 ° C.
  • a certain solvent is preferable, and a solvent in the range of 100 to 170 ° C. is more preferable.
  • the boiling point means the boiling point in the atmosphere at 1 atm.
  • the non-amide solvent preferably contains at least one organic solvent selected from the group consisting of ketone solvents, ether solvents and nitrile solvents. Since these solvents have relatively high polarity, there is a tendency that a composition having excellent storage stability can be obtained.
  • the ether solvent is preferably an ether having 3 to 10 carbon atoms, and more preferably an ether having 3 to 7 carbon atoms.
  • preferable ether solvents include mono- or dialkyl ethers such as ethylene glycol, diethylene glycol, and ethylene glycol monoethyl ether, cyclic ethers such as dioxane and tetrahydrofuran (THF), and aromatic ethers such as anisole. Can be mentioned. Of these, tetrahydrofuran is preferred.
  • These ether solvents can be used singly or in combination of two or more.
  • the ketone solvent is preferably a ketone having 3 to 10 carbon atoms, and more preferably a ketone having 3 to 6 carbon atoms from the viewpoint of boiling point and cost.
  • cyclohexanone is a solvent that can obtain a composition excellent in drying property, productivity, etc., is selectively evaporated during the following vacuum drying, and is almost completely removed from the coating film formed on the substrate. It is preferable from the point of being.
  • ketone solvents can be used singly or in combination of two or more.
  • the nitrile solvent is preferably a nitrile having 2 to 10 carbon atoms, and more preferably a nitrile having 2 to 7 carbon atoms.
  • acetonitrile is preferable from the viewpoint of a low boiling point.
  • These nitrile solvents can be used singly or in combination of two or more.
  • the ester solvent is preferably an ester having 3 to 10 carbon atoms, and more preferably an ester having 3 to 6 carbon atoms.
  • the amide solvent is preferably an amide having 3 to 10 carbon atoms, and more preferably an amide having 3 to 6 carbon atoms.
  • an amide solvent having a boiling point of 200 ° C. or higher is preferable.
  • Preferred amide solvents include alkylamides such as N, N-dimethylformamide and N, N-dimethylacetamide (DMAc), 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone (NMP).
  • N-methyl-2-pyrrolidone and N, N-dimethylacetamide remain after vacuum drying or primary drying by evaporating the non-amide solvent, and at the time of secondary drying performed at 200 ° C. to 500 ° C. It is more preferable because it volatilizes at an evaporation rate that can maintain the smoothness of the surface of the coating film, and N-methyl-2-pyrrolidone is more preferable in consideration of environmental pollution and the like.
  • these amide solvents can be used singly or in combination of two or more.
  • the mixed solvent is preferably a mixed solvent of N-methyl-2-pyrrolidone and cyclohexanone, or a mixed solvent of N-methyl-2-pyrrolidone and acetonitrile, particularly from the viewpoint of drying property and productivity.
  • a mixed solvent of -methyl-2-pyrrolidone and cyclohexanone is preferred.
  • a mixed solvent of N, N-dimethylacetamide and tetrahydrofuran is preferable.
  • the mixed solvent preferably contains 5 to 95 parts by mass, more preferably 25 to 95 parts by mass of the amide-based solvent with respect to 100 parts by mass of the mixed solvent. More preferably, it contains 65 parts by mass. Further, the mixed solvent particularly preferably contains 40 to 60 parts by mass of the amide solvent with respect to 100 parts by mass of the mixed solvent. When the mixed solvent contains the amide solvent in this amount, the mixed solvent is dried. In addition to a composition with high speed and excellent productivity, a film with excellent film quality characteristics such as white turbidity and tensile strength, storage stability, etc., and excellent adhesion to the substrate and peelability, and a film that does not easily warp are obtained. be able to.
  • the amount of the amide solvent is less than 5 parts by mass, the polyamic acid may not dissolve and a composition may not be obtained.
  • the amount of the amide solvent exceeds 95 parts by mass, a film is formed. In some cases, the drying speed becomes slow and the productivity is inferior.
  • the total amount of the component (B) and the component (A) in the reaction solution is preferably 5 to 30% by mass with respect to the total amount of the reaction solution.
  • the polyamic acid is a molar ratio of the component (A) to the component (B) (component (B) / component (A)), using the component (A) and the component (B) as a use ratio (charge ratio). Is preferably in the range of 0.8 to 1.2, more preferably in the range of 0.95 to 1.0. When the molar ratio of the (A) acyl compound and the (B) imino-formation product is less than 0.8 equivalent or more than 1.2 equivalent, the molecular weight becomes low and it becomes difficult to form a polyimide film. There is.
  • the composition containing the polyamic acid obtained by the above reaction and the organic solvent can be used as it is as the film forming composition, but the film forming composition can be used as the polyamic acid obtained by the above reaction. It can also be obtained by isolating the acid as a solid and re-dissolving it in an organic solvent.
  • an organic solvent to re-dissolve the same thing as the said organic solvent is mentioned, The said mixed solvent is preferable.
  • a solution containing polyamic acid and an organic solvent is poured into a poor solvent for polyamic acid such as methanol or isopropanol to precipitate polyamic acid, etc., and filtered, washed, dried, etc. And the like as a solid component.
  • a poor solvent for polyamic acid such as methanol or isopropanol
  • the polyamic acid is an acid having a structure containing —CO—NH— and —CO—OH or a derivative thereof (for example, —CO—NH— and —CO—OR (where R is An alkyl group and the like)).
  • H of —CO—NH— and OH of —CO—OH are dehydrated by heating or the like (H of —CO—NH— and OR of —CO—OR are eliminated)
  • a polyimide having a cyclic chemical structure (—CO—N—CO— (hereinafter also referred to as an imide ring structure)) (hereinafter, a structure containing —CO—NH— and —CO—OH, or —CO—
  • a structure containing NH— and —CO—OR (where R is an alkyl group or the like) is also referred to as an amic acid structure).
  • the polyamic acid has a silicone compound concentration calculated by the following formula of preferably 3 to 50%, more preferably 5 to 40%, and even more preferably 8 to 30%.
  • Silicone compound concentration [unit:%] (weight of silicone compound) / ⁇ (weight of (A) total acyl compound) + ((B) weight of total imino forming compound) ⁇ ⁇ 100
  • the “weight of the silicone compound” refers to the weight of all the compounds having the structural unit represented by the above formula (1).
  • the weight average molecular weight (Mw) of the polyamic acid is preferably 10,000 to 1,000,000, more preferably 10,000 to 200,000, and further preferably 20,000 to 150,000.
  • the number average molecular weight (Mn) is preferably from 5,000 to 10,000,000, more preferably from 5,000 to 500,000, particularly preferably from 20,000 to 200,000.
  • the strength of the coating film may be lowered.
  • the linear expansion coefficient of the obtained polyimide film may increase more than necessary.
  • the weight average molecular weight or the number average molecular weight of the polyamic acid exceeds the upper limit, the viscosity of the polyimide-based film-forming composition increases, so the composition when the composition is applied to a support to form a film Since the amount of polyamic acid that can be incorporated into the product is reduced, film thickness accuracy such as flatness of the resulting coating film may be deteriorated.
  • the molecular weight distribution (Mw / Mn) of the polyamic acid is preferably 1 to 10, more preferably 2 to 5, and particularly preferably 2 to 4.
  • the weight average molecular weight, number average molecular weight, and molecular weight distribution are values measured in the same manner as in the examples.
  • the viscosity of the polyimide film-forming composition is usually 500 to 500,000 mPa ⁇ s, preferably 1,000 to 50,000 mPa ⁇ s, although it depends on the molecular weight and concentration of the polyamic acid. If it is less than 500 mPa ⁇ s, the retentivity of the composition during film formation is poor and it may flow down from the support. On the other hand, when it exceeds 500,000 mPa ⁇ s, the viscosity is too high, and it is difficult to adjust the film thickness, and it may be difficult to form a polyimide film.
  • the viscosity of the composition is a value measured at 25 ° C. in the atmosphere using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., viscometer MODEL RE100).
  • the concentration of the polyamic acid in the polyimide film-forming composition is preferably adjusted so that the viscosity of the composition is in the above range, and is usually 3 to 60% by mass, preferably depending on the molecular weight of the polyamic acid. Is 5 to 40% by mass, more preferably 10 to 40% by mass, and particularly preferably 10 to 30% by mass. If it is less than 3% by mass, problems such as difficulty in increasing the film thickness and poor productivity, easy formation of pinholes, and poor film thickness accuracy such as flatness may occur. On the other hand, if it exceeds 60% by mass, the viscosity of the composition may be too high to form a film, and a polyimide film lacking in surface smoothness may be obtained.
  • the viscosity of the composition for forming a polyimide film and the concentration of polyamic acid in the composition are in the above ranges, the composition is coated on a support using a slit coating method that is excellent in productivity and the like.
  • a polyimide film excellent in film thickness accuracy and the like can be formed with high productivity in a short time.
  • the polyimide film-forming composition may contain a partially imidized polyamic acid.
  • This partially imidized polyamic acid is synthesized by a method using a dehydrating agent (chemical partial imidation) or a method of heat treatment at about 160 to 220 ° C. in solution (thermal partial imidization), and at a lower temperature. Since partial cyclization can be performed by heating at, a chemical partially imidized product such as chemical imidization is preferable.
  • the dehydrating agent examples include acid anhydrides such as acetic anhydride, propionic anhydride and benzoic anhydride, acid chlorides corresponding to these compounds, and carbodiimide compounds such as dicyclohexylcarbodiimide.
  • acid anhydrides such as acetic anhydride, propionic anhydride and benzoic anhydride
  • acid chlorides corresponding to these compounds examples include acid chlorides corresponding to these compounds, and carbodiimide compounds such as dicyclohexylcarbodiimide.
  • thermal partial imidation it is preferable to carry out while removing water generated by the dehydration reaction out of the system. At this time, it is preferable to azeotropically remove water using benzene, toluene, xylene or the like.
  • a base catalyst such as pyridine, isoquinoline, trimethylamine, triethylamine, N, N-dimethylaminopyridine, imidazole can be used as necessary.
  • the dehydrating agent or the base catalyst is preferably used in an amount of 0.1 to 8 moles per mole of component (A).
  • the partial imidization is at least a part of 100 mol% of functional groups that contribute to the cyclization reaction such as —CO—NH— or —CO—OH in the polyamic acid.
  • the ratio of the imide ring structure (hereinafter also referred to as ring closure rate) is preferably 5 to 70 mol%, more preferably 10 to 60 mol%, and particularly preferably Is carried out so as to be 20 to 50 mol%.
  • the alkali-free glass is a glass that does not contain an alkaline component such as potassium or sodium.
  • a film can be formed using a support such as a silicon wafer or non-alkali glass (plate). Since such a support has high dimensional stability under heating conditions, there is little dimensional change even when heat is applied in the step (a) or the step (b). For this reason, the polyimide-based film provided on the support also has less dimensional change, and the element can be easily formed at a desired position.
  • a support such as a silicon wafer or non-alkali glass (plate). Since such a support has high dimensional stability under heating conditions, there is little dimensional change even when heat is applied in the step (a) or the step (b). For this reason, the polyimide-based film provided on the support also has less dimensional change, and the element can be easily formed at a desired position.
  • a roll coating method As a method of forming a coating film by applying a polyimide film-forming composition on a support, a roll coating method, a gravure coating method, a spin coating method, a dipping method, a doctor blade, a die, a coater, a spray, a brush, The method etc. which apply
  • the thickness of the obtained coating film after drying is not particularly limited, but is, for example, 1 to 500 ⁇ m, preferably 1 to 450 ⁇ m, more preferably 1 to 250 ⁇ m, and more preferably. Is 2 to 150 ⁇ m, more preferably 10 to 125 ⁇ m.
  • the process of drying the said coating film can be specifically performed by heating a coating film.
  • the organic solvent in the coating film can be evaporated and removed.
  • the heating condition is not particularly limited as long as the organic solvent evaporates.
  • the heating condition is 60 to 250 ° C. for 1 to 5 hours. Note that heating may be performed in two or more stages. For example, after heating at 70 ° C. for 30 minutes, heating at 120 ° C. for 30 minutes.
  • the heating atmosphere is not particularly limited, but is preferably in the air or in an inert gas atmosphere, and particularly preferably in an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium and the like from the viewpoint of colorability, and nitrogen is preferable.
  • the organic solvent in the coating film may be evaporated and removed by vacuum drying before or in place of the heating.
  • vacuum drying since the solvent can be easily removed from the coating film without blowing hot air or the like to the coating film formed on the support, a polyimide film excellent in flatness can be obtained, Since it is fixed from the surface of the coating film containing polyamic acid, a polyimide film having excellent flatness and uniform film quality can be formed with good reproducibility.
  • the pressure in the apparatus is decreased until the pressure (decompression degree) in the apparatus containing the coating film is 760 mmHg or less, preferably 100 mmHg or less, more preferably 50 mmHg or less, and particularly preferably 1 mmHg or less. Is desirable. If it exceeds 760 mmHg, the evaporation rate when the solvent is further removed from the coating film after vacuum drying is remarkably slowed, and the productivity may be deteriorated.
  • the vacuum drying is desirably performed for 0 to 60 minutes, preferably 0 to 30 minutes, more preferably 0 to 20 minutes, when the pressure drops to a predetermined value.
  • the coating film obtained in the step (a) is heated to obtain a polyimide film.
  • the obtained coating film is subjected to dehydration cyclization (thermal imidization) by, for example, heat treatment at 160 ° C. to 350 ° C.
  • the temperature of the thermal imidization is higher than the temperature when drying (evaporating the organic solvent) in the step (a) is performed by heating, and is 200 to 350 ° C. from the viewpoint of peelability of the obtained substrate.
  • it is 230 to 270 ° C, more preferably 240 to 250 ° C.
  • the thermal imidization temperature is particularly preferably not higher than the glass transition temperature of the polyimide film from the viewpoint of peelability.
  • the ratio of the imide ring structure is preferably 75 mol% or more, more preferably 85 mol% or more, particularly preferably 90 mol% or more, in a total of 100 mol% of the amic acid structure and the imide ring structure. To be done. When the ratio of the imide ring structure is less than 75 mol%, the water absorption rate of the polyimide-based film may increase or the durability may decrease.
  • the polyimide film is composed of polyimide or the like, and the glass transition temperature measured by differential scanning calorimetry (DSC, temperature rising rate 20 ° C./min) of the polyimide is preferably 350 ° C. or higher, more preferably 450 ° C. That's it.
  • DSC differential scanning calorimetry
  • the imide group concentration of the polyimide obtained from polyamic acid is preferably 2.5 to 7.5 mmol / g, assuming that the imidization rate is 100 mol%, and preferably 3.0 to 6. It is more preferably 0 mmol / g, further preferably 3.5 to 5.5 mmol / g.
  • the thickness of the polyimide film (film) is preferably 1 to 250 ⁇ m, more preferably 2 to 150 ⁇ m, and particularly preferably 10 to 125 ⁇ m.
  • the glass transition temperature (Tg) of the polyimide film is preferably 350 ° C. or higher, and more preferably 450 ° C. or higher. By having such a glass transition temperature, it has excellent heat resistance.
  • substrate is manufactured by forming an element on the polyimide-type film
  • the element to be formed include light-emitting elements such as organic electroluminescence (EL) elements and thin film transistor (TFT) elements, modules such as metal wirings and semiconductor integrated circuits.
  • a light emitting element such as an organic EL element or a TFT element
  • it can be used as a flexible display substrate.
  • a module such as a metal wiring or a semiconductor integrated circuit is formed, it can be used as a flexible wiring substrate.
  • a gate electrode is provided by forming a film of metal, metal oxide, or the like on the polyimide film obtained in the step (b) by sputtering or the like and then etching.
  • the temperature at which a film of metal or metal oxide is formed by sputtering or the like may be appropriately selected according to the polyimide film forming composition to be used, the support and the element to be formed, but is 210 ° C. to 400 ° C.
