WO2011118861A1 - 대용량 여과집진기 탈진 장치 및 방법 - Google Patents

대용량 여과집진기 탈진 장치 및 방법 Download PDF

Info

Publication number
WO2011118861A1
WO2011118861A1 PCT/KR2010/001809 KR2010001809W WO2011118861A1 WO 2011118861 A1 WO2011118861 A1 WO 2011118861A1 KR 2010001809 W KR2010001809 W KR 2010001809W WO 2011118861 A1 WO2011118861 A1 WO 2011118861A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
filter
dust collecting
chamber
flow rate
Prior art date
Application number
PCT/KR2010/001809
Other languages
English (en)
French (fr)
Inventor
박현설
임경수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to CN201080065645.3A priority Critical patent/CN102811791B/zh
Priority to PCT/KR2010/001809 priority patent/WO2011118861A1/ko
Priority to JP2013501167A priority patent/JP5614604B2/ja
Publication of WO2011118861A1 publication Critical patent/WO2011118861A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/90Devices for taking out of action one or more units of multi-unit filters, e.g. for regeneration or maintenance

Definitions

  • the present invention relates to a bag filter dedusting apparatus and a method for dedusting to reduce the amount of dust discharged to the atmosphere and at the same time increase the efficiency of dedusting.
  • Dust collector is a generic name for a device for removing solid or liquid fine particles present in the air. Dust collectors have been used to remove soot and dust from exhaust gases such as boilers, roasters, heating furnaces and waste incinerators, and are used in chemical powder manufacturing, steelmaking, wood, cement manufacturing and other workplaces where large amounts of fine dust are generated. In addition, the manufacturing industry is installed and used for improving the quality of the product by the clean air in the IC process, pharmaceutical process and the like.
  • These dust collectors are divided into mechanical, electrical, dry, or wet depending on the operating method, and mechanically simple (eg, gravity settling chamber, impact type dust collector, centrifugal cyclone) as long as the particle size to be removed is about 10 ⁇ m. Etc.) may be used.
  • These dry dust collectors have been developed in recent years to collect dust at a relatively low pressure loss of even 1 ⁇ m particles due to technology development and structural improvement.However, to collect ultra-fine particles of 1 ⁇ m or less, the special structure, pressure loss, and high cost This takes a disadvantage.
  • a filter bag house is one of the air pollution prevention device that filters or prevents the discharge of harmful particles contained in various particulate matters in the atmosphere that causes air pollution or exhaust gases such as factories.
  • the filtration method of these bag filters is a surface filtration method that attaches dust to the surface of a filter medium such as thin paper or fiber, and a bag cloth or bag filter made of a thick filter medium such as glass fiber or cotton fiber in the shape of a bag or a flat plate.
  • Such bag filters usually have an efficiency of 99% or more when the size of the dust is 1.0 ⁇ m or more.
  • the principle of dust collection in this device is a combination of impact, direct blocking, surface deposition by electrostatic forces, and diffusion.
  • This dust collection method is one of the excellent dust collection techniques can obtain a high efficiency by properly selecting the filter medium, but if the pores of the filter medium is blocked due to the overload of the pressure loss, the life of the filter medium is shortened and the operating cost may also be a factor.
  • the dust layer trapped in the filter medium becomes thicker, and the pressure loss of the filter medium becomes high, thereby making it impossible to operate normally. Due to the above problems, the dust is collected on the surface of the filter medium by periodic dusting. If the dust concentration of the impregnated gas is high or the filtration speed is high during such dusting operation, due to the nature of the dust itself, the dust layer may not be easily shaken off or the dust may be removed from the adjacent filter medium. Reflowing causes a problem of deteriorating dust collection performance.
  • the object of the present invention is to exhaust the dust without blocking the flow rate in the existing exhaust system, when the dust is temporarily re-introduced again when the dust is passed through the filter or
  • Various embodiments of the user in the filter dust collector consisting of a plurality of dust collecting chambers to increase the dust collection efficiency by preventing the dedusting efficiency is lowered by re-attach to the filter, and the initial dust collection layer is formed on the temporarily cleaned dust filter immediately after the dust is removed.
  • a plurality of dust collection chambers may be selectively or sequentially driven with a predetermined time and an opening and closing rate to perform a dust removal operation.
  • the present invention as a means for solving the above problems, in the first embodiment, in a large-capacity filter dust collector 10 consisting of a plurality of dust chamber 12, according to a predetermined time period (T0) specified by the user Alternatively, in the large-capacity dust collector dedusting method in which the pressure loss value of the filter dust collector 10 reaches a predetermined value, all of the plurality of dust chambers 12 are sequentially dedusted, the flow rate of the first dust collection target dust chamber 12.
  • the pressure loss value of the filter dust collector 10 is set to a predetermined value according to a predetermined time period T0.
  • the first dust collection target 12 is opened such that the flow rate passes below 50% of the normal flow rate 100% open.
  • step S100 Maintaining the truth 12 in the open state of step S100 and passing a predetermined time T2 (S300); A step (S500) of operating a predetermined time (T4) in a normal flow state in which the dust collecting target dust collecting chamber 12 is opened at 100%; Dedusting the second dust collecting target dust collecting chamber (12) of the filter dust collector (10) in the same order and method as in each step (S600); A step (S700) of dedusting the remaining dust collecting chamber (12) of the filter dust collector (10) by sequentially repeating the same as the above step; After the exhaustion of the dust collecting chamber 12 corresponding to the last dust removal order of the filter dust collector 10 is completed and the dust collection cycle of the filter dust collector 10 is finished, according to a predetermined time period T0 or the filter dust collector Characterized in the dust removal method comprising the step (S800) of repeating the dedusting cycle of the filter dust collector 10 by the pressure loss of 10 reaches a predetermined value again.
  • the dust collection target dust collecting chamber 12 so that the flow rate of the dust collecting chamber 12 is 5 to 20% in preparation for the normal flow rate when the dust collection target dust collecting chamber 12 is 100% open.
  • the open By operating the open, lowering the filtration speed compared to the case of the normal flow rate to improve the dust collection efficiency, and to form an initial dust layer on the surface of the dust collecting filter 11, the dust collection of the dust collecting filter 11 due to the initial dust layer Characterized in that the efficiency is increased.
  • step S100 the dust collection target dust collection chamber so that the flow rate passing through the dust collection chamber 12 becomes 5 to 20% of the normal flow in preparation for the normal flow rate when the dust collection target dust collection chamber 12 is 100% open. (12) is opened and operated.
  • a plurality of dust collecting filters 11 are formed in the dust collecting target dust collecting chamber 12 in the step S200, and the dust collecting filter 11 is dust collecting installed in the dust collecting chamber 12 of the dust collecting target 12. It is characterized in that it is exhausted through the mechanism 80 and the exhaust mechanism controller 90 that can control the dust removal operation according to the type of the exhaust mechanism 80.
  • the filter dust collector 10 consisting of a plurality of dust collecting chambers 12, the dust collecting filter 11 is built-in; A gas inlet line 20 for supplying dust-containing gas A into the plurality of dust collecting chambers 12; A gas discharge line 40 connected to the process gas discharge branch pipe 41 of each dust collecting chamber 12 to discharge the clean processing gas B filtered by the dust collecting filter 11; An exhaust gas flow rate control device 50 installed in each of the processing gas discharge branch pipes 41 to control a gas flow rate discharged from each dust chamber 12; First and second main pressure sensors 60 and 61 installed in the gas inflow line 20 and the gas discharge line 40 so as to measure a pressure difference before and after the filter dust collector 10 passes; ; A dust extraction mechanism (80) installed in each dust chamber (12) for dust collection of the dust collected in the dust collection filter (11); A dust extraction mechanism controller (90) designed to control the operation of the dust extraction mechanism (80) of each dust chamber (12); Dedusting cycle period (T0) of the bag filter 10 and the predetermined time (T1, T2, T3, T4) and
  • the gas inlet line 20 has a branched process gas inlet branch 21 formed on the outer periphery once in communication with each dust chamber 12, each of the process gas inlet branch 21 It is characterized in that the inlet gas flow rate control device 30 for controlling the flow rate of the dust-containing gas (A) flowing into each dust chamber 12 is installed.
  • each dust collecting chamber 12 is provided with a first additional differential pressure sensor 70 in the process gas inlet branch pipe 21, the second additional differential pressure sensor 71 in the process gas discharge branch pipe 41. ), So that the pressure difference before and after passing the dust collecting filter 11 of each dust collecting chamber 12 can be measured.
  • the dedusting mechanism 80 is a shock air dedusting device for injecting high-pressure compressed air into the dust collecting filter 11 at a high speed, and the air flow rate controlling device for dust removal in a state in which the exhaust gas flow control device 50 is completely closed. (44) by opening a pressurized blower or by using a blower (2) of the bag filter 10 for a predetermined time to pass the flow in the direction opposite to the filtration direction of the filter dust collector 11 to dedust the dust
  • a cleaning dust removal device, a vibration dust removal device for vibrating the dust collecting filter 11 by an external force, and one of the sound wave dust collecting devices for dust collecting the filter 11 by vibration by sound waves using a sound wave generator is used. It is done.
  • the plurality of dust collecting chambers 12 includes a hopper 13 into which dust-containing gas A is introduced and the dust collecting filter 11 are formed to extend vertically upwardly at an upper end of the hopper 13 ( 15) is divided into a clean part 16 in communication with the filter part 15 and the clean processing gas B, through which the dust is filtered, through the filter part 15, to which the filter part 15 is moved. It characterized by consisting of a dust collecting filter (11).
  • the plurality of dust collecting chambers 12 is characterized in that the filter unit 15 is open to each other or partitioned by a separating plate 18.
  • the dust when dust is collected in an internal dust collecting filter to dedust the dust collecting chamber to be a dust collecting target, the dust is collected by sealing the inside of the dust collecting chamber after the dust is removed without blocking the flow rate. It is possible to prevent the phenomenon of dedusting deterioration by preventing reattachment or reflow of the filter.
  • the clean dust collecting target dust chamber is not completely opened (100% open), but is opened by a predetermined ratio compared to the total opening (100% open), and thus the initial stage formed in the dust collecting filter. Due to the dust layer, the dust collecting efficiency of the dust collecting filter is increased.
  • the present invention in the large-capacity filter dust collector consisting of a plurality of dust collectors, the dust collection sequence and the dust collection time interval between the dust collection chamber, the dust collection time interval between each dust collection chamber, so as not to lower the maintenance cost and dust removal efficiency by simultaneously dedusting a plurality of dust chambers as in the prior art
  • the flow rate control device, a plurality of differential pressure sensors, and a dust removal mechanism may be used for the operation sequence and the dust removal time interval of the multiple dust removal mechanisms, the opening / closing rate and the opening / closing time interval of the flow control device for introducing or discharging gas into the dust collecting chamber.
  • FIG. 1 is a conceptual diagram showing the flow of processing gas for a large-capacity filter dust collector composed of a plurality of dust chambers according to the present invention.
  • Figure 2 is a view of a first embodiment showing an impact air dust extraction type filter dust collector and a dust extraction device composed of a plurality of dust chambers according to the present invention.
  • FIG. 3 is a plan view of FIG.
  • Figure 4 is a view of a second embodiment showing a backflow air cleaning type filter dust collector and a dust extraction device having a dust extraction air inlet tube consisting of a plurality of dust chambers according to the present invention.
  • Figure 5 is a view of an embodiment showing the impact air dust extraction type filter dust collector and its dust removal device equipped with a processing gas inlet branch pipe flow control apparatus according to the present invention.
  • Figure 6 is a view of an embodiment showing the impact air dust extraction type filter dust collector and its dust extraction apparatus of a plurality of dust chambers according to the present invention is not partitioned form each other.
  • FIG. 7 and 8 are a flow chart of a first embodiment showing a dust removal method according to the present invention.
  • FIG. 9 is a flow chart of a second embodiment showing a dust removal method according to the present invention.
  • process gas inlet branch pipe 30 inlet gas flow rate control device
  • first main differential pressure sensor 61 second main differential pressure sensor
  • first additional differential pressure sensor 71 second additional differential pressure sensor
  • the present invention has the following features to achieve the above object.
  • the dust collecting filter (11) in the dust collector (10) consisting of a plurality of dust collecting chambers (12)
  • the present invention relates to a dust collecting device and a dust collecting method of the bag filter for increasing the dust removal efficiency.
  • FIG. 1 is a conceptual view showing a process gas flow of a large-capacity filter dust collector composed of a plurality of dust collecting chambers according to the present invention
  • the dust-containing gas (A) from the dust discharge source (1) is composed of a plurality of dust collecting chambers (12) )
  • the dust in the dust-containing gas (A) is filtered by the bag filter (10), and then discharged into the atmosphere in the state of clean processing gas (B) by a flow means such as a blower (2).
  • FIGS. 2 and 3 illustrate a first embodiment of a dust extraction apparatus using a dust extraction method of a large-capacity filter dust collector composed of a plurality of dust collecting chambers according to the present invention. 10), the gas inlet line 20, the inlet gas flow rate control device 30, the gas discharge line 40, the exhaust gas flow rate control device 50, the first, second main pressure sensor (60, 61), the first , The two differential pressure sensors 70 and 71, the exhaust mechanism 80, the exhaust mechanism controller 90, and the interlock controller 100.
  • the filter dust collector 10 is provided with a plurality of dust collecting chambers 12 in which the dust collecting filter 11 is built in a vertically downward shape to filter the dust, so that the plurality of dust collecting chambers 12 are integrated.
  • the dust collecting chamber 12 has a light emitting strait in which dust-containing gas A is first introduced.