  • the temperature is 220 to 370 ° C, more preferably 230 to 350 ° C.
  • a gate insulating film such as a silicon nitride film is formed on the polyimide film provided with the gate electrode by a plasma CVD method or the like. Further, an active layer made of an organic semiconductor or the like is formed on the gate insulating film by a plasma CVD method or the like.
  • the temperature at which a film such as a gate insulating film or an organic semiconductor is formed by plasma CVD or the like may be appropriately selected depending on the polyimide-based film forming composition to be used, the support and the element to be formed. It is preferably 400 ° C., more preferably 220 to 370 ° C., and preferably 230 to 350 ° C.
  • a source electrode and a drain electrode are provided by forming a film of metal, metal oxide, or the like on the active layer by sputtering or the like and then etching.
  • a thin film transistor element can be manufactured by forming a silicon nitride film or the like by a plasma CVD method or the like as a protective film as necessary.
  • the bottom gate type thin film transistor element has been described.
  • the TFT element is not limited to this structure, and may be a top gate type or the like.
  • the gate electrode, the source electrode, and the drain electrode are not particularly limited as long as they are formed of a conductive material.
  • the conductive material include metals and metal oxides.
  • metals include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, aluminum, zinc, magnesium, and alloys thereof, and examples of metal oxides , ITO, IZO, ZnO and In 2 O 3 .
  • a conductive polymer may be used as the conductive material in consideration of adhesiveness with the polyimide film.
  • a metal oxide because a transparent electrode can be formed.
  • an organic EL element for example, an insulating layer, a first electrode, an organic semiconductor layer, a second electrode, and a protective layer are formed on the polyimide film in order from the film surface side. Is mentioned.
  • a copper layer is provided on the polyimide film by a lamination method, a metalizing method, or the like, and the metal wiring can be provided by processing the copper layer by a known method.
  • a copper layer can be provided by hot pressing a metal foil such as a copper foil on the film.
  • a seed layer made of a Ni-based metal bonded to the polyimide-based film is formed by a vapor deposition method or a sputtering method.
  • a copper layer having a predetermined film thickness can be provided by a wet plating method or the like.
  • the polyimide film (film) has excellent heat resistance and excellent adhesion to the support, a substrate having a wide range of temperature that can be applied when forming an element on the film (film) and excellent performance is obtained. Can do.
  • Step (d) Next, the substrate obtained in the step (c) is peeled from the support. Since the substrate obtained from the polyimide-based film forming composition is excellent in releasability, the entire surface of the substrate can be easily peeled from the support.
  • a masking tape is previously applied to the edge of the substrate, the steps (a) to (c) are performed, and then the substrate is peeled off by peeling off the masking tape.
  • Examples thereof include a method of making an incision at the end to make a starting point and peeling, and a method of peeling by dipping in a solvent such as water or alcohol.
  • the temperature at the time of peeling is usually 0 to 100 ° C., preferably 10 to 70 ° C., more preferably 20 to 50 ° C.
  • Glass transition temperature (Tg) Using the films obtained in the following Examples 1 to 16 or Comparative Examples 1 and 2, the glass transition temperature of polyimide was set to 20 ° C./min using a Rigaku 8230 DSC measuring apparatus. It was measured.
  • Weight average molecular weight The weight average molecular weight of the polyamic acid obtained in the following Examples 1 to 16 or Comparative Examples 1 and 2 was measured using an HLC-8020 GPC apparatus manufactured by TOSOH. As the solvent, N-methyl-2-pyrrolidone (NMP) to which lithium bromide and phosphoric acid were added was used, and the molecular weight in terms of polystyrene was determined at a measurement temperature of 40 ° C.
  • NMP N-methyl-2-pyrrolidone
  • Example 1 A 2,2′-dimethyl-4,4′-diaminobiphenyl (hereinafter referred to as “m-TB”) as a component (B-2) was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube. 6) 77.0 g (28.6 mmol) and amino acid-modified methylphenyl silicone at both ends as a component (B-1) (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) 2.57 g (0. 6 mmol) was added.
  • m-TB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • the obtained polyamic acid solution was applied on a non-alkali glass support with a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 1100 rpm for 10 seconds), then at 70 ° C. for 30 minutes, and then at 120 ° C.
  • a coating film was obtained by drying for 30 minutes.
  • the coating film obtained as the imidization step was further dried at 250 ° C. for 2 hours, and then peeled off from the alkali-free glass support to obtain a polyimide film (film) having a film thickness of 30 ⁇ m (0.03 mm).
  • membrane the adhesiveness with respect to a support body, peelability, and the curvature of the polyimide-type film
  • Example 2 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 6.07 g (28.6 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was used as the component (B-2). As a component (B-1), 2.57 g (0.6 mmol) of amino acid-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 3 To a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube, 6.68 g (31.4 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B-2) As a component (B-1), 1.40 g (0.3 mmol) of amino acid-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 4 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube, 1.42 g (13.1 mmol) of paraphenylenediamine (hereinafter also referred to as “PDA”) as component (B-2) and 2 , 2′-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as “BAPP”) 5.39 g (13.1 mmol) and amino acid-modified methylphenyl silicone at both ends as component (B-1) ( 2.36 g (0.5 mmol) manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) was added.
  • PDA paraphenylenediamine
  • BAPP 2′-bis [4- (4-aminophenoxy) phenyl] propane
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 5 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube, 6.46 g (32.1) of 4,4′-diaminodiphenyl ether (hereinafter also referred to as “ODA”) as the component (B-2). 3 mmol) and 1.43 g (0.3 mmol) of amino terminal-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) were added as component (B-1).
  • ODA 4,4′-diaminodiphenyl ether
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 6 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube, 6.04 g (28.4 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was used as the component (B-2). As a component (B-1), 2.36 g (1.8 mmol) of amino acid-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-9409, number average molecular weight 1,300) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 7 6.41 g (30.2 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B-1) was added to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and cooling tube.
  • component (B-1) 1.85 g (0.6 mmol) of amino terminally modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-161B, number average molecular weight 3,000) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 8 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube, 6.29 g (29.6 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was used as component (B-2). As a component (B-1), 1.98 g (1.2 mmol) of amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-161A, number average molecular weight 1,600) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 9 To a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and cooling tube, 6.65 g (31.3 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B-2) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 10 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 6.59 g (31.0 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B-2) As a component (B-1), 1.38 g (0.3 mmol) of amino terminal-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 11 6.4 g (31) of 4,4′-diaminodicyclohexylmethane (hereinafter also referred to as “MBCHA”) as a component (B-2) was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube. .6 mmol) and 1.40 g (0.3 mmol) of both-terminal amino-modified methyl phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) were added as component (B-1).
  • MBCHA 4,4′-diaminodicyclohexylmethane
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 12 2.87 g (25.1 mmol) of 1,4-diaminocyclohexane (hereinafter also referred to as “CHDA”) as a component (B-2) in a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube. ) And 3.42 g (0.8 mmol) of amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) were added as components (B-1).
  • CHDA 1,4-diaminocyclohexane
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 13 As a component (B-2), 1.99 g (26.2 mmol) of 1,4-diaminocyclohexane and a component (B-1) were added to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and cooling tube. 2.56 g (2.0 mmol) of both-terminal amino-modified methyl phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-9409, number average molecular weight 1,300) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • B-2 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl (hereinafter referred to as “B-2) component was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, and a cooling tube.
  • TFMB a 7.85 g (24.5 mmol)
  • (B-1) component both-end amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-9409, number average molecular weight 1,300) 2.03 g (1 .6 mmol) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 15 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 6.34 g (29.9 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was used as component (B-2). As a component (B-1), 2.68 g (0.6 mmol) of amino terminally modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 16 Into a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser tube was added 2.78 g (22.3 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B-2). And (B-1) component both ends amino-modified methyl phenyl silicone (Shin-Etsu Chemical Co., Ltd., X22-1660B-3, number average molecular weight 4,400) 5.16 g (1.2 mmol) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 17 The polyamic acid solution (composition) prepared in Example 1 was cast and applied on a non-alkali glass support with a spin coater so that the thickness of the resulting coating film was 25 ⁇ m, and 30 minutes at 70 ° C. Then, it was dried at 120 ° C. for 30 minutes to obtain a coating film. Then, the coating film obtained as a cyclization (imidation) step was further dried at 250 ° C. for 2 hours.
  • a transparent conductive film (element) was formed on the surface of the obtained coating film under an argon atmosphere at 230 ° C. for 5 minutes.
  • ITO was used as a target material.
  • the specific resistance value of the obtained substrate was 2 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm).
  • membrane was obtained by peeling the polyimide-type film
  • substrate was peelable from the support body, and the curvature was not observed.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) are as follows. Column: TSK guard column ALPHA column: TSKgel ALPHA-M, developing solvent: NMP).
  • Coating solvent weight Coating varnish weight-Coating polymer weight
  • Coating non-amide solvent weight Coating solvent weight x amount of non-amide solvent charge (ratio of non-amide solvent in mixed solvent) (%)
  • Solvent weight after vacuum drying coating weight after vacuum drying-weight of polymer applied
  • Solvent weight evaporated by vacuum drying solvent weight applied-solvent weight after vacuum drying
  • Non-amide solvent weight after vacuum drying non-amide coating applied Weight of solvent ⁇ solvent weight evaporated by vacuum drying
  • Composition ratio (%) of non-amide solvent (weight of non-amide solvent after vacuum drying / solvent weight after vacuum drying ⁇ 100)
  • Composition ratio (%) of amide solvent 100 ⁇ composition ratio of non-amide solvent (The solvent evaporated by vacuum drying was defined as the solvent having the lowest boiling point in the mixed solvent (non-amide solvent).)
  • Tackiness after primary drying The coating after primary drying obtained in the following Examples 18 to 27 and Comparative Example 3 is strongly rubbed with a metal spatula, and there is no tackiness when the coating does not move. The coating film moved was evaluated as having tackiness.
  • the residual stress of the coating film is preferably 10 MPa or less, and more preferably 5 MPa or less.
  • Imidization rate The imidation rate of polyimide in the polyimide-based film after secondary drying obtained in Examples 18 to 27 and Comparative Example 3 below was calculated using FT-IR (Thermo NICOLET 6700, manufactured by Thermo Fisher Scientific). And quantified by the following method.
  • Example 18 In a three-necked flask equipped with a thermometer, a nitrogen inlet tube and a stirring blade at 25 ° C. under a nitrogen stream, 45.23099 g (0.21306 mol) of m-tolidine (m-TB), both ends amino-modified side chain phenyl methyl type silicone X-22-1660B-3 [9.4694 g (0.0021521 mol)], 307 g of dehydrated N-methyl-2-pyrrolidone (NMP) and dehydrated cyclohexanone (CHN) so that the polyamic acid concentration in the varnish is 14%. 307 g was added and stirred for 10 minutes until m-TB and X-22-1660B-3 were completely dissolved.
  • NMP N-methyl-2-pyrrolidone
  • CHN dehydrated cyclohexanone
  • a glass support (horizontal: 300 mm x vertical: 350 mm x thickness: 0.7 mm) is fixed to a control coater stand installed so as to be perpendicular to gravity, and the gap interval is set so that the film thickness becomes 30 ⁇ m after secondary drying.
  • Example 18 was carried out in the same manner as in Example 18 except that the amounts of m-TB, X-22-1660B-3 and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • a tough polyimide film having excellent heat resistance, transparency, and smoothness and having no warp could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 18 was carried out in the same manner as in Example 18 except that the amounts of m-TB, X-22-1660B-3 and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • a tough polyimide film having excellent heat resistance, transparency, and smoothness and having no warp could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 21 In Example 18, m-TB32.478g and 4,4′-diaminodiphenyl ether (ODA) 7.8760 g were used instead of m-TB45.23099g, and the amounts of X-22-1660B-3 and PMDA used were shown in Table 2. Example 18 was performed in the same manner as in Example 18 except that the changes were made. The results are shown in Table 2.
  • the elongation of the film was improved, and a polyimide-based film having no warpage was obtained with excellent heat resistance, transparency and smoothness.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 22 In Example 18, the same procedure as in Example 18 was performed except that N, N-dimethylacetamide (DMAc) was used instead of NMP as the amide solvent. The results are shown in Table 2.
  • DMAc N, N-dimethylacetamide
  • a tough polyimide film having excellent heat resistance, transparency, smoothness, no warpage, and low linear expansion coefficient could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 23 In Example 18, the same procedure as in Example 18 was performed, except that 430 g of acetonitrile was used instead of CHN 307 g as the non-amide solvent, and the amount of NMP used was changed as shown in Table 2. The results are shown in Table 2.
  • a tough polyimide film having excellent heat resistance, transparency, smoothness, no warpage, and low linear expansion coefficient could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • a tough polyimide film having excellent heat resistance, transparency, smoothness, no warpage, and low linear expansion coefficient could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 25 In Example 18, it carried out like Example 18 except having changed the usage-amount of NMP and CHN as shown in Table 2. The results are shown in Table 2.
  • a tough polyimide film with excellent heat resistance and smoothness and without warping could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 26 In Example 18, it carried out like Example 18 except having used ethylene glycol monomethyl ether instead of CHN. The results are shown in Table 2.
  • a tough polyimide film having excellent heat resistance, transparency, and smoothness and having no warp could be obtained.
  • the obtained coating film has a high drying rate and excellent adhesion to the glass support during the primary drying and the secondary drying.
  • the polyimide film obtained after the secondary drying is obtained from the glass support. Excellent peelability.
  • Example 27 In Example 18, it carried out like Example 18 except having used NMP614 instead of NMP307g and CHN307g. The results are shown in Table 2.
  • a polyimide film having excellent heat resistance and smoothness and having no warp could be obtained. Moreover, the obtained coating film is excellent in adhesiveness with the glass support during primary drying and secondary drying, and the polyimide film obtained after secondary drying is excellent in peelability from the glass support. It was.
  • Example 27 was carried out in the same manner as in Example 27 except that X-22-1660B-3 was not used and the amounts of m-TB and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • the varnish obtained in Comparative Example 3 had a slow drying rate. Moreover, the residual stress increased after secondary drying, and a large warp was generated in the polyimide film peeled from the glass support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