  • Hopper 13 having a shape (funnel shape) (the hopper 13 has a collecting dust discharge device 14 for discharging collected dust at a lower end thereof) and the hopper 13
  • the filter unit 15 is formed to extend vertically at the upper end of the filter unit 15 in which the dust collecting filter 11 is installed, and the clean processing gas B in which dust is filtered through the filter unit 15 is moved. It is divided into a clean portion 16 in communication with 15).
  • one end of the gas inflow line 20 communicates with the hopper 13 of each dust chamber 12, more specifically, each dust chamber 12.
  • the other end is in communication with the dust discharge source 1 to move the dust-containing gas A generated in the dust discharge source 1 into the dust collecting chamber 12.
  • the dust-containing gas (A) through the gas inlet line 20 will be to be flowed by a variety of flow apparatus, such as a separate blower, one end of the gas inlet line 20 in communication with the dust chamber 12
  • the outer periphery of the plurality of processing gas inlet branch pipe 21 is formed to be in communication with each dust chamber 12.
  • the inflow gas flow rate control device 30 is formed in each process gas inflow branch pipe 21 connected to the plurality of dust chambers 12, and each of the dust chambers 12.
  • the inflow gas flow rate control device 30 may be composed of valves V6, V7, V8, V9, V10, etc., like the exhaust gas flow rate control device 50, which will be described later. It can be replaced with various adjustable devices.
  • the inflow gas flow rate control device 30 may not be used as shown in FIGS.
  • the gas discharge line 40 is configured to discharge the clean processing gas B filtered through the respective dust collecting filters 11.
  • Means a discharge pipe connected to the process gas discharge branch pipe 41 is connected to the clean portion 16 in communication. That is, a process gas discharge branch pipe 41 is connected to the clean part 16 located above each dust chamber 12 of the present invention, and each of the process gas discharge branch pipes 41 has a single gas discharge line. It is configured to be in communication with 40.
  • the exhaust gas flow rate control device 50 is formed in each process gas discharge branch pipe 41 of the dust collecting chamber 12, and each of the dust collecting chambers 12 It is possible to control the flow rate of the filtered clean treatment gas (B) discharged from the.
  • the exhaust gas flow rate control device 30 may be made of a valve (V1, V2, V3, V4, V5), etc., it can be replaced by a variety of devices capable of adjusting the flow rate in addition to the valve by the user's choice.
  • the first and second main differential pressure sensors 60 and 61 measure the pressure difference before and after the processing gas passes through the filter dust collector 10 including the plurality of dust collecting chambers 12 in the present invention.
  • the first main differential pressure sensor 60 is installed in the gas inlet line 20, and the second main differential pressure sensor 61 is installed in the gas discharge line 40.
  • the first main differential pressure sensor 60 is installed at the front end of the formation of a plurality of processing gas inlet branch pipe 21 in the gas inlet line 20
  • the second main differential pressure sensor 61 is a gas discharge line ( In (40)
  • a plurality of process gas discharge branch pipes (41) must be installed at the rear end of the connected portion, so that the total inflow pressure of the dust-containing gas (A) introduced into the filter dust collector 10 including the plurality of dust chambers 12 and It will be appreciated that dust can measure the total discharge pressure of filtered clean gas (B).
  • the first and second additional pressure sensors 70 and 71 are installed in pairs in each of the plurality of dust collecting chambers 12 in the filter dust collector 10, and are provided in each dust collecting chamber 12.
  • the first additional differential pressure sensor 70 is formed in each dust collecting chamber 12 so that the dust-containing gas A is hopper. It is installed in the processing gas inlet branch pipe 21 to be introduced into the (13), the second additional pressure differential sensor 71 is to discharge the clean processing gas (B) filtered through the dust collecting filter 11 to the outside. Process gas discharge branch pipe 41 is to be installed.
  • Process gas discharge branch pipe 41 is to be installed.
  • the dust removal mechanism 80 is an impact air type dust removal mechanism, which is installed in each dust collecting chamber 12, more specifically, the blue in communication with the filter unit 15. It is installed in the government (16). 2, 3, 5, and 6, the dedusting mechanism 80 is a dedusting air injection nozzle 82 formed at the outer periphery of the dedusting air injection tube 81 and the dedusting air injection tube 81, for dedusting Compressed air tank 84, and the exhaust air injection pipe 81 and the compressed air tank (84) both ends are in communication with the compressed air control valve 83 for controlling the amount of the exhaust air.
  • the dedusting air injection pipe 81 is installed above the dust collecting filter 11 in the clean part 16, and the dust collecting filter 11 formed in the filter part 15 is the dedusting air injection pipe 81.
  • Figure 4 shows a filter precipitator to which the reverse airflow cleaning method is applied, the dust removal air inlet pipe 42 is provided separately, a plurality of air for the exhaust dust branched from the exhaust air inlet pipe 42
  • the inflow branch pipe 43 is connected to the clean part 16 or the process gas discharge branch pipe 41 of each dust chamber 12, and the dedusting air C is simultaneously introduced into all of the plurality of dust filters 11. It can also be exhausted.
  • the exhaust air flow control device 44 for controlling the flow rate may also be installed in each of the plurality of exhaust air inflow branch pipes 43.
  • the exhaust air flow control device 44 may be made of valves VR1, VR2, VR3, VR4, and VR5, and may be replaced by various devices capable of adjusting the flow rate in addition to the valve by the user's selection.
  • the dedusting air (C) is supplied using a pressurized blower (not shown).
  • the exhaust gas flow control device 50 is closed in the dedusting step. After the air flow controller 44 is completely opened, the exhaust air is supplied into the dust collecting chamber 12 to be exhausted in a direction opposite to the filtration direction of the dust collecting filter by using a pressurized blower, or a pressurized blower is not used separately.
  • a filtration direction of the dust collecting filter 11 for a predetermined time by using a shock air dust removing device, a pressurized blower, etc., which injects high pressure compressed air into the dust collecting filter 11 at a high speed by a user's selection.
  • Reverse airflow cleaning dust removal device for removing dust by passing the flow rate in the opposite direction to the dust, vibration dusting device for vibrating and dusting the dust collecting filter 11 by an external force, and dust collecting filter 11 by vibration by sound waves using a sound wave generator. Is one of the sonic dedusting devices that can be used.
  • the interlock controller 100 starts and ends the dust collection of the filter dust collector 10, and the plurality of dust chambers 12 constituting the filter dust collector 10.
  • a device for controlling the dust removal order and the dust removal interval wherein the dust removal mechanism controller 90 is started by the interlocking controller 100 in the dust collection chamber 12 to start the dust removal.
  • the interlock controller 100 and the exhaust mechanism controller 90 should be in communication with each other, and in some cases, may be integrated into one controller.
  • the interlock controller 100 communicates with each of the inflow gas flow rate controller 30 and the exhaust gas flow rate controller 50 formed in the plurality of dust chambers 12, in addition to the exhaust mechanism controller 90.
  • the first and second main pressure sensors 60 and 61 are also in communication with each other.
  • the interlock controller 100 communicates with the inflow gas and the exhaust gas flow control devices 30 and 50, the first and second main pressure sensors 60 and 61, the exhaust mechanism controller 90, and the like, and is introduced by the user. Opening / closing time and opening and closing time intervals of the gas flow control device 30 and the exhaust gas flow control device 50, the start of the dust collection of the filter dust collector 10, the dust removal sequence and the dust removal time interval between the plurality of dust chambers 12 To be controlled.
  • Such a dust removal method is a difference value between the process gas positive pressure before passing through the filter dust collector 10 and the process gas positive pressure after passing in the large capacity filter dust collector 10 according to a predetermined period T0 previously designated by a user. That is, when the pressure loss value of the bag filter reaches a predetermined value.
  • the predetermined value means a predetermined value predetermined by the user. The same applies to the predetermined value to be described later.
  • a plurality of dust collecting chambers 12 Pass through one of the dust collecting chambers 12 (the dust collecting chambers 12 to be dust-collected, one of the plurality of dust collecting chambers 12, which can be changed in various orders by the user).
  • One of the above-described various mechanisms capable of dedusting the dust collecting filter 11 inside the dust collecting chamber 12 may be used. 2 and 3, all the dust removal operations in the dust collection chambers 12 are controlled by the dust removal mechanism controller 90.
  • Each dust chamber is provided with four exhaust air injection pipes 81 and compressed air control valves 83, and each of the exhaust air injection pipes 81 is configured to simultaneously exhaust the four dust filters. .
  • the dust collecting target dust collecting chamber 12 is the dust collecting chamber 12 at the left end of FIG.
  • the dust removing mechanism controller 90 communicates with the compressed air control valve 83 to display S1, S2, S3, All dust filters 11 in the dust collecting chamber 12 are exhausted by controlling the operation sequence and operating time intervals between the respective compressed air control valves 83 corresponding to S4, and opening / closing time of the individual compressed air control valves 83. Done.
  • the step of passing the predetermined time (T2) so that the dust is settled to be discharged to the outside through the hopper 13 and the collected dust discharge device 14 at the bottom (S300) is a problem of the existing dust extraction system that does not block the flow rate during dust extraction, when the dust is momentarily re-introduced again to pass through the dust collecting filter 11, or re-attached to the dust collecting filter 11 to reduce the dust removal efficiency. To prevent this from happening.
  • the step S400 is a step of operating the dust collection target dust collecting chamber 12 for a predetermined time (T3) while maintaining the flow rate of the dust collection target dust collecting target 12 as 50% or less of the normal flow rate as described above.
  • the predetermined value may be changed by the user.
  • This operation increases the dust collection efficiency of the dust collecting filter 11 which is temporarily cleaned immediately after dust removal, thereby increasing the dust collecting efficiency by lowering the filtration rate, and securing time for the initial dust layer to be formed on the surface of the dust collecting filter 11. To do this.
  • the dust collecting efficiency is also increased, and the initial dust layer is formed on the surface of the dust collecting filter 11.
  • the dust layer When a dust layer is formed on the surface of the dust collecting filter 11 at a low filtration rate condition for a predetermined time, the dust layer serves as a high efficiency filter, even when it is returned to the normal filtration rate (100% normal flow rate). 11) The concentration of dust passing through can be greatly reduced.
  • step S400 the control of the flow rate through the dust collecting chamber 12 is made through the inflow gas flow rate control device 30 and the exhaust gas flow rate control device 50, and the inflow gas flow rate control device 30 and the exhaust gas. Opening and closing rate control of the flow rate control device 50 is all made through the interlock controller 100.
  • the dust collecting target dust extraction chamber 12 is completely opened (100% open) to operate a predetermined time (T4) (S500).
  • step (S500) the remaining number of remaining dust collecting chambers 12 in the predetermined order specified by the user, in the same manner as in the above steps to perform a dust exhausting process: that is, a plurality of houses as described above
  • the other dust collecting chambers 12 remaining in the same manner as described above, and all the dust collecting chambers 12 are arranged in a predetermined order ( The exhaustion is performed in the order specified by the user. At this time, the order and time interval between each dust chamber 12 are all controlled by the interlock controller 100.
  • a step (S100) of passing the dust collecting target dust collection chamber 12 at a predetermined ratio specified by a user in the filter dust collector 10 including the plurality of dust collecting chambers 12 (S100):
  • both the inflow gas flow rate control device 30 and the exhaust gas flow rate control device 50 were turned off before the exhaust gas was exhausted through the exhaust mechanism 80, thereby completely blocking the gas from flowing.
  • the dust-containing gas A is passed through the dust-collecting target dust chamber 12 while a predetermined time passes while the predetermined value is opened.
  • the opening ratio of the dust collecting target dust collection chamber 12 is 50% or less of the normal flow rate when the dust collection target dust chamber 12 is completely opened (100%) and the flow rate is 100%. Preferably about 5 to 20% of the normal flow rate.
  • the predetermined value may be changed by the user.
  • the step of passing the predetermined time (T2) so that the dust is settled to be discharged to the outside through the hopper 13 and the collected dust discharge device 14 at the bottom (S300) When the flow rate passing through the dust collecting chamber 12 is kept lower than the normal flow rate, the dust is settled and advantageously discharged to the outside through the discharge device 14, and also immediately after the dust is exhausted immediately Dust may be re-introduced again to pass through the dust collecting filter 11 or may be reattached to the dust collecting filter 11 to reduce the dust collection efficiency.
  • step (S500) the remaining number of remaining dust collecting chambers 12 in a predetermined order, in the same manner as in the above steps to perform the dust-exhaustion: a plurality of dust collecting chambers 12 as described above After one dust collection chamber 12 that has been subjected to dust exhaustion is exhausted, the remaining dust collection chamber 12 is exhausted in the same manner as described above, so that all the dust collection chambers 12 are arranged in a predetermined order (specified by the user). In order to achieve exhaustion. At this time, the order and time interval between each dust chamber 12 are all controlled by the interlock controller 100.
  • the predetermined time period T0 and the predetermined time periods T1, T2, T3, and T4 described in the above-described large-capacity filter dust removal method may be variously changed by a user through the interlock controller 100.
  • the reference numeral '17' of the drawings not described above indicates the 'dust collecting filter mounting plate' installed horizontally in the dust collecting chamber 12 so that the dust collecting filter 11 can be installed, and '81, 82 'is exhausted
  • the 'air exhaust air injection pipe' and the 'air exhaust air injection nozzle' of the impact air type dust removal mechanism are respectively shown, and '83' is a compression supplied to each of the exhaust air injection pipes 81.
  • 'Compressed air control valve' for adjusting the flow rate of air '84' represents 'compressed air storage tank for dedusting'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

본 발명은 대용량 여과집진기 탈진장치 및 방법에 관한 것으로서, 보다 상세하게는 다수의 집진실로 이루어진 대용량의 여과집진기에 있어서, 각 집진실의 탈진 조작을 조절하는 탈진기구 제어기와 상기 각 집진실의 탈진기구 제어기와 통신하며 각 집진실 간의 탈진 순서 및 각 집진실을 통과하는 유량제어장치의 개폐율 및 개폐시간간격을 조절하여 여과집진기 전체의 탈진을 제어하도록 된 연동제어기를 포함하는 여과집진기 탈진장치와, 여과집진기의 압력손실이 소정수치에 도달하거나 또는 사용자가 사전한 지정한 소정시간주기에 따라 여과집진기의 탈진이 개시되어 각 집진실 별로 순차적으로 탈진 조작이 수행되되, 각 집진실에서 탈진 직후 탈리된 분진이 집진필터에 곧바로 재유입되지 않도록 탈진대상 집진실을 통과하는 유량을 완전차단한 후 탈진을 수행하고, 탈진 후 소정시간 경과하면 해당 집진실에 정상유량의 50%이하로 유량을 통과시켜 집진필터에 초기 집진층이 형성되도록 함으로써 집진효율이 증가되도록 하며, 소정시간 경과 후 다시 정상유량으로 복귀시키며, 이상과 같은 개별 집진실의 탈진을 각 집진실 별로 순차적으로 수행하는 것을 특징으로 하는 대용량 여과집진기 탈진 장치 및 방법에 관한 것이다.