(a)支持体に、下記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物を塗布及び乾燥し、ポリアミック酸を含む塗膜を形成する工程と、(b)前記ポリアミック酸を含む塗膜を加熱し、ポリイミド系膜を得る工程と、(c)前記ポリイミド系膜上に素子を形成する工程と、(d)前記素子が形成されたポリイミド系膜を支持体から剥離する工程と、を含むことを特徴とする基板の製造方法である。(式(1)中、複数あるR1は、各々独立して炭素数1~20の1価の有機基であり、nは1~100の整数である。)

Description

基板の製造方法およびそれに用いられる組成物
 本発明は、基板の製造方法およびそれに用いられる組成物に関する。
 一般に、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られる全芳香族ポリイミドは、分子の剛直性や、分子が共鳴安定化していること、強い化学結合を有すること等に起因して、優れた耐熱性、機械的特性、電気特性、耐酸化・加水分解性等を有しており、電気、電池、自動車および航空宇宙産業などの分野において、フィルム、コーティング剤、成型部品、絶縁材料として幅広く使用されている。
 例えば、ピロメリット酸二無水物と4,4’-オキシジアニリンを重縮合させることで得られるポリイミド(ポリイミドフィルム)は、耐熱性及び電気絶縁性に優れ、寸法安定性が高く、フレキシブルプリント基板などに利用される。
 具体的には、ポリイミドフィルムはピロメリット酸二無水物と4,4’-オキシジアニリンとを反応させて得られるポリアミック酸溶液から脱溶媒、熱イミド化工程を経ることで作製される。通常、ポリイミドフィルムは、ステンレスベルト等の比較的剛直な支持体上で成膜されることが一般的である。
 また、ピロメリット酸二無水物、4,4'-オキシジアニリン及びp-フェニレンジアミンから合成されたポリイミドは熱的寸法安定性に優れることが開示されている(特許文献1および特許文献2)。
 さらに、寸法安定性を向上させたポリイミドフィルムとして、4,4'-オキシジフタル酸二無水物とピロメリット酸二無水物とを必須成分とするテトラカルボン酸二無水物、およびp-フェニレンジアミンと4,4'-オキシジアニリンとを含む芳香族ジアミンから得られたポリイミドフィルムが知られている(特許文献3)。
特開平1-131241号公報 特開平1-131242号公報 特開2009-518500号公報
 しかしながら、上記従来のポリイミド(形成組成物)を用いて、シリコンウエハ、無アルカリガラスのような支持体上で成膜を行うと、成膜時の収縮変形に伴い、基板もしくはフィルム自身に反りを生じる問題が指摘されている。そのため、これらのポリイミド(形成組成物)から、平滑性、屈曲性、柔軟性、寸法安定性が要求される用途、特にフレキシブルプリント基板、フレキシブルディスプレイ基板等のフレキシブル基板を製造することは困難であった。また、従来のポリイミドフィルムの成膜を、シリコンウエハ、無アルカリガラス等の支持体上で行うと、得られるフィルムの支持体との密着性および剥離性を両立することが困難であった。
 本発明の目的は、反りやねじりの発生をより有効に回避でき、低コストで簡便な基板の製造方法およびその製造方法に用いられる組成物を提供するところにある。
 本発明者は、上記課題を解決するために鋭意検討した結果、特定の構造単位を有するポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物を用いて、支持体上で基板を製造することで、反りやねじりの発生をより有効に回避できることを見出し、さらに支持体との密着性と剥離性とを両立可能な組成物および製造方法を見出すことで本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
 [1] (a) 支持体に、下記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物を塗布及び乾燥し、ポリアミック酸を含む塗膜を形成する工程と、
 (b) 前記ポリアミック酸を含む塗膜を加熱し、ポリイミド系膜を得る工程と、
 (c) 前記ポリイミド系膜上に素子を形成する工程と、
 (d) 前記素子が形成されたポリイミド系膜を支持体から剥離する工程と、
 を含むことを特徴とする基板の製造方法。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、複数あるR1は、各々独立して炭素数1~20の1価の有機基であり、nは1~200の整数である。)
 [2] 前記ポリアミック酸が、(A)テトラカルボン酸二無水物およびこの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物を含む成分と、(B)イミノ形成化合物を含む成分と、を反応させて得られ、下記(i)および/または(ii)を満たす、[1]に記載の基板の製造方法。
 (i)前記(A)成分が、(A-1)上記式(1)で表わされる構造単位を有するアシル化合物を含む
 (ii)前記(B)成分が、(B-1)上記式(1)で表わされる構造単位を有するイミノ形成化合物を含む
 [3] 前記(B)成分における前記(B-1)上記式(1)で表わされる構造単位を有するイミノ形成化合物の含有量が、前記(B)成分の合計量100質量%に対して5~70質量%である、[2]に記載の基板の製造方法。
 [4] 前記(B-1)上記式(1)で表わされる構造単位を有するイミノ形成化合物のアミン価から計算した数平均分子量が500~10,000である、[2]または[3]に記載の基板の製造方法。
 [5] 前記ポリアミック酸が、前記(A)成分と前記(B)成分とを、(A)成分と(B)成分とのモル比((B)成分/(A)成分)0.8~1.2の範囲で反応させて得られる、[2]~[4]のいずれかに記載の基板の製造方法。
 [6] 前記有機溶媒が、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、テトラヒドロフラン、シクロヘキサノン、アセトニトリルおよびエチレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の溶媒を有機溶媒全量に対して50重量%以上含む、[1]~[5]のいずれかに記載の基板の製造方法。
 [7] 前記ポリイミド系膜を構成するポリイミドの示差走査熱量測定(DSC、昇温速度20℃/分)で測定したガラス転移温度が350℃以上である、[1]~[6]のいずれかに記載の基板の製造方法。
 [8] 前記工程(b)における加熱を、200~350℃の範囲で行い、かつ、ポリイミド系膜のガラス転移温度以下で行う、[1]~[7]のいずれかに記載の基板の製造方法。
 [9] 前記支持体がシリコンウエハもしくは無アルカリガラスである、[1]~[8]のいずれかに記載の基板の製造方法。
 [10] [1]~[9]のいずれかに記載の基板の製造方法に用いられるポリイミド系膜形成用組成物であって、下記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含むことを特徴とするポリイミド系膜形成用組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、複数あるR1は、各々独立して炭素数1~20の1価の有機基であり、nは1~200の整数である。)
 本発明の基板の製造方法によれば、反りやねじりの発生が少ない基板を容易に製造することができる。
 また、本発明のポリイミド系膜形成用組成物は上記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含む組成物からなるため、基板を製造する際に反りやねじりの発生をより有効に回避することができる。
 本発明のポリイミド系膜形成用組成物を用いることで、シリコンウエハ、無アルカリガラス等の支持体上で成膜を行っても、成膜時の収縮変形に伴う、基板もしくはフィルムに生じ得る反りを低減することができる。このため、本発明のポリイミド系膜形成用組成物は、平滑性、屈曲性、柔軟性、寸法安定性が要求される用途、特にフレキシブルプリント基板、フレキシブルディスプレイ基板等のフレキシブル基板の製造に適している。さらに、本発明の基板の製造方法によれば、支持体としてシリコンウエハや無アルカリガラス等を用いた場合であっても、該支持体との密着性と剥離性とを両立することが可能なポリイミド系膜および基板を容易に製造することができる。
 なお、本発明において、「密着性」とは、例えば、工程(b)や工程(c)において、支持体上に形成されるポリイミド系膜および基板と支持体とが剥離しにくい性質をいう。
 本発明において、「剥離性」とは、例えば、工程(d)において、剥離痕が少なく、支持体上から基板を剥離できる性質をいう。
 本発明の基板の製造方法は、(a)支持体に、下記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物を塗布及び乾燥し、ポリアミック酸を含む塗膜を形成する工程と、(b)前記ポリアミック酸を含む塗膜を加熱し、ポリイミド系膜を得る工程と、(c)前記ポリイミド系膜上に素子を形成する工程と、(d)前記素子が形成されたポリイミド系膜を支持体から剥離する工程と、を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、複数あるR1は、各々独立して炭素数1~20の有機基であり、nは1~200の整数である。
 なお、「炭素数1~20」は、「炭素数1以上、炭素数20以下」を示す。本発明における同様の記載は同様の意味を示す。
 式(1)中、R1は、炭素数1~20の1価の有機基であり、炭素数1~20の1価の炭化水素基、ならびに酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1~20の1価の有機基等を挙げることができる。
 R1で表わされる炭素数1~20の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基または炭素数6~20のアリール基等が挙げられる。
 炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 炭素数3~20のシクロアルキル基としては、炭素数3~10のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。
 炭素数6~20のアリール基としては、炭素数6~12のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。
 酸素原子を含む炭素数1~20の有機基としては、水素原子、炭素原子および酸素原子からなる有機基が挙げられ、具体的には、エーテル結合、カルボニル基およびエステル基を有する炭素数1~20の有機基等を挙げることができる。
 エーテル結合を有する炭素数1~20の有機基としては、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリールオキシ基および炭素数1~20のアルコキシアルキル基等を挙げることができる。具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基、シクロヘキシルオキシ基およびメトキシメチル基等が挙げられる。
 また、カルボニル基を有する炭素数1~20の有機基としては、炭素数2~20のアシル基等を挙げることができる。具体的には、アセチル基、プロピオニル基、イソプロピオニル基およびベンゾイル基等が挙げられる。
 エステル基を有する炭素数1~20の有機基としては、炭素数2~20のアシルオキシ基等が挙げられる。具体的には、アセチルオキシ基、プロピオニルオキシ基、イソプロピオニルオキシ基およびベンゾイルオキシ基等が挙げられる。
 窒素原子を含む炭素数1~20の有機基としては、水素原子、炭素原子および窒素原子からなる有機基が挙げられ、具体的には、イミダゾール基、トリアゾール基、ベンズイミダゾール基およびベンズトリアゾール基等が挙げられる。
 酸素原子および窒素原子を含む炭素数1~20の有機基としては、水素原子、炭素原子、酸素原子および窒素原子からなる有機基が挙げられ、具体的には、オキサゾール基、オキサジアゾール基、ベンズオキサゾール基およびベンズオキサジアゾール基等が挙げられる。
 前記式(1)における複数あるR1の少なくとも1つは、アリール基を含むことが、得られるポリイミド系膜の反りやねじりの発生を有効に回避する点等から好ましい。より具体的には、複数あるR1は、炭素数1~10のアルキル基および炭素数6~12のアリール基であることが好ましい。この場合、前記式(1)で表わされる構造単位(以下「構造単位(1)」ともいう。)中の全てのR1のうち、炭素数1~10のアルキル基のモル数(i)と炭素数6~12のアリール基のモル数(ii)との比(但し、(i)+(ii)=100)は、好ましくは(i):(ii)=90~10:10~90であり、より好ましくは(i):(ii)=85~15:15~85であり、さらに好ましくは(i):(ii)=85~65:15~35である。構造単位(1)中の全てのR1のうち、アルキル基(i)とアリール基(ii)との比が前記範囲にあると、得られるポリイミド系膜の反りやねじりの発生をより有効に回避することができる。前記炭素数1~10のアルキル基(i)は、好ましくはメチル基であり、前記炭素数6~12のアリール基(ii)は、好ましくはフェニル基である。
 前記式(1)中のnは1~200の整数であり、好ましくは3~200、より好ましくは10~200、より好ましくは20~150、さらに好ましくは30~100、特に好ましくは35~80の整数である。前記式(1)中のnが上記範囲内であると、ポリアミック酸から得られるポリイミドがミクロ相分離構造を形成しやすいため、得られるポリイミド系膜の反りやねじりの発生を抑制でき、ポリイミド系膜の白濁や、機械強度の低下が抑制される。
 [工程(a)]
 まず、支持体に、構造単位(1)を有するポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物を塗布及び乾燥し、ポリアミック酸を含む塗膜を形成する工程について説明する。
 本工程に用いられるポリイミド系膜形成用組成物は、構造単位(1)を有するポリアミック酸と有機溶媒とを含むものである。このようなポリアミック酸を用いることにより、密着性と剥離性のバランス、および反りのない平滑性に優れた基板を得ることができる。なお、前記ポリイミド系膜形成用組成物には、本発明の目的を損なわない範囲で、酸化防止剤、紫外線吸収剤、界面活性剤などの添加剤を配合してもよい。
 構造単位(1)を有するポリアミック酸は、好ましくは、(A)テトラカルボン酸二無水物およびこの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物を含む成分(本発明では「(A)成分」ともいう。)と(B)イミノ形成化合物を含む成分(本発明では「(B)成分」ともいう。)とを反応させることで得られる。この場合、(A)成分として(A-1)構造単位(1)を有するアシル化合物(以下「化合物(A-1)」ともいう。)を用いること、あるいは(B)成分として(B-1)構造単位(1)を有するイミノ形成化合物(以下「化合物(B-1)」ともいう。)を用いることが好ましい。また、化合物(A-1)と化合物(B-1)とを両方用いることもできる。
 この反応によれば、用いる原料化合物の構造に応じたポリアミック酸を得ることができ、また、用いる原料化合物の使用量に応じた量で該化合物に由来する構造単位を有するポリアミック酸を得ることができる。
 [(A)成分]
 (A)成分は、テトラカルボン酸二無水物およびこれらの反応性誘導体より選ばれる少なくとも1種のアシル化合物を含む。好ましくは、上記化合物(A-1)、および化合物(A-1)以外のアシル化合物(A-2)からなる群より選ばれる少なくとも一種の化合物を含む。
 上記化合物(A-1)としては、具体的には構造単位(1)を有するテトラカルボン酸二無水物およびこの反応性誘導体より選ばれる少なくとも一種のアシル化合物が挙げられ、好ましくは下記式(2)、式(2A)、式(2B)および式(2C)で表わされる化合物等を挙げることができる。
 上記反応性誘導体としては、構造単位(1)を有するテトラカルボン酸、該テトラカルボン酸の酸エステル化物、該テトラカルボン酸の酸クロライドなどが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 前記式(2)、(2A)、(2B)および(2C)中、複数あるR1およびnは、各々独立して前記式(1)中のR1およびnと同義であり、好ましい範囲も同様である。R2は、各々独立して炭素数1~20の2価の炭化水素基を示す。前記式(2A)および(2C)中、R11は各々独立に水素原子、または炭素数1~20の1価の有機基を示し、この炭素数1~20の1価の有機基としては、前記式(1)中、R1における炭素数1~20の1価の有機基と同様の基等が挙げられる。
 R2における炭素数1~20の2価の炭化水素基としては、メチレン基、炭素数2~20のアルキレン基、炭素数3~20のシクロアルキレン基または炭素数6~20のアリーレン基等が挙げられる。
 炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 炭素数3~20のシクロアルキレン基としては、炭素数3~10のシクロアルキレン基であることが好ましく、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。
 炭素数6~20のアリーレン基としては、炭素数6~12のアリーレン基であることが好ましく、フェニレン基、ナフチレン基等が挙げられる。
 化合物(A-1)としては、耐熱性(高ガラス転移温度)及び耐水性に優れたポリアミック酸及び/又はポリイミドを得る観点から数平均分子量が200~10,000であることが好ましく、500~8,000であることがより好ましい。
 化合物(A-1)としては、具体的には、ゲレスト社製 DMS-Z21(数平均分子量600~800、n=4~7)などを挙げることができる。なお、ポリアミック酸を合成する際、これら化合物(A-1)は、1種単独であるいは2種以上混合して用いることができる。
 (A)成分が上記化合物(A-1)を含む場合、全アシル化合物((A)成分)の全量100質量%に対して、(A)成分は化合物(A-1)を10~60質量%含むことが好ましく、20~50質量%含むことがより好ましく、25~50質量%含むことがさらに好ましく、30~50質量%含むことが特に好ましい。耐熱性および支持体に対する密着性と剥離性に優れた基板(ポリイミド系膜)を得る観点から、化合物(A-1)の使用量は、上記範囲に含まれることが好ましい。
 但し、上記化合物(A-1)の全アシル化合物((A)成分)の全量100質量%に対する好ましい配合量は、ポリアミック酸を合成する際に、前記化合物(B-1)を用いない場合であり、ポリアミック酸を合成する際に、その原料として、化合物(A-1)および化合物(B-1)を用いる場合には、使用する化合物(A-1)および化合物(B-1)の合計量が前記化合物(A-1)の好ましい配合量と同程度になるようにすることが好ましい。
 (A-2)化合物(A-1)以外のアシル化合物
 上記化合物(A-1)以外のその他のアシル化合物(A-2)としては、例えば、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、脂環族テトラカルボン酸二無水物、及びこれらの反応性誘導体からなる群より選ばれる少なくとも1種の化合物が挙げられる。具体例としては、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物あるいは脂環族テトラカルボン酸二無水物、及びこれらの反応性誘導体;
 4,4’-オキシジフタル酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、2,3,4,5-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物、及びこれらの反応性誘導体を挙げることができる。
 これらのうち、優れた透明性、有機溶媒への良好な溶解性の観点からは、脂肪族テトラカルボン酸二無水物あるいは脂環族テトラカルボン酸二無水物が好適に用いられる。また、耐熱性、低線膨張係数(寸法安定性)、低吸水性の観点からは、芳香族テトラカルボン酸二無水物が好適に用いられる。
 前記アシル化合物(A-2)としては、下記式(4)で表わされる基を有する化合物が、得られるポリイミド系膜の反りやねじりの発生を有効に回避する点等から好ましく、下記式(4')で表わされる基を有する化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000007
 前記式(4)中、R4は各々独立に水素原子またはアルキル基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、Aは各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む基を示し、アルキレン基の水素原子はハロゲン原子で置換されても良く、Dはエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、アルキレン基の水素原子はハロゲン原子で置換されても良く、bは各々独立に1または2を示し、cは各々独立に1~3の整数を示し、fは0~3の整数を示す。
 前記式(4)中、R4におけるアルキル基は、好ましくは炭素数1~20のアルキル基であり、より好ましくは炭素数1~10のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 これらのアルキル基における任意の水素原子は、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換されてもよい。
 前記式(4)中、Dにおけるアルキレン基としては、メチレン基または炭素数2~20のアルキレン基等が挙げられ、このメチレン基およびアルキレン基の水素原子はハロゲン原子で置換されても良い。
 前記炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、イソプロピリデン基、フルオレン基およびこれらのアルキレン基における任意の水素原子が、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。
 Aは各々独立にエーテル基(-O-)、チオエーテル基(-S-)、ケトン基(-C(=O)-)、エステル基(-COO-)、スルフォニル基(-SO2-)、アルキレン基(-R7-)、アミド基(-C(=O)-NR8-)およびシロキサン基(-Si(R92-O-Si(R92-)からなる群より選ばれる少なくとも1種の基を含む基を示し、アルキレン基の水素原子はハロゲン原子で置換されても良い。
 なお、前記R8およびR9は各々独立に水素原子、アルキル基またはハロゲン原子を示し、このアルキル基の水素原子はハロゲン原子で置換されても良い。前記R8およびR9におけるアルキル基としては、前記R4におけるアルキル基と同様の基等が挙げられる。前記ハロゲン原子としては、塩素原子またはフッ素原子が好ましい。
 前記Aにおけるアルキレン基(-R7-)としては、前記Dにおけるアルキレン基と同様の基等が挙げられ、これらの中でも、メチレン基、イソプロピリデン基、ヘキサフルオロイソプロピリデン基およびフルオレン基が好ましい。
 R4としては水素原子が好ましく、Aとしては、エーテル基が好ましく、Dとしては、スルフォニル基が好ましい。
 fは、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記化合物(A-1)以外のアシル化合物(A-2)は、(A)成分に上記化合物(A-1)が含まれる場合には、全アシル化合物((A)成分)の全量を100質量%とした場合に、(A)成分中に40質量%以上含まれることが好ましく、40~90質量%含まれることがより好ましく、50~80質量%含まれることがより好ましく、50~75質量%含まれることがさらに好ましく、50~70質量%含まれることが特に好ましい。耐熱性および基板に対する密着性と剥離性に優れた基板(ポリイミド系膜)を得る観点から、アシル化合物(A-2)の使用量は、上記範囲に含まれることが好ましい。
 [(B)成分]
 (B)成分は、イミノ形成化合物である。ここで、「イミノ形成化合物」とは、(A)成分と反応してイミノ(基)を形成する化合物をいい、具体的には、ジアミン化合物、ジイソシアネート化合物、ビス(トリアルキルシリル)アミノ化合物等を挙げることができる。
(B)成分は、好ましくは、上記化合物(B-1)および化合物(B-1)以外のイミノ形成化合物(B-2)からなる群より選ばれる少なくとも一種を含む。
 (B-1)構造単位(1)を有するイミノ形成化合物としては、例えば、下記式(3)および式(3A)で表わされる化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 前記式(3)中、複数あるR1およびnは、各々独立して前記式(1)中のR1およびnと同義であり、好ましい範囲も同様である。前記式(3A)中、R11は前記式(2A)および(2C)中のR11と同義である。R3は、各々独立して炭素数1~20の2価の炭化水素基を示し、この炭素数1~20の2価の炭化水素基としては、前記式(2)、(2A)、(2B)および(2C)中、R2における炭素数1~20の2価の炭化水素基と同様の基等が挙げられる。
 上記化合物(B-1)としては、耐熱性(高ガラス転移温度)及び耐水性に優れたポリアミック酸及び/又はポリイミドを得る観点から、アミン価から計算した数平均分子量が500~10,000であることが好ましく、1,000~9,000であることがより好ましく、3,000~8,000であることがさらに好ましい。
 上記化合物(B-1)としては、具体的には、両末端アミノ変性メチルフェニルシリコーン(信越化学社製 X22-1660B-3(数平均分子量4,400、重合度n=41,フェニル基:メチル基=25:75mol%),X22-9409(数平均分子量1,300))、両末端アミノ変性ジメチルシリコーン(信越化学社製 X22-161A(数平均分子量1,600、重合度n=20),X22-161B(数平均分子量3,000、重合度n=39)、KF8012(数平均分子量4400、重合度n=58)、東レダウコーニング製 BY16-835U(数平均分子量900、重合度n=11))などを挙げることができる。なお、ポリアミック酸を合成する際、上記イミノ形成化合物(B-1)は1種を単独であるいは2種以上を組み合わせて用いることができる。
 (B)成分が上記式(1)で表わされる構造単位を有するイミノ形成化合物(B-1)を含む場合、全イミノ形成化合物((B)成分)の全量100質量%に対して、(B)成分は化合物(B-1)を5~70質量%含むことが好ましく、10~60質量%含むことがより好ましく、15~55質量%含むことがより好ましい。耐熱性および基板に対する密着性と剥離性に優れたポリイミド系膜を得る観点から、イミノ形成化合物(B-1)の使用量は、上記範囲に含まれることが好ましい。
 但し、上記化合物(B-1)の全イミノ形成化合物((B)成分)の全量100質量%に対する好ましい配合量は、ポリアミック酸を合成する際に、前記化合物(A-1)を用いない場合である。
 (B-2)化合物(B-1)以外のイミノ形成化合物
 上記化合物(B-1)以外のその他のイミノ形成化合物(B-2)としては、芳香族ジアミン、脂肪族ジアミン、脂環族ジアミンからなる群より選ばれる少なくとも1種の化合物等が挙げられる。
 前記芳香族ジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル(4,4’-ODA)、3,4’-ジアミノジフェニルエーテル(3,4’-ODA)、3,3’-ジアミノジフェニルエーテル(3,3’-ODA)、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,n-ビス(4-アミノフェノキシ)アルカン、1,3-ビス[2-(4-アミノフェノキシエトキシ)]エタン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、5(6)-アミノ-1-(4-アミノメチル)-1,3,3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、2,5-ビス(4-アミノフェノキシ)ビフェニル(P-TPEQ)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシフェニル)]プロパン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4―(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ベンジジン、3,3-ジメトキシ-4,4-ジアミノビフェニル、2,2’-ジクロロ-4,4’-ジアミノ-5,5’-ジメトキシビフェニル、2,2’,5,5’-テトラクロロ-4,4’-ジアミノビフェニル、4,4’-メチレン-ビス(2-クロロアニリン)、9,10-ビス(4-アミノフェニル)アントラセン、o-トリジンスルホン等が挙げられる。これら芳香族ジアミンは、一種単独であるいは2種以上混合して用いることができる。
 前記脂肪族ジアミンとしては、炭素数2~30の脂肪族ジアミンが挙げられ、その具体例としては、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ヘプタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン等のアルキレンジアミン;オキシジ(2-アミノエタン)、オキシジ(2-アミノプロパン)、2-(2-アミノエトキシ)エトキシアミノエタン等のオキシアルキレンジアミンが例示される。これら脂肪族ジアミンは、一種単独で又は2種以上を混合してイミド化反応に供することができる。
 また、前記脂環族ジアミンとしては、分子内に少なくとも1個の脂環基を有するものを用いることができ、脂環基としては単環、多環、縮合環のいずれの基であってもよい。前記脂環族ジアミンとしては、炭素数4~30の脂環族ジアミンが好適に用いられ、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルシクロヘキシルメタン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4,4’-ジアミノシクロヘキシル)プロパン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、2,3-ジアミノビシクロ〔2.2.1〕ヘプタン、2,5-ジアミノビシクロ〔2.2.1〕ヘプタン、2,6-ジアミノビシクロ〔2.2.1〕ヘプタン、2,7-ジアミノビシクロ〔2.2.1〕ヘプタン、2,5-ビス(アミノメチル)-ビシクロ〔2.2.1〕ヘプタン、2,6-ビス(アミノメチル)-ビシクロ〔2.2.1〕ヘプタン、2,3-ビス(アミノメチル)-ビシクロ〔2.2.1〕ヘプタン、3(4),8(9)-ビス(アミノメチル)-トリシクロ〔5.2.1.02,6〕デカン等が挙げられる。
 なお、これらイミノ形成化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記イミノ形成化合物(B-2)としては、下記式(5)で表わされる基を有する化合物が、得られるポリイミド系膜の反りやねじりの発生を有効に回避する点等から好ましく、下記式(5')で表わされる基を有する化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000010
 前記式(5)中、R5は各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基を示し、このアルキル基およびアルキレン基の水素原子はハロゲン原子で置換されても良く、a1は各々独立に1~3の整数を示し、a2は各々独立に1または2を示し、a3は各々独立に1~4の整数を示し、eは0~3の整数を示す。AおよびDは各々独立に、前記式(4)中のAおよびDと同義であり、好ましい基も同様である。
 前記式(5)中、R5としては、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基が好ましく、水素原子またはアルキル基が好ましい。
 前記式(5)中、R5におけるアルキル基は、前記式(4)中、R4におけるアルキル基と同義であり、前記式(5)中、R5におけるアルキレン基は、前記式(4)中、Dにおけるアルキレン基と同義である。
 eは、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
Figure JPOXMLDOC01-appb-C000011
 前記式(5')中、R5は各々独立に前記式(5)中のR5と同義である。
 上記化合物(B-1)以外のイミノ形成化合物(B-2)は、全イミノ形成化合物((B)成分)の全量を100質量%とした場合に、(B)成分中に40~90質量%含まれることが好ましく、50~80質量%含まれることがより好ましく、50~75質量%含まれることがさらに好ましく、50~70質量%含まれることが特に好ましい。耐熱性および基板に対する密着性と剥離性に優れた基板(ポリイミド系膜)を得る観点から、イミノ形成化合物(B-2)の使用量は、上記範囲に含まれることが好ましい。
 ポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物は、前記(A)成分と(B)成分とを有機溶媒中で反応させることで得ることができる。(A)成分と(B)成分とを反応させる具体的な方法としては、少なくとも1種の(B)イミノ形成化合物を有機溶媒に溶解した後、得られた溶液に、少なくとも1種の(A)アシル化合物を添加し、0~100℃の温度で、1~60時間撹拌する方法等が挙げられる。
 上記有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルフォルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、N,N’-ジメチルイミダゾリジノン、テトラメチル尿素、テトラヒドロフラン、シクロヘキサノン、アセトニトリルおよびエチレングリコールモノエチルエーテル等の非プロトン系極性溶媒;クレゾール、キシレノール、ハロゲン化フェノール等のフェノール系溶媒;などが挙げられる。中でも、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、テトラヒドロフラン、シクロヘキサノン、アセトニトリルおよびエチレングリコールモノエチルエーテルが好ましい。また、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、テトラヒドロフラン、シクロヘキサノン、アセトニトリルおよびエチレングリコールモノエチルエーテルから選ばれる少なくとも一種の溶媒を、用いる有機溶媒全量(100重量%)に対して50重量%以上、好ましくは70~100重量%含むことが好ましい。
 これらの溶媒は1種単独で、あるいは2種以上混合して使用することができる。
 前記有機溶媒としては、アミド系溶媒とエーテル系溶媒、ケトン系溶媒、ニトリル系溶媒およびエステル系溶媒からなる群より選ばれる少なくとも1種の非アミド系溶媒との混合溶媒を用いることが、得られる塗膜(膜)の密着性、剥離性および残留応力等の点からより好ましい。また、前記混合溶媒を用いると、膜形成時の乾燥速度が上がり、膜質が低下せず、ポリイミド系膜の生産性に優れ、ポリアミック酸の濃度の高い組成物を得ることができる。
 前記非アミド系溶媒としては、下記真空乾燥中に選択的に蒸発し、基板上に形成された塗膜からほぼ完全に除去される溶媒であることが好ましく、沸点が40~200℃の範囲にある溶媒が好ましく、100~170℃の範囲にある溶媒がより好ましい。このような溶媒を用いると、組成物から膜を形成する際の溶媒の除去が容易となるために、生産性に優れる組成物を得ることができる。本発明において、沸点とは、大気中、1atm下における沸点のことをいう。
 また、前記非アミド系溶媒としては、ケトン系溶媒、エーテル系溶媒およびニトリル系溶媒からなる群より選ばれる少なくとも1種の有機溶媒を含むことが好ましいと考えられる。これらの溶媒は、比較的極性が高いため、保存安定性に優れる組成物を得ることができる傾向がある。
 前記エーテル系溶媒としては、炭素数3以上10以下のエーテル類であることが好ましく、炭素数3以上7以下のエーテル類であることがより好ましい。好ましいエーテル系溶媒としては、具体的には、エチレングリコール、ジエチレングリコール、エチレングリコールモノエチルエーテルなどのモノもしくはジアルキルエーテル類、ジオキサン、テトラヒドロフラン(THF)などの環状エーテル類、アニソールなどの芳香族エーテル類等を挙げることができる。これらの中でもテトラヒドロフランが好ましい。
 なお、これらエーテル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記ケトン系溶媒としては、炭素数3以上10以下のケトン類であることが好ましく、沸点およびコストの点等から、炭素数3以上6以下のケトン類であることがより好ましい。好ましいケトン系溶媒としては、具体的には、アセトン(bp=57℃)メチルエチルケトン(bp=80℃)、メチル-n-プロピルケトン(bp=105℃)、メチル-iso-プロピルケトン(bp=116℃)、ジエチルケトン(bp=101℃)、メチル-n-ブチルケトン(bp=127℃)、メチル-iso-ブチルケトン(bp=118℃)、メチル-sec-ブチルケトン(bp=118℃)、メチル-tert-ブチルケトン(bp=116℃)などのジアルキルケトン類、シクロペンタノン(bp=130℃)、シクロヘキサノン(CHN,bp=156℃)、シクロヘプタノン(bp=185℃)などの環状ケトン類等を挙げることができる。これらの中でもシクロヘキサノンが、乾燥性、生産性等に優れる組成物を得ることができること、下記真空乾燥中に選択的に蒸発し、基板上に形成された塗膜からほぼ完全に除去される溶媒であること等の点でから好ましい。
 なお、これらケトン系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記ニトリル系溶媒としては、炭素数2以上10以下のニトリル類であることが好ましく、炭素数2以上7以下のニトリル類であることがより好ましい。好ましいニトリル系溶媒としては、アセトニトリル(bp=82℃)、プロパンニトリル(bp=97℃)、ブチロニトリル(bp=116℃)、イスブチロニトリル(bp=107℃)、バレロニトリル(bp=140℃)、イソバレロニトリル(bp=129℃)、ベンズニトリル(bp=191℃)等が挙げられる。これらの中でも、低沸点の点等から、アセトニトリルが好ましい。
 なお、これらニトリル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記エステル系溶媒としては、炭素数3以上10以下のエステル類であることが好ましく、炭素数3以上6以下のエステル類であることがより好ましい。好ましいエステル系溶媒としては、酢酸エチル(bp=77℃)、酢酸プロピル(bp=97℃)、酢酸-i-プロピル(bp=89℃)、酢酸ブチル(bp=126℃)、などのアルキルエステル類、β-プロピオラクトン(bp=155℃)などの環状エステル類等を挙げることができる。
 なお、これらエステル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記アミド系溶媒としては、炭素数3以上10以下のアミド類であることが好ましく、炭素数3以上6以下のアミド類であることがより好ましい。これらの中でも、工程(a)において、1次乾燥、次いで、2次乾燥することでポリイミド系膜を得る場合、1次乾燥温度以上の沸点を有するアミド系溶媒が得られる膜の平坦性等の点から好ましく、具体的には、沸点が200℃以上のアミド系溶媒が好ましい。好ましいアミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)などのアルキルアミド類、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン(NMP)などの環状アミド類等を挙げることができる。これらの中でも、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドが非アミド系溶媒を蒸発させた真空乾燥や1次乾燥後に残存し、200℃~500℃で行う2次乾燥の際に塗膜の表面の平滑性を維持できる蒸発速度で揮発することなどからより好ましく、環境汚染等を考慮すると、N-メチル-2-ピロリドンがより好ましい。
 なお、これらアミド系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
 前記混合溶媒は、乾燥性および生産性等の点から、N-メチル-2-ピロリドンとシクロヘキサノンとの混合溶媒、N-メチル-2-ピロリドンとアセトニトリルとの混合溶媒であることが好ましく、特にN-メチル-2-ピロリドンとシクロヘキサノンとの混合溶媒が好ましい。また、得られる膜の白濁防止等の観点から、N,N-ジメチルアセトアミドとテトラヒドロフランとの混合溶媒が好ましい。
 前記混合溶媒は、混合溶媒100質量部に対して、前記アミド系溶媒を5~95質量部含むことが好ましく、25~95質量部含むことがより好ましく、得られる膜の物性を考慮すると35~65質量部含むことがさらに好ましい。さらに前記混合溶媒は、混合溶媒100質量部に対して、前記アミド系溶媒を40~60質量部含むことが特に好ましく、混合溶媒中に前記アミド系溶媒がこの量で含まれていると、乾燥速度が速く、生産性に優れる組成物となるのみならず、さらに、白濁および引張り強度等の膜質特性、保存安定性等に優れ、基板との密着・剥離性に優れる反りの生じにくい膜を得ることができる。
 アミド系溶媒の量が5質量部未満であると、前記ポリアミック酸が溶解せず、組成物を得ることができない場合があり、アミド系溶媒の量が95質量部を超えると、膜を形成する際の乾燥速度が遅くなり、生産性が劣る場合がある。
 なお、反応液中の(B)成分と(A)成分との合計量は、反応液全量の5~30質量%であることが好ましい。
 前記ポリアミック酸は、(A)成分と(B)成分とを、使用割合(仕込み量比)として、(A)成分と(B)成分とのモル比((B)成分/(A)成分)が0.8~1.2となる範囲で反応させることが好ましく、0.95~1.0となる範囲で反応させることがより好ましい。(A)アシル化合物と(B)イミノ形成物とのモル比が、0.8当量未満、若しくは1.2当量を超えると、分子量が低くなり、ポリイミド系膜を形成することが困難となることがある。
 また、上記反応で得られたポリアミック酸と有機溶媒とを含む組成物は、そのまま前記膜形成用組成物として使用することもできるが、前記膜形成用組成物は、上記反応で得られたポリアミック酸を固体分として単離した後、有機溶媒に再溶解することで得ることもできる。なお、再溶解する有機溶媒としては、上記有機溶媒と同様のものが挙げられ、前記混合溶媒が好ましい。ポリアミック酸を単離する方法としては、ポリアミック酸及び有機溶媒等を含む溶液を、メタノールやイソプロパノール等のポリアミック酸に対する貧溶媒に投じてポリアミック酸等を沈殿させ、濾過・洗浄・乾燥等によりポリアミック酸を固体分として分離する方法等が挙げられる。
 なお、ポリアミック酸とは、-CO-NH-、及び、-CO-OHを含む構造を有する酸、または、その誘導体(例えば、-CO-NH-、及び、-CO-OR(ただし、Rはアルキル基等である。)を含む構造を有するもの)をいう。ポリアミック酸は、加熱等によって、-CO-NH-のHと、-CO-OHのOHとが脱水(-CO-NH-のHと、-CO-ORのORとが脱離)して、環状の化学構造(-CO-N-CO-(以下、イミド環構造ともいう。))を有するポリイミドとなる(以下、-CO-NH-と-CO-OHとを含む構造、または-CO-NH-と-CO-OR(ただし、Rはアルキル基等である。)とを含む構造等をアミック酸構造ともいう。)。
 また、ポリアミック酸は、下記式により算出されるシリコーン化合物濃度が、3~50%であることが好ましく、5~40%であることがより好ましく、8~30%であることがさらに好ましい。
 シリコーン化合物濃度[単位:%]=(シリコーン化合物の重量)/{((A)全アシル化合物の重量)+((B)全イミノ形成化合物の重量)}×100
 なお、「シリコーン化合物の重量」とは、上記式(1)で表わされる構造単位を有する化合物全ての重量をいう。