Description

대용량 여과집진기 탈진 장치 및 방법
본 발명은 대기중으로 배출되는 분진의 양을 줄이고 동시에 탈진 효율을 높이기 위한 여과집진기 탈진 장치 및 탈진 방법에 관한 것이다.
집진장치는 공기 중에 존재하는 고체나 액체 미립자를 제거하기 위한 장치를 이르는 일반적인 명칭이다. 집진장치는 보일러, 배소로, 가열로, 폐기물소각로 등의 배출가스 중에서 그을음이나 먼지를 제거하는데 사용되어 왔고, 화학분말제조, 제철, 목재, 시멘트 제조 및 기타 미세분진이 다량 발생하는 작업장에서 사용되고 있으며, 이외에도 제조공업에서는 IC 공정, 제약공정 등에서 공기의 청정화에 의한 제품의 품질향상 등을 위해 설치되어 사용되고 있다.
이러한 집진장치는 작동방식에 따라 기계식, 전기식, 건식 또는 습식으로 나누어지고, 제거하고자 하는 미립자의 크기가 10㎛ 정도까지는 구조가 간단한 기계식(예를 들어, 중력침강실, 충돌식 집진장치, 원심력 사이클론 등) 방법이 사용될 수 있다. 이들 건식 집진장치는 기술개발과 구조개선에 의해 최근에는 1㎛ 입자까지도 압력손실이 비교적 낮은 상태에서 집진할 수 있도록 개발되었으나, 1㎛ 이하의 초미립자까지 집진하는 데는 장치의 특별한 구조와 압력손실, 고비용이 소요된다는 단점이 있다.
여과집진기(flter bag house)는 대기오염의 원인이 되는 대기 중의 각종 입자상물질이나 공장 등의 배출가스에 포함된 유해 입자를 걸러내거나 배출을 방지하는 대기오염 방지 장치의 하나이다. 이들 여과집진기의 여과방식으로는 얇은 종이나 섬유 등의 여과재 표면에 먼지를 붙이는 표면여과방식과 유리섬유?면섬유 같은 두꺼운 층의 여과재를 자루 모양이나 평판형으로 만든 여과포(濾過布), 즉 백필터의 섬유층 속에 먼지를 모으는 내부여과방식이 있다. 운전초기에는 여과재에 의해서만 먼지가 분리되지만, 시간이 지나면서 여과재의 표면에 쌓이는 분진층이 여과체로서의 역할을 하게 된다. 이와 같이 분진층이 주 여과층으로서의 역할을 하게 되면서 포집효율은 상승하지만 동시에 가스 흐름을 방해하는 저항체로서 작용할 수 있다.
이러한 여과집진기는 보통 분진의 크기가 1.0㎛ 이상인 경우에는 99% 이상의 효율을 나타낸다. 이 장치에서 분진을 포집하는 원리는 충돌, 직접차단, 정전기력에 의한 표면침착, 확산 등의 복합적인 작용이다. 이러한 집진방식은 우수한 집진기술 중 하나로 여과재를 적절히 선택함에 따라 높은 효율을 얻을 수 있지만, 압력손실의 과부하로 인하여 여과재의 세공이 막히게 되면 여과재의 수명이 단축되며 운전비용 상승의 요인이 되기도 한다.
다시 말해, 여과조작이 진행됨에 따라 여과재에 포집되는 먼지층이 두꺼워지면서 여과재의 압력손실이 높아져 정상적인 운전이 불가능하게 되고, 상기와 같은 문제점으로 인해 주기적인 탈진조작(cleaning)에 의해 여과재 표면에 포집되는 먼지를 털어 내야만 하는데, 이와 같은 탈진조작 시에 유입되는 함진가스의 먼지농도가 높거나 여과속도가 빠른 경우에는 먼지 자체의 성질로 인해 먼지층이 잘 털어지지 않거나 털어진 먼지가 인접한 여과재로 재유입되어 집진성능을 떨어뜨리는 문제점이 발생된다.
아울러, 상기와 같은 탈진조작으로 재부착현상을 방지하면서 집진장치의 운전을 지속하기 위해 탈진조작의 빈도를 증가시키거나 탈진 강도를 증가시키는 등 과도한 탈진조작을 수행하게 되면, 여과재의 세공이 커지게 되어 집진효율이 떨어지게 되거나 여과재 자체가 마모 및 파손되어 수명이 단축되는 문제점이 발생한다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유량을 차단하지 않고 탈진하는 기존의 탈진시스템에서, 탈진시 순간적으로 탈진된 분진들이 다시 재유입되어 필터를 통과하거나 또는 필터에 재부착되어 탈진효율이 저하되는 것을 방지하고, 탈진 직후 일시적으로 깨끗해진 집진필터에 초기 집진층을 형성하여 집진효율을 상승시킴과 동시에, 다수의 집진실로 이루어지는 여과집진기에서 사용자의 다양한 실시예에 따라 소정시간과 개폐율을 가지고 다수의 집진실이 선택적 또는 순차적으로 구동되어 탈진작동을 할 수 있도록 함으로써, 종래에 비해 유지비용을 절감시킬 수 있는 대용량 여과집진기 탈진 장치 및 방법에 관한 것이다.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시 예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 수단으로서, 첫 번째 실시예로, 다수의 집진실(12)로 이루어진 대용량의 여과집진기(10)에서, 사용자가 지정한 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실값이 소정값에 도달하여 상기 다수의 집진실(12)이 순차적으로 모두 탈진되는 대용량 여과집진기 탈진방법에 있어서, 첫 번째 탈진대상 집진실(12)의 유량을 완전히 차단하고 탈진 개시 직전까지 소정시간(T1)을 대기하는 단계(S100)와; 상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 분진을 탈진시키는 단계(S200)와; 탈진된 분진이 상기 집진필터(11)에 재유입 되는 것을 방지하고 침강에 의해 상기 집진실(12) 하단부의 호퍼(13)와 분진 배출장치(14)를 거쳐 외부로 배출될 수 있도록, 상기 집진실(12)의 유량을 완전히 차단한 상태로 소정시간(T2) 경과시키는 단계(S300)와; 상기 유량이 완전히 차단된 탈진대상 집진실(12)을 100% 개방한 정상 유량의 50%로 유량이 통과하도록 개방하여 소정시간(T3) 운전시키는 단계(S400)와; 상기 탈진대상 집진실(12)을 100% 개방한 정상유량 상태에서 소정시간(T4) 운전시키는 단계(S500)와; 상기 여과집진기(10)의 두 번째 탈진 대상 집진실(12)을 상기 각 단계와 동일한 순서와 방법으로 탈진하는 단계(S600)와; 상기 여과집진기(10)의 나머지 집진실(12)도 순차적으로 상기 단계와 동일하게 반복 수행시켜 탈진하는 단계(S700)와; 상기 여과집진기(10)의 마지막 탈진 순서에 해당되는 집진실(12)의 탈진이 완료되어 상기 여과집진기(10)의 탈진 싸이클이 종료된 후, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실이 소정값에 도달하여 상기 여과집진기(10)의 탈진 싸이클이 다시 반복 수행되는 단계(S800)를 포함하여 이루어지는 탈진방법을 특징으로 한다.
또한, 두 번째 실시예로, 다수의 집진실(12)로 이루어진 대용량의 여과집진기(10)에서, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실값이 소정값에 도달하여 상기 다수의 집진실(12)이 순차적으로 모두 탈진되는 대용량 여과집진기 탈진방법에 있어서, 첫 번째 탈진대상 집진실(12)을 100% 개방된 정상 유량의 50%이하로 유량이 통과하도록 개방하여 탈진 개시 직전까지 소정시간(T1)을 대기하는 단계(S100)와; 상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 분진을 탈진시키는 단계(S200)와; 탈진된 분진이 상기 집진필터(11)에 재유입 되는 것을 방지하고 침강에 의해 상기 집진실(12) 하단부의 호퍼(13)와 분진 배출장치(14)를 거쳐 외부로 배출될 수 있도록, 상기 집진실(12)을 상기 S100단계의 개방된 상태로 유지하며 소정시간(T2) 경과시키는 단계(S300)와; 상기 탈진대상 집진실(12)을 100% 개방한 정상유량 상태에서 소정시간(T4) 운전시키는 단계(S500)와; 상기 여과집진기(10)의 두 번째 탈진 대상 집진실(12)을 상기 각 단계와 동일한 순서와 방법으로 탈진하는 단계(S600)와; 상기 여과집진기(10)의 나머지 집진실(12)도 순차적으로 상기 단계와 동일하게 반복 수행시켜 탈진하는 단계(S700)와; 상기 여과집진기(10)의 마지막 탈진 순서에 해당되는 집진실(12)의 탈진이 완료되어 상기 여과집진기(10)의 탈진 싸이클이 종료된 후, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실이 소정값에 도달하여 상기 여과집진기(10)의 탈진 싸이클이 다시 반복 수행되는 단계(S800)를 포함하여 이루어지는 탈진방법을 특징으로 한다.
또한, 상기 S400단계에서는 상기 탈진대상 집진실(12)이 100% 개방된 경우의 정상 유량에 대비하여, 상기 집진실(12) 통과 유량이 5 내지 20%가 되도록 상기 탈진대상 집진실(12)를 개방하여 운전시킴으로써, 정상유량인 경우에 비해 여과속도를 낮춰 집진효율을 향상시키고, 집진필터(11) 표면에 초기 분진층이 형성되도록 하여, 상기 초기 분진층으로 인해 집진필터(11)의 집진효율이 증대되도록 하는 것을 특징으로 한다.
또한, 상기 S100단계에서는 상기 탈진대상 집진실(12)이 100% 개방된 경우의 정상 유량에 대비하여, 상기 집진실(12) 통과 유량이 정상유량의 5 내지 20%가 되도록 상기 탈진대상 집진실(12)를 개방하여 운전하는 것을 특징으로 한다.
또한, 상기 S200단계에서 상기 탈진대상 집진실(12)에는 다수의 집진필터(11)가 형성되어 있으며, 상기 집진필터(11)는 상기 탈진대상 집진실(12) 청정부(16)에 설치된 탈진기구(80)와, 상기 탈진기구(80)의 종류에 따른 탈진 조작을 제어할 수 있는 탈진기구 제어기(90)를 통해 탈진되는 것을 특징으로 한다.
또한, 집진필터(11)가 내설된 다수의 집진실(12)로 이루어진 여과집진기(10)와; 상기 다수의 집진실(12) 내부로 분진함유 가스(A)를 공급하기 위한 가스 유입라인(20)과; 상기 각 집진실(12)의 처리가스 배출 분지관(41)에 연통연결되어, 상기 집진필터(11)에 의해 여과된 청정처리가스(B)를 배출하기 위한 가스 배출라인(40)과; 상기 각각의 처리가스 배출 분지관(41)에 설치되어, 각 집진실(12)에서 배출되는 가스 유량을 제어하는 배출가스 유량 제어장치(50)와; 상기 가스 유입라인(20) 및 가스 배출라인(40)에 각각 설치되어, 상기 여과집진기(10) 통과 전, 후의 압력차이를 측정할 수 있도록 하는 제 1, 2메인차압센서(60, 61)와; 상기 집진필터(11)에 포집된 분진을 탈진시키기 위해 각 집진실(12)에 설치된 탈진기구(80)와; 상기 각 집진실(12)의 탈진기구(80)의 작동을 제어하도록 설계된 탈진기구 제어기(90)와; 상기 여과집진기(10)의 탈진 싸이클 주기(T0) 및 상기 각 탈진단계(S100, S200, S300, S400, S500)에 해당되는 소정시간(T1, T2, T3, T4) 및 순서, 상기 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)의 개폐율과 개폐 시간간격, 다수의 집진실(12) 간의 탈진순서와 탈진시간간격을 제어하고, 상기 제 1, 2메인차압센서(60, 61)와 통신하며, 상기 탈진기구 제어기(90)와도 통신하여 상기 여과집진기(10)의 전체 탈진과정을 제어하도록 설계된 연동 제어기(100); 로 구성되는 탈진장치를 특징으로 한다.
또한, 상기 가스 유입라인(20)은 일단 외주연에 처리가스 유입 분지관(21)이 다수 분지형성되어 각 집진실(12)에 연통연결되되, 상기 각각의 처리가스 유입 분지관(21)에는 각 집진실(12)로 유입되는 분진함유 가스(A) 유량을 제어하는 유입가스 유량 제어장치(30)가 설치되는 것을 특징으로 한다.
또한, 상기 각각의 집진실(12)은 상기 처리가스 유입 분지관(21)에 제 1부가차압센서(70)를 설치하고, 상기 처리가스 배출 분지관(41)에는 제 2부가차압센서(71)를 설치하여, 각 집진실(12)의 집진필터(11) 통과 전, 후의 압력차이를 측정할 수 있도록 하는 것을 특징으로 한다.
또한, 상기 탈진기구(80)는 고압의 압축공기를 집진필터(11) 내부에 고속으로 분사하는 충격기류 탈진장치, 상기 배출가스 유량 제어장치(50)를 완전히 닫은 상태에서 탈진용 공기유량 제어장치(44)를 개방하여 가압송풍기를 이용하거나 상기 여과집진기(10)의 송풍기(2)를 이용하여 일정시간동안 집진필터(11)의 여과방향과 반대방향으로 유량을 통과시켜 분진을 탈진시키는 역기류세정 탈진장치, 상기 집진필터(11)를 외력에 의해 진동시켜 탈진시키는 진동탈진장치, 음파발생기를 이용하여 음파에 의한 진동으로 집진필터(11)를 탈진시키는 음파탈진장치 중 하나가 사용되는 것을 특징으로 한다.
또한, 상기 다수의 집진실(12)은 분진함유 가스(A)가 유입되는 호퍼(13) 및 상기 집진필터(11)가 내설되어 호퍼(13)의 상단부에 수직상향으로 연장형성되는 필터부(15)와, 상기 필터부(15)와 연통되어 필터부(15)를 거쳐 분진이 여과된 청정처리가스(B)가 이동되는 청정부(16)로 구획되며, 상기 필터부(15)는 다수의 집진필터(11)로 이루어지는 것을 특징으로 한다.
또한, 상기 다수의 집진실(12)은 상기 필터부(15)가 상호간 개방되어 있거나 또는 분리판(18)에 의해 구획되어 있는 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명은 내부의 집진필터에 분진이 포집되어 탈진대상이 되는 집진실을 탈진하는 경우, 유량을 차단하지 않고 탈진을 하는 기존과 달리 집진실 내부를 밀폐 후 탈진함으로써, 탈진이 필터에 재부착되거나 재유입되는 것을 방지하여 탈진현상이 저하되는 현상을 방지할 수 있는 효과가 있다.
또한, 본 발명은 탈진 후, 깨끗해진 탈진대상 집진실을 완전개방(100% 개방)하여 사용하지 않고, 완전개방(100% 개방) 대비 소정 비율만큼만 개방하여 시운전을 시킴으로써, 집진필터에 형성되는 초기 분진층으로 인해 집진필터의 분진포집효율이 증대되는 효과가 있다.
또한, 본 발명은 다수의 집진부로 이루어지는 대용량의 여과집진기에서, 종래와 같이 다수의 집진실을 동시에 탈진시킴으로써 유지비용 및 탈진효율이 저하되지 않도록, 다수 집진실 간의 탈진순서와 탈진시간 간격, 각 집진실에 내설되어 있는 다수 탈진기구들의 조작순서 및 탈진시간 간격, 상기 집진실에 가스를 유입 또는 배출시키는 유량제어장치의 개폐율과 개폐시간간격 등을 유량제어장치, 다수의 차압센서, 탈진기구를 연동시켜, 사용자가 다양한 실시예로 구동시킬 수 있는 효과가 있다.
도 1은 본 발명에 따른 다수의 집진실로 구성된 대용량 여과집진기에 대해 처리가스의 흐름을 나타낸 개념도.
도 2는 본 발명에 따른 다수의 집진실로 구성된 충격기류 탈진방식 여과집진기와 이의 탈진장치를 나타낸 첫 번째 일실시예의 도면.
도 3은 도 2의 평면도.
도 4는 본 발명에 따른 다수의 집진실로 구성된 탈진용 공기 유입관이 구비된 역기류 세정방식 여과집진기와 이의 탈진장치를 나타낸 두 번째 실시예의 도면.
도 5는 본 발명에 따른 처리가스 유입분지관 유량제어장치가 구비된 충격기류 탈진방식 여과집진기와 이의 탈진장치를 나타낸 일실시예의 도면.
도 6은 본 발명에 따른 다수의 집진실이 상호간 구획되지 않은 형태의 충격기류 탈진방식 여과집진기와 이의 탈진장치를 나타낸 일실시예의 도면.
도 7 및 도 8은 본 발명에 따른 탈진방법을 나타낸 첫 번째 실시예의 순서도.
도 9는 본 발명에 따른 탈진방법을 나타낸 두 번째 실시예의 순서도.
[도면의 주요부분에 대한 부호의 설명]
1: 분진 배출원 2: 송풍기
10: 여과집진기 11: 집진필터
12: 집진실 13: 호퍼
14: 수거분진 배출장치 15: 필터부
16: 청정부 17: 집진필터 설치판
18: 분리판 19: 스크류 컨베이어 구동장치
19': 스크류 컨베이어 20: 가스 유입라인
21: 처리가스 유입 분지관 30: 유입가스 유량 제어장치
40: 가스 배출라인 41: 처리가스 배출 분지관
42: 탈진용 공기 유입관 43: 탈진용 공기 유입분지관
44: 탈진용 공기유량 제어장치 50: 배출가스 유량 제어장치
60: 제 1메인차압센서 61: 제 2메인차압센서
70: 제 1부가차압센서 71: 제 2부가차압센서
80: 탈진기구 81: 탈진공기 분사관
82: 탈진공기 분사노즐 90: 탈진기구 제어기
100: 연동 제어기
A: 분진함유 가스 B: 청정처리 가스
C: 탈진공기
본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다. 또한, "제 1(first)", "제 2(second)"와 같은 용어는 설명을 위해 본원 및 첨부 청구항들에 사용되고 상대적인 중요성 또는 취지를 나타내거나 의미하는 것으로 의도되지 않는다.
본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 도 1 내지 도 9를 참조하여 본 발명의 바람직한 실시예에 따른 대용량 여과집진기 탈진장치 및 방법을 상세히 설명하도록 한다.
본 발명에 따른 대용량 여과집진기의 탈진방법을 설명하기에 앞서, 상기 대용량 여과집진기의 탈진방법이 사용되는 탈진장치에 대해 설명하겠다.
본 발명은 다수개의 집진실(12)로 이루어진 여과집진기(10)의, 집진필터(11)에 포집된 분진을 주기적으로 탈진시키기 위한 탈진방법에 있어서, 여과집진기(10)에서 집진필터(11)를 통과하여 대기 중으로 배출되는 분진은 주로 탈진시에만 배출된다는 특성과, 집진필터(11)의 효율은 여과속도가 낮을 때 증가한다는 특성과({여과속도 = 집진필터(11) 통과 유량 ÷ 집진필터(11) 표면적(or 여과면적)}), 집진필터(11) 표면에 분진이 부착되어 형성되는 초기 분진층으로 인해 집진효율이 크게 증가한다는 특성을 이용하여, 대기 중으로 배출되는 분진의 양을 줄이고, 동시에 탈진 효율을 높이기 위한 여과집진기의 탈진장치 및 탈진방법에 관한 것이다.
도 1은 본 발명에 따른 다수의 집진실로 구성된 대용량 여과집진기의 처리가스 흐름을 보여주는 개념도로서, 분진 배출원(1)으로부터 분진함유 가스(A)는 다수의 집진실(12)로 이루어진 여과집진기(10)내로 이동하여, 상기 여과집진기(10)에서 분진함유 가스(A) 내 분진을 여과시킨 후, 송풍기(2) 등과 같은 유동수단에 의해 청정처리 가스(B) 상태로 대기 중으로 배출된다.
도 2와 도 3은 본 발명에 따른 다수의 집진실로 이루어진 대용량 여과집진기의 탈진방법이 사용된 탈진장치의 첫 번째 실시예를 나타낸 것으로, 도시된 탈진장치는 충격기류 탈진기구가 적용된 것으로 여과집진기(10), 가스 유입라인(20), 유입가스 유량 제어장치(30), 가스 배출라인(40), 배출가스 유량 제어장치(50), 제 1, 2메인차압센서(60, 61), 제 1, 2부가차압센서(70, 71), 탈진기구(80), 탈진기구 제어기(90), 그리고 연동 제어기(100)로 이루어진다.
상기 여과집진기(10)는 분진을 여과시키기 위해, 집진필터(11)가 수직하방 형태로 내설된 집진실(12)을 다수개 구비하여, 상기 다수개의 집진실(12)이 일체형을 이루도록 한다.
물론, 상기 각각의 집진실(12)에는 사용자의 실시예에 따라, 다수의 집진필터(11)가 탈진공기 분사관(81)의 길이방향으로 단일개의 열(
Figure PCTKR2010001809-p84
) 또는 다수 개의 열(
Figure PCTKR2010001809-p84
)(S1, S2, S3, S4)의 형태로 설치될 수 있다.
상기 집진실(12)은 분진함유 가스(A)가 최초 유입되는 상광하협(上
Figure PCTKR2010001809-p68
下狹) 형태(깔대기 형상)의 호퍼(13)(호퍼(13)에는 수거된 분진을 배출하기 위한 수거분진 배출장치(14)가 하단에 하단부에 형성되어 있음이다.) 및 상기 호퍼(13)의 상단에 수직상향으로 연장형성되어 집진필터(11)가 내설되는 필터부(15)와, 상기 필터부(15)를 거쳐 분진이 여과된 청정처리 가스(B)가 이동되도록, 상기 필터부(15)와 연통되는 청정부(16)로 구획되어 이루어진다.
더불어, 다수개의 집진실(12)은 다수개가 일방향으로 연속 나열되어 일체형으로 이루되, 상기 도 2에 도시된 바와 같이, 각각의 집진실(12)은 분리판(18)에 의해 구획되어 있거나, 도 6에 도시된 바와 같이, 분리판(18) 없이 상호간 개방되어 각각의 집진실(12)이 동일한 호퍼(13)를 구비하게 할 수도 있음이며, 다수개의 집진실(12)이 동일한 호퍼(13)로 이루어지는 경우, 스크류 컨베이어(19')가 호퍼(13)의 저면측에 설치되어, 호퍼(13)의 저면에 쌓이게 되는 분진을 호퍼(13)의 일측에 개구된 수거분진 배출장치(14)로 이동시켜 외부로 배출될 수 있도록 한다. 물론, 상기 스크류 컨베이어(19')의 작동을 위한 스크류 컨베이어 구동장치(19)가 별도로 구비되어 있어야 함은 당연하다.
상기 가스 유입라인(20)은 도 2, 4, 5, 6에 도시된 바와 같이, 각각의 집진실(12) 내부, 더욱 자세히는 각 집진실(12)의 호퍼(13)에 일단이 연통 연결되고, 타단은 분진 배출원(1)과 연통연결되어, 상기 분진 배출원(1)에서 발생된 분진함유 가스(A)를 상기 집진실(12) 내부로 이동시키기 위한 것이다. 물론, 상기 가스 유입라인(20)을 통한 분진함유 가스(A)는 별도의 송풍기 등 다양한 유동장치에 의해 유동되도록 해야 할 것이며, 상기 집진실(12)에 연통되는 가스 유입라인(20)의 일단 외주연에는 다수개의 처리가스 유입 분지관(21)이 분지형성되어, 각각의 집진실(12)에 연통되도록 해야 함은 당연할 것이다.
상기 유입가스 유량 제어장치(30)는 도 5에 도시된 바와 같이, 다수의 집진실(12)과 연통연결되는 각각의 처리가스 유입 분지관(21)에 형성되는 것으로, 상기 각 집진실(12)로 유입되는 분진함유 가스(A) 유량을 제어할 수 있도록 한다. 물론, 상기 유입가스 유량 제어장치(30)는 후술 될 배출가스 유량 제어장치(50)와 마찬가지로 밸브(V6, V7, V8, V9, V10) 등으로 이루어질 수 있으며, 사용자의 선택에 의해 밸브 외에 유량 조절이 가능한 다양한 장치로 대체가능하다. 물론, 사용자의 실시예에 따라, 도 2, 4, 6과 같이 유입가스 유량 제어장치(30)가 사용되지 않을 수도 있음이다.
상기 가스 배출라인(40)은 도 2, 4, 5, 6에 도시된 바와 같이, 각각의 집진필터(11)를 거쳐 여과된 청정처리 가스(B)를 배출하기 위해 각 집진실(12)의 청정부(16)와 연통 연결되는 처리가스 배출 분지관(41)과 연결된 배출관을 의미한다. 즉, 본 발명의 각 집진실(12) 상부에 위치되는 청정부(16)에는 처리가스 배출 분지관(41)이 연결되고, 이러한 각각의 처리가스 배출 분지관(41)들은 단일개의 가스 배출라인(40)과 연통 결합되도록 구성한 것이다.
상기 배출가스 유량 제어장치(50)는 도 2, 4, 5, 6에 도시된 바와 같이, 집진실(12)의 각 처리가스 배출 분지관(41)에 형성되어, 상기 각 집진실(12)로부터 배출되는 여과된 청정처리 가스(B)의 유량을 제어할 수 있도록 한다. 물론, 상기 배출가스 유량 제어장치(30)는 밸브(V1, V2, V3, V4, V5) 등으로 이루어질 수 있으며, 사용자의 선택에 의해 밸브 외에 유량 조절이 가능한 다양한 장치로 대체가능하다.
제 1, 2메인차압센서(60, 61)는 도 2에 도시된 바와 같이, 본 발명에서 다수개의 집진실(12)로 이루어지는 여과집진기(10)를 처리가스가 통과하기 전, 후의 압력차이를 측정하기 위한 것으로, 상기 제 1메인차압센서(60)는 가스 유입라인(20)에 설치되고, 상기 제 2메인차압센서(61)는 가스 배출라인(40)에 설치된다.
(물론, 상기 제 1메인차압센서(60)는 가스 유입라인(20)에서 다수의 처리가스 유입 분지관(21) 형성 전단에 설치하고, 상기 제 2메인차압센서(61)는 가스 배출라인(40)에서 다수의 처리가스 배출 분지관(41)이 연통연결된 부분 후단에 설치되어야, 다수의 집진실(12)로 이루어진 여과집진기(10) 내로 유입되는 분진함유 가스(A)의 총 유입압력 및 분진이 여과된 청정처리 가스(B)의 총 배출압력을 측정할 수 있음은 당연할 것이다.)
상기 제 1, 2부가차압센서(70, 71)는 도 2에 도시된 바와 같이, 여과집진기(10) 내 다수의 집진실(12) 각각에 한 쌍으로 설치되어, 각 집진실(12)에 있어서 집진필터(11) 통과 전, 후의 집진실(12) 가스 압력을 측정하기 위한 것으로, 상기 제 1부가차압센서(70)는 각 집진실(12)에 형성되어 분진함유 가스(A)가 호퍼(13)로 유입되도록 하는 처리가스 유입 분지관(21)에 설치되고, 상기 제 2부가차압센서(71)는 집진필터(11)를 거쳐 여과된 청정처리 가스(B)를 외부로 배출시키기 위해 처리가스 배출 분지관(41)에 설치되도록 한다. 이로써, 집진필터(11) 통과 전후의 압력차이를 각각의 집진실(12) 별로 측정할 수 있게 된다.
도 2, 3, 5, 6에 도시된 상기 탈진기구(80)는 충격기류 방식의 탈진기구로서, 각각의 집진실(12)에 설치되는 것으로, 더욱 자세히는 필터부(15)와 연통되는 청정부(16)에 설치된다. 도 2, 3, 5, 6에 도시된 상기 탈진기구(80)는 탈진공기 분사관(81)과 상기 탈진공기 분사관(81)의 일단 외주연에 형성된 탈진공기 분사노즐(82), 탈진용 압축공기탱크(84), 그리고 상기 탈진공기 분사관(81) 및 상기 압축공기탱크(84)에 양단이 연통되어 탈진공기의 양을 제어하는 압축공기 제어밸브(83)으로 구성된다. 상기 탈진공기 분사관(81)은 청정부(16) 내에 집진필터(11)의 상부에 설치되는 것으로, 상기 필터부(15) 내에 형성되어 있는 집진필터(11)는 상기 탈진공기 분사관(81)의 길이방향으로 상기 탈진공기 분사노즐의 위치에 대응되도록 다수의 열(
Figure PCTKR2010001809-p84
)의 형태로 설치된다.