 前記ポリアミック酸の重量平均分子量(Mw)は、好ましくは10,000~1,000,000であり、より好ましくは10000~200000であり、さらに好ましくは20000~150000である。数平均分子量(Mn)は好ましくは5000~10000000、より好ましくは5000~500000、特に好ましくは20000~200000である。ポリアミック酸の重量平均分子量ないし数平均分子量が上記下限未満であると、塗膜の強度が低下してしまうことがある。さらに、得られるポリイミド系膜の線膨張係数が必要以上に上がる場合がある。一方、ポリアミック酸の重量平均分子量ないし数平均分子量が上記上限を超えると、ポリイミド系膜形成用組成物の粘度が上がるため、該組成物を支持体に塗布して膜を形成する際の、組成物に配合できるポリアミック酸の量が少なくなるため、得られる塗膜の平坦性等の膜厚精度が悪化する場合がある。
 前記ポリアミック酸の分子量分布(Mw/Mn)は好ましくは1~10、より好ましくは2~5、特に好ましくは2~4である。
 なお、前記重量平均分子量、数平均分子量および分子量分布は、実施例と同様に測定した値である。
 前記ポリイミド系膜形成用組成物の粘度は、ポリアミック酸の分子量や濃度にもよるが、通常、500~500,000mPa・s、好ましくは1,000~50,000mPa・sである。500mPa・s未満では、成膜中の組成物の滞留性が悪く、支持体から流れ落ちてしまうことがある。一方、500,000mPa・sを超えると、粘度が高過ぎて、膜厚の調整が困難となり、ポリイミド系膜の形成が困難となることがある。
 なお、前記組成物の粘度は、E型粘度計(東機産業製、粘度計MODEL RE100)を用いて、大気中、25℃で測定した値である。
 前記ポリイミド系膜形成用組成物中のポリアミック酸の濃度は、組成物の粘度が上記範囲となるよう調整することが好ましく、ポリアミック酸の分子量にもよるが、通常、3~60質量%、好ましくは5~40質量%、より好ましくは10~40質量%、特に好ましくは10~30質量%である。3質量%未満では、厚膜化し難く生産性が悪い、ピンホールが生成しやすい、平坦性等の膜厚精度が悪い、等の問題が生じるおそれがある。一方、60質量%を超えると、組成物の粘度が高すぎて膜を形成し難くなることがあり、また、表面平滑性に欠けるポリイミド系膜が得られることがある。
 前記ポリイミド系膜形成用組成物の粘度および該組成物中のポリアミック酸の濃度が前記範囲にあると、生産性等に優れるスリットコート法を用いて、該組成物を支持体上に塗布することができ、膜厚精度等に優れるポリイミド系膜を生産性良く短時間で形成することができる。
 なお、ポリイミド系膜形成用組成物は、部分的にイミド化されたポリアミック酸を含んでいてもよい。
 この部分的にイミド化されたポリアミック酸は、脱水剤を用いる方法(化学的部分イミド化)や、溶液で160~220℃程度で熱処理する方法(熱的部分イミド化)で合成され、より低温での加熱によって部分環化を行うことができることなどから、化学イミド化などの化学的部分イミド化されたものが好ましい。
 前記脱水剤としては、無水酢酸、無水プロピオン酸、無水安息香酸等の酸無水物、もしくはこれらの化合物に対応する酸クロライド類、ジシクロヘキシルカルボジイミド等のカルボジイミド化合物などが挙げられる。なお、化学的部分イミド化の際には、60~120℃の温度で加熱することが好ましい。
 熱的部分イミド化の場合には、脱水反応で生じる水を系外に除去しながら行うことが好ましい。この際、ベンゼン、トルエン、キシレン等を用いて水を共沸除去することが好ましい。
 また、部分イミド化の際には、必要に応じて、ピリジン、イソキノリン、トリメチルアミン、トリエチルアミン、N,N-ジメチルアミノピリジン、イミダゾール等の塩基触媒を用いることができる。上記脱水剤又は塩基触媒は、(A)成分1モルに対し、それぞれ0.1~8モルの範囲で用いることが好ましい。
 なお、部分イミド化を行う場合には、部分イミド化は、ポリアミック酸中の-CO-NH-や-CO-OH等の環化反応に寄与する官能基100モル%の少なくとも一部、具体的にはアミック酸構造およびイミド環構造の合計100モル%中、イミド環構造の割合(以下、閉環率ともいう。)が好ましくは5~70モル%、より好ましくは10~60モル%、特に好ましくは20~50モル%となるように行われる。
 また、ポリイミド系膜形成用組成物を塗布する対象である支持体としては、シリコンウエハ、無アルカリガラス(板)、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ナイロン6フィルム、ナイロン6,6フィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレン製ベルト、ガラスウエハ、ガラス(板)(無アルカリガラス(板)を除く)、Cu板およびSUS板などが挙げられる。無アルカリガラスとは、カリウムやナトリウムなどのアルカリ成分を含まないガラスのことである。
 本発明の基板の製造方法によれば、シリコンウエハや無アルカリガラス(板)等の支持体を用いて成膜できる。このような支持体は、加熱条件下で高寸法安定性を有するため、工程(a)や工程(b)において、熱が印加されても、寸法変化が少ない。このため、該支持体上に設けられるポリイミド系膜も寸法変化が少なくなり、素子を所望の位置に容易に形成することができる。
 また、このような支持体を用いることで、該支持体を取り除いた後の基板の反りやねじりを低減することができる。このため、このような支持体上で膜を形成し、さらに素子を形成することが好ましい。
 ポリイミド系膜形成用組成物を支持体上に塗布して塗膜を形成する方法としては、ロールコート法、グラビアコート法、スピンコート法、ディッピング法およびドクターブレード、ダイス、コーター、スプレー、ハケ、ロールなどを用いて塗布する方法等が挙げられる。なお、塗布の繰り返しによりフィルムの厚みや表面平滑性などを制御してもよい。これらの中でも、スリットコート法が好ましい。
 得られる塗膜の乾燥後の厚さ(ポリアミック酸を含む塗膜の厚さ)は、特に限定されないが、例えば1~500μm、好ましくは1~450μm、より好ましくは1~250μmであり、より好ましくは2~150μmであり、さらに好ましくは10~125μmである。
 また、上記塗膜を乾燥する工程は、具体的には塗膜を加熱することにより行うことができる。塗膜を加熱することにより、該塗膜中の有機溶媒を蒸発させて除去することができる。上記加熱の条件は、有機溶媒が蒸発すればよく特に限定されないが、例えば60~250℃で1~5時間である。なお、加熱は二段階以上で行ってもよい。例えば、70℃で30分加熱した後、120℃で30分間加熱するなどである。
 加熱雰囲気は、特に制限されないが、大気下または不活性ガス雰囲気下等であることが好ましく、不活性ガス雰囲気下であることが特に好ましい。不活性ガスとしては、着色性の観点から窒素、アルゴン、ヘリウムなどが挙げられるが、窒素であることが好ましい。
 なお、前記工程(a)では、前記加熱を行う前または加熱の代わりに、真空乾燥を行うことにより、該塗膜中の有機溶媒を蒸発させて除去してもよい。該真空乾燥では、支持体上に形成された塗膜に熱風などを吹き付けることなく塗膜から溶媒を容易に除去することができるため、平坦性に優れるポリイミド系膜を得ることができ、また、ポリアミック酸を含む塗膜の表面から固定化されるので、平坦性に優れ、均一な膜質を有するポリイミド系膜を再現性よく形成することができる。
 前記真空乾燥では、塗膜を入れた装置内の圧力(減圧度)が760mmHg以下、好ましくは100mmHg以下、より好ましくは50mmHg以下、特に好ましくは1mmHg以下になるまで、装置内の圧力を減少させることが望ましい。760mmHgを超えると、真空乾燥後の塗膜からさらに溶媒を除去させる際の蒸発速度が著しく遅くなり、生産性が悪化する場合がある。また、真空乾燥は、圧力が所定の値まで下がった時を0分とし、0~60分、好ましくは0~30分、より好ましくは0~20分間行うことが望ましい。0分未満では乾燥が十分でなく、塗膜の表面から固定化されないことがあり、均一な膜質の膜を得難い場合がある。一方、60分を越えると、膜の生産性が悪化する場合がある。
 [工程(b)]
 次いで、工程(a)で得られた塗膜を加熱し、ポリイミド系膜を得る。工程(b)では、得られた塗膜を、例えば160℃~350℃で熱処理することにより脱水環化する(熱イミド化)。熱イミド化の温度としては、前記工程(a)における乾燥(有機溶媒を蒸発させる)を加熱により行う際の温度よりも高い温度であり、得られる基板の剥離性の観点から200~350℃であることが好ましく、230~270℃であることがより好ましく、240~250℃であることがさらに好ましい。さらに、熱イミド化の温度としては、剥離性の観点から、ポリイミド系膜のガラス転移温度以下であることが特に好ましい。
 なお、イミド化は、アミック酸構造およびイミド環構造の合計100モル%中、イミド環構造の割合が、好ましくは75モル%以上、さらに好ましくは85モル%以上、特に好ましくは90モル%以上となるように行われる。イミド環構造の割合が75モル%未満であると、ポリイミド系膜の吸水率が高くなることや、耐久性が低下することがある。
 前記ポリイミド系膜は、ポリイミド等から構成され、該ポリイミドの示差走査熱量測定(DSC、昇温速度20℃/分)で測定したガラス転移温度は好ましくは350℃以上であり、より好ましくは450℃以上である。ポリイミドのガラス転移温度が前記範囲にあることで、得られる基板は、優れた耐熱性を示す。
 また、ポリアミック酸から得られるポリイミドのイミド基濃度は、イミド化率が100モル%であると仮定した場合に、2.5~7.5mmol/gであることが好ましく、3.0~6.0mmol/gであることがより好ましく、3.5~5.5mmol/gであることがさらに好ましい。
 また、本発明においては、ポリイミド系膜(フィルム)の厚みは好ましくは1~250μm、より好ましくは2~150μm、特に好ましくは10~125μmである。
 前記ポリイミド系膜は、ガラス転移温度(Tg)が、350℃以上であることが好ましく、450℃以上であることがより好ましい。このようなガラス転移温度を有することにより、優れた耐熱性を有する。
 [工程(c)]
 続いて、前記工程(b)により得られたポリイミド系膜上に、素子を形成することで基板を製造する。形成する素子としては、有機エレクトロルミネッセンス(EL)素子、薄膜トランジスタ(TFT)素子等の発光素子、金属配線、半導体集積回路等のモジュールなど挙げられる。
 前記工程(b)により得られたポリイミド系膜上に有機EL素子、TFT素子等の発光素子などを形成した場合には、フレキシブルディスプレイ基板などとして用いることができる。また、金属配線、半導体集積回路等のモジュールを形成した場合には、フレキシブル配線用基板などとして用いることができる。
 TFT素子を形成する方法としては、例えば、
 前記工程(b)で得られたポリイミド系膜上にスパッタ法等で金属や金属酸化物などの膜を形成した後にエッチングするなどして、ゲート電極を設ける。スパッタ法等で金属や金属酸化物などの膜を形成する際の温度は、用いるポリイミド系膜形成用組成物、支持体や形成する素子に応じて適宜選択すればよいが、210℃~400℃であることが好ましく、220~370℃であることがより好ましく、230~350℃であることが好ましい。
 次に、例えば、
 ゲート電極を設けたポリイミド系膜上にプラズマCVD法等で窒化珪素膜等のゲート絶縁膜を形成する。さらに、ゲート絶縁膜上にプラズマCVD法などにより有機半導体などからなる活性層を形成する。プラズマCVD法等でゲート絶縁膜や有機半導体などの膜を形成する際の温度は、用いるポリイミド系膜形成用組成物、支持体や形成する素子に応じて適宜選択すればよいが、210℃~400℃であることが好ましく、220~370℃であることがより好ましく、230~350℃であることが好ましい。次に活性層の上にスパッタ法などで金属や金属酸化物などの膜を形成した後にエッチングするなどして、ソース電極およびドレイン電極を設ける。最後に必要に応じてプラズマCVD法等で窒化珪素膜等を形成し、保護膜とすることにより、薄膜トランジスタ素子を製造することができる。
 上記では、ボトムゲート型の薄膜トランジスタ素子を説明したが、前記TFT素子はこの構造に限定されず、トップゲート型等であってもよい。
 ゲート電極、ソース電極、ドレイン電極は、導電性材料で形成されれば特に制限されない。導電性材料としては、金属や金属酸化物などを挙げることができる。
 金属の例としては、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、アルミニウム、亜鉛、マグネシウム、およびこれらの合金が挙げられ、金属酸化物の例としては、ITO、IZO、ZnOおよびIn23が挙げられる。このほかにも、ポリイミド系膜との接着性を考慮して、前記導電性材料として、導電性ポリマーを用いてもよい。
 これらの中でも金属酸化物を用いると、透明電極を形成することができるため好ましい。
 また、有機EL素子を形成する方法としては、例えば、前記ポリイミド系膜上に、膜面側から順に、絶縁層、第1の電極、有機半導体層、第2の電極および保護層を形成する方法が挙げられる。
 さらに、金属配線を形成する方法としては、例えば、ラミネート法、メタライジング法等によりポリイミド系膜上に銅層を設け、該銅層を公知の方法で処理することで金属配線を設けることができる。ラミネート法の場合には、例えば、前記フィルム上に銅箔等の金属箔を熱プレスすることで、銅層を設けることができる。メタライジング法の場合には、例えば、蒸着法またはスパッタリング法によって、前記ポリイミド系膜と結合するNi系の金属からなるシード層を形成する。そして、湿式めっき法等により所定の膜厚の銅層を設けることができる。なお、メタライジング法を用いる場合には、金属との親和性を発現させるために予め前記ポリイミド系膜の表面改質を行っておくことも可能である。
 前記ポリイミド系膜(フィルム)は、耐熱性に優れ、支持体との密着性に優れるため、膜(フィルム)上に素子を形成する際の印加可能温度範囲が広く、性能に優れる基板を得ることができる。
 [工程(d)]
 次に、前記工程(c)で得られた基板を前記支持体から剥離する。前記ポリイミド系膜形成用組成物から得られた基板は剥離性に優れるため、容易に基板を支持体から全面剥離することができる。
 剥離の方法としては、基板の端部に予めマスキングテープを貼り付け、上記工程(a)から(c)を実施した後、マスキングテープをはがすことを起点として基板を剥離する方法や、支持体の端部に切り込みを入れて起点を作り剥離する方法、水やアルコールなどの溶剤に浸漬して剥離する方法等が挙げられる。剥離する際の温度は、通常0~100℃であり、好ましくは10~70℃であり、より好ましくは20~50℃である。
 以下、本発明を実施例により具体的に説明する。
 (1)ガラス転移温度(Tg)
 下記実施例1~16、または、比較例1および2で得られたフィルムを用いてポリイミドのガラス転移温度を、Rigaku社製8230型DSC測定装置を用いて、昇温速度を20℃/minとして測定した。
 (2)シリコーン化合物濃度
 下記実施例1~16、または、比較例1および2で得られたポリアミック酸のシリコーン化合物濃度は、下記式により求めた。
 シリコーン化合物濃度[単位:%]=(シリコーン化合物の重量)/{((A)全アシル化合物の重量)+((B)全イミノ形成化合物の重量)}×100
 シリコーン化合物の重量=化合物(A-1)の重量+化合物(B-1)の重量
 (3)イミド基濃度
 イミド化率が100モル%であると仮定すると、下記実施例1~16、または、比較例1および2で得られたポリイミド中の繰り返し単位の分子量は、(アシル化合物の分子量)+(ジアミンの分子量)-2×(水の分子量)で求められる。この繰り返し単位1つあたり、2つのイミド基を含むため、下記実施例1~16、または、比較例1および2で得られた重合体のイミド基濃度(イミド化率が100モル%であると仮定した場合の理論値)は、下記式により求めた。
[イミド基濃度](単位:mmol/g)=2/{(アシル化合物の分子量)+(ジアミンの分子量)-2×(水の分子量)}×1000
 (4)密着性
 下記実施例1~16、または、比較例1および2におけるイミド化工程(250℃乾燥)終了後に、室温まで冷却したポリイミド系膜付支持体を300℃まで30分かけて昇温し、その後、30分で室温まで冷却する工程を1サイクルとして、このサイクルを10回繰り返した後、支持体からの剥離がないもの[◎]、このサイクルを5回繰り返した後、支持体からの剥離がないもの[○]、剥離が観察されたものを[×]とした。
 (5)剥離性
 下記実施例1~16、または、比較例1および2におけるイミド化工程(250℃乾燥)終了後に、支持体からポリイミド系膜を全面剥離可能なものを[◎]、全面剥離可能で一部剥離痕が残るものを[○]、一部剥離不可を[△]、全面剥離不可を[×]とした。
 (6)フィルム反り
 下記実施例1~16、または、比較例1および2で得られた、支持体から剥離したポリイミド系膜を40×40mmに切り出し、反り(水平な基板上に得られたポリイミド系膜を置いて、該膜の四角における膜と基板との離間距離を測定し、それらの平均値)が1.0mm未満の場合を[◎]、反りが1.0mm以上2.0mm未満の場合を[○]、反りが2.0mm以上3.0mm未満の場合を[△]、反りが3.0mm以上の場合を[×]とした。
 (7)重量平均分子量
 下記実施例1~16、または、比較例1および2で得られたポリアミック酸の重量平均分子量は、TOSOH製HLC-8020型GPC装置を使用して測定した。溶媒には、臭化リチウム及び燐酸を添加したN-メチル-2-ピロリドン(NMP)を用い、測定温度40℃にて、ポリスチレン換算の分子量を求めた。
 [実施例1]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル(以下「m-TB」ともいう。)6.07g(28.6mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)2.57g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)58mlおよびテトラヒドロフラン(以下、「THF」ともいう。)20mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物(以下「PMDA」ともいう。)6.36g(29.2mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。得られた組成物の一部を用いて、該組成物からポリアミック酸を単離した。単離したポリアミック酸の重量平均分子量、シリコーン化合物濃度、イミド基濃度(イミド化率が100モル%であると仮定した場合の理論値)を評価した。
 次いで、得られたポリアミック酸溶液を、スピンコーター(300rpmで5秒回転させた後、1100rpmで10秒間回転)にて無アルカリガラス支持体上に塗布し、70℃で30分、ついで120℃で30分乾燥することで塗膜を得た。イミド化工程として得られた塗膜をさらに250℃で2時間乾燥した後、無アルカリガラス支持体から剥離し、膜厚30μm(0.03mm)のポリイミド系膜(フィルム)を得た。
 また、上記ポリイミド系膜について、支持体に対する密着性、剥離性、ポリイミド系膜のソリを評価した。
 結果を表1に示す。
 [実施例2]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.07g(28.6mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)2.57g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.36g(29.2mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例3]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.68g(31.4mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)1.40g(0.3mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlとテトラヒドロフラン20mlとを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.93g(31.8mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例4]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分としてパラフェニレンジアミン(以下「PDA」ともいう。)1.42g(13.1mmol)および2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下「BAPP」ともいう。)5.39g(13.1mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)2.36g(0.5mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlとテトラヒドロフラン20mlとを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物5.84g(26.8mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例5]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として4,4’-ジアミノジフェニルエーテル(以下「ODA」ともいう。)6.46g(32.3mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)1.43g(0.3mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlとテトラヒドロフラン20mlとを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物7.11g(32.6mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例6]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.04g(28.4mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-9409,数平均分子量1,300)2.36g(1.8mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.60g(30.3mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例7]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-1)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.41g(30.2mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-161B,数平均分子量3,000)1.85g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.73g(30.