반면, 도 4는 역기류세정방식 탈진기구가 적용된 여과집진기를 도시한 것으로, 탈진용 공기 유입관(42)을 별도로 구비하고, 상기 탈진용 공기 유입관(42)으로부터 분지되는 다수의 탈진용 공기유입 분지관(43)을, 각 집진실(12)의 청정부(16) 또는 처리가스 배출 분지관(41)에 연통시켜, 다수개의 집진필터(11) 모두에 탈진공기(C)를 동시에 유입시켜 탈진되도록 할 수도 있다. 물론, 상기 다수의 탈진용 공기유입 분지관(43) 각각에도 유량을 제어하기 위한 탈진용 공기유량 제어장치(44)가 설치될 수 있음이다. 상기 탈진용 공기유량 제어장치(44)는 밸브(VR1, VR2, VR3, VR4, VR5) 등으로 이루어질 수 있으며, 사용자의 선택에 의해 밸브 외에 유량 조절이 가능한 다양한 장치로 대체가능하다. 또한 상기 탈진공기(C)는 가압용 송풍기(미도시) 등을 이용하여 공급되는데, 도 4를 예로 들어 상세히 설명하자면, 탈진단계에서 상기 배출가스 유량 제어장치(50)가 닫힌 상태에서 상기 탈진용 공기 유량 제어장치(44)를 완전히 개방한 후, 가압용 송풍기를 이용하여 탈진대상 집진실(12) 내로 탈진용 공기를 집진필터의 여과방향과 반대 방향으로 공급하거나, 가압용 송풍기를 별도로 사용하지 않더라도 상기 처리가스 유입 분지관(21)이 열려 있다면 여과집진기(10) 후단의 송풍기(2)의 흡입력으로 인해 탈진공기(C)가 탈진용 공기 유입 분지관(43)을 통해 집진필터의 여과방향과 반대 방향으로 공급되어 집진필터(11) 표면에 부착된 분진이 탈리되며 탈진이 이루어진다.
이러한 탈진기구(80)로는 사용자의 선택에 의해, 고압의 압축공기를 집진필터(11) 내부에 고속으로 분사하는 충격기류 탈진장치, 가압송풍기 등를 이용하여 소정시간 동안 집진필터(11)의 여과방향과 반대방향으로 유량을 통과시켜 분진을 탈진시키는 역기류세정 탈진장치, 상기 집진필터(11)를 외력에 의해 진동시켜 탈진시키는 진동탈진장치, 음파발생기를 이용하여 음파에 의한 진동으로 집진필터(11)를 탈진시키는 음파탈진장치 중 하나가 사용될 수 있음이다.
상기 연동 제어기(100)는 도 2, 4, 5, 6에 도시된 바와 같이, 상기 여과집진기(10)의 탈진개시 및 종료, 상기 여과집진기(10)를 구성하는 다수의 집진실(12)의 탈진순서 및 탈진간격을 제어하기 위한 장치이며, 상기 탈진기구 제어기(90)는 상기 연동 제어기(100)에 의해 각 집진실(12)에 탈진에 개시될 때, 각 집진실 내의 탈진기구(80) 및 탈진 과정을 제어하는 수단이다. 따라서 상기 연동 제어기(100)와 상기 탈진기구 제어기(90)는 상호 통신이 되어야 하며, 경우에 따라서는 하나의 제어기로 통합될 수 도 있다.
상기 연동 제어기(100)는 상기 탈진기구 제어기(90) 외에, 다수의 집진실(12)에 형성되어 있는 각각의 유입가스 유량 제어장치(30)와 배출가스 유량 제어장치(50)와도 통신하며, 상기 여과집진기(10)의 압력손실 값에 의해 탈진이 개시되는 탈진 방식에서는 상기 제 1, 2메인차압센서(60, 61)와도 통신한다.
즉, 상기 연동 제어기(100)는 유입가스 및 배출가스 유량제어장치(30, 50), 제 1, 2메인차압센서(60, 61), 탈진기구 제어기(90) 등과 통신하여, 사용자에 의해 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)의 개폐율과 개폐 시간간격, 상기 여과집진기(10)의 탈진개시, 다수의 집진실(12) 간의 탈진순서와 탈진시간간격이 다양하게 제어될 수 있도록 하는 것이다.
이하에서는 상기와 같은 구성요소를 갖는 본 발명의 바람직한 실시예의 대용량 여과집진기 탈진방법을 설명하도록 한다.
이와 같은 탈진방법은 대용량 여과집진기(10)에 있어서, 사용자가 사전에 지정한 소정주기(T0)에 따라 또는 상기 여과집진기(10)를 통과하기 전의 처리가스 정압과 통과한 후의 처리가스 정압의 차이 값, 즉 여과집진기의 압력손실 값이 미리 지정한 소정값에 이르게 될 경우 개시된다. (상기 소정값은 사용자가 사전 지정한 일정값을 의미하며, 이는 후술 될 소정값에도 동일하게 적용된다.)
첫 번째 실시예로는 도 7, 8에 도시된 바와 같이,
1. 다수의 집진실(12)로 이루어진 대용량의 여과집진기(10)에서, 탈진대상 집진실(12)의 유량을 소정시간(T1)동안 차단하는 단계(S100) : 다수개의 집진실(12) 중 한 개의 집진실(12)(탈진대상이 되는 집진실(12), 이는 다수개의 집진실(12) 중 하나가 선택되며, 이는 사용자에 의해 다양하게 순서가 변경될 수 있음이다.)을 통과하는 유량을 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)를 오프(off)시킴으로써, 완전히 차단하고 사용자가 지정한 소정시간을 경과시키는 단계이다.
2. 상기 단계(S100)단계 후, 상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 분진을 탈진기구(80)를 통해 탈진시키는 단계(S200) : 상기 탈진기구(80)로는 집진실(12) 내부의 집진필터(11)를 탈진시킬 수 있는 전술된 다양한 기구 중 하나가 사용될 수 있음이다. 상기 도 2와 도 3의 충격기류 탈진기구가 적용된 예를 통해 상세히 설명하자면, 상기 각 집진실(12) 내에서의 모든 탈진조작은 상기 탈진기구 제어기(90)를 통해 제어되는데, 도 3의 경우 각 집진실에는 모두 4개의 탈진공기 분사관(81) 및 압축공기 제어밸브(83)가 설치되어 있고, 상기 각 탈진공기 분사관(81)은 4개의 집진필터를 동시에 탈진할 수 있도록 구성되어 있다. 예를 들어 탈진 대상 집진실이 도 3의 좌측 끝단의 집진실(12)일 경우, 탈진기구 제어기(90)는 압축공기 제어밸브(83)와 통신하여, 도 3에 표시된 S1, S2, S3, S4에 해당되는 각 압축공기 제어밸브(83) 사이의 작동 순서 및 작동시간 간격과, 개별 압축공기 제어밸브(83)의 개폐시간을 제어함으로써 집진실(12)내의 모든 집진필터(11)를 탈진하게 된다.
3. 상기 단계(S200)단계 후, 탈진된 분진이 침강하여 하단부의 호퍼(13)와 수거분진 배출장치(14)를 거쳐 외부로 배출될 수 있도록, 소정시간(T2) 경과시키는 단계(S300) : 이는 유량을 차단하지 않고 탈진하는 기존 탈진시스템의 문제점인 탈진시 순간적으로 탈진된 분진들이 다시 재유입되어 집진필터(11)를 통과하거나, 또는 집진필터(11)에 재부착되어 탈진효율이 저하되는 현상을 방지할 수 있도록 하는 것이다.
4. 상기 단계(S300)단계 후, 상기 탈진대상 집진실(12)을 사용자가 지정한 소정의 수치값만큼 개방하여, 소정시간(T3) 운전시키는 단계(S400) : 이때 탈진대상 집진실(12)의 개방율은 상기 탈진대상 집진실(12)이 완전(100%)개방되어 유량이 100% 유동되는 것을 정상유량이라 했을 때, 정상유량의 50% 이하이며, 더욱 바람직하게는 정상유량의 5 내지 20% 정도이다. 따라서 상기 S400단계는 이와 같이 탈진대상 집진실(12)의 유량이 정상유량의 50% 이하를 유지한 상태로 탈진대상 집진실(12)을 소정시간(T3) 운전시키는 단계이다. 물론, 사용자에 의해 상기 소정수치는 변동이 가능할 것이다.
이러한 조작은 탈진 직후 일시적으로 깨끗해진 집진필터(11)의 집진효율을 높이기 위함으로, 여과속도를 낮춰 집진효율을 높이고, 이와 더불어 집진필터(11) 표면에 초기 분진층이 형성되기 위한 시간을 확보하기 위함이다.
즉, 탈진 후 의도적으로 여과속도를 낮추면 집진효율도 증가되고, 상기 집진필터(11)의 표면에 초기 분진층이 형성되게 된다.
소정시간동안 낮은 여과속도 조건에서 집진필터(11) 표면에 분진층이 형성되면, 이러한 분진층은 고효율 필터로서 역할을 하게 되어, 다시 정상 여과속도(100% 정상 유량)로 복귀되었을 때에도 집진필터(11)를 통과하는 분진의 농도를 크게 낮출 수 있다.
상기 S400단계에서 상기 집진실(12) 통과 유량의 제어는 상기 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)를 통해 이루어지며, 상기 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)의 개폐 및 개폐율 제어는 모두 상기 연동 제어기(100)를 통해 이루어진다.
5. 상기 단계(S400)단계 후, 상기 탈진대상 집진실(12)을 완전개방(100%개방)하여 소정시간(T4) 운전시키는 단계(S500).
6. 상기 단계(S500)단계 후, 남아있는 다수의 나머지 집진실(12)을 사용자가 지정한 소정의 순서에 따라, 상기의 단계와 동일하게 반복 수행시켜 탈진시키는 과정 : 즉 상기와 같이 다수개의 집진실(12) 중 탈진대상이 된 하나의 집진실(12)을 탈진시킨 후, 남아있는 다른 집진실(12)을 상기와 같은 방법으로 탈진하여, 모든 집진실(12)이 소정순서에 따라(사용자가 지정한 순서)에 따라 탈진이 이루어지도록 한다. 이때 각 집진실(12) 사이의 순서와 시간간격은 모두 상기 연동 제어기(100)를 통해 제어된다.
7. 다수개의 집진실(12) 전체의 탈진이 모두 끝나면(①), 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(11)의 압력손실이 사용자가 지정한 소정값에 이르렀을 경우, 다시 탈진이 순차적으로 재반복(②->③…)되도록 함은 당연하다. 이때의 시간주기(T0) 및 탈진개시 압력손실 값은 모두 상기 연동 제어기(100)를 통해 입력되고 조정된다.
두 번째 실시예로는 도 9에 도시된 바와 같이,
1. 다수의 집진실(12)로 이루어진 여과집진기(10) 중, 탈진대상 집진실(12)을 사용자가 지정한 소정의 비율로 개방한 상태로 소정시간(T1) 경과시키는 단계(S100) : 상기 탈진기구(80)를 통해 탈진하기 전 상기 첫 번째 실시 예에서는 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)를 모두 오프(off)시켜 가스가 유동되지 않도록 완전히 차단하였지만, 두 번째 실시 예에서는 소정수치 개방한 상태로 소정시간을 경과시키면서 분진함유 가스(A)를 상기 탈진대상 집진실(12)에 통과시킨다. 이때 탈진대상 집진실(12)의 개방율은 상기 탈진대상 집진실(12)이 완전(100%)개방되어 유량이 100% 유동되는 것을 정상유량이라 했을 때, 정상유량의 50% 이하이며, 더욱 바람직하게는 정상유량의 5 내지 20%가 정도이다. 물론, 사용자에 의해 상기 소정수치는 변동이 가능할 것이다.
2. 상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 분진을 탈진기구(80)를 통해 탈진시키는 단계(S200).
3. 상기 단계(S200)단계 후, 탈진된 분진이 침강하여 하단부의 호퍼(13)와 수거분진 배출장치(14)를 거쳐 외부로 배출될 수 있도록, 소정시간(T2) 경과시키는 단계(S300) : 상기 집진실(12)을 통과하는 유량이 정상유량에 비해 낮은 상태를 유지하면 탈진된 분진이 침강하여 최종적으로 배출장치(14)를 거쳐 외부로 배출되는데 유리하며, 또한 탈진직후 순간적으로 탈진된 분진들이 다시 재유입되어 집진필터(11)를 통과하거나, 또는 집진필터(11)에 재부착되어 탈진효율이 저하되는 현상을 방지할 수 있다.
4. 상기 탈진대상 집진실(12)을 100% 완전 개방하여 정상유량 상태에서 소정시간(T4) 운전시키는 단계(S500): 두 번째 실시 예에서는 이미 탈진대상 집진실(12)이 사용자가 지정한 소정수치 정도 개방된 상태이기 때문에 첫 번째 실시 예에서처럼, 탈진대상 집진실(12)을 100% 완전개방하기 전에 5 내지 20% 소정수치 개방하여 운전시키는 단계(S400)가 생략된다.
5. 상기 단계(S500)단계 후, 남아있는 다수의 나머지 집진실(12)을 소정순서에 따라, 상기의 단계와 동일하게 반복 수행시켜 탈진시키는 과정 : 즉 상기와 같이 다수개의 집진실(12) 중 탈진대상이 된 하나의 집진실(12)을 탈진시킨 후, 남아있는 다른 집진실(12)을 상기와 같은 방법으로 탈진하여, 모든 집진실(12)이 소정의 순서에 따라(사용자가 지정한 순서)에 따라 탈진이 이루어지도록 한다. 이때 각 집진실(12) 사이의 순서와 시간간격은 모두 상기 연동 제어기(100)를 통해 제어된다.
6. 다수개의 집진실(12) 전체의 탈진이 모두 끝나면(①), 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(11)의 압력손실이 사용자가 지정한 소정값에 이르렀을 경우, 다시 탈진이 순차적으로 재반복(②->③…)되도록 함은 당연하다. 이때의 시간주기(T0) 및 탈진개시 압력손실 값은 모두 상기 연동 제어기(100)를 통해 입력되고 조정된다.
전술된 대용량 여과집진기 탈진방법에서 기재된 소정의 시간주기(T0) 및 소정시간(T1, T2, T3, T4)는 상기 연동 제어기(100)를 통해 사용자에 의해 다양하게 변경 가능할 것이다.
더불어, 상기에서 서술되지 않은 도면의 부호인 '17'은 집진필터(11)가 설치될 수 있도록 집진실(12)에 수평 설치되는 '집진필터 설치판'을 나타내며, '81, 82'는 탈진기구(80)의 실시 예를 나타낸 것으로 충격기류 방식 탈진기구의 '탈진공기 분사관'과 '탈진공기 분사노즐'을 각각 나타내며, '83'은 각각의 탈진공기 분사관(81)으로 공급되는 압축공기의 유량을 조절하기 위한 '압축공기 제어밸브'를 나타내며, '84'는 '탈진용 압축공기 저장탱크'를 나타낸다.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.