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例8]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.29g(29.6mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-161A,数平均分子量1,600)1.98g(1.2mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.73g(30.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例9]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.65g(31.3mmol)を添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.15g(28.2mmol)と(A-1)成分として両末端酸無水物変性メチルシリコーン(GELEST製,DMS-Z21,数平均分子量700)2.19g(3.1mmol)とを室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例10]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.59g(31.0mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)1.38g(0.3mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下「PMDAH」ともいう。)7.03g(31.4mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例11]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として4,4’-ジアミノジシクロヘキシルメタン(以下「MBCHA」ともいう。)6.64g(31.6mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)1.40g(0.3mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物6.96g(31.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例12]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として1,4-ジアミノシクロヘキサン(以下「CHDA」ともいう。)2.87g(25.1mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)3.42g(0.8mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてジフェニル-3,3’,4,4’-テトラカルボン酸二無水物(以下「s-BPDA」ともいう。)8.71g(25.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例13]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として1,4-ジアミノシクロヘキサン2.99g(26.2mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-9409,数平均分子量1,300)2.56g(2.0mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてジフェニル-3,3’,4,4’-テトラカルボン酸二無水物9.46g(28.1mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例14]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(以下「TFMB」ともいう。)7.85g(24.5mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-9409,数平均分子量1,300)2.03g(1.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分として1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下「CBDA」ともいう。)5.12g(26.1mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例15]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.34g(29.9mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)2.68g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分として1,2,3,4-シクロブタンテトラカルボン酸二無水物5.98g(30.5mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例16]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル4.78g(22.3mmol)と(B-1)成分として両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-1660B-3,数平均分子量4,400)5.16g(1.2mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物5.11g(23.4mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [実施例17]
 上記実施例1において調製したポリアミック酸溶液(組成物)を、スピンコーターにて無アルカリガラス支持体上に、得られる塗膜の厚みが25μmになるように流延塗布し、70℃で30分、ついで120℃で30分乾燥して塗膜を得た。その後、環化(イミド化)工程として得られた塗膜をさらに250℃で2時間乾燥した。
 さらに、スパッタリング装置を用いて、得られた塗膜の表面にアルゴン雰囲気下230℃、5分間の成膜条件下で透明導電膜(素子)を形成した。なお、ターゲット材料としてはITOを用いた。得られた基板の比抵抗値は、2×10-4(Ω・cm)であった。透明導電膜が設けられたポリイミド系膜を無アルカリガラス支持体から剥離することで、フレキシブル基板を得た。なお、基板は、支持体から全面剥離可能であり、反りも観察されなかった。
 [比較例1]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル7.40g(34.9mmol)を添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物7.60g(34.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、ポリアミック酸溶液を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
 [比較例2]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B-2)成分として2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン9.25g(22.5mmol)を添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A-2)成分としてピロメリット酸二無水物2.95g(13.5mmol)および4,4’-オキシジフタル酸二無水物(以下「ODPA」ともいう。)2.80g(0.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、ポリアミック酸溶液を得た。
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000012
 (1)重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)
 下記実施例18~27および比較例3で得られたポリアミック酸の重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、TOSOH製HLC-8220型GPC装置(ガードカラム:TSK guard colomn ALPHA カラム:TSKgelALPHA―M、展開溶剤:NMP)を用いて測定した。
 (2)-15℃での貯蔵安定性
 下記実施例18~27および比較例3で得られたワニス(ポリイミド系膜形成用組成物)を-15℃で48時間保存後、透明で沈殿物のないものを○、不透明で沈殿物が析出したものを×として目視により評価した。
 (3)ワニス粘度
 下記実施例18~27および比較例3で得られたワニス1.5gを用い、25℃でのワニス粘度を測定した。具体的には東機産業製 粘度計 MODEL RE100を用い測定した。
 (4)真空乾燥後の塗膜の固定化
 下記実施例18~27および比較例3で得られた真空乾燥後のガラス支持体付塗膜の中央部およびガラス支持体の中央部に標線を引き、塗膜付支持体を垂直に立て10分間放置した。塗膜に引かれた標線とガラス支持体に引かれた標線との高さが変化しなかった場合は固定化、変化した場合は流動化と判定した。
 (5)真空乾燥後のポリマー(ポリアミック酸)濃度
 下記実施例18~27および比較例3で得られた真空乾燥後の塗膜におけるポリマー(ポリアミック酸)の濃度を下記の式に従い、算出した。
 塗布したワニス重量=ワニス塗布後のガラス支持体の重量-ワニス塗布前のガラス支持体の重量
 仕込み時ポリマー濃度(%)=仕込みモノマー全量/(仕込みモノマー量+仕込み溶媒全量)×100
 塗布したポリマー重量=塗布したワニス重量×仕込み時ポリマー濃度(%)
 真空乾燥後塗膜重量=真空乾燥後の塗膜付ガラス支持体の重量-ワニス塗布前のガラス支持体の重量
 真空乾燥後のポリマー濃度(%)=(塗布したポリマー重量/真空乾燥後塗膜重量)×100
 (6)真空乾燥後の溶媒組成比
 下記実施例18~27および比較例3で得られた真空乾燥後の塗膜における溶媒組成比を上記の式および下記の式に従い、算出した。
 塗布した溶媒重量=塗布したワニス重量-塗布したポリマー重量
 塗布した非アミド系溶媒の重量=塗布した溶媒重量×非アミド系溶媒の仕込み量(混合溶媒中の非アミド系溶媒の割合)(%)
 真空乾燥後溶媒重量=真空乾燥後塗膜重量-塗布したポリマー重量
 真空乾燥で蒸発した溶媒重量=塗布した溶媒重量-真空乾燥後溶媒重量
 真空乾燥後の非アミド系溶媒重量=塗布した非アミド系溶媒の重量-真空乾燥で蒸発した溶媒重量
 非アミド系溶媒の組成比(%)=(真空乾燥後の非アミド系溶媒重量/真空乾燥後溶媒重量×100)
 アミド系溶媒の組成比(%)=100-非アミド系溶媒の組成比
 (なお、真空乾燥で蒸発した溶媒は混合溶媒中の最も沸点な低い溶媒(非アミド系溶媒)と定義した。)
 (7)1次乾燥後のタック性
 下記実施例18~27および比較例3で得られた1次乾燥後の塗膜を金属製スパチュラーで強くこすり、塗膜が移動しないものをタック性無し、塗膜が移動したものをタック性有とし、評価した。
 (8)光学特性
 下記実施例18~27および比較例3で得られた1次乾燥後および2次乾燥後のガラス支持体上に形成された塗膜それぞれについて、Haze(ヘイズ)をJIS K7105透明度試験法に準じて測定した。具体的には、スガ試験機社製SC-3H型ヘイズメーターを用い測定した。
 (9)ガラス転移温度(Tg)
 下記実施例18~27および比較例3で得られたポリイミド系膜をガラス支持体から剥離し、剥離後のポリイミド系膜をRigaku製 Thermo Plus DSC8230(示差走査熱量測定)を用い、窒素下で、昇温速度を20℃/minとし、40~450℃の範囲で測定した。
 (10)線膨張係数
 下記実施例18~27および比較例3で得られたポリイミド系膜をガラス支持体から剥離し、剥離後のポリイミド系膜をSeiko Instrument SSC/5200を用い、昇温速度を6℃/minとし、25~350℃の範囲で測定した。測定結果から100~200℃の線膨張係数を算出した。
 (11)塗膜の残留応力
 下記実施例18~27および比較例3で得られたワニスを、FLX-2320(KLA社製)を用いて、シリコンウエハ板(残留応力測定用、秩父電子株式会社製、厚み=300μm、直径=4インチ)上に2次乾燥後の膜厚が30μmになるように成膜し、反りをレーザーで測定し、塗膜のストレスを下記式より算出した。
 得られるポリイミド系膜の反りが抑制されることから、塗膜の残留応力は、10MPa以下であることが好ましく、5MPa以下であることがより好ましい。
Figure JPOXMLDOC01-appb-M000013
 (12)イミド化率
 下記実施例18~27および比較例3で得られた2次乾燥後のポリイミド系膜中のポリイミドのイミド化率をFT-IR(サーモフィッシャーサイエンティック製、Thermo NICOLET6700)を用いて以下の方法で定量した。
 ポリアミック酸由来のNH変角振動のピーク(1520cm-1)面積と芳香族非対称三置換体の=C-H面外変角振動のピーク(990cm-1)面積をGaussian分布にてピーク分離を行い定量した。1次乾燥前のポリアミック酸のピーク面積比(990cm-1のピーク面積/1520cm-1のピーク面積)および2次乾燥後のこれらのピーク面積比を測定し、下記計算式を使ってイミド化率を算出した。
 イミド化率(%)=(1-2次乾燥後のピーク面積比/1次乾燥前のピーク面積比)×100
 (13)ポリイミド系膜の強度
 JISK6251の7号ダンベルを用い、下記実施例18~27および比較例3で得られた2次乾燥後のガラス支持体から剥離した膜厚30μmのポリイミド系膜を23℃下、50mm/minの速度で引張り試験を実施し、引張り伸び、引張り強度、弾性率を測定した。
 (14)ガラス支持体との剥離性
 下記実施例18~27および比較例3で得られた2次乾燥後のガラス支持体付30μm塗膜を幅10mm×長さ50mmにカッターで切削を行い、長さ20mmまで引き剥がした後、180度の角度で速度50mm/minでピール強度を測定した。
 (15)ポリイミド系膜のソリ
 下記実施例18~27および比較例3で得られた2次乾燥後のガラス支持体付30μm塗膜を60mm×60mmの大きさにカッターで切削後、4つの端部の浮き上がりを測定し、平均値を算出した。
 [実施例18]
 温度計、窒素導入管および攪拌羽根付三口フラスコに、25℃にて窒素気流下、m-トリジン(m-TB)45.23099g(0.21306mol)、両末端アミノ変性側鎖フェニル・メチル型シリコーンX-22-1660B-3[9.4694g(0.0021521mol)]、ワニス中のポリアミック酸の濃度が14%となるように脱水N-メチル-2-ピロリドン(NMP)307gおよび脱水シクロヘキサノン(CHN)307gを加え、m-TBおよびX-22-1660B-3が完全に溶解するまで10分間攪拌した。ピロメリット酸二無水物(PMDA)22.6498g(0.10384mol)を加え30分攪拌した後、さらにPMDA22.6498g(0.10384mol)を加え60分攪拌することで反応を終了させ、次いで、ポリテトラフルオロエチレン製フィルター(ポアサイズ1μm)を用いて精密濾過行うことで、ワニスを作成した(PMDA/(mTB+X-22-1660B-3)=0.965当量)。ワニス特性を表2に示す。
 X-22-1660B-3;信越化学工業(株)製、両末端アミノ変性側鎖フェニル・メチル型シリコーン(1H-NMRによるメチル基とフェニル基のモル組成比は75:25、数平均分子量4400、カタログ:信越化学工業株式会社、シリコーン事業部総括部 シリコーンニュース122号 平成22年7月参照)
 重力に対し垂直となるように設置したコントロールコーター台にガラス支持体(横:300mm×縦:350mm×厚:0.7mm)を固定し、2次乾燥後に膜厚が30μmとなるようにギャップ間隔を405μmに設定し、ワニス12gを、ガラス支持体中央部に横:200mm×縦:220mmの塗膜となるようキャストした。
 その後、真空乾燥機にて25℃で10分後に0.1mmHgになるように減圧にした後、常圧(760mmHg)に戻し真空乾燥を終了した。真空乾燥後の塗膜の物性を表2に示す。真空乾燥後の塗膜は透明であり、塗膜は固定化され、液ダレなどはしなかった。真空乾燥後のポリアミック酸の1520cm-1と990cm-1のピーク面積はそれぞれ5.09、6.89であった。
 真空乾燥後、熱風乾燥機中で130℃、10分間の1次乾燥を行った。1次乾燥後の塗膜をサンプリングして物性評価を行った結果を表2に示す。次に、300℃で1時間2次乾燥を行った。評価結果を表2に示す。ポリイミド系膜の反りは無く、Tgも450℃以上であり耐熱性に優れ、透明性、平滑性に優れ、線膨張係数の低い強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例19]
 実施例18において、m-TB、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、透明性、平滑性に優れ、ソリのない、強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例20]
 実施例18において、m-TB、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、透明性、平滑性に優れ、ソリのない、強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例21]
 実施例18において、m-TB45.23099gの代わりにm-TB32.56478gおよび4,4'-ジアミノジフェニルエーテル(ODA)7.8760gを用い、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例18と同様に行った。結果を表2に示す。
 フィルムの伸びが向上し、また耐熱性、透明性、平滑性に優れ、ソリのないポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例22]
 実施例18において、アミド系溶媒としてNMPの代わりにN,N-ジメチルアセトアミド(DMAc)を用いた以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、透明性、平滑性に優れ、ソリのない、線膨張係数の低い強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例23]
 実施例18において、非アミド系溶媒としてCHN307gの代わりにアセトニトリル430gを用い、NMPの使用量を表2に示すように変更した以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、透明性、平滑性に優れ、ソリのない、線膨張係数の低い強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例24]
 実施例18において、X-22-1660B-3(9.4694g)の代わりに信越化学製両末端アミノ変性側鎖メチル型シリコーンKF8010(数平均分子量(4400、m=58))2.8408gとX22-1660B-3(6.6286g)とを併用した以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、透明性、平滑性に優れ、ソリのない、線膨張係数の低い強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例25]
 実施例18において、NMPとCHNの使用量を表2に示すように変更した以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、平滑性に優れ、ソリのない、強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例26]
 実施例18において、CHNの代わりに、エチレングリコールモノメチルエーテルを用いた以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、透明性、平滑性に優れ、ソリのない、強靭なポリイミド系膜を得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [実施例27]
 実施例18において、NMP307gおよびCHN307gの代わりにNMP614を用いた以外は実施例18と同様に行った。結果を表2に示す。
 耐熱性、平滑性に優れ、ソリのないポリイミド系膜を得ることができた。また、得られた塗膜は、1次乾燥、2次乾燥中ではガラス支持体との密着性に優れ、2次乾燥後に得られたポリイミド系膜は、ガラス支持体からの剥離性に優れていた。
 [比較例3]
 実施例27において、X-22-1660B-3を用いず、また、m-TBおよびPMDAの使用量を表2に示すように変更した以外は実施例27と同様に行った。結果を表2に示す。
 比較例3で得られたワニスは乾燥速度が遅かった。また、2次乾燥後に残留応力は増加し、ガラス支持体から剥離したポリイミド系膜には大きなソリが発生した。
Figure JPOXMLDOC01-appb-T000014

Claims (10)

  1.  (a) 支持体に、下記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含むポリイミド系膜形成用組成物を塗布及び乾燥し、ポリアミック酸を含む塗膜を形成する工程と、
     (b) 前記ポリアミック酸を含む塗膜を加熱し、ポリイミド系膜を得る工程と、
     (c) 前記ポリイミド系膜上に素子を形成する工程と、
     (d) 前記素子が形成されたポリイミド系膜を支持体から剥離する工程と、
     を含むことを特徴とする基板の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、複数あるR1は、各々独立して炭素数1~20の1価の有機基であり、nは1~200の整数である。)
  2.  前記ポリアミック酸が、(A)テトラカルボン酸二無水物およびこの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物を含む成分と、(B)イミノ形成化合物を含む成分と、を反応させて得られ、下記(i)および/または(ii)を満たす、請求項1に記載の基板の製造方法。
     (i)前記(A)成分が、(A-1)上記式(1)で表わされる構造単位を有するアシル化合物を含む
     (ii)前記(B)成分が、(B-1)上記式(1)で表わされる構造単位を有するイミノ形成化合物を含む
  3.  前記(B)成分における前記(B-1)上記式(1)で表わされる構造単位を有するイミノ形成化合物の含有量が、前記(B)成分の合計量100質量%に対して5~70質量%である、請求項2に記載の基板の製造方法。
  4.  前記(B-1)上記式(1)で表わされる構造単位を有するイミノ形成化合物のアミン価から計算した数平均分子量が500~10,000である、請求項2または3に記載の基板の製造方法。
  5.  前記ポリアミック酸が、前記(A)成分と前記(B)成分とを、(A)成分と(B)成分とのモル比((B)成分/(A)成分)0.8~1.2の範囲で反応させて得られる、請求項2~4のいずれか1項に記載の基板の製造方法。
  6.  前記有機溶媒が、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、テトラヒドロフラン、シクロヘキサノン、アセトニトリルおよびエチレングリコールモノエチルエーテルからなる群より選ばれる少なくとも1種の溶媒を有機溶媒全量に対して50重量%以上含む、請求項1~5のいずれか1項に記載の基板の製造方法。
  7.  前記ポリイミド系膜を構成するポリイミドの示差走査熱量測定(DSC、昇温速度20℃/分)で測定したガラス転移温度が350℃以上である、請求項1~6のいずれか1項に記載の基板の製造方法。
  8.  前記工程(b)における加熱を、200~350℃の範囲で行い、かつ、ポリイミド系膜のガラス転移温度以下で行う、請求項1~7のいずれか1項に記載の基板の製造方法。
  9.  前記支持体がシリコンウエハもしくは無アルカリガラスである、請求項1~8のいずれか1項に記載の基板の製造方法。
  10.  請求項1~9のいずれか1項に記載の基板の製造方法に用いられるポリイミド系膜形成用組成物であって、下記式(1)で表わされる構造単位を有するポリアミック酸と有機溶媒とを含むことを特徴とするポリイミド系膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、複数あるR1は、各々独立して炭素数1~20の1価の有機基であり、nは1~200の整数である。)
PCT/JP2011/054489 2010-03-31 2011-02-28 基板の製造方法およびそれに用いられる組成物 WO2011122199A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012508153A JP5725017B2 (ja) 2010-03-31 2011-02-28 基板の製造方法およびそれに用いられる組成物
KR1020127028255A KR101848522B1 (ko) 2010-03-31 2011-02-28 기판의 제조 방법 및 그것에 이용되는 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010081521 2010-03-31
JP2010-081521 2010-03-31
JP2010-223684 2010-10-01
JP2010223684 2010-10-01