Claims (11)

  1. 다수의 집진실(12)로 이루어진 대용량의 여과집진기(10)에서, 사용자가 지정한 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실값이 소정값에 도달하여 상기 다수의 집진실(12)이 순차적으로 모두 탈진되는 대용량 여과집진기 탈진방법에 있어서,
    첫 번째 탈진대상 집진실(12)의 유량을 완전히 차단하고 탈진 개시 직전까지 소정시간(T1)을 대기하는 단계(S100)와;
    상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 분진을 탈진시키는 단계(S200)와;
    탈진된 분진이 상기 집진필터(11)에 재유입 되는 것을 방지하고 침강에 의해 상기 집진실(12) 하단부의 호퍼(13)와 분진 배출장치(14)를 거쳐 외부로 배출될 수 있도록, 상기 집진실(12)의 유량을 완전히 차단한 상태로 소정시간(T2) 경과시키는 단계(S300)와;
    상기 유량이 완전히 차단된 탈진대상 집진실(12)을 100% 개방한 정상 유량의 50%로 유량이 통과하도록 개방하여 소정시간(T3) 운전시키는 단계(S400)와;
    상기 탈진대상 집진실(12)을 100% 개방한 정상유량 상태에서 소정시간(T4) 운전시키는 단계(S500)와;
    상기 여과집진기(10)의 두 번째 탈진 대상 집진실(12)을 상기 각 단계와 동일한 순서와 방법으로 탈진하는 단계(S600)와;
    상기 여과집진기(10)의 나머지 집진실(12)도 순차적으로 상기 단계와 동일하게 반복 수행시켜 탈진하는 단계(S700)와;
    상기 여과집진기(10)의 마지막 탈진 순서에 해당되는 집진실(12)의 탈진이 완료되어 상기 여과집진기(10)의 탈진 싸이클이 종료된 후, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실이 소정값에 도달하여 상기 여과집진기(10)의 탈진 싸이클이 다시 반복 수행되는 단계(S800);
    를 포함하여 이루어지는 것을 특징으로 하는 대용량 여과집진기 탈진방법.
  2. 다수의 집진실(12)로 이루어진 대용량의 여과집진기(10)에서, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실값이 소정값에 도달하여 상기 다수의 집진실(12)이 순차적으로 모두 탈진되는 대용량 여과집진기 탈진방법에 있어서,
    첫 번째 탈진대상 집진실(12)을 100% 개방된 정상 유량의 50%이하로 유량이 통과하도록 개방하여 탈진 개시 직전까지 소정시간(T1)을 대기하는 단계(S100)와;
    상기 탈진대상 집진실(12)의 집진필터(11)에 포집된 분진을 탈진시키는 단계(S200)와;
    탈진된 분진이 상기 집진필터(11)에 재유입 되는 것을 방지하고 침강에 의해 상기 집진실(12) 하단부의 호퍼(13)와 분진 배출장치(14)를 거쳐 외부로 배출될 수 있도록, 상기 집진실(12)을 상기 S100단계의 개방된 상태로 유지하며 소정시간(T2) 경과시키는 단계(S300)와;
    상기 탈진대상 집진실(12)을 100% 개방한 정상유량 상태에서 소정시간(T4) 운전시키는 단계(S500)와;
    상기 여과집진기(10)의 두 번째 탈진 대상 집진실(12)을 상기 각 단계와 동일한 순서와 방법으로 탈진하는 단계(S600)와;
    상기 여과집진기(10)의 나머지 집진실(12)도 순차적으로 상기 단계와 동일하게 반복 수행시켜 탈진하는 단계(S700)와;
    상기 여과집진기(10)의 마지막 탈진 순서에 해당되는 집진실(12)의 탈진이 완료되어 상기 여과집진기(10)의 탈진 싸이클이 종료된 후, 소정의 시간주기(T0)에 따라 또는 상기 여과집진기(10)의 압력손실이 소정값에 도달하여 상기 여과집진기(10)의 탈진 싸이클이 다시 반복 수행되는 단계(S800);
    를 포함하여 이루어지는 것을 특징으로 하는 대용량 여과집진기 탈진방법.
  3. 제 1항에 있어서,
    상기 S400단계에서는
    상기 탈진대상 집진실(12)이 100% 개방된 경우의 정상 유량에 대비하여, 상기 집진실(12) 통과 유량이 5 내지 20%가 되도록 상기 탈진대상 집진실(12)를 개방하여 운전시킴으로써, 정상유량인 경우에 비해 여과속도를 낮춰 집진효율을 향상시키고, 집진필터(11) 표면에 초기 분진층이 형성되도록 하여, 상기 초기 분진층으로 인해 집진필터(11)의 집진효율이 증대되도록 하는 것을 특징으로 하는 대용량 여과집진기 탈진방법.
  4. 제 2항에 있어서,
    상기 S100단계에서는
    상기 탈진대상 집진실(12)이 100% 개방된 경우의 정상 유량에 대비하여, 상기 집진실(12) 통과 유량이 정상유량의 5 내지 20%가 되도록 상기 탈진대상 집진실(12)를 개방하여 운전하는 것을 특징으로 하는 대용량 여과집진기 탈진방법.
  5. 제 1항 또는 제 2항에 있어서,
    상기 S200단계에서
    상기 탈진대상 집진실(12)에는 다수의 집진필터(11)가 형성되어 있으며,
    상기 집진필터(11)는 상기 탈진대상 집진실(12) 청정부(16)에 설치된 탈진기구(80)와, 상기 탈진기구(80)의 종류에 따른 탈진 조작을 제어할 수 있는 탈진기구 제어기(90)를 통해 탈진되는 것을 특징으로 하는 대용량 여과집진기 탈진방법.
  6. 집진필터(11)가 내설된 다수의 집진실(12)로 이루어진 여과집진기(10)와;
    상기 다수의 집진실(12) 내부로 분진함유 가스(A)를 공급하기 위한 가스 유입라인(20)과;
    상기 각 집진실(12)의 처리가스 배출 분지관(41)에 연통연결되어, 상기 집진필터(11)에 의해 여과된 청정처리가스(B)를 배출하기 위한 가스 배출라인(40)과;
    상기 각각의 처리가스 배출 분지관(41)에 설치되어, 각 집진실(12)에서 배출되는 가스 유량을 제어하는 배출가스 유량 제어장치(50)와;
    상기 가스 유입라인(20) 및 가스 배출라인(40)에 각각 설치되어, 상기 여과집진기(10) 통과 전, 후의 압력차이를 측정할 수 있도록 하는 제 1, 2메인차압센서(60, 61)와;
    상기 집진필터(11)에 포집된 분진을 탈진시키기 위해 각 집진실(12)에 설치된 탈진기구(80)와;
    상기 각 집진실(12)의 탈진기구(80)의 작동을 제어하도록 설계된 탈진기구 제어기(90)와;
    상기 여과집진기(10)의 탈진 싸이클 주기(T0) 및 상기 각 탈진단계(S100, S200, S300, S400, S500)에 해당되는 소정시간(T1, T2, T3, T4) 및 순서, 상기 유입가스 유량 제어장치(30) 및 배출가스 유량 제어장치(50)의 개폐율과 개폐 시간간격, 다수의 집진실(12) 간의 탈진순서와 탈진시간간격을 제어하고, 상기 제 1, 2메인차압센서(60, 61)와 통신하며, 상기 탈진기구 제어기(90)와도 통신하여 상기 여과집진기(10)의 전체 탈진과정을 제어하도록 설계된 연동 제어기(100);
    로 구성되는 것을 특징으로 하는 대용량 여과집진기 탈진장치.
  7. 제 6항에 있어서,
    상기 가스 유입라인(20)은
    일단 외주연에 처리가스 유입 분지관(21)이 다수 분지형성되어 각 집진실(12)에 연통연결되되, 상기 각각의 처리가스 유입 분지관(21)에는 각 집진실(12)로 유입되는 분진함유 가스(A) 유량을 제어하는 유입가스 유량 제어장치(30)가 설치되는 것을 특징으로 하는 대용량 여과집진기 탈진장치.
  8. 제 6항에 있어서,
    상기 각각의 집진실(12)은
    상기 처리가스 유입 분지관(21)에 제 1부가차압센서(70)를 설치하고, 상기 처리가스 배출 분지관(41)에는 제 2부가차압센서(71)를 설치하여, 각 집진실(12)의 집진필터(11) 통과 전, 후의 압력차이를 측정할 수 있도록 하는 것을 특징으로 하는 대용량 여과집진기 탈진장치.
  9. 제 6항에 있어서,
    상기 탈진기구(80)는
    고압의 압축공기를 집진필터(11) 내부에 고속으로 분사하는 충격기류 탈진장치, 가압송풍기를 이용하여 소정시간동안 집진필터(11)의 여과방향과 반대방향으로 유량을 통과시켜 분진을 탈진시키는 역기류세정 탈진장치, 상기 집진필터(11)를 외력에 의해 진동시켜 탈진시키는 진동탈진장치, 음파발생기를 이용하여 음파에 의한 진동으로 집진필터(11)를 탈진시키는 음파탈진장치 중 하나가 사용되는 것을 특징으로 하는 대용량 여과집진기 탈진장치.
  10. 제 6항에 있어서,
    상기 다수의 집진실(12)은
    분진함유 가스(A)가 유입되는 호퍼(13) 및 상기 집진필터(11)가 내설되어 호퍼(13)의 상단부에 수직상향으로 연장형성되는 필터부(15)와, 상기 필터부(15)와 연통되어 필터부(15)를 거쳐 분진이 여과된 청정처리가스(B)가 이동되는 청정부(16)로 구획되며, 상기 필터부(15)는 다수의 집진필터(11)로 이루어지는 것을 특징으로 하는 대용량 여과집진기 탈진장치.
  11. 제 6항에 있어서,
    상기 다수의 집진실(12)은
    상기 필터부(15)가 상호간 개방되어 있거나 또는 분리판(18)에 의해 구획되어 있는 것을 특징으로 하는 대용량 여과집진기 탈진장치.
PCT/KR2010/001809 2010-03-24 2010-03-24 대용량 여과집진기 탈진 장치 및 방법 WO2011118861A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080065645.3A CN102811791B (zh) 2010-03-24 2010-03-24 大容量过滤集尘器的清洁设备和清洁方法
PCT/KR2010/001809 WO2011118861A1 (ko) 2010-03-24 2010-03-24 대용량 여과집진기 탈진 장치 및 방법
JP2013501167A JP5614604B2 (ja) 2010-03-24 2010-03-24 大容量濾過集塵機の脱塵装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/001809 WO2011118861A1 (ko) 2010-03-24 2010-03-24 대용량 여과집진기 탈진 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2011118861A1 true WO2011118861A1 (ko) 2011-09-29