Publications (1)

Publication Number Publication Date
WO2011122199A1 true WO2011122199A1 (ja) 2011-10-06

Family

ID=44711928

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/054489 WO2011122199A1 (ja) 2010-03-31 2011-02-28 基板の製造方法およびそれに用いられる組成物
PCT/JP2011/054488 WO2011122198A1 (ja) 2010-03-31 2011-02-28 ポリイミド前駆体、該前駆体を含む樹脂組成物および樹脂組成物を用いた膜形成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054488 WO2011122198A1 (ja) 2010-03-31 2011-02-28 ポリイミド前駆体、該前駆体を含む樹脂組成物および樹脂組成物を用いた膜形成方法

Country Status (5)

Country Link
JP (2) JP5725017B2 (ja)
KR (2) KR20130080432A (ja)
CN (1) CN102822238A (ja)
TW (2) TW201139519A (ja)
WO (2) WO2011122199A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
JP2015136868A (ja) * 2014-01-23 2015-07-30 旭化成イーマテリアルズ株式会社 所定構造を有するフレキシブル電子デバイスに適用される基板及びその作製方法
JP2015229691A (ja) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 ポリイミド前駆体組成物及びポリイミドフィルム
JP2017020039A (ja) * 2013-03-18 2017-01-26 旭化成株式会社 樹脂前駆体及びそれを含有する樹脂組成物、樹脂フィルム及びその製造方法、並びに、積層体及びその製造方法
JP2017052877A (ja) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 ポリイミド前駆体組成物、ポリイミド前駆体組成物の製造方法、及びポリイミド成形体の製造方法
JP2018048344A (ja) * 2014-06-25 2018-03-29 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
WO2019065164A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
WO2019142703A1 (ja) * 2018-01-18 2019-07-25 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
US10544266B2 (en) 2015-03-05 2020-01-28 Lg Chem, Ltd. Composition for the production of polyimide film for flexible board of photoelectronic device
JP2020506081A (ja) * 2017-05-24 2020-02-27 エルジー・ケム・リミテッド ポリイミド積層フィルムロール体及びその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110684A (ja) * 2012-03-22 2015-06-18 日産化学工業株式会社 ポリアミック酸およびポリイミド
KR102119426B1 (ko) * 2013-06-26 2020-06-08 도레이 카부시키가이샤 폴리이미드 전구체, 폴리이미드, 그것을 사용한 플렉시블 기판, 컬러 필터와 그 제조 방법, 및 플렉시블 표시 디바이스
KR101994059B1 (ko) * 2014-07-17 2019-06-27 아사히 가세이 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법
TWI597323B (zh) * 2015-02-16 2017-09-01 達邁科技股份有限公司 含矽氧烷之聚醯胺酸溶液、聚醯亞胺膜及其製成、使用方法
WO2018025953A1 (ja) * 2016-08-03 2018-02-08 日産化学工業株式会社 剥離層形成用組成物及び剥離層
CN110199210B (zh) * 2017-01-20 2022-05-17 住友化学株式会社 光学膜及光学膜的制造方法
WO2018216890A1 (ko) * 2017-05-24 2018-11-29 주식회사 엘지화학 폴리이미드 적층필름 롤체 및 그 제조 방법
JP7017144B2 (ja) * 2017-09-07 2022-02-08 東レ株式会社 樹脂組成物、樹脂膜の製造方法および電子デバイスの製造方法
KR101840978B1 (ko) * 2017-09-14 2018-03-21 주식회사 엘지화학 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
KR101840977B1 (ko) 2017-09-14 2018-03-21 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
JP2019172970A (ja) * 2018-03-26 2019-10-10 東レ株式会社 表示デバイスまたは受光デバイスの基板用樹脂組成物、並びに、それを用いた表示デバイスまたは受光デバイスの基板、表示デバイス、受光デバイス、表示デバイスまたは受光デバイスの製造方法。
KR102289812B1 (ko) * 2018-08-20 2021-08-13 주식회사 엘지화학 폴리이미드 전구체 조성물, 이를 이용하여 제조된 폴리이미드 필름 및 플렉서블 디바이스
KR102202484B1 (ko) * 2019-04-23 2021-01-13 피아이첨단소재 주식회사 폴리이미드 필름, 이를 포함하는 연성금속박적층판 및 폴리이미드 필름의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232383A (ja) * 2004-02-20 2005-09-02 Asahi Kasei Electronics Co Ltd ポリアミド酸誘導体
WO2005084948A1 (ja) * 2004-03-04 2005-09-15 Toray Industries, Inc. 耐熱性樹脂積層フィルム並びにこれを含む金属層付き積層フィルム及び半導体装置
JP2008189694A (ja) * 2007-01-31 2008-08-21 Ube Ind Ltd アミック酸構造の繰返単位の一部がイミド構造になっている共重合体、およびその製造方法
JP2008307737A (ja) * 2007-06-13 2008-12-25 Mitsui Chemicals Inc 積層体、配線板及びその製造方法
JP2009269988A (ja) * 2008-05-07 2009-11-19 Tokyo Institute Of Technology 珪素含有ポリイミドおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760520B2 (ja) * 1988-09-29 1998-06-04 新日鐵化学株式会社 ポリイミド共重合体及びその製造方法
JPH06104542A (ja) * 1992-09-17 1994-04-15 Shin Etsu Chem Co Ltd 金属ベース配線基板
KR100568569B1 (ko) 2004-10-26 2006-04-07 주식회사 이녹스 폴리이미드 접착제용 조성물 및 이를 이용한 폴리이미드접착테이프
JP2008156425A (ja) * 2006-12-21 2008-07-10 Asahi Kasei Corp ポリイミド及びそれを用いた感光性樹脂組成物
JP4737447B2 (ja) * 2007-06-01 2011-08-03 信越化学工業株式会社 フェノール性水酸基を有するポリイミド樹脂及びポリイミド樹脂組成物
KR101110938B1 (ko) * 2007-10-26 2012-03-14 아사히 가세이 가부시키가이샤 폴리이미드 전구체 및 폴리이미드 전구체를 포함하는 감광성 수지 조성물
JP5045924B2 (ja) * 2007-11-19 2012-10-10 信越化学工業株式会社 フェノール性水酸基を有するポリイミド樹脂の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232383A (ja) * 2004-02-20 2005-09-02 Asahi Kasei Electronics Co Ltd ポリアミド酸誘導体
WO2005084948A1 (ja) * 2004-03-04 2005-09-15 Toray Industries, Inc. 耐熱性樹脂積層フィルム並びにこれを含む金属層付き積層フィルム及び半導体装置
JP2008189694A (ja) * 2007-01-31 2008-08-21 Ube Ind Ltd アミック酸構造の繰返単位の一部がイミド構造になっている共重合体、およびその製造方法
JP2008307737A (ja) * 2007-06-13 2008-12-25 Mitsui Chemicals Inc 積層体、配線板及びその製造方法
JP2009269988A (ja) * 2008-05-07 2009-11-19 Tokyo Institute Of Technology 珪素含有ポリイミドおよびその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
JP5948545B2 (ja) * 2012-12-21 2016-07-06 旭化成株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
JP2017020039A (ja) * 2013-03-18 2017-01-26 旭化成株式会社 樹脂前駆体及びそれを含有する樹脂組成物、樹脂フィルム及びその製造方法、並びに、積層体及びその製造方法
JP2015136868A (ja) * 2014-01-23 2015-07-30 旭化成イーマテリアルズ株式会社 所定構造を有するフレキシブル電子デバイスに適用される基板及びその作製方法
JP2015229691A (ja) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 ポリイミド前駆体組成物及びポリイミドフィルム
JP2018048344A (ja) * 2014-06-25 2018-03-29 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP7037534B2 (ja) 2014-06-25 2022-03-16 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP7033171B2 (ja) 2014-06-25 2022-03-09 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2020128522A (ja) * 2014-06-25 2020-08-27 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2020183539A (ja) * 2014-06-25 2020-11-12 旭化成株式会社 空隙を有するポリイミドフィルム及びその製造方法
US10544266B2 (en) 2015-03-05 2020-01-28 Lg Chem, Ltd. Composition for the production of polyimide film for flexible board of photoelectronic device
JP2017052877A (ja) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 ポリイミド前駆体組成物、ポリイミド前駆体組成物の製造方法、及びポリイミド成形体の製造方法
US11248098B2 (en) 2017-05-24 2022-02-15 Lg Chem, Ltd. Polyimide laminated film roll body and method for manufacturing same
JP2020506081A (ja) * 2017-05-24 2020-02-27 エルジー・ケム・リミテッド ポリイミド積層フィルムロール体及びその製造方法
JPWO2019065164A1 (ja) * 2017-09-26 2020-09-03 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
WO2019065164A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 ポリイミド前駆体樹脂組成物、ポリイミド樹脂組成物、ポリイミド樹脂膜、積層体の製造方法、カラーフィルタの製造方法、液晶素子の製造方法および有機el素子の製造方法
JPWO2019142703A1 (ja) * 2018-01-18 2020-11-19 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
WO2019142703A1 (ja) * 2018-01-18 2019-07-25 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法
JP7322699B2 (ja) 2018-01-18 2023-08-08 東レ株式会社 ディスプレイ基板用樹脂組成物、ディスプレイ基板用樹脂膜およびそれを含む積層体、画像表示装置、有機elディスプレイ、並びに、それらの製造方法

Also Published As

Publication number Publication date
JPWO2011122198A1 (ja) 2013-07-08
TW201139519A (en) 2011-11-16
JPWO2011122199A1 (ja) 2013-07-08
CN102822238A (zh) 2012-12-12
KR20130080432A (ko) 2013-07-12
KR101848522B1 (ko) 2018-04-12
TWI502003B (zh) 2015-10-01
WO2011122198A1 (ja) 2011-10-06
TW201139523A (en) 2011-11-16
JP5725017B2 (ja) 2015-05-27
KR20130080433A (ko) 2013-07-12

Similar Documents

Publication Publication Date Title
JP5725017B2 (ja) 基板の製造方法およびそれに用いられる組成物
JP5862674B2 (ja) 樹脂組成物およびそれを用いた膜形成方法
JP7152381B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
CN113136103B (zh) 聚酰亚胺前体树脂组合物
JP2022128480A (ja) ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
TWI740330B (zh) 聚醯亞胺前驅體、樹脂組合物、樹脂膜及其製造方法
JP6333560B2 (ja) 所定構造を有するフレキシブル電子デバイスに適用される基板及びその作製方法
WO2012118020A1 (ja) 樹脂組成物およびそれを用いた膜形成方法
JP5891693B2 (ja) 基板の製造方法および基板
JP2010180292A (ja) 芳香族ジアミン化合物、ポリイミド系材料、フィルム及びその製造方法
TW201945437A (zh) 聚醯亞胺樹脂、聚醯亞胺清漆以及聚醯亞胺薄膜
JP2016029126A (ja) 樹脂組成物、それを用いた膜形成方法、および基板
JPWO2019188380A1 (ja) ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
JPWO2011027866A1 (ja) 基板の製造方法およびそれに用いられる組成物
JPWO2011027866A6 (ja) 基板の製造方法およびそれに用いられる組成物
TWI789796B (zh) 聚合物及其應用
TW202035521A (zh) 醯亞胺-醯胺酸共聚物及其製造方法、清漆、以及聚醯亞胺薄膜
TW202229411A (zh) 聚醯亞胺前驅體及聚醯亞胺樹脂組合物
TW202402885A (zh) 聚合物之製造方法、清漆、及清漆之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508153

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028255

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11762439

Country of ref document: EP

Kind code of ref document: A1