Family

ID=44673390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001809 WO2011118861A1 (ko) 2010-03-24 2010-03-24 대용량 여과집진기 탈진 장치 및 방법

Country Status (3)

Country Link
JP (1) JP5614604B2 (ko)
CN (1) CN102811791B (ko)
WO (1) WO2011118861A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861517A (zh) * 2014-03-28 2014-06-18 长兴明天炉料有限公司 一种预混料生产线
CN103962048A (zh) * 2014-05-15 2014-08-06 杨利明 一种用于预混料加工的生产线
CN105727642A (zh) * 2016-04-21 2016-07-06 西安建筑科技大学 一种基于双层过滤及分室流量自均衡的超净袋式除尘系统
CN108905414A (zh) * 2018-08-16 2018-11-30 恒力石化(大连)炼化有限公司 一种除尘管路装置及其管路除尘方法
CN115301003A (zh) * 2022-10-11 2022-11-08 布鲁奇维尔通风设备启东有限公司 一种袋式除尘装置
CN115915681A (zh) * 2023-03-09 2023-04-04 联通(山东)产业互联网有限公司 一种防尘散热机柜
CN117816376A (zh) * 2023-12-29 2024-04-05 江苏龙尚重工有限公司 一种冶金用烟气高效除尘装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657291A (zh) * 2013-12-17 2014-03-26 国家电网公司 一种布袋除尘器烟气流场调整装置
CN104474810A (zh) * 2014-10-23 2015-04-01 山东瑞宇蓄电池有限公司 一种铅酸蓄电池生产装置及其除尘装置
CN105964072B (zh) * 2016-06-23 2018-08-31 河北苹乐面粉机械集团有限公司 一种卧式扁布筒除尘器
CN106237764B (zh) * 2016-08-18 2018-08-14 卢志旭 具有多个除尘器单元的除尘器系统
CN106310852B (zh) * 2016-08-18 2018-08-24 卢志旭 并联式除尘器系统
KR101960143B1 (ko) * 2016-12-26 2019-03-19 주식회사 포스코아이씨티 미세먼지 집진을 위한 일체형 산업용 집진기
CN106693544A (zh) * 2017-03-15 2017-05-24 湖南思为能源环保工程有限公司 一种用于喷涂房的过滤装置
EP3403709B1 (en) * 2017-05-19 2020-03-11 General Electric Technology GmbH Low particulate matter emission fabric filter
US20190209957A1 (en) * 2018-01-10 2019-07-11 Lincoln Global, Inc. Custom filter cleaning routines for extraction systems
KR102377708B1 (ko) * 2020-04-07 2022-03-23 주식회사 엠에코 전처리 필터 내장형 복합식 집진시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549828A (ja) * 1991-08-26 1993-03-02 Nikko Co Ltd バグフイルタの脱塵方法
KR940006628A (ko) * 1992-09-30 1994-04-25 윤용문 집진장치의 동작 제어씨스템
KR940006629A (ko) * 1992-09-22 1994-04-25 카즈오 미즈타니 집진기의 클리닝 제어방법
KR20090102974A (ko) * 2008-03-27 2009-10-01 한국에너지기술연구원 여과집진기 가스 흐름 차단방식 탈진장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541294Y2 (ko) * 1973-11-14 1980-09-27
JPH04118016A (ja) * 1990-09-07 1992-04-20 Mitsui Eng & Shipbuild Co Ltd バグフィルタによる集麈方法
JPH05245319A (ja) * 1992-03-06 1993-09-24 Abb Gadelius Kk バグフィルタのダスト放出防止方法および装置
JPH067619A (ja) * 1992-06-26 1994-01-18 Nippon Steel Corp バグフィルタ集塵機
US5391218A (en) * 1993-09-08 1995-02-21 Donaldson Company, Inc. Diagnostic and control system for dust collector
AUPM711394A0 (en) * 1994-07-28 1994-08-18 Elliott, Jeff An air flow control system
JPH1071314A (ja) * 1996-08-30 1998-03-17 Kawasaki Steel Corp 高炉排ガス用バグフィルタ式集塵機におけるバグフィルタの洗浄方法
CN2285675Y (zh) * 1996-11-29 1998-07-08 国家建筑材料工业局合肥水泥研究设计院 分步回转型袋式收尘器
JP2000334238A (ja) * 1999-05-27 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd 濾過式集塵器の逆洗方法及び装置
JP2001314720A (ja) * 2000-05-09 2001-11-13 Nkk Corp 高速ろ過バグフィルタ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549828A (ja) * 1991-08-26 1993-03-02 Nikko Co Ltd バグフイルタの脱塵方法
KR940006629A (ko) * 1992-09-22 1994-04-25 카즈오 미즈타니 집진기의 클리닝 제어방법
KR940006628A (ko) * 1992-09-30 1994-04-25 윤용문 집진장치의 동작 제어씨스템
KR20090102974A (ko) * 2008-03-27 2009-10-01 한국에너지기술연구원 여과집진기 가스 흐름 차단방식 탈진장치 및 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861517A (zh) * 2014-03-28 2014-06-18 长兴明天炉料有限公司 一种预混料生产线
CN103962048A (zh) * 2014-05-15 2014-08-06 杨利明 一种用于预混料加工的生产线
CN103962048B (zh) * 2014-05-15 2016-01-06 杨利人 一种用于预混料加工的生产线
CN105727642A (zh) * 2016-04-21 2016-07-06 西安建筑科技大学 一种基于双层过滤及分室流量自均衡的超净袋式除尘系统
CN105727642B (zh) * 2016-04-21 2017-11-10 西安建筑科技大学 一种基于双层过滤及分室流量自均衡的超净袋式除尘系统
CN108905414A (zh) * 2018-08-16 2018-11-30 恒力石化(大连)炼化有限公司 一种除尘管路装置及其管路除尘方法
CN115301003A (zh) * 2022-10-11 2022-11-08 布鲁奇维尔通风设备启东有限公司 一种袋式除尘装置
CN115915681A (zh) * 2023-03-09 2023-04-04 联通(山东)产业互联网有限公司 一种防尘散热机柜
CN117816376A (zh) * 2023-12-29 2024-04-05 江苏龙尚重工有限公司 一种冶金用烟气高效除尘装置

Also Published As

Publication number Publication date
JP5614604B2 (ja) 2014-10-29
JP2013522033A (ja) 2013-06-13
CN102811791B (zh) 2014-10-01
CN102811791A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2011118861A1 (ko) 대용량 여과집진기 탈진 장치 및 방법
KR101196355B1 (ko) 대용량 여과집진기 탈진 장치 및 방법
WO2020013575A1 (ko) 집진설비 분진 배출 저감 시스템
WO2009157642A1 (ko) 여과집진기 가스 흐름 차단방식 탈진장치 및 방법
KR100855012B1 (ko) 여과 집진기용 탈리장치
WO2014133238A1 (ko) 집진장치
KR102498701B1 (ko) 사이클론과 필터백을 이용한 초음파 탈진구조의 멀티집진장치
WO2023128116A1 (ko) 봉지를 이용한 쓰레기 포집장치
WO2022169194A2 (ko) 나노입자급 미세먼지의 제거가 가능한 집중탈진 여과집진기 및 이를 이용한 여과집진방법
WO2018212407A1 (ko) 통합집진기의 여과포 탈진장치
CN206642494U (zh) 内滤负压式除尘装置
WO2023140495A1 (ko) 고체화 기능을 가진 와이드형 집진기
CN219376575U (zh) 一种布袋除尘器
WO2022055141A1 (ko) 백필터용 탈진노즐
JP2001041521A (ja) エアーシヤワー装置
KR20200045295A (ko) 하강 플로우 타입 여과 집진기
KR20090078997A (ko) 세라믹 필터를 이용한 에어펄스 타입 집진기
CN2633405Y (zh) 一种新型除尘器
WO2022105009A1 (zh) 一种模块化振打除尘器
JP2001062338A (ja) 集塵装置及び集塵装置のクリーニング方法
WO2015126014A1 (ko) 일체형 집진장치
JP2002361020A (ja) ろ過式集塵装置
JP2003225523A (ja) 集塵機の堆積ダスト排除装置
KR20200060115A (ko) 여과집진기
CN109603330A (zh) 自清洁袋式除尘器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065645.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848503

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013501167

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848503

Country of ref document: EP

Kind code of ref document: